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ABSTRACT

We show that in realistic cases of accretion in active galactic nuclei or stellar–mass X–ray binaries,
the Lense–Thirring effect breaks the central regions of tilted accretion discs around spinning black
holes into a set of distinct planes with only tenuous flows connecting them. If the original misalignment
of the outer disc to the spin axis of the hole is 45◦ . θ . 135◦, as in ∼ 70% of randomly oriented
accretion events, the continued precession of these discs sets up partially counter–rotating gas flows.
This drives rapid infall as angular momentum is cancelled and gas attempts to circularize at smaller
radii. Disc breaking close to the black hole leads to direct dynamical accretion, while breaking further
out can drive gas down to scales where it can accrete rapidly. For smaller tilt angles breaking can still
occur, and may lead to other observable phenomena such as QPOs. For such effects not to appear,
the black hole spin must in practice be negligibly small, or be almost precisely aligned with the disc.
Qualitatively similar results hold for any accretion disc subject to a forced differential precession, such
as an external disc around a misaligned black hole binary.
Subject headings: accretion, accretion disks — black hole physics — hydrodynamics — galaxies: active

— stars: neutron

1. INTRODUCTION

Accretion discs are common in astrophysics on all
scales from protostars to AGN (see e.g. Pringle 1981;
Frank et al. 2002). Many treatments assume that the disc
is aligned with the symmetry axis of the central object,
although there is often no a priori reason for this. The
first widely–studied case relaxing this restriction was the
evolution of tilted discs around spinning black holes. Un-
til recently the standard picture of tilted disc evolution
was that, in the regime where viscosity acts diffusively
(technically, α > H/R), the inner disc would align or
counteralign rapidly with the hole’s spin, with a smooth
warp to the still misaligned outer parts. This is often
called the Bardeen–Petterson effect (Bardeen & Petter-
son 1975, but note their equations do not conserve angu-
lar momentum; see Papaloizou & Pringle 1983; Pringle
1992; Ogilvie 1999 for detailed discussions of the cor-
rect equations; and King et al. 2005 for the possibility of
counteralignment).

In a recent paper, Nixon & King (2012) showed that
this evolution can be very different for large inclinations
of the disc and spin, and/or low values of the dimension-
less viscosity coefficient α (Shakura & Sunyaev 1973).
Enforcing the connections imposed by conservation laws
between the various components (‘radial’, and ‘vertical’)
of viscosity (Ogilvie 1999), Nixon & King (2012) showed
that the viscous torques in the disc may be unable to
communicate the Lense–Thirring precession efficiently
enough to produce a smooth warp. Instead one expects
a sharp break in the disc plane between the aligned inner
parts and the misaligned outer parts, connected only by
tenuous rings of gas with inclinations changing rapidly
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across the break. We shall see from our Eqn. 7 below,
that even if the viscosity coefficients remained constant
with warp amplitude, the disc would still break for re-
alistic parameters. Lodato & Price (2010) show that an
assumed break of this type remains stable in 3D simula-
tions of such discs. Nixon et al. (2012) show that inclined,
partially counter–rotating gas orbits within an accretion
disc lead to cancellation of angular momentum and thus
subsequent accretion. The mass flow rate through the
disc can, for a time, be increased by large factors up
to ∼ 104 times that of the corresponding disc with zero
inclination.

These results suggest that sufficiently inclined discs
might break, and that if the precession rate of the inner
and outer disc differs enough, discs rotating in opposed
senses might interact and produce dynamical mass infall.
We consider these questions in this Letter. We ask
1) for realistic parameters, can the Lense–Thirring
torques exceed the local viscous torques in the disc?
2) If they can, can we arrange the broken disc such that
disc orbits counter–rotate?

2. WHERE DOES THE DISC BREAK?

Here we estimate analytically the radius at which the
disc is likely to break. This will give us an idea of the
parameters which lead to breaking, and whether it is a
common event. To break the disc, the torque result-
ing from the Lense–Thirring effect must overcome the
local viscous torques, or equivalently, the orbits in the
disc must precess faster than the viscosity can communi-
cate the precession. To illustrate this point, let us imag-
ine the two extremes. If the viscosity is dominant, the
precession is communicated throughout the disc instan-
taneously, and the whole disc precesses rigidly. At the
other extreme where viscosity is negligible, orbits at dif-
ferent radii precess at different rates and the disc must
break into many distinct rings. The nonlinear connec-
tion between effective viscosity coefficients, enforced by
conservation laws (Ogilvie 1999), tell us that once a disc
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starts to break in this way, the viscosity evolves so as to
reinforce the tendency to break (Nixon & King 2012).

To calculate the breaking radius for a given viscosity
we can assume that the disc has no initial warp. Then
we can consider the usual viscous torque, and to a good
approximation neglect the more complicated physics of a
warped disc. The azimuthal viscous force per unit area
in the disc is proportional to the rate of shear RdΩ/dR
(where R is the radial coordinate and Ω is the disc an-
gular velocity) and so can be written as

fν = µR
dΩ

dR
. (1)

where µ is the dynamical viscosity. The area of an in-
terface in the disc is 2πRH, where H is the disc vertical
thickness. So the viscous force acting in the azimuthal
direction is given by

Fν = 2πRHµR
dΩ

dR
= 2πRνΣR

dΩ

dR
, (2)

where we have substituted the dynamic viscosity for the
kinematic viscosity (µ = ρν), and used Σ = ρH. The
magnitude of the viscous torque Gν is given by

Gν = |R× Fν | = 2πRνΣR2 (−Ω′) , (3)

where the prime denotes the radial derivative. This is
the usual viscous torque at the interface of two annuli in
an accretion disc (see Lynden-Bell & Pringle 1974; Frank
et al. 2002). For near–Keplerian rotation (Ω2 ≈ GM/R3)
it becomes

Gν = 3πνΣ(GMR)
1/2

. (4)

The Lense–Thirring precession induces a torque with
magnitude

GLT = 2πRH |Ωp × L| = 2πRHΩpΣR2Ω |sin θ| , (5)

where the Lense–Thirring frequency Ωp = 2GJh/c2R3,
the disc angular momentum density |L| = ΣR2Ω and θ
is the angle between the angular momentum of the black
hole and the disc. We assume the disc breaks when the
Lense–Thirring torque tears gas off the disc faster than
viscosity can make it spiral inwards, which requires

GLT & Gν . (6)

Making the standard assumption of a thin Keplerian α–
disc (Shakura & Sunyaev 1973) and using Jh = aGM2/c,
the radius at which we expect the disc to break is given
by

Rbreak .

(

4

3
|sin θ|

a

α

R

H

)2/3

Rg, (7)

where Rg = GM/c2 is the gravitational radius of the
black hole.

Equation (7) looks plausible; it makes sense that at
large viscosity, low spin or small inclination angles the
disc cannot be broken, i.e. Rbreak < Rg. Conversely,
for low viscosity, high spin and/or large inclinations we
expect the disc to break into distinct rings at some radius
Rbreak > Rg.

The typical radius at which the disc breaks is given by

Rbreak . 350Rg |sin θ|
2/3

( a

0.5

)2/3 ( α

0.1

)

−2/3
(

H/R

10−3

)

−2/3

(8)

where we have parameterized using quantities typical for
AGN discs. This radius falls within typical discs, sug-
gesting that inclined discs near spinning black holes are
quite susceptible to breaking. We caution that at ex-
treme parameters this simple argument may not suffice
to predict the behaviour of the system, although we ex-
pect the general behaviour to hold. In the next section we
confirm the breaking of the disc with numerical simula-
tions. These simulations are a preliminary investigation
into this problem and we intend to follow up in more
detail in future publications.

3. COUNTER–ROTATION

Let us consider an inclined disc that breaks under the
action of a strong differential precession. Its inner and
outer regions precess almost independently at different
rates. The precession timescale is much shorter than the
alignment timescale, which must wait for precession to
induce dissipation. So both the inner and outer discs re-
tain their inclinations to the black hole spin. The outer
disc remains almost unmoved, while the inner disc (typi-
cally a ring of radial width ∼ H) precesses rapidly about
the spin axis. If the angle θ between the outer disc and
the hole spin lies between ∼ 45−135◦ the inner ring must
form an angle 2θ > 90◦ with respect to the outer disc af-
ter half a precession period. The rotational velocities are
now partially opposed.

This configuration is similar to those adopted in the
counter–rotating disc simulations in Nixon et al. (2012)
and so must result in rapid accretion. We note the prob-
ability that a randomly oriented accretion event lies in
the critical range of inclinations is given by the fractional
solid angle as cos (π/4) i.e. ≈ 70%. In other words, disc
breaking and dynamical infall from counter–rotating ac-
cretion flows must be common in active galactic nuclei. It
is also common in stellar–mass X–ray binaries if the spin
of the black hole (or neutron star) accretor is sufficiently
misaligned with the binary plane.

We report two simulations of an inclined disc around a
spinning black hole using the Smoothed Particle Hydro-
dynamics (SPH) code phantom (see e.g. Price & Fed-
errath 2010; Lodato & Price 2010; Nixon et al. 2012;
Nixon 2012). SPH performs well in modelling warped
discs (Lodato & Price 2010) finding excellent agreement
with the analytical treatment of Ogilvie (1999). This
is to be expected as both treatments solve the Navier
Stokes equations with an isotropic viscosity. The con-
nections between the viscosity coefficients derived by
Ogilvie (1999) therefore naturally holds in our numer-
ical treatment. In the simulations reported here we im-
plemented the Lense–Thirring effect, following Nelson &
Papaloizou (2000). The simulations use a disc viscosity
with Shakura & Sunyaev α ≃ 0.1 (cf. Lodato & Price
2010), a disc angular semi–thickness of H/R ≃ 0.01 and
the black hole has a spin a = 1. Initially the disc has
no warp and extends from an inner radius of 50Rg to
an outer radius of 250Rg, with a surface density pro-
file Σ = Σ0(R/R0)

−p and locally isothermal sound speed
profile cs = cs,0(R/R0)

−q where we have chosen p = 3/2
and q = 3/4 to achieve a uniformly resolved disc (Lodato
& Pringle 2007). The disc is initially composed of 2 mil-
lion particles, which for this setup gives 〈h〉 /H ≈ 0.8 (cf.
Lodato & Price 2010). The two simulations differ only
by the relative inclination angle to the black hole.
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Fig. 1.— Full 3D surface rendering of the small inclination
simulation. The whole disc was initially inclined at 10◦ to the hole
with no warp. This snapshot is after approximately 500 dynamical
times at the inner edge of the disc (50Rg).

Fig. 2.— Full 3D surface rendering of the large inclination sim-
ulation. The whole disc was initially inclined at 60◦ to the hole
with no warp. This snapshot is after approximately 500 dynamical
times at the inner edge of the disc (50Rg).

The simulation shown in Fig. 1 has an initial incli-
nation of 10◦, and thus Rbreak ≈ 40Rg, i.e. at a radius
inside the disc’s inner boundary, and so we do not expect
the disc to break. This agrees with the simulation, which
shows the usual (Bardeen–Petterson) evolution with a
smooth warp. In contrast, the simulation shown in Fig. 2
has an inclination of 60◦ and therefore Rbreak = 110Rg,
i.e. we expect the disc to break. The simulated disc
does indeed break, producing multiple distinct rings of
gas with large relative inclinations. This leads to phases
of strong accretion when the rings are highly inclined,
and quieter phases when they are not4. The accretion
rates for the two cases are shown in Fig. 3.

We note that this evolution is more extreme than the
1D simulations reported in Nixon & King (2012). How-
ever the numerical method used there assumed the gas
always remained on circular orbits, evolving purely by
viscous diffusion. This was appropriate for the problem
studied there, namely, whether such a relatively orderly
disc could break at all, given the nonlinear evolution of
the viscosity predicted by Ogilvie (1999). The current
paper studies a dynamical problem, where the inclina-
tion of disc orbits can change so rapidly that viscous
diffusion of gas in circular rings is no longer an adequate
approximation. Interestingly, Nixon & King (2012) did

4 Movies of the simulations in this paper are available at
http://www.astro.le.ac.uk/users/cjn12/tearing.shtml
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Fig. 3.— The accretion rates with time for the small (black)
and large (red) inclination simulations. The accretion rate is in
arbitrary units. The time unit is the dynamical time at R = Rg,
i.e. the dynamical time at the inner edge of the discs is ∼ 350.
Note this is the mass flow rate through R = 50Rg and not the final
accretion rate on to the black hole.

remark that their simulated disc rings appeared to be
trying to break into more than one distinct plane.

4. DISCUSSION

We first discuss the possible arguments against this
picture. The main unknown in this work is the nature of
the viscosity controlling angular momentum transport in
the disc. In this paper we have assumed that this can be
modelled as an isotropic Shakura & Sunyaev α viscosity.
There is a strong basis for assuming that the radial trans-
port of angular momentum (governed by the azimuthal
viscosity) is limited to α ∼ 0.1 (King et al. 2007) and we
expect discs around black holes to be very thin away from
the immediate vicinity of the strongly accreting hole (e.g.
King & Pringle 2007, and references therein). However,
the nature of the viscosity is unknown. In reality the
local viscosity is likely to result from MHD effects (Bal-
bus & Hawley 1991), and may well be anisotropic. The
azimuthal shear is likely to be secular, with gas parcels
continually moving away from each other, whereas the
vertical shear is probably oscillatory (Pringle 1992). This
is suggestive of a favourable anisotropy where the vertical
viscosity does not strongly oppose breaking, but the re-
sult is simply not known. The consistency requirements
worked out by Ogilvie (1999) for a locally isotropic vis-
cosity show that in a strong warp, the viscosity trying
to hold the disc together is likely to weaken. There ap-
pears no reason to suggest this differs for an anisotropic
viscosity.

Another possible complication is the thermal evolution
of the gas. As the disc orbits do not all lie in the equato-
rial plane, they must shock and heat up. In the simula-
tions above we have assumed an isothermal equation of
state, so this extra heat is assumed to be radiated away
instantly. This is reasonable, as the densities in black
hole discs are high and cooling is likely to be efficient.
However if the disc cannot cool on the local precession
timescale, it may heat up significantly so that Eq. 7 is no
longer satisfied. In this case the disc may rapidly thicken,
perhaps even becoming thermally unstable, and switch
to a different mode of both accretion and warp propa-
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gation. On the other hand, Nixon et al. (2012) found,
in counter–rotating disc simulations using an adiabatic
equation of state, that although the gas dynamics can be
strongly modified by gas heating, the net result in terms
of rapid accretion is similar.

Otherwise there appears to be no obvious reason why
this behaviour should be suppressed. We therefore ex-
pect this to be generic to most cases of accretion on to
black holes (or neutron stars, since the Lense–Thirring
effect applies here too), and more generally for the evo-
lution of gas discs in the presence of a strong precession.

5. CONCLUSIONS

We have shown that for realistic parameters a ran-
domly oriented accretion event on to a spinning black
hole is likely to form a disc which is susceptible to break-
ing at a radius close to the hole. If the angle between the
disc and the hole lies between ∼ 45 − 135◦ the interac-
tion of partially opposed gas motions is likely, and leads
to cancellation of angular momentum and rapid infall.

This quasi–dynamical form of accretion, which appears
to be a generic consequence of randomly oriented accre-
tion on to a black hole, significantly alters the standard
picture of slow viscous accretion. There is nothing to
prevent a succession of events where rings break off the
inner disc edge and then precess independently of those
inside or further out (see Fig. 2). It is reasonable to think
of this process as tearing up the disc in a chaotic way.

We shall consider possible consequences of this picture
in subsequent papers, but note several points here.

1. Tearing the disc can lead to rapid gas infall, but
the long–term rate of central accretion is ultimately con-
trolled by the outer disc.

2. In a stellar–mass binary system this means that
tearing modulates a quasi–steady mass transfer rate. The
modulation might have large amplitude if the disc/spin
inclination is high. Even if the inclination is modest,
there are likely to be observable effects which could in-
clude quasiperiodic behaviour such as quasiperiodic os-
cillations (QPOs). Still more effects can occur if the in-
falling rings shadow the central X–ray source.

3. By contrast, in active galactic nuclei, the viscous
timescale of the outer disc may easily exceed a Hubble
time, and no steady state is ever set up. Thus tearing of a
significantly inclined AGN disc may promote significant
accretion when the central black hole would otherwise
not gain mass at all.

4. The torques we have considered here are all internal
to the disc – black hole system. They cannot affect any
conclusions concerning the global conservation of angular

momentum or mass of this system. In particular, con-
siderations of the long–term evolution of black hole spin
through accretion remain unchanged, whether the accre-
tion is assumed to be coherent (e.g. Volonteri & Rees
2005; Berti & Volonteri 2008) or chaotic (King & Pringle
2006, 2007; King et al. 2008).

5. We can expect qualitatively (and sometimes quan-
titatively) similar effects for other cases where an ac-
cretion disc is subject to a forced external differential
precession. Most obviously, Nixon et al. (2011b) have
shown that the effective potential experienced by a disc
accreting on to a misaligned binary, as is thought to occur
when supermassive black holes are close to coalescence, is
extremely similar to that caused by the Lense–Thirring
effect. For initial inclinations near to co– or counter–
rotation the disc respectively coaligns or counteraligns
(for the subsequent evolution of prograde circumbinary
discs see Cuadra et al. 2009; Lodato et al. 2009, and for
retrograde circumbinary discs see Nixon et al. 2011a).
However, disc tearing changes this picture and may well
bring gas into the close vicinity of the holes on near–
dynamical timescales, and thus help with the last parsec
problem (Begelman et al. 1980) as well as feeding prob-
lems.

6. In general any black hole has some spin, and in
general any accretion disc plane may be inclined to this
spin. To prevent any of the effects we have discussed here
from appearing, the misalignment must satisfy

| sin θ| .
3α

4a

H

R
, (9)

which is extremely small for realistic parameters. For
example, a moderately thick disc with H/R = 0.1, α =
0.1 and a low spin a = 0.1 must be inclined by less than
4◦ to avoid this process. We suggest that disc tearing,
particularly in the inner disc, probably occurs in many
if not most cases of black hole or non-magnetic neutron
star accretion.
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