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Key revision points

1. The two main models for planet formation in discs are ‘core accretion’ and

‘gravitational instability’

2. Gravitational instability requires massive discs that satisfy the Toomre crite-

rion and a sufficiently fast cooling rate

3. Core accretion proceeds in stages from dust to planetesimals, to terrestrial

planets and eventually gas giants. Several ‘growth barriers’ must be overcome.

4. Both models predict a phase where planets interact strongly with the disc

3 Planet formation

There are two main competing models1 of how to form planets in accretion discs:

1. The core accretion model (Pollack et al., 1996) — dust coagulates into planetesimals

which combine to form rocky cores. These terrestrial ‘cores’ either become terrestrial

planets or later accrete gas from the disc to form gas giants.

2. Gravitational instability (Boss, 1997) — the disc becomes unstable to its own self-

gravity and fragments, similar to the process of star formation in molecular clouds.

We’ll discuss gravitational instability first, since it is similar to the star formation process.

For further reading on both, see Armitage (2010), which we follow closely.

3.1 Gravitational instability

The conditions required for a Keplerian disc to be unstable to its own gravity are that

Mdisc

Mstar

&
H

R
, (1)

1It is important to note that planet formation is not a solved problem, and plenty of alternative models
exist, including our very own Prentice (1978).
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The minimum mass solar nebula
The ‘minimum mass solar nebula’ refers to the minimum surface density of material

needed to form our own Solar System. The idea is to use the observed mass of heavy

elements in the solar system planets and add enough Hydrogen and Helium to reach

a solar composition. The mass required for each planet is then spread over the area

between planets. This gives Σ ∝ R−3/2 out to Neptune. The most commonly quoted

value is from Hayashi (1981),

Σ(R) = 1.7× 103

(
R

1AU

)−3/2

g/cm2. (2)

This provides a lower limit on the surface density of the accretion disc that formed

the solar system.

and

Q ≡ csΩ

πGΣ
< 1. (3)

The latter is known as the Toomre criterion after the stability analysis (equivalent to the

Jeans instability, but for a rotating disc) performed by Toomre (1964), and hence Q is

known as the Toomre Q parameter. The two conditions are related — the first is the global

condition for the disc to be unstable anywhere, whereas the second is the local condition

for a disc to be unstable at a particular point.

The first condition implies that disc masses & 0.1M� are needed for fragmentation to

occur (e.g. given a typical aspect ratio H/R ∼ 0.05 around a typical 0.5M� star). More

specifically, for the Toomre Q criterion to be satisfied we need

Σ ≥ csΩ

πG
=
HΩ2

πG
=

H

πG

GM

R3
=

1

π

H

R
MstarR

−2, (4)

or

Σ ≥ 1.4× 105

(
H/R

0.05

)(
Mstar

M�

)(
R

1AU

)−2

g/cm2. (5)

This is two orders of magnitude higher than the ‘minimum mass solar nebula’ required

to form the solar system, indicating a massive disc is needed. These are possible only in

the very earliest stages of star formation when accretion rates from the collapsing cloud

are high.
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What are typical masses of planets formed by gravitational
instability?

As with the star formation process, we can define a Jeans length and mass for

fragmentation in discs, according to

LJ ∼
2c2s
GΣ

; MJ ∼ L2
JΣ. (6)

This gives a typical planet mass, using Q = 1 to define the surface density, as

MJ ≈
4c4s
G2Σ

=
4c4s
G

πG

csΩ
= 4πMstar

(
H

R

)3

. (7)

So we expect to form objects of ≈ 2MJupiter in typical discs with H/R = 0.05.

3.1.1 Self-regulation and the cooling criterion

In practice things are not so simple, since Q depends on temperature (recall cs ∝
√
T ).

As the disc becomes unstable (Q < 1) it generates spiral shocks. These heat the disc,

causing Q to increase and the disc to stabilise (Q > 1). This is known as self-regulation

and leads to a disc where the surface density and temperature hover around Q ≈ 1.

weak cooling (beta_cool = 12)
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Figure 1: Self-regulated gravitational instability in an accretion disc, showing surface
density (left) and Toomre Q as a function of radius (right). Click for video.

.

An additional criterion is thus necessary for the disc to fragment, i.e. that not only Q < 1

but also that the cooling of the disc is sufficiently fast to prevent self-regulation. Gammie

(2001) derived a critical cooling time in terms of the orbital timescale according to

tcool < tcool,crit ≈
1

3Ω
. (8)
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strong cooling (beta_cool = 3)
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Planetesimal accumulation near gaps 1453

Figure 1. Migration time-scales for different-sized bodies in an unperturbed
disc (i.e. no protoplanet) at 5.2 au, where the gas surface density is 75 g cm−2.
The solid line is obtained from analytic descriptions of gas drag (Takeuchi
& Lin 2002), whilst the points marked are taken from our hydrodynamic
calculations that span the size range for which drag-induced migration is
most rapid. As can be seen, the numerical and analytic results are in good
agreement. The horizontal dashed line marks a typical circumstellar disc
lifetime (Haisch, Lada & Lada 2001), after which the absence of gas will
end gas-drag-induced migration of solid bodies. Only bodies of sizes ranging
from ∼1 cm to 100 m can be expected to migrate significantly inwards during
a disc’s lifetime.

solid body radius for which migration is most rapid, which in this
disc is a radius of 50 cm.

3 R ESULTS

3.1 Planetesimal distribution

Figs 2 and 3 illustrate the distribution of solid bodies, of varying
radii, on top of the gas surface density for discs with initial surface
densities at rp of 75 g cm−2 and 750 g cm−2, respectively. The
lower-right panel of both plots shows the solid body distribution
that develops in the absence of gas and gas drag. In all the cases
shown, there is a 333 M⊕ planet embedded in the disc which has
completed 50 orbits.

Without gas the solid bodies at large radii can be seen to develop a
structure full of narrow ridges that result from their gravitational in-
teraction with the planet. The density peaks that span the azimuthal
range of these cylindrical polar plots are parts of a continuous peak
that spirals away from the planet’s location, most obvious at larger
radii. An excellent fit to their distribution after 50 orbits can be made
by a logarithmic spiral with a pitch angle of ∼2.5 × 10−3 rad. This
pattern is disrupted near orbital radii corresponding to planetary
resonances for Keplerian orbits.

Paardekooper (2007) found that in a disc where the gas compo-
nent was unperturbed by the protoplanet (i.e. gas does not feel the
protoplanet’s gravity, whilst the solids do), boulders with a relatively
long stopping time could become trapped in planetary resonances.
We reproduced this scenario, and likewise found that our 10 m bod-
ies became trapped at, and suffered significant excitement of their

eccentricities about the 2:1 and 3:2 resonances of a Jupiter mass
planet, as can be seen in the top panel of Fig. 4. For our models
involving 1 m boulders, the gas-drag-induced radial velocities were
sufficiently rapid to prevent capture in these resonances (middle
panel, Fig. 4), again in accordance with Paardekooper’s findings
for bodies with short stopping times. The eccentricities of these
rapidly infalling boulders are still stirred somewhat as they pass the
resonances; however these eccentricities are then quickly damped
by gas drag once the boulders move out of resonance. Following
Paardekooper (2007), we consider the work of Weidenschilling &
Davis (1985) who suggested the following equation for calculating
the equilibrium eccentricity of a particle in a given mean motion
resonance,

ē ≈
(

!V /Vkep

j + 1

)1/2

, (1)

where j describes a resonance of the form (j + 1) : j, and the !V/Vkep

term describes the radial pressure support enjoyed by the gas that
enables it to orbit with sub-Keplerian velocities. Using Weiden-
schilling & Davis’s estimated value of !V/Vkep = 5 × 10−3 for
the pressure support in a disc with a temperature profile of T ∝ r−1

gives ē ≈ 0.07/
√

j + 1. This form suggests a mean eccentricity of
≈0.05 at the 2:1 resonance, which compares favourably with the
value for the 10 m bodies in an unperturbed disc measured over
a = 1.6 ± 0.05 of 0.057.

In our more usual calculations, where the planet’s interaction is
included with both the gas and planetesimal populations there is
evidence of resonant trapping for the 1 m and 10 m solids bodies
when we use our lower gas density (75 g cm−2 at rp), and for the
10 m bodies only in the higher density (750 g cm−2) models, most
noticeably in the 2:1 resonance. This is somewhat at odds with the
results of Fouchet et al. (2007) who state that accumulations outside
the planet gap are unlikely to be associated with resonances, though
they focus on the 3:2 resonance which is closer to the gap edge
where the behaviour of solids is dominated by drag associated with
the gas density structure. However, even at the 3:2 resonance we find
eccentricity pumping that is similar to the unperturbed disc case,
implying that both trapping at pressure maxima and resonances play
a role. It is of interest to note that the perturbation of the gas disc,
and the planetesimal response to these perturbations (i.e. migration
to pressure maxima), acts to slow the inward drift of 1 m boulders
compared with the case of the unperturbed gas disc. The result
of this reduction in the net drift rate is to allow the eccentricity
of 1 m boulders to become much more strongly excited by the
planet’s resonances, which they had passed through quickly in the
unperturbed gas disc; this can be seen by comparing the middle
(gas unperturbed by protoplanet) and lower (conventional) panels
of Fig. 4. The measured eccentricity in this 1 m case is 0.058,
which again is in good agreement with the estimated mean given by
equation (1) for particles trapped in the 2:1 resonance. In all cases,
the pumping of the eccentricities of these trapped bodies means
that whilst they are concentrated in terms of semi-major axis, in
real space they become somewhat underdense as can be seen about
r ≈ 1.6 rp in Fig. 2. As such, the capture at these resonant locations
does not appear to be a promising site for the direct gravitational
collapse of solids into larger bodies. The capture that we observe is
qualitatively similar to that of Paardekooper (2007) who finds that
larger bodies, those experiencing the least significant gas drag, are
readily trapped in resonances, whilst the small bodies that are more
well coupled to the gas are less prone to such capture.

The distribution of bodies in the no gas case (lower-right panels of
Figs 2 and 3, equivalent) at the planetary gap edge makes it evident

C⃝ 2012 The Authors, MNRAS 423, 1450–1462
Monthly Notices of the Royal Astronomical Society C⃝ 2012 RAS

Ayliffe, Laibe, Price & Bate (2012)

Figure 2: Fragmentation occurring in a gravitationally unstable disc, once all three con-
ditions for gravitational instability are satisfied. Click for video.

.

In other words, if the disc cools on a timescale comparable to the orbital timescale it

cannot self-regulate. Fragmentation occurs if Q < 1 and tcool . 1/(3Ω) (see Figure 2).

3.2 The core accretion model

According to the core accretion model, planet formation proceeds in three key stages:

1. Coagulation of dust to form km-sized planetesimals

2. Formation of terrestrial planets from planetesimals

3. Giant planet formation and migration

Each of these steps involves a huge range of scales and is difficult to model, but the overall

process is slow compared to gravitational instability. There are also several ‘barriers’ to

growth that occur at particular scales.

3.2.1 Stage I — from dust to planetesimals

The idea is to start with a gaseous accretion disc with a small amount (typically 1%)

of dust in small micron-sized grains. Gas and solid particles in the disc interact by

aerodynamic drag forces. The drag force on a grain is proportional to its area (∝ πs2, for

a spherical grain of size s), giving an acceleration that depends on size according to

Acceleration =
Force

Mass
∝ πs2

4
3
πs3ρgrain

∝ 1

s
. (9)
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That is, acceleration is inversely proportional to grain size. Hence small grains are strongly

accelerated by, and hence “stuck to”, the gas, whereas larger grains are less well coupled.

The main effects of drag are that solid particles settle quickly (in ∼ 105 yr) to the disc

midplane, because dust grains do not feel the pressure of the gas. The grains also drift

radially towards the star, because they orbit faster than the gas (the gas orbits at sub-

Keplerian speed because of pressure) and feel a headwind. The timescale for radial drift

depends on the coupling to the gas and is therefore a strong function of the grain size.
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Figure 1. Migration time-scales for different-sized bodies in an unperturbed
disc (i.e. no protoplanet) at 5.2 au, where the gas surface density is 75 g cm−2.
The solid line is obtained from analytic descriptions of gas drag (Takeuchi
& Lin 2002), whilst the points marked are taken from our hydrodynamic
calculations that span the size range for which drag-induced migration is
most rapid. As can be seen, the numerical and analytic results are in good
agreement. The horizontal dashed line marks a typical circumstellar disc
lifetime (Haisch, Lada & Lada 2001), after which the absence of gas will
end gas-drag-induced migration of solid bodies. Only bodies of sizes ranging
from ∼1 cm to 100 m can be expected to migrate significantly inwards during
a disc’s lifetime.

solid body radius for which migration is most rapid, which in this
disc is a radius of 50 cm.

3 R ESULTS

3.1 Planetesimal distribution

Figs 2 and 3 illustrate the distribution of solid bodies, of varying
radii, on top of the gas surface density for discs with initial surface
densities at rp of 75 g cm−2 and 750 g cm−2, respectively. The
lower-right panel of both plots shows the solid body distribution
that develops in the absence of gas and gas drag. In all the cases
shown, there is a 333 M⊕ planet embedded in the disc which has
completed 50 orbits.

Without gas the solid bodies at large radii can be seen to develop a
structure full of narrow ridges that result from their gravitational in-
teraction with the planet. The density peaks that span the azimuthal
range of these cylindrical polar plots are parts of a continuous peak
that spirals away from the planet’s location, most obvious at larger
radii. An excellent fit to their distribution after 50 orbits can be made
by a logarithmic spiral with a pitch angle of ∼2.5 × 10−3 rad. This
pattern is disrupted near orbital radii corresponding to planetary
resonances for Keplerian orbits.

Paardekooper (2007) found that in a disc where the gas compo-
nent was unperturbed by the protoplanet (i.e. gas does not feel the
protoplanet’s gravity, whilst the solids do), boulders with a relatively
long stopping time could become trapped in planetary resonances.
We reproduced this scenario, and likewise found that our 10 m bod-
ies became trapped at, and suffered significant excitement of their

eccentricities about the 2:1 and 3:2 resonances of a Jupiter mass
planet, as can be seen in the top panel of Fig. 4. For our models
involving 1 m boulders, the gas-drag-induced radial velocities were
sufficiently rapid to prevent capture in these resonances (middle
panel, Fig. 4), again in accordance with Paardekooper’s findings
for bodies with short stopping times. The eccentricities of these
rapidly infalling boulders are still stirred somewhat as they pass the
resonances; however these eccentricities are then quickly damped
by gas drag once the boulders move out of resonance. Following
Paardekooper (2007), we consider the work of Weidenschilling &
Davis (1985) who suggested the following equation for calculating
the equilibrium eccentricity of a particle in a given mean motion
resonance,

ē ≈
(

!V /Vkep

j + 1

)1/2

, (1)

where j describes a resonance of the form (j + 1) : j, and the !V/Vkep

term describes the radial pressure support enjoyed by the gas that
enables it to orbit with sub-Keplerian velocities. Using Weiden-
schilling & Davis’s estimated value of !V/Vkep = 5 × 10−3 for
the pressure support in a disc with a temperature profile of T ∝ r−1

gives ē ≈ 0.07/
√

j + 1. This form suggests a mean eccentricity of
≈0.05 at the 2:1 resonance, which compares favourably with the
value for the 10 m bodies in an unperturbed disc measured over
a = 1.6 ± 0.05 of 0.057.

In our more usual calculations, where the planet’s interaction is
included with both the gas and planetesimal populations there is
evidence of resonant trapping for the 1 m and 10 m solids bodies
when we use our lower gas density (75 g cm−2 at rp), and for the
10 m bodies only in the higher density (750 g cm−2) models, most
noticeably in the 2:1 resonance. This is somewhat at odds with the
results of Fouchet et al. (2007) who state that accumulations outside
the planet gap are unlikely to be associated with resonances, though
they focus on the 3:2 resonance which is closer to the gap edge
where the behaviour of solids is dominated by drag associated with
the gas density structure. However, even at the 3:2 resonance we find
eccentricity pumping that is similar to the unperturbed disc case,
implying that both trapping at pressure maxima and resonances play
a role. It is of interest to note that the perturbation of the gas disc,
and the planetesimal response to these perturbations (i.e. migration
to pressure maxima), acts to slow the inward drift of 1 m boulders
compared with the case of the unperturbed gas disc. The result
of this reduction in the net drift rate is to allow the eccentricity
of 1 m boulders to become much more strongly excited by the
planet’s resonances, which they had passed through quickly in the
unperturbed gas disc; this can be seen by comparing the middle
(gas unperturbed by protoplanet) and lower (conventional) panels
of Fig. 4. The measured eccentricity in this 1 m case is 0.058,
which again is in good agreement with the estimated mean given by
equation (1) for particles trapped in the 2:1 resonance. In all cases,
the pumping of the eccentricities of these trapped bodies means
that whilst they are concentrated in terms of semi-major axis, in
real space they become somewhat underdense as can be seen about
r ≈ 1.6 rp in Fig. 2. As such, the capture at these resonant locations
does not appear to be a promising site for the direct gravitational
collapse of solids into larger bodies. The capture that we observe is
qualitatively similar to that of Paardekooper (2007) who finds that
larger bodies, those experiencing the least significant gas drag, are
readily trapped in resonances, whilst the small bodies that are more
well coupled to the gas are less prone to such capture.

The distribution of bodies in the no gas case (lower-right panels of
Figs 2 and 3, equivalent) at the planetary gap edge makes it evident

C⃝ 2012 The Authors, MNRAS 423, 1450–1462
Monthly Notices of the Royal Astronomical Society C⃝ 2012 RAS

Figure 3: Time for grains to be swept onto the star via radial drift as a function of the
grain size, assuming a gas surface density of 75 g/cm2. Figure from Ayliffe et al. (2012),
showing the analytic solution (solid line) from Takeuchi and Lin (2002).

For grain sizes between ∼ 1cm and 100 m, the migration time on to the star can be

extremely short (103–104 yrs; see Figure 3). Therefore all of the dust grains that reach

this size would quickly be swept into the star. This is known as the ‘metre-sized’ or more

accurately the ‘radial drift’ barrier. Several solutions are possible (see thinkbox).

How to avoid the radial drift barrier?
Two possible solutions to the radial drift, or ‘metre-sized’ barrier are:

1. Grains grow quickly, and so avoid the radial drift barrier by growing big enough

to decouple from the gas before being swept onto the star

2. Grains are trapped by pressure gradients in the disc, e.g. from the presence of

existing planets, vortices, or spiral structure.

While the radial drift barrier is a problem for our theoretical understanding of

planet formation, Nature clearly solves this since we observe both large grains and

planetesimal-sized bodies in protoplanetary discs and in the Solar System.
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3.2.2 Stage II — From planetesimals to terrestrial planets

Grains coagulate to eventually form km-sized planetesimals. Bodies of this size are largely

decoupled from the gas in the disc. The main physics at play is the gravitational interac-

tion between the large number (∼ 109) of planetesimals in the disc. Growth of these to

form planets occurs in two phases:

1. Runaway growth — a small fraction of planetesimals grow by collision and interac-

tion with others, forming 102–103 large bodies of 0.01–0.1 times the mass of Earth.

2. Oligarchic growth — A few larger ‘Oligarchs’ grow at similar rates by feeding from

a local ‘pool’ of nearby, smaller, planetesimals

Eventually the larger bodies scatter the remaining planetesimals out of the disc.

3.2.3 Stage III — Core accretion and migration

One protoplanetary ‘cores’ are formed, these again interact strongly with the disc, by

accreting gas from it. The relative amount of gas accreted determines whether the planet

ends up as a terrestrial planet or as a gas giant. Importantly, interaction with the disc

leads to migration of the planet in radius (you will study this in the labs next week).

Migration occurs in two different types:

1. Type I migration occurs for low mass planets that have a weak interaction with the

disc which does not affect the disc structure. That is, the planet is fully embedded

in the disc.

2. Type II migration occurs once giant planets are formed — they have a strong

interaction with the disc and the torques from the planet clear a ‘gap’, with gas

accreting onto the planet across the gap.

3.2.4 Gap opening

An estimate for the critical planet mass required to open a gap is given by

(
Mplanet

Mstar

)

crit

&

√
27π

8

(
H

R

)5/2

α1/2, (10)

where α is the disc viscosity (gap opening is a competition between the torque from the

planet and the disc viscosity). For typical parameters (H/R ≈ 0.05, α ≈ 0.1, Mstar =

0.5M�), planets with Mplanet & 0.3 MJupiter are required to open a gap.
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When does planet formation stop?
Planet formation ceases once the gas disc is dispersed, which is observed to occur

on a timescale of ∼ few Myr. The leading mechanisms thought to drive disc dispersal

are either photoevaporation of the disc due to X-ray/UV radiation from the star, or

due to the disc mass being either made into planets or accreted onto the star.

3.3 Recent progress

What is utterly amazing about the new ALMA image of the protoplanetary disc around

HL Tauri (left panel in Figure 4) is that the disc is riddled with gaps! These kind of gaps

should only be present at the very latest stages of planet formation (i.e. during Type II

migration), yet they appear to be present in a very young system (. 1 Myr). Having

apparently such massive planets so early in the picture is challenging our ideas about the

planet formation process.

How teaching benefits research
Kickstarted by my putting together the new ASP2062 planet formation lab in 2014,

and together with summer research student Kieran Hirsh who completed ASP2062

last year, we recently published a nice explanation of how the gaps in HL Tau can

be explained by the presence of planets (Dipierro et al. 2015; Figure 4; see video).

Key to understanding the image is that it is much easier for planets to carving gaps

in the thin dust disc (which is what is seen by ALMA) compared to carving gaps in

the gas disc (see right panel of Figure 4).

-2.5 -2 -1.5 -1 -0.5
gas

Figure 4: The protoplanetary disc in HL Tau imaged at mm wavelengths with ALMA
(left) compared to our simulation of the system using 3 planets of masses 0.2, 0.27 and
0.5 times the mass of Jupiter (middle; showing our simulated observations of the dust
disc). The right panel shows surface density in the gas disc in our simulations.
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