
Fractional Derivatives by Fourier Decomposition
by Eric Thrane 4/9/2006

This notebook investigates the properties of non-integer differential operators
using Fourier analysis.

In[31]:= << Graphics`Legend`

We'll start out on the interval (-¶,¶).  f[x] is a normalizable function.  Let's pick it to be a Gaussian for the sake of being
concrete.

In[32]:= f@x_D := ‰-x2

F[k] is its Fourier transform.

In[33]:= F@k_D := EvaluateA‡
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h[,a,x] is the H dÅÅÅÅÅÅÅdx L
a

derivative of f[x].  We'll start by assuming a is a real number greater than 0.  (a<0 corresponds to integra-
tion.)  We'll also restrict our attention to xœReals, a ≥ 0 for the sake of Mathematica.

In[34]:= h@a_, x_D :=
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H-ÂLa *

IntegrateA HkLa * F@kD* ‰-Â*k*x
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Look, Ma: hypergeometric functions.

In[35]:= h@a, xD
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H[a,x] is h[a,x] explicitly defined to avoid convergence issues in Mathematica.
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In[37]:= H@a, xD;

We here plot  the real  part  of these functions  because Mathematica  calculates  them to finite  precision,  and,  in doing so,
incorrectly gives them tiny (but non-zero) imaginary parts.
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In[38]:= Plot@
8f@xD, Re@H@1ê 4, xDD, Re@H@1ê 2, xDD, Re@H@3ê 4, xDD, Re@H@1, xDD<, 8x, -3, 3<,
PlotStyle Ø 8GrayLevel@0D, Hue@.1D, Hue@.3D, Hue@.5D, Hue@.7D<,
PlotLegend Ø 8"f@xD", "∂x 1ê4 f@xD", "∂x 2ê4 f@xD", "∂x 3ê4 f@xD", "∂x f@xD"<,
LegendPosition Ø 81, -.5<,
LegendBorderSpace Ø 10,
LegendSpacing Ø 3,
LegendTextSpace Ø 15,
LegendLabel Ø "Real Part"
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Out[38]= Ü Graphics Ü

Here we plot the fractional derivatives of f[x] as a function of a on a = (0,1).
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In[39]:= Plot3D@Re@H@a, xDD,
8a, 0, 1<, 8x, -3, 3<,
Mesh Ø True,
PlotRange Ø 8-1, 1<,
ColorFunction Ø Hue,
ViewPoint Ø 82, -.5, 2.7<
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Out[39]= Ü SurfaceGraphics Ü

This is the same plot with the range extended to the interval a = (0,3).
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In[40]:= Plot3D@Re@H@a, xDD,
8a, 0, 3<, 8x, -3, 3<,
Mesh Ø True,
PlotRange Ø 8-3, 3<,
ColorFunction Ø Hue,
ViewPoint Ø 82, -.5, 2.7<
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Out[40]= Ü SurfaceGraphics Ü

From the same method of analysis, we can see that a Green's function for the differential operator L`  = H∂x La  is given by:

GHx-yL = Ÿ-¶

¶ „kÅÅÅÅÅÅÅÅÅ2*p  1ÅÅÅÅÅÅÅÅÅÅÅÅÅHÂ*kLa  ‰Â*k*Hx-yL

Another interesting item to note in passing is that a non-integer derivative of any polynomial is either 0 or not defined.

Proof:
Consider the Fourier transform of xn .

xn= Ÿ-¶

¶ „kÅÅÅÅÅÅÅÅÅ2*p * H-1Ln * ‰Â*k*x
ÅÅÅÅÅÅÅÅÅÅÅÅÂn * H∂k Ln  HdHkLL

And thus:

H∂x Laxn = Ÿ-¶

¶ „kÅÅÅÅÅÅÅÅÅ2*p * H-1Ln * HÂ * kLa * ‰Â*k*x
ÅÅÅÅÅÅÅÅÅÅÅÅÂn * H∂k Ln  HdHkLL

= Ÿ-¶

¶ „kÅÅÅÅÅÅÅÅÅ2*p * H-1Ln-1 *∂k IHÂ * kLa * ‰Â*k*x
ÅÅÅÅÅÅÅÅÅÅÅÅÂn M * H∂k Ln-1  HdHkLL

By integrating by parts, we can move the (integer) k derivatives from the right, (where they act on the k delta function,) to the
left,  where they act  on IHÂ * kLa * ‰Â*k*x

ÅÅÅÅÅÅÅÅÅÅÅÅÅÂn M.   Speaking somewhat  loosely,  the  k derivative  acting on  this term will  give you
something of the form:

(terms with k raised to some fractional power)* * ‰Â*k*x
ÅÅÅÅÅÅÅÅÅÅÅÅÅÂn

We can keep integrating by parts until the k delta function has no derivatives acting on it, and for all our labor, the integrand
will still be of the form:

(terms with k raised to some fractional power)* * ‰Â*k*x
ÅÅÅÅÅÅÅÅÅÅÅÅÅÂn * dHkL

At this stage, we can just do the integral by removing the k delta function and setting to k=0 everywhere else in the integrand.
If all the "terms with k raised to some fractional power" are positive powers of k, they will become 0 when we set k=0.  If
any of the "terms with k raised to some fractional power" are negative, then the expression becomes infinite,  and so the
fractional derivative does not exist.  The last imaginable case is that maybe there is some term among the "terms with k raised
to some fractional power" which is k raised to 0, (i.e. it is constant.)  But upon reflection, we see that there will never be such
a term.  If a is not  an integer,  then no matter how many times we raise or lower the order of k by increments of one (by
integrating by parts), we'll never get an integer power of k.  Thus, we'll never get a term like k0 as long as a is not an integer.

This is all interesting because we saw above that a Gaussian, which is expressable--by Taylor expansion--as an infinite sum
of polynomials,  has  finite,  non-vanishing  fractional derivatives.   But  here we see that any  polynomial  by itself  has only
vanishing or non-existent fractional derivatives.  If you imagine acting with a fractional derivative on each term in the Taylor
expansion of the Gaussian function, you would find that you have an infinite number of infinite terms with oscillating sign.
This is telling you that the Taylor expansion is not a practical way to take a fractional derivative of the Gaussian--i.e.,  the
method is not well-defined.  Rather, you have to work in the frequency domain in order to make sense of anything.
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