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There are three different definitions of DFT used in the literature (ex-
ample see [1]),
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and the corresponding inverse DFTs are defined as,
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The reason for these three definitions is that when we go from xn →
ỹk → xn we need to make sure that the addition of more terms via

∑N−1
n,k=0

doesn’t scale the final xn and so we need to include a factor of 1
N

in the
process. Where to place this factor is our choice and that’s where these
three definition comes into picture.

In the process of DFT (or FT), there is only one constrain that has to
be satisfied by xn and ỹk and that is the Parseval’s theorem which connects
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the total energy in time and frequency domains (conservation of energy).
Depending on which definition we use, the theorem can be expressed as
follows,
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As we can see DFT by using Eq. 2 doesn’t need any factors of N in
Parseval’s theorem and seems to be a natural choice. If we define energy in
time domain as x2n at time tn then total energy is

∑
x2n. Similarly energy in

frequency domain can be defined as ỹ2k at frequency k and total energy as∑
ỹ2k. So Eq. 2 and corresponding Eq. 8 can be the guiding equations that

will fix all our normalizatons (if we are interested in energy quantities). Note
here that there are no factors of duration of signal T , sampling intervals dt
and df . xn and ỹk are just measurements at a particular time and particular
frequency. If we want to make a correspondence between xn and ỹk and
quantities defined in continous Fourier Transform (FT) we could do so by
introducing factors of T , dt and df . In principle that is not necessary,
because DFT can stand on its own.

For some reason Eq. 1 (not Eq. 2) is mostly used in the DFT literature
as well as in FFTs generated by computer packages like MATLAB (except
MATHEMATICA which uses Eq. 2). Because of this if we use those com-
puter packages we should be careful about factors of N and in most cases
will need to rescale the ỹk such that it will match with Eq. 2.

Let us check this with a test code in MATLAB. Let us define a data
set that includes three sinusoidal signals and a Gaussian random noise with
µ = 0 and σ = 2 (since sinusoidal signals and random noise might behave
differently we need to make sure that we understand the code in both cases).

>> Fs = 4096; % sampling rate

>> SegmentDuration = 4;

>> N = Fs*SegmentDuration;

>> tt = 0:1/Fs:SegmentDuration-1/Fs;

>> % signal include three frequencies 100 Hz, 980 Hz, 1600 Hz.

>> x_signal = 4*sin(2*pi*100*tt)+7*sin(2*pi*980*tt)+5*sin(2*pi*1600*tt);

>> x = 2*randn(1,N)+x_signal;

>> plot(tt,x)
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Figure 1: Time series x(t).

The resulting time series is shown in Fig. 1. Using FFT of matlab, we
now calculate the (two-sided) spectrum of the above signal. Note here that
MATLAB uses Eq. 1 for DFT in which signal (in frequency domain) grows
as we add more and more data points. So we normalize it by N (techinically
it should be

√
N to comply with Eq. 8, if we are interested in the energy of

the signal). The spectrum |xk| is shown in Fig. 2 (from dc to Fs/2).

>> x_k = fft(x,N)/N; % normalized by N

>> k = Fs/2*linspace(0,1,N/2+1);

>> semilogy(k,abs(x_k(1:N/2+1)))

One sideed power spectrum (PS) of the above signal is defined as 2|xk|2
and it is shown in Fig. 3.

>> x_psd1 = 2*abs(x_k(1:N/2+1)).^2; %factor of 2 for one sided spectrum

>> semilogy(k,x_psd1)

To make sense of the numbers shown in Fig. 3, first we need to know, how
signals are characterized. In general signals are classified into two categories,
(i) Energy signals and (ii) Power signals. Signals which can be character-
ized by their total energy i.e., if their total energy is finite irrespective of the
observation time, then they are called energy signals. Generally signals of
transient nature fall into this category. However sinusoidal signals and ran-
dom noise signals have infinite energy i.e., if we observe them long enought
their total energy will go to infinite and so characterizing them by their total
energy doesn’t make sense. But we also know that their power (energy/sec)
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Figure 2: FFT of x(t).

is constant and is independent of the observation time and hence these kind
of signals are characterized by their power (and are called power signals). It
should be noted that if we limit the obseravtion time, sinusoidal or random
noise signals can, in principle, be characterized by their total energy.

The definition of FFT that we are emplying here is that of Eq. 3. Even
though matlab uses Eq. 1, we converted it into Eq. 3 by dividing ỹk by N
(see MATLAB’s technical note [2]). So all the numbers in Fig. 3 corresponds
to power of the signals. A sinusoidal signal with peak value Vpeak has power

of V 2
rms =

V 2
peak

2
. So the power of three input sinusoidal signals are 8, 24.5, 12.5

which indeed matches with the values shown in Fig. 3. Also the parseval
theorem given by Eq. 9 holds here, both sides of that equation has a value
of 8.0663 × 105 (here ỹ2k = x psd1).

Now let us use MATLAB’s in-built psd function to calculate the spec-
trum. The syntax for the MATLAB’s psd function is

[psd_f,ff] = psd(x,NFFT,Fs,window,Overlaplength,detrendFlag)

For the first test, let us not use any windowing and overlapping. Unfortu-
nately, if we don’t use the windowing option, MATLAB chooses the default
option which is a hann window ! (for the set of default values, see psdchk.m).
So let us explicitly mention a rectangular window.

>> [x_psd2,ff] = psd(x,L,Fs,ones(L,1);

Here x psd2 is not scaled properly (see psd.m header). To make any mean-
ingful statement about power at certain frequencies we need to scale this
quantity by 1

Fs
and multiply by bin width df = 1

T
. So
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Figure 3: Power spectrum of x(t), using FFT.

>> x_psd2_scaled = 2*x_psd2/N; %N = Fs*SegmentDuration;

Fig. 4 shows the (properly scaled) power spectrum using MATLAB’s in-
build psd function which agrees with the one we got from using FFT of
MATLAB.

0 500 1000 1500 2000

10
−6

10
−4

10
−2

10
0

10
2

Freq (Hz)

2 
ps

d(
x)

/N

(100,8.09)

(980,24.65)
(1600,12.36)

Figure 4: Power spectrum of x(t), using psd function (and scaling the re-
sults).

Note here that both Fig. 3 and Fig. 4 show power spectrum of the
signal. To get the energy spectrum of the signal we need to multiply it by
N (not T ). Here the power is defined as energy per observation (it won’t
have sec−1 unit). In discrete signal analysis, the only factor that can come
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into the calcualtions is some power of N . But if we want to make connection
between physical power defined as Energy

sec
, then we need to introduce factors

of T, df, dt (we note here that N = T
dt

= Fs
df

= Fs× T = 1
df×dt

).
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