
How to Draw a Graph … Revisited

Peter Eades
University of Sydney

W. T. Tutte 1917 - 2002
– Code breaker at Bletchley park
– Pioneer of matroid theory
– Pioneer of graph theory
– Inventor of the first graph drawing algorithm

• His 1963 paper “How to Draw a Graph”*
has inspired much research

This talk is about two strands of
Graph Drawing research that
followed Tutte’s work

*William T. Tutte. “How to draw a
graph.” Proc. London Math. Society,
13(52):743 -768, 1963.

This talk

1. Background
a) Graphs
b) Graph drawings
c) Connectivity
d) Planar graphs
e) Topological embedding
f) Good graph drawings

2. How to draw a graph?
a) Before Tutte: 1920s – 1950s
b) Tutte: 1960s
c) After Tutte: 1970s – 1990s
d) Recent work

(a) Graphs

• Bob is connected to Alice
• Bob is connected to Andrea
• Bob is connected to Amelia
• Brian is connected to Alice
• Brian is connected to Andrea
• Brian is connected to Amelia

• Boyle is connected to Alice
• Boyle is connected to Andrea
• Boyle is connected to Annie
• Bernard is connected to Alice
• Bernard is connected to Andrea
• Bernard is connected to Annie

Nodes:
• Alice, Andrea, Annie, Amelia, Bob, Brian, Bernard, Boyle

A graph consists of
• Nodes, and
• Binary relationships

called “edges” between
the nodes

Example: a “Linked-In” style social network

Edges

(b) Graph drawing

A graph consists of
• Nodes, and
• Edges

G
ra

ph

G
ra

ph
 D

ra
w

in
g A graph drawing is a picture of a graph.
That is, a graph drawing is a mapping that

assigns
• a location for each node, and
• a curve to each edge.

A
dr

aw
in

g
of

 th
e

so
ci

al
 n

et
w

or
k

BoyleAmelia Bob BernardBrian

Andrea

Alice

Annie

• Bob is connected to Alice
• Bob is connected to Andrea
• Bob is connected to Amelia
• Brian is connected to Alice
• Brian is connected to Andrea
• Brian is connected to Amelia

• Boyle is connected to Alice
• Boyle is connected to Andrea
• Boyle is connected to Annie
• Bernard is connected to Alice
• Bernard is connected to Andrea
• Bernard is connected to Annie

Nodes:
• Bob, Brian, Bernard, Boyle, Alice, Andrea, Annie, Amelia

Edges

A
so

ci
al

 n
et

w
or

k

A drawing of the graph

6

2

3

4

1

7

0
5

0, 1, 2, 3, 4, 5, 6, 7

0 – 1
0 – 4
1 – 2
1 – 4
1 – 7
2 – 3
2 – 4
2 – 5
3 – 4
4 – 5
4 – 7
5 – 6
5 – 7
6 – 7

Nodes

Edges

A graph

A graph drawing is a straight-line drawing
if every edge is a straight line segment.

BoyleAmelia Bob BernardBrian

Andrea

Alice

Annie

6

2

3
4

1

7

0 5

A straight-line drawing

NOT a straight-line
drawing

(c) Connectivity

Connectivity notions are fundamental in any study of
graphs or networks

• A graph is connected if for every pair u, v of vertices,
there is a path between u and v.

• A graph is k-connected if there is no set of (k-1)
vertices whose deletion disconnects the graph.

 k = 1: “1-connected” ≡ “connected”
 k = 2: “2-connected” ≡ “biconnected”
 k = 3: “3-connected” ≡ “triconnected”

This graph is
connected

This graph is not connected

Connected
components

Connectivity notions are fundamental in any study of
networks

• A graph is connected if for every pair u, v of
vertices, there is a path between u and v.

• A graph is k-connected if there is no set of (k-1)
vertices whose deletion disconnects the graph.

 k = 1: “1-connected” ≡ “connected”
 k = 2: “2-connected” ≡ “biconnected”
 k = 3: “3-connected” ≡ “triconnected”

This graph is biconnected This graph is not biconnected

“2-connected” ≡ “biconnected”
– A cutvertex is a vertex whose removal would

disconnect the graph.
– A graph without cutvertices is biconnected.

This graph is triconnected This graph is not triconnected

“3-connected” ≡ “triconnected”
– A separation pair is a pair of vertices whose removal would

disconnect the graph.
– A graph without separation pairs is triconnected.

(d) Planar graphs

A graph is planar if it can be drawn
without edge crossings.

7

5

1

9

6

2

3

4

0

8

A graph is planar if it can be drawn without edge crossings.

Nodes:
• 0,1,2,3,4,5,6,7,8,9
Edges
• 0 – 4
• 0 – 9
• 1 – 2
• 1 – 6
• 1 – 7
• 2 – 3
• 2 – 8
• 3 – 4
• 4 – 5
• 4 – 8
• 5 – 6
• 5 – 7
• 7 – 8

N
on

-p
la

na
r Nodes:

• 0,1,2,3,4,5
Edges
• 0 – 1
• 0 – 3
• 0 – 5
• 1 – 2
• 1 – 4
• 2 – 3
• 2 – 5
• 3 – 4
• 4 – 5

A graph is non-planar if
every drawing has at least
one edge crossing.

(e) Topological embedding

A planar drawing divides
the plane into faces.

F1

F0

F2

F3

F4

The boundary-sharing relationships of the faces
defines a topological embedding of the graph
drawing

F0 shares a boundary with F1

F0 shares a boundary with F2

F0 shares a boundary with F3

F0 shares a boundary with F4

F1 shares a boundary with F2

F1 shares a boundary with F4

F2 shares a boundary with F1

F2 shares a boundary with F3

F2 shares a boundary with F4

F3 shares a boundary with F4

Graph

Topological
embedding

Graph
Drawing

• Nodes and edges
• No geometry

• Faces and incidence between faces
• “Rubber sheet” geometry
• Equivalence under homeomorphism

• A picture of the graph
• Points and curves
• Geometry fully specified

Most of this
talk is about
the mapping
from a
topological
embedding to a
graph drawing

Euler formula
If

n = #vertices
f = #faces
m = #edges

then
n+f = m+2

F1

F0

F2

F3

F4

Corollary
If m = 3n-6 then every face is a triangle

Corollary m ≤ 3n-6

Maximal planar graph
• Given a planar graph G,

we can add non-crossing
edges one by one until the
graph becomes a maximal
planar graph G*.

Easy Theorems:
• In a maximal planar graph, no edge can be

added without making a crossing
• A maximal planar graph is a triangulation

(every face is a triangle)
• In a maximal planar graph, m=3n-6.
• A maximal planar graph with n>3 is

triconnected

(e) Good graph drawing

A - B, C, D
B - A, C, D
C - A, B, D, E
D - A, B, C, E
E - C, D

The input is a graph
with no geometry

A B

D

C

E

The output should be a
good graph drawing:
 easy to understand,
 easy to remember,
 beautiful.

G
ra

ph
G

ra
ph

 D
ra

w
in

g

~1979 Intuition (Sugiyama et al. 1979; Batini et al 1982; etc):
– Planar straight-line drawings make good pictures

Bad drawing Good drawing

Paul

Murphy

Joe

David

Alice

Jocelyn

BobJohn

Albert

Dunstan

Murphy Bob

Paul

Joe

David

Alice

Jocelyn

John

Albert

Dunstan

Purchase et al.,1997:
Significant correlation between
edge crossings and human
understanding
 More edge crossings means

more human errors in
understanding

Purchase et al., 1997:
Significant correlation between
straightness of edges and
human understanding
More bends mean more

human errors in
understanding

What makes a good drawing of a graph?

 lack of edge crossings (planar drawings are good!)

 straightness of edges (straight-line drawings are good!)

(plus some other things)

2. How to draw a graph

a) Before Tutte: 1920s – 1950s

Fáry’s Theorem
Every topological embedding of a planar graph has

a straight-line planar drawing.

Proved independently by Wagner (1936),
Fary (1948) and Stein (1951)

Fáry’s
Theorem

Graph

Topological
embedding

Graph
Drawing

Topological
embedding of G Picture of G

Triangulation T
that contains G Picture of T

Drawing algorithm

Wikipedia proof of Fáry’s Theorem:

• First note that it is enough to prove it for triangulations.

We prove Fáry’s theorem by induction on
the number of vertices.

If G has only three vertices, then it is
easy.

Suppose G has n>3 vertices and 3n-6
edges, and that the outer face of G is
the triangle <abc>.

Since every vertex has degree at least 3,
Euler implies that there is a vertex u
not on the outside face with degree at
most 5.

a

b

cu

a

b c

u

G G’

p’ p

Delete u from G to form G’; this gives a
face F of G of size at most 5.

Since G’ has n-1 vertices, by induction it
has a planar straight-line drawing p’.

Since F has at most 5 vertices, it is star-
shaped, and we can place the vertex
u in the kernel of F to give a planar
straight-line drawing p of G

2. How to draw a graph?
a) Before Tutte: 1920s – 1950s
b) Tutte

W. T. Tutte,
“How to Draw a Graph”,
Proceedings of the London Mathematical Society
13, pp743 – 767, 1960

Tutte’s barycentre algorithm
Input:

• A graph G = (V,E)
Output

• A straight-line drawing p

Step 1. Choose a subset A of V
Step 2. Choose a location p(a) = (xa, ya) for each vertex a ∈ A
Step 3. For all u ∈	V-A, choose p(u) by

݌ ݑ ൌ
1

deg	ሺݑሻ ෍ ሻݒሺ݌
௩∈ேሺ௨ሻ

where the sum is over all neighbors v of u

Vertex u is
placed at the
“barycenter” of
its neighbors

Step 1. Choose a subset A of V
Step 2. Choose a location p(a) = (xa, ya) for each vertex a ∈ A
Step 3. For all u ∈	V-A,

݌ ݑ ൌ
1

deg	ሺݑሻ ෍ ሻݒሺ݌
௩∈ேሺ௨ሻ

	

where the sum is over all neighbors v of u

ݔ ݑ ൌ
1

deg	ሺݑሻ ෍ ሻݒሺݔ
௩∈ேሺ௨ሻ

and

ݕ ݑ ൌ
1

deg	ሺݑሻ ෍ ሻݒሺݕ
௩∈ேሺ௨ሻ

2n
equations

Tutte’s barycenter algorithm

1. Choose a set A of vertices.
2. Choose a location p(a) for each a∈A
3. For each vertex u ∈V‐A, place u at the

barycentre of its graph-theoretic
neighbors.

5

2

6

4

1
3

8 7

5

2

6

4

1
3

8 7

Step 1. A = {4, 5, 6, 7, 8}
Step 2. For all i = 4, 5, 6, 7, 8,

choose xi and yi in some way.
Step 3. Find x1, y1, x2, y2, x3, and y3

such that:

ଵݔ ൌ
1
4 ሺݔଶ ൅ ଷݔ ൅ ସ′ݔ ൅ ሻ଼′ݔ

ଶݔ ൌ
1
4 ሺݔଵ ൅ ଷݔ ൅ ହ′ݔ ൅ ଺ሻ′ݔ

ଶݔ ൌ
1
3 ሺݔଵ ൅ ଶݔ ൅ ଻ሻ′ݔ

and
ଵݕ ൌ

1
4 ሺݕଶ ൅ ଷݕ ൅ ସ′ݕ ൅ ሻ଼′ݕ

ଶݕ ൌ
1
4 ሺݕଵ ൅ ଷݕ ൅ ହ′ݕ ൅ ଺ሻ′ݕ

ଶݕ ൌ
1
3 ሺݕଵ ൅ ଶݕ ൅ ଻ሻ′ݕ

where x’i and y’i are the values
chosen at step 2.

E
xa

m
pl

e

5

2

6

4

1
3

8 7

Step 1. A = {4, 5, 6, 7, 8}
Step 2. For all i = 4, 5, 6, 7, 8, choose xi and

yi in some way.
Step 3. Find x1, y1, x2, y2, x3, and y3 such

that:

ଵݔ4 െݔଶ െ ଷݔ ൌ ସ′ݔ ൅ ଼′ݔ ൌ ܿଵ
െݔଵ ൅ ଶݔ4 െ ଷݔ ൌ ହ′ݔ ൅ ଺′ݔ ൌ ܿଶ
െݔଵ െ ଶݔ ൅ ଷݔ3 ൌ ହ′ݔ ൌ ܿଷ

and

ଵݕ4 െݕଶ െ ଷݕ ൌ ସ′ݕ ൅ ଼′ݕ ൌ ݀ଵ
െݕଵ ൅ ଶݕ4 െ ଷݕ ൌ ହ′ݕ ൅ ଺′ݕ ൌ ݀ଶ
െݕଵ െ ଶݕ ൅ ଷݕ3 ൌ ହ′ݕ ൌ ݀ଷ

where c1, c2, c3, d1, d2, d3 are constants

5

2

6

4

1
3

8 7

Step 1. A = {4, 5, 6, 7, 8}
Step 2. For all i = 4, 5, 6, 7, 8, choose xi and

yi in some way.

Step 3. Find vectors ݔ ൌ
ଵݔ
ଶݔ
ଷݔ

	 and ݕ ൌ
ଵݕ
ଶݕ
ଷݕ

	

such that

ݔܯ ൌ ܿ
and

ݕܯ ൌ ݀
where

ܯ ൌ
4 െ1 െ1
െ1 4 െ1
െ1 െ1 3

The essence of Tutte’s barycentre
algorithm is inverting a matrix

• This is a special matrix:
Laplacian submatrix.

• Many software packages
can invert such a matrix
efficiently

Tutte’s barycentre
algorithm

 Example output on a
non-planar graph

Tutte’s barycentre
algorithm

 Example output on
a planar graph

Tutte’s barycenter algorithm for
triconnected planar graphs …..

Tutte’s barycenter algorithm for
triconnected planar graphs

1. Choose A to be the outside face of the
topological embedding.

2. Choose the location p(a) for each a∈A to
be at the vertices of a convex polygon.

3. For each vertex u ∈V‐A, place u at the
barycentre of its graph-theoretic
neighbors.

5

2

6

4

1
3

8 7

Note: For planar graphs, the Laplacian matrix is
sparse, and can be inverted fast.

Tutte’s amazing theorem (1960)

If the input graph is planar and triconnected, then
• the drawing output by the barycentre

algorithm is planar, and
• every face is convex.

The energy view of Tutte’s barycentre algorithm

Tutte’s barycenter algorithm:
The energy view

1. Choose a set A of vertices.
2. Choose a location p(a) for each a∈A
3. Place all the other vertices to minimize

energy.

5

2

6

4

1
3

8 7
What is the energy of a drawing p?

• The Euclidean distance between u and v in the drawing p is:
݀ ,ݑ ݒ ൌ 	 ௨ݔ െ ௩ݔ ൅ሺݕ௨ െ ሻଶ	௩ݕ

• The energy in the edge (u,v) is ݀ ,ݑ ݒ ଶ ൌ ሺݔ௨ െ ௨ݕሻଶ൅ሺ	௩ݔ െ ሻଶ	௩ݕ

• The energy in the drawing p is the sum of the energy in its edges, ie,

ݕ݃ݎ݁݊݁ ݌ ൌ ෍ ݀ሺݑ, 				ሻଶݒ
ሺ௨,௩ሻ∈ா

ൌ ෍ ሺݔ௨ െ ௨ݕሻଶ൅ሺ	௩ݔ െ ሻଶ	௩ݕ
ሺ௨,௩ሻ∈ா

						

Tutte’s barycenter algorithm:
The energy view

We represent each vertex by a steel ring, and
represent each edge by a spring of natural
length zero connecting the rings at its
endpoints.

1. Choose a set A of vertices.

2. For each a∈A, nail the ring representing
a to the floor at some position.

3. The vertices in V-A will move around a
bit; when the movement stops, take a
photo of the layout; this is the drawing.

5

2

6

4

1
3

8 7

How to minimize energy:
– Choose a location ݌ ݑ ൌ ,௨ݔ ௨ݕ 	for each ݑ ∈ ܸ െ to minimize	ܣ

ݕ݃ݎ݁݊݁ ݌ ൌ ෍ ݀ሺݑ, 				ሻଶݒ
ሺ௨,௩ሻ∈ா

ൌ ෍ ሺݔ௨ െ ௨ݕሻଶ൅ሺ	௩ݔ െ ሻଶ	௩ݕ
ሺ௨,௩ሻ∈ா

						

	

– Note that the minimum is unique, and occurs when

డ	ሺ௘௡௘௥௚௬ ௣ ሻ
డ௫ೠ

ൌ 0 and డ	ሺ௘௡௘௥௚௬ ௣ ሻ
డ௬ೠ

ൌ 0

for each ݑ ∈ ܸ െ .ܣ

For xu, the minimum occurs when:

Barycentre
equations

௨ݔ ൌ
1

deg	ሺݑሻ ෍ ௩ݔ
௩∈௏	௦.௧.ሺ௨,௩ሻ∈ா

߲	ሺ݁݊݁ݕ݃ݎ ݌ ሻ
௨ݔ߲

ൌ 0

߲	
௨ݔ߲

෍ ሺݔ௨ െ ௨ݕሻଶ൅ሺ	௩ݔ െ ሻଶ	௩ݕ
ሺ௨,௩ሻ∈ா

ൌ 0

෍ 2ሺݔ௨ െ ௩ሻݔ
௩∈௏	௦.௧.ሺ௨,௩ሻ∈ா

ൌ 0

How good is Tutte’s barycentre algorithm?

Efficiency:
 In theory it is not bad: O(n1.5) for planar graphs
 In practice it is fast, using numerical methods

Elegance:
Very simple algorithm
Easy to implement
Numerical software available for the hard parts

Effectiveness:
Planar graphs drawn planar
Convex faces
Straight-line edges

But unfortunately 

But unfortunately:
 Tutte’s algorithm gives poor vertex resolution in many cases

a

b c

1

2

3

4
5

Example:
• Vertex a is at (0.5, 0)
• b is at (0,0)
• c is at (1,0).
• Suppose that vertex j is

at (xj,yj) for 0<j<n.

From the barycentre equations:

ቐ
௝ݔ ൌ 0.5

௝ݕ ൌ
1
4 ௝ିଵݕ ൅ ௝ାଵݕ

One can deduce that

௝ିଵݕ െ ௝ݕ ൏
1
2௝

That is, some vertices are exponentially close together.

Aside:
– Commercial graph drawing software

needs good resolution.

How good is Tutte’s barycentre algorithm?

Efficiency:
OK

Elegance:
Excellent

Effectiveness:
So-so

2. How to draw a planar graph?
a) Before Tutte: 1920s – 1950s
b) Tutte: 1960s
c) After Tutte: 1970s – 1990s

After Tutte: 1970s – 1990s

Sometime in the 1980s, the motivation for graph drawing changed from
Mathematical curiosity to visual data mining.

© AT&T

Software

Biology

Risk Exposure

From the 1980s, industrial demand for graph drawing algorithms has
grown
– Software engineering: CASE systems, reverse engineering
– Biology: PPI networks, gene regulatory networks
– Physical networks: network management tools
– Security: risk management, money movements
– Social network analysis
– Customer relationship management: value identification

Many companies buy graph drawing algorithms, many code them.

Currently the international market for graph drawing algorithms is in the
hundreds of millions of dollars per year.

Tutte’s barycentre
algorithm

Force directed
methods

Planarity-based
methods

Planarity based
methods after
Tutte

Planarity based methods after Tutte

R.C. Read (1979, 1980)

1. Efficient?
 Yes, linear time algorithm

2. Elegant?
 Yes: follows proof of Fáry’s theorem, with some tricks to

make it into an efficient algorithm

3. Effective?
 Maybe ...

 Straight-line planar drawings of planar graphs

 But unfortunately, output has poor vertex resolution

Planarity based methods after Tutte

Chiba-Nishizeki-Yamanouchi (1984)

1. Efficienct?
 Yes, linear time algorithm

2. Elegant?
 Yes, a simple divide&conquer approach

3. Effective?
 Maybe ...

 Straight-line planar drawings of planar graphs
 Convex faces for well connected input

 But unfortunately, output has poor vertex resolution

de Fraysseix-Pach-Pollack Theorem (1989)
Every planar graph has a planar straight-line drawing
with vertices located on a 2n X 4n integer grid.

Notes:
– Good resolution: the minimum distance between vertices is

at least screensize/4n.
– Linear time (Chrobak, 1990)

The deFraysseix-Pach-Pollack Theorem gave much hope for
planarity-based methods, and many refinements appeared
1990 – 2000.

Planarity based methods after Tutte

Breakthrough in 1989:

de Fraysseix-Pach-Pollack-Chrobak Algorithm

1. Add dummy edges to make the graph into a triangulation

2. Construct an ordering u1, u2, … , un of the vertices, called the
canonical ordering.

3. Draw the graph, adding one vertex at a time, in order u1, u2, … , un

Topological
embedding of G Picture of G

Triangulation T
that contains G Picture of T

Drawing algorithm

Wikipedia proof of Fáry’s Theorem

Step 1: Add dummy edges to make the graph into a triangulation

Gk+1

Step 2: Construct an ordering u1, u2, … , un of the vertices , called the
“canonical ordering”.

A canonical ordering is an ordering u1, u2, ..., un of the vertices of a
triangulation having the property that, for each 3 ≤ k < n, the graph
Gk induced by u1, u2, ..., uk has the following properties
• Gk is biconnected
• Gk contains the edge (u1, u2) on its outer face,
• Any vertices in Gk adjacent to uk+1 are on the outer face of Gk

• The vertices in Gk adjacent to uk+1 form a path along the outer
face of Gk

uk+1u1

u2

graph Gk induced
by u1, u2, ..., uk

Step 3: Draw the graph, adding one vertex at a time in
order u1, u2, … , un

a) Start with the edge (u1, u2) at y=0
b) For each k>1:

• add uk+1 on y=k
• Choose x coordinate of uk+1 so that there are

no edge crossings.

u1 u2

At each stage, there is
a drawing of Gk as a
“terrain”.

Drawing of Gk

Uk+1

Drawing
of Gk+1

Some details of deFraysseix-Pach-Pollack-Chrobak algorithm are
needed to show

– It runs in linear time

– It is possible to avoid edge crossings

– Each vertex lies on an integer grid of size at most 4nX2n

Also:

For restricted classes of planar graphs, there are algorithms with better
resolution, for example:
– Outerplanar graphs: algorithms with output with area
min ݇ଵ݊ଵ.ସ଼, ݇ଶ݀݊ log ݊ (Frati 2009)

And some lower bounds:
– Planar graphs: area Ω ݊ଶ is necessary (Leighton(?), about

1970)

– Series-parallel graphs:Ω ݊2 ୪୭୥ ௡ is necessary (Frati, 2010)

The deFraysseix-Pach-Pollack-Chrobak algorithm

Efficiency:
Yes, linear time

Elegance:
Not bad; can be coded by a student in a week or so.

Effectiveness:
Maybe pretty good:

• Straight-line edges
• No edge crossings
• Good vertex resolution

• But unfortunately -->

The deFraysseix-Pach-Pollack-Chrobak algorithm gave much hope
for planarity-based methods, and many refinements appeared
1990 – 2000.

But unfortunately, we found that the first step (increasing connectivity
by triangulation) gives some problems.

Topological
embedding of G Picture of G

Triangulation T
that contains G Picture of T

Drawing algorithm

1. Add dummy
edges to
triangulate

2.Draw the
augmented
graph.

3. Delete the dummy edges

Note: the resulting drawing is ugly. A better drawing

This kind of ugly drawing is a typical
output from methods that use
augmentation to increase connectivity

The deFraysseix-Pach-Pollack-Chrobak algorithm

Efficiency:
Yes, linear time

Elegance:
Not bad; can be coded by a student in a week or so.

Effectiveness:
So-so

• Straight-line edges
• No edge crossings
• Good vertex resolution

• Augmentation step gives
poor angular resolution
and weird shapes

Aside

What if the input graph is non-planar?

Classical approach: planarization
Input: a graph ܩ ൌ ሺܸ, ሻܧ

1. Find an approximately maximal planar
subgraph ᇱܩ ൌ ሺܸ, ᇱሻܧ with ܧ′ ⊆ .ܧ

2. Find a topological embedding of ܩᇱ.
3. Route each edge ݁ ∈ ܧ െ ′ܧ in such a way to

locally minimise crossings.
4. Put dummy vertices at each crossing point, to

give a vertex set ܸ′ with ܸ ⊆ ܸᇱ.
5. The graph ܩᇱᇱ ൌ ሺܸᇱ, ᇱᇱሻܧ is then planar. Use a

planarity-based drawing algorithm to draw ܩᇱᇱ.

Current state-of-the-art for planarity based methods:

• There are many small improvements to the
deFraysseix-Pach-Pollack-Chrobak algorithm.

• But none have overcome all the connectivity
augmentation problem.

Current state-of-the-art for planarity based methods:

• Almost no planarity based methods have been adopted
in commercial software … despite the fact that planarity
is the single most important aesthetic criterion.

Tutte’s barycentre
algorithm

Force directed
methods

Planarity-based
methods

Energy/force
methods
after Tutte

Tutte’s algorithm gives poor vertex resolution: vertices can be
exponentially close to each other.

To solve this problem, we need to prevent vertices from becoming very
close together.

This can be done with forces:-

1. Use springs of nonzero natural length

2. Use an inverse square law repulsive force between
nonadjacent vertices.

Force exerted by a vertex v on a vertex u:

If u and v are adjacent:
௦݂௣௥௜௡௚ ,ݑ ݒ ൌ 	݇௨௩ ݀ ,ݑ ݒ െ ௨௩ݍ ݅௨௩

where
• ݇௨௩ is the strength of the spring between u and v
• ݀ሺݑ, ሻݒ is the Euclidean distance between u and v
• is	௨ݍ the natural length of the u-v spring
• ݅௨௩ is a unit vector in the direction from u to v.

If u and v are not adjacent:

௡݂௢௡௔ௗ௝௔௖ ,ݑ ݒ ൌ 	
௨௩ݎ

݀ሺݑ, ሻଶݒ ݅௨௩

where
• ௨௩ݎ is the strength of the repulsive force

A (locally) minimum energy configuration satisfies
ܨ ݑ ൌ 0

for each vertex u.

This is a system of nonlinear equations.

Note
1. In general, the solution to this system of equations is not unique,

that is, there are local minima that may not be global.
2. Many methods to solve systems of equations like this are available.

Some methods are fast, some are slow, depending on the specific
equations.

Total force on a vertex u:
ܨ ݑ ൌ ∑ ௦݂௣௥௜௡௚௨,௩ ∈ா ሺݑ, ሻݒ 	൅ ∑ ௡݂௢௡௔ௗ௝௔௖ሺݑ, ሻ௨,௪ݓ ∈ா .

Force-based
techniques can
be constrained
in various
ways.

The constants in the force definitions

௦݂௣௥௜௡௚ ,ݑ ݒ ൌ 	݇௨௩ ݀ ,ݑ ݒ െ ௨௩ݍ ݅௨௩

௡݂௢௡௔ௗ௝௔௖ ,ݑ ݒ ൌ 	
௨௩ݎ

݀ሺݑ, ሻଶݒ ݅௨௩

can be chosen to reflect the relationships in the
domain.

For example
• If the edge between u and v is important in

the domain, then we can choose kuv to be
large and quv to be small.

Force-based
techniques can
be constrained
in various
ways.

Attractive forces can be used to
keep clusters together.

Magnetic fields and
magnetized springs can be

used to align nodes in various
ways.

Nails can be used to
hold a node in place.

These constraints are very useful in customizing the
general spring method to a specific domain.

graph
Custom
spring

method

Generic
spring

method

Domain specific constraints

picture

© AT&T

© Huang

Example:

Metro Maps

• Damian Merrick
• SeokHee Hong
• Hugo do Nascimento

The Metro Map Problem

– Existing metro maps, produced by professional graphic artists,
are excellent examples of network visualization

– Challenge: Can we produce good metro maps automatically?

– Possible solution:
• Use a force-directed approach
• Define forces that map good layout to low energy

Virtual Environments

Case Study - Stock
Market

MS-Guidelines

MS-Process

MS-Taxonomy

Software Engineering
Human Perception

Information Display
Data Mining

Abstract Datamany
applicationslarge

ABSTRACT
DATA

SOFTWARE
ENGINEERING

VIRTUAL
ENVIRONMENTS

HUMAN
PERCEPTION

DATA
MINING

MS-TAXONOMY

INFORMATION
DISPLAY

CASE
STUDY

MS-GUIDELINES

MS-PROCESS

finding
patterns

virtual
abstract
worlds

virtual
hybrid
worlds

data
characterisation

task
analysis

virtual real
worlds

new user-interface
technology

increase human-
computer bandwidth

many interaction
styles

perceptual
data mining

multi-attributed

visual
data
mining

information
visualisation

information
haptisation

information
sonification

VE
platforms

guidelines
for perception

guidelines for
MS-Taxonomy

guidelines
for spatial
metaphors

guidelines
for direct

metaphors

guidelines
for temporal
metaphors

guidelines
structure

iterative
prototyping

finding
trading rules

stock
market
data

display
mapping

prototyping

evaluation

expert
heuristic
evaluation

summative
evaluation

formative
evaluation

i-CONE

process
structure

Haptic
Workbench

Responsive
Workbench

WEDGE

Barco Baron

mapping
temporal
metaphors

mapping
direct
metaphors

mapping
spatial
metaphors

3D bar
chart
moving
average
surface
bidAsk
landscape
haptic
3D bar
chart
haptic
moving
average
surface
auditory
bidAsk
landscape

consider
software
platform

consider
hardware
platform

guidelines
for information

display
information

perceptualisation

Informal conclusion:
 The force directed method is a little bit effective,

but not very effective.

A
uckland

B
arcelona

Sydney (2 sec)

London
(20 sec)

Runtime

edge set size

Ti
m

e

Efficiency

Informal conclusion:
 The force directed method for metro maps

is not computationally efficient.

The performance of force directed methods on metro maps is typical
force directed methods:
 Elegant and easy to implement
 Effective but not very effective
 Not very efficient

For some data sets, force directed methods give
reasonably good drawings.

For some data sets, force directed methods
give bad drawings.

How good are current force directed methods?

Elegance:
Many simple methods, easy to implement
Numerical software often available

Effectiveness:

Very flexible

Straight-line edges 

Planar graphs are not drawn planar 

Very poor untangling for large graphs 

Efficiency:
OK for small graphs
Sometimes OK for larger graphs (using sophisticated numerical

methods)

The commercial state-of-the-art for force directed methods:

 Many commercial force-directed tools graph drawing methods
are available

• IBM (ILOG)
• TomSawyer Software
• yWorks

 Much free software available
• GEOMI
• GraphVis

 Many patents on variations of force-directed methods

 Force-directed methods account for 90% of commercial and
free graph drawing software for undirected graphs

The scientific state-of-the-art for force directed methods

 Very few scientific human experiments have been done on the
results of force directed methods.

 Very few theorems have been proven about force directed
methods

• Tutte’s theorem
• A theorem on symmetry of the output
• Some theorems on multidimensional scaling can be applied.

 Some empirical comparisons (in terms of hard metrics) have
been done.

 Many informal (unscientific?) investigations have been done
• Appeal to developer intuition
• Case studies in context

Tutte’s barycentre
algorithm

Force directed methods
• Not many scientific assertions

of quality
• Very little empirical validation
• Almost no underlying theory

• Universally used in practice
• Many patents

• Many force-directed methods
are easy to code

• Flexible, can easily
accommodate constraints

Planarity-based methods
• Good underpinning by theory

 Mathematical
 Psychological

• Strong empirical evidence of
quality

• Seldom used in practice
• No patents

• Planarity algorithms can be
difficult to code

2. How to draw a planar graph?
a) Before Tutte: 1920s – 1950s
b) Tutte: 1960s
c) After Tutte: 1970s – 1990s
d) Recent work

Recent work

– slightly non-planar graphs

Motivation

Mutzel experiment 1997 - 98
• Informal “experiment”, performed at a talk
• Audience members were the “subjects”

Results
• People prefer (a) over (b)
• People erroneously see

(a) as having fewer
crossings than (b)

Motivation

Tony Huang 2003+

• Series of formal human experiments using eye-tracking.

Huang’s thesis
If the crossing angles are large, then non-planar drawings are OK.

Slightly non-planar graphs

Right-Angle Crossing (RAC) graphs:
– Straight-line edges
– If two edges cross, then the crossing

makes a right angle



Questions for slightly non-planar graphs:

 How dense can a RAC graph be?

 How can you compute a drawing of a RAC graph?Theorem (Liotta, Didimo, Eades, 2009)

Suppose that G is a RAC graph with n vertices and m edges.
Then m ≤ 4n-10.

Theorem (Liotta, Eades, unpublished*)
The following problem is NP-hard:
Input: A graph G
Question: Is there a straight-line RAC drawing of G?

*Independently proved and published by Argyriou, Bekos and Symvonis

Questions for slightly non-planar graphs:

 How dense can a RAC graph be?

 How can you compute a drawing of a RAC graph?

Proof
• Reduction from planar-3-sat
• Draw the instance H of planar-3-sat as a template
• Fill in details of the template H to form a graph G that has a RAC

drawing if and only if H is satisfiable.

• Fairly generic proof strategy for NP-hardness for layout problems.

c1

c3

c4

c2

u1
u4u3u2

Instance H of planar 3-sat graph
1. Draw H as a visibility drawing

c1

c3

c4

c2

u1 u4u3u2

c1

c3

c4

c2

u1 u4u3u2

2. Enhance the drawing:
• “node boxes” for

 clauses c1, c2, …
 variables u1, u2, …

c1

c3

c4

c2

u1 u4u3u2

3. Transform to a 2-bend drawing
 “pipes” to communicate between variables and clauses

c1

c3

c4

c2

u1 u4u3u2

4. Transform to a no-bend drawing
 extra nodes at bend points

c1

c3

c4

c2

u1 u4u3u2

5. Triangulate every face to make it impassable

c1u1

External appearance of “node boxes”, with
“pipes” attached

variable clause

u1

External appearance of “node box”, with pipes attached, showing
some of the external triangulation

Variable gadget with pipes attached

Clause gadget with pipes attached

u

Logical view of variable gadget

uū

u is true

u

Logical view of variable gadget

u ū

u is false

u

Logical view of variable gadget

u ū

u is false

Each pipe
goes to a
clause in
which u
occurs

u

Logical view of variable gadget

u ū

Literals are
attached to the

clauses in which
they occur, using
chains threaded

through the pipes

u

Logical view of variable gadget

u ū

Chains attached to
the rear literal

spend an extra link
before getting into

the pipe.

c

u ū
• There is a pipe from the

variable gadget for u to the
clause gadget for c

• There is a chain through the
pipe from ū to c

Suppose that ū occurs in c

Logical view of clause gadget

ba
rri

er

The barrier allows
Any number of brown links to pass through
At most two red links to pass through

Thus at least one chain needs to be long enough to reach past
the barrier

u ū • If ū is true, then the chain is
long enough so that it does
not need a red link to pass
through the barrier

Suppose that ū occurs in c

uū
• If ū is false, then the chain

shorter, so that it needs a
red link to pass through the
barrier

Suppose that ū occurs in c

uū

• Thus for each clause, at
most two literals can be
false.

Notes

 This is a fairly generic proof strategy for NP-hardness
for layout problems.

 Details of clause and variable gadgets are
straightforward but tedious

 The same proof works for 1-planar graphs: just
choose different gadgets for clauses and variables.

What about heuristics?

– Several force-directed methods (Huang, Nguyen, Hong, et al.)
have been tested and seem to work OK to produce larger
crossing angles than regular force-directed methods.

– No combinatorial heuristics known

What about special classes of graphs?

Theorem (Liotta, Didimo, di Giacomo, Eades)
There is a linear time algorithm to test and draw graphs

restricted to two layers with right-angle crossings.

What about special classes of graphs?

Theorem (Reisi)
There is a linear time

algorithm to test and
draw outer-1-planar
graphs with right-angle
crossings.

However:
– the problem of drawing graphs with large crossing angles

remains mostly open, both from both practical and theoretical
points of view.

More slightly-non-planar graphs

1-planar:
– No edge has more than one crossing

Questions for 1-planar graphs:

 How dense can a 1-planar graph be?

 How can you compute the topology of 1-planar graph?

 Given the topology, how can you compute a drawing of
a 1-planar graph?

 What is the relationship between 1-planar graphs and
RAC graphs?

4n-8 (Ackerman-Tardos)

NP-hard (Korzhik- Mohar)

Recent algorithm
(Hong-Eades-Liotta-Poon)

Recent theorem
(Eades-Liotta)

Some 1-planar graphs have a 1-planar straight-line drawing,
others have no 1-planar straight-line drawing.

Chanel graph

The chanel graph has a
straight-line drawing

Gucci graph

Lemma:
The gucci graph has no

straight-line drawing

Bulgari graph

Lemma:
The bulgari graph has no

straight-line drawing

Theorem (Hong, Liotta, Poon, Eades, 2011)
Suppose that G is a 1-planar topological embedding. Then G has a

straight-line drawing if and only if G has no gucci subgraph and no
bulgari subgraph.

Theorem (Hong, Liotta, Poon, Eades, 2011)
Suppose that G is a 1-planar topological embedding. Then G has a

straight-line drawing if and only if G has no gucci subgraph and no
bulgari subgraph.

Proof
• Necessity for bulgari graph:

 Angles in the triangle abγ add
up to π

 Thus 3 angles at γ add up to
strictly less than π

 This is impossible if ad and bc
are straight lines.

• Similar argument for the gucci
graph

a

b

γ
c

d

Theorem (Hong, Liotta, Poon, Eades, 2011)
Suppose that G is a 1-planar topological embedding. Then G has a

straight-line drawing if and only if G has no gucci subgraph and no
bulgari subgraph.

Proof
• Sufficiency
 Much more complicated
 Provides an algorithm:

Input: a 1-planar topological embedding G with no gucci
subgraph and no bulgari subgraph.

Output: a straight line drawing of G

Algorithm for Straight-line 1-planar graph drawing

Input: a 1-planar topological embedding G
Output: a straight line drawing of G, if it exists

1. Testing: Test whether G has a gucci subgraph or a bulgari
subgraph.

2. Augmentation: Add non-crossing edges to make an
augmented graph G+, with higher connectivity.

3. Drawing: Apply a convex drawing algorithm together with an
SPQR trees to G+.

1. Testing: Test whether G has a gucci subgraph and no bulgari
subgraph.

2. Augmentation: Add non-crossing edges to make an augmented
graph G+, with higher connectivity.

3. Drawing: Use a convex drawing algorithm together with an SPQR
trees to G+.

Red and blue edges
 Red edges: no crossings
 Blue edges: 1 crossing

Red-maximal:
 A graph is red-maximal if

adding an edge causes a
crossing

 ie, a graph is red-maximal if
whenever a pair a, b of
vertices share a face, then
(a,b) is an edge.

Naive augmentation algorithm
to obtain red-maximality:
For each nonadjacent pair

a,b of vertices that share
a face, add the edge
(a,b)

 But: the naive algorithm does not work

Augmentation 1: introduces a bulgari subgraph

Some augmentations may not be correct

Augmentation 2: no bulgari subgraph

Some augmentations may not be correct

1. Testing: Test whether G has a gucci subgraph and no bulgari
subgraph.

2. Augmentation: Add non-crossing edges to make an augmented
graph G+, with higher connectivity.

3. Drawing: Use a convex drawing algorithm together with an SPQR
trees to G+.

Problem:
 Naive algorithm does not work.
 Red-maximal supergraph is not unique

• We need to choose a red-maximal supergraph with no
bulgari/gucci subgraphs

1. Testing: Test whether G has a gucci subgraph and no bulgari
subgraph.

2. Augmentation: Add non-crossing edges to make an augmented
graph G+, with higher connectivity.

3. Drawing: Use a convex drawing algorithm together with an SPQR
trees to G+.

Augmentation algorithm
 Augmentation can be done an edge at a time, but when

two crossings share two endpoints, we must be carefully
order the edge insertions.

 Can be done in linear time.

1. Testing: Test whether G has a gucci subgraph and no bulgari
subgraph.

2. Augmentation: Add non-crossing edges to make an augmented
graph G+, with higher connectivity.

3. Drawing: Use a convex drawing algorithm together with an SPQR
trees to G+.

Drawing Algorithm
If the red subgraph R of G+ is triconnected
Then

– Draw R using a convex drawing algorithm
– Insert crossing edges

Else
– Use SPQR tree in a recursive way to build a

drawing.

Relationships between the various classes of
slightly non-planar graphs:-

Observation1
There are 1-planar graphs that are not RAC.

Observation 2
There are RAC graphs that are not 1-planar.

Replace
each

edge in
K5 with:

....

k+2

....

Theorem (Liotta, Eades)
If G is RAC and has 4n-10 edges, then G is 1-planar.

1-planar RAC

planar

Max.
Dense
RAC

Final remarks

Other classes of slightly-non-planar graphs

• 2-planar: each edge has at most 2 crossings

• Quasi-planar: no three edges mutually cross each other

• Fan-crossing-free: no pair of incident edges cross another edge

• Twist-crossing-free: no path of length 3 crosses itself

• 1-skew: deletion of one edge makes it planar

Open problems for curious people

Class Maximum
density

Computing
topology

Computing
straight-line

drawing
Planar 3n-6 Linear time Linear time
1-planar 4n-8 NP-hard Linear time*
Fan-crossing-free ? ? ?
Twist-crossing-free ? ? ?
Quasi-planar 6.5n-20 ? ?
Right-angle-
crossing (RAC) 4n-10 NP-hard ?

1-skew 3n-5 Quadratic(?) Linear time*
...

Wild conjecture

Suppose that H is a topological graph, other than a pair of
crossing edges.

Then the following problem is NP-hard.

Instance: A graph G
Question: Does G have a topological embedding in

which H is not a subgraph?

Open problems for practical people with some mathematical skills

We say that a graph drawing D has crossing resolution ϴ(D) if each
crossing angle is at least ϴ.

1. Investigate graph drawings D with ϴ(D) ≥ π/3.

2. Consider the following problem:
Maximum Crossing Resolution
Input: a graph G
Output: a drawing D of G with maximum crossing

resolution ϴ(D).
Isolate the continuous and discrete parts of this optimisation
problem.

Open problems for people with some HCI/Psych skills

Investigate the perceptual and mathematical relationships
between crossing resolution and the number of crossings.

Open problems for practical people with lots of mathematical skills:

Randomisation
– In a “random” graph drawing with “short” edges:

• How many edge crossings?
• What is the crossing resolution?
• What is the vertex resolution?
• How do these parameters vary with graph theoretic

parameters, such as diameter?

– Implications for graph drawing algorithms
• Can we design algorithms that exploit randomization?
• Can we provide stochastic guarantees of performance?

Open problem for computational geometry people:-
• Given a straight-line graph drawing, what is the smallest

crossing angle?

General open problems

Information
visualization

Geometric
and

topological
graph theory

Inspires
interesting
problems

Solves
problems

Play video …

Quan Nguyen: edge bundling problems

Problems:
• What mathematically-sound measures of edge bundling pictures

define good visualizations?
• What algorithms can be used to optimise these measures?
• What are the mathematical limits on geometric graphs with as a

function of these measures?

Final final conjecture ….

Tutte’s barycentre
algorithm

Force directed methods
• Not many scientific assertions

of quality
• Very little empirical validation
• Almost no underlying theory
• Universally used in practice
• Many patents
• Many force-directed methods

are easy-to-code versions
• Flexible, can easily

accommodate constraints

Planarity-based methods
• Good underpinning by theory

 Mathematical
 Psychological

• Empirical evidence of quality
• Seldom used in practice
• No patents
• Planarity algorithms are difficult to

code

Investigations of slightly-non-planar graphs will lead to
more commercial value for planarity-based methods

S
ci

en
tif

ic
 w

or
ld

C
om

m
ercial w

orld

Conjecture:

