How to Draw a Graph ... Revisited

Peter Eades
University of Sydney

W. T. Tutte 1917 - 2002
— Code breaker at Bletchley park
— Pioneer of matroid theory
— Pioneer of graph theory
— Inventor of the first graph drawing algorithm

» His 1963 paper “How to Draw a Graph™
has inspired much research

This talk is about two strands of
Graph Drawing research that
followed Tutte’s work

*William T. Tutte. “How to draw a
graph.” Proc. London Math. Society,
13(52):743 -768, 1963.

This talk

1.

Background

a) Graphs

b) Graph drawings
c) Connectivity

d) Planar graphs

e) Topological embedding
f) Good graph drawings

How to draw a graph?

a) Before Tutte: 1920s — 1950s
b) Tutte: 1960s

c) After Tutte: 1970s — 1990s
d) Recent work

A graph consists of
* Nodes, and

« Binary relationships
called “edges” between
the nodes

Example: a “Linked-In” style social network

Nodes:
« Alice, Andrea, Annie, Amelia, Bob, Brian, Bernard, Boyle

Edges
Bob is connected to Alice Boyle is connected to Alice
Bob is connected to Andrea Boyle is connected to Andrea
Bob is connected to Amelia Boyle is connected to Annie
Brian is connected to Alice Bernard is connected to Alice
Brian is connected to Andrea Bernard is connected to Andrea
Brian is connected to Amelia Bernard is connected to Annie

(b) Graph drawing

A graph consists of
* Nodes, and
 Edges

i
Q.
©
i

©

\4
A graph drawing is a picture of a graph.

That is, a graph drawing is a mapping that
assigns

* a location for each node, and
e acurve to each edge.

Graph Drawing

A drawing of the
social network

Nodes:
« Bob, Brian, Bernard, Boyle, Alice, Andrea, Annie, Amelia

Edges

« Bob is connected to Alice

« Bob is connected to Andrea

 Bob is connected to Amelia

« Brian is connected to Alice
Brian is connected to Andrea
Brian is connected to Amelia

A social network

Boyle is connected to Alice
Boyle is connected to Andrea
Boyle is connected to Annie
Bernard is connected to Alice
Bernard is connected to Andrea
Bernard is connected to Annie

Amelia

Bernard

\ Andrea

Nodes
0,1,2,3,4,5,6,7

Edges

0-1
0-4
1-2
1-4
1-7
2-3
2-4
2-5
3-4
4-5
4 -7
5—-6
5-—7
6-7

A drawing of the graph

A graph drawing is a straight-line drawing
if every edge is a straight line segment.

/' \

Amelia Bob Bernard
S —

A straight-line drawing

Andrea

NOT a straight-line
drawing

(c) Connectivity

Connectivity notions are fundamental in any study of
graphs or networks

A graph is connected if for every pair u, v of vertices,
there is a path between u and v.

A graph is k-connected if there is no set of (k-1)
vertices whose deletion disconnects the graph.

e 1]

- “1-connected” = “connected”
: “2-connected” = “biconnected”
= 3: “3-connected” = “triconnected”

This graph is

Connected
components

\ connected /

\ This graph is not connected /

 Agraph is k-connected if there is no set of (k-1)
vertices whose deletion disconnects the graph.

> k=2:“2-connected” = “biconnected”
> k=3:“3-connected” = “triconnected”

“2-connected” = “biconnected”

— A cutvertex is a vertex whose removal would

disconnect the graph.

— A graph without cutvertices is biconnected.

\ This graph is biconnected /

4 \

\This graph is not biconnected/

“3-connected” = “triconnected”

— A separation pair is a pair of vertices whose removal would
disconnect the graph.

— A graph without separation pairs is triconnected.

4)

!’his graph is triconnectecy \ This graph is not triconnected

(d) Planar graphs

s

A graph is planar if it can be drawn

without edge crossings.

A graph is planar if it can be drawn without edge crossings.

Nodes:
- 0,1,2,3,4,5,6,7,8,9
Edges

0-4

0-9

1-2

1-6

[N
I
~

N oo B WODNDN
I
0 N O 0 O & O W

.

_

—0Q

Y

S
C
o
&
c
O
Z

Nodes:
0,1,2,3,4,5

A graph is non-planar if
every drawing has at least
one edge crossing.

(e) Topological embedding

A planar drawing divides
the plane into faces.

F, shares a boundary with F,
F, shares a boundary with F,
F, shares a boundary with F4
F, shares a boundary with F,
F, shares a boundary with F,
F, shares a boundary with F,
F, shares a boundary with F,
F, shares a boundary with F4
F, shares a boundary with F,
F; shares a boundary with F,

The boundary-sharing relationships of the faces
defines a topological embedding of the graph
drawing

Most of this
talk is about
the mapping
from a —
topological
embedding to a
graph drawing

A4

Topological
embedding

A4

Graph
Drawing

Nodes and edges
No geometry

Faces and incidence between faces
“‘Rubber sheet” geometry
Equivalence under homeomorphism

A picture of the graph
Points and curves
Geometry fully specified

Euler formula
If

n = #vertices

f = #faces

m = #edges
then

n+f=m+2

Corollary m £ 3n-6

Corollary
If m = 3n-6 then every face is a triangle

Maximal planar graph

Given a planar graph G,
we can add non-crossing
edges one by one until the
graph becomes a maximal

planar graph G*.

Easy Theorems:

* |n a maximal planar graph, no edge can be
added without making a crossing

A maximal planar graph is a triangulation
(every face is a triangle)

* |n a maximal planar graph, m=3n-6.

A maximal planar graph with n>3 is
triconnected

(e) Good graph drawing

The input Is a graph
with no geometry

The output should be a
good graph drawing:

» easy to understand,
» easy to remember,
> beautiful.

Graph Drawing

~1979 Intuition (Sugiyama et al. 1979; Batini et al 1982; etc):
— Planar straight-line drawings make good pictures

Bad drawing Good drawing

s N = =

Jocelyn

N,

\Bob

\

Jocelyn Dunstan

_ .

20

2
)
=
w
—
5]
e
]
o
£
3
=
&
@
g
o
>
<

0.0

Average number of errors vs Aesthetic variation

---- bhends
—-— crossings
— symmetry

L
some

bends

18

Crossings

24

symmetry

25.7

Aesthetic Variation
Fig. 3. Results for the dense graph

Purchase et al.,1997:

Significant correlation between

edge crossings and human
understanding

» More edge crossings means
more human errors in
understanding

g
o

Average Number of Errors

0.0

Average number of errors vs Aesthetic variation

-h
o
T

---- bends
—-— crossings
—— symmetry

1
some

bends

13

Crossings

24

symmetry

25.7

Aesthetic Variation

Fig. 3. Results for the dense graph

Purchase et al., 1997

Significant correlation between

straightness of edges and
human understanding
» More bends mean more
human errors in
understanding

What makes a good drawing of a graph?

> lack of edge crossings (planar drawings are good!)

» straightness of edges (straight-line drawings are good!)

(plus some other things)

2. How to draw a graph

a) Before Tutte: 1920s — 1950s

Fary’'s Theorem

Every topological embedding of a planar graph has
a straight-line planar drawing.

Proved independently by Wagner (1936),
Fary (1948) and Stein (1951)

~

A4

Topological
embedding

A4

Graph
Drawing /

waloay] s.AreH

-

Wikipedia proof of Fary’s Theorem:

» First note that it is enough to prove it for triangulations.

Topological
embedding of G

Picture of G

1t
€mo Ve au /77/77_y
€dges

[

Picture of T

Triangulation T
that contains G

Drawing algorithm

We prove Fary’s theorem by induction on
the number of vertices.

If G has only three vertices, then it is
easy.

Suppose G has n>3 vertices and 3n-6
edges, and that the outer face of G is
the triangle <abc>.

Since every vertex has degree at least 3,
Euler implies that there is a vertex u
not on the outside face with degree at
most 5.

Delete u from G to form G’; this gives a
face F of G of size at most 5.

Since G’ has n-1 vertices, by induction it
has a planar straight-line drawing p’.

Since F has at most 5 vertices, it is star-
shaped, and we can place the vertex
u in the kernel of F to give a planar
straight-line drawing p of G

2. How to draw a graph?

b) Tutte

W. T. Tutte,
“How to Draw a Graph”,

Proceedings of the London Mathematical Society
13, pp743 — 767, 1960

Tutte’s barycentre algorithm
Input:

« Agraph G = (V,E)
Output

« A straight-line drawing p

Step 1. Choose a subset Aof V

Step 2. Choose a location p(a) = (x,, Y,) for each vertex a € A
Step 3. For all u € V-A, choose p(u) by

1 Vertex u is
p(u) = Z p(v) placed at the
deg(u) “barycenter” of

VEN (u) ’ s
where the sum is over all neighbors v of u £ NRIJNDOTS

Step 1. Choose a subset A of V

Step 2. Choose a location p(a) = (x,, y,) for each vertex a € A
Step 3. For all u € V-A,

suolnenba
ug

Tutte’'s barycenter algorithm

Choose a set A of vertices.

Choose a location p(a) for each aeA

For each vertex u eV-A, place u at the
barycentre of its graph-theoretic
neighbors.

Step1.A={4,5,6, 7, 8}

Step 2. Foralli=4,5,6,7,8,
choose x; and y; in some way.

Step 3. Find X4, Y4, Xy, ¥, X3, @nd y;
such that:

1
G = Z(xz +x3+x',+x'g)

1
Xy = Z(xl +x3 +x'c +x')

Xy = §(x1 +x; +x'7)

and)
Y, = Z(Yz +y3+ Y4 tY's)

1 14 14
3’2:1(3’1 +y3+yYs+ye)

1 4
yz=§(y1 +y,+y7)

where X’; and y’; are the values
chosen at step 2.

Step1.A={4,5,6, 7, 8}

Step 2. Foralli=4, 5, 6, 7, 8, choose x; and
y, in some way.

Step 3. Find x4, Y4, X5, Yo, X3, @and y,; such
that:

4x, —Xy —X3 =X 4+ xX'g =
—x,+4x, —x3=xc+x'¢ =0,
—X; — X5+ 3x3 =X =3

and

4y1=y2 —y3 =Yat Ve =d;
—y1+4y2—y3=y,5 + v =d;
—y1— Y2 +3y3 =y's = ds

where c,, C,, C3, d4, d,, d; are constants

Step1.A={4,5,6, 7, 8}

Step 2. Foralli=4, 5, 6, 7, 8, choose x; and
y, in some way.

X1
Step 3. Find vectors x = [Xz‘ and y = [3’2
X3

such that

The essence of Tutte’s barycentre
algorithm is inverting a matrix

Tutte’s barycentre algorithm
Input: A graph G = (V,E)
Output: A straight-line drawing p

Step 1. Choose a subset A of V
Step 2. Choose a location p(a) = (X, Y,) for each vertexa € A

Step 3. Let M be the matrix, indexed by V-A, defined bv
deg(u)ifu =v » This is a special matrix:

My, = 1 —1if (u,v)eE Laplacian submatrix.

« Many software packages
can invert such a matrix
efficiently

0 otherwise
Let c and d be the vectors, indexed by V-A, de
Cu = ZWEA Xw and du = ZWEA Yw-
Then choose x and y to be the vectors, indexed over V-A,
defined by
x=M1c and y=M"1.

Then choose p(uw) = (x,,¥,) forallu € V — A.

Tutte’s barycentre
algorithm

» Example output on a
non-planar graph

Tutte’s barycentre
algorithm

» Example output on
a planar graph

Tutte’s barycenter algorithm for
triconnected planar graphs

Tutte’s barycenter algorithm for
triconnected planar graphs

. Choose A to be the outside face of the
topological embedding.

. Choose the location p(a) for each aeAto
be at the vertices of a convex polygon.

. For each vertex u eV-A, place u at the
barycentre of its graph-theoretic
neighbors.

Note: For planar graphs, the Laplacian matrix is
sparse, and can be inverted fast.

Tutte’s amazing theorem (1960)

If the input graph is planar and triconnected, then

« the drawing output by the barycentre
algorithm is planar, and

« every face is convex.

The energy view of Tutte’s barycentre algorithm

Tutte’s barycenter algorithm:
The enerqgy view

Choose a set A of vertices.

Choose a location p(a) for each aeA
Place all the other vertices to minimize
enerqy.

What is the energy of a drawing p?

The Euclidean distance between u and v in the drawing p is:
d(u,v) = v (o, — %) +Ou — ¥y)?

The energy in the edge (u,v) is d(u, v)? = (x4 — x,)?+(y — Yy)?

The energy in the drawing p is the sum of the energy in its edges, ie,

energy(p) = Z d(u,v)* = z (o = %5)2+ — Yo)°

(w,v)EE (u,v)EE

Tutte’s barycenter algorithm:
The enerqgy view

We represent each vertex by a steel ring, and
represent each edge by a spring of natural
length zero connecting the rings at its
endpoints.

Choose a set A of vertices.

For each a€A, nail the ring representing

a to the floor at some position.

The vertices in V-A will move around a
bit; when the movement stops, take a
photo of the layout; this is the drawing.

P
P>
7

=
7
=4

‘-
—

How to minimize energy:
— Choose a location p(u) = (x,, y,) for each u € V — A to minimize

energy(p) = z d(u,v)?> = z G2y = 52y V0 = 0

(u,v)EE (u,v)EE

— Note that the minimum is unique, and occurs when

d (energy(p)) _ 0
0xy B Yy

and 0 (energy(p)) _ 0

foreach u e V — A.

For x,, the minimum occurs when:

d (energy(p))
dx,, B

0

9,
ﬁ(Z (X — Xy)2+(Yu — Y)2> =0

(uw,v)EE

2(xy, —x,) =0

VEV s.t.(u,v)EE

1
Barycentre — R D) Z Xv
equations VEV s.t.(u,v)EE

How good is Tutte’'s barycentre algorithm?

Efficiency:
> In theory it is not bad: O(n'°) for planar graphs
» In practice it is fast, using numerical methods

Elegance:
» Very simple algorithm
» Easy to implement
» Numerical software available for the hard parts

Effectiveness:
» Planar graphs drawn planar
» Convex faces
» Straight-line edges

But unfortunately >

But unfortunately:
» Tutte’s algorithm gives poor vertex resolution in many cases

Example:
Vertex a is at (0.5, 0)
b is at (0,0)
cis at (1,0).
Suppose that vertex j is
at (x;,y;) for O<j<n.

From the barycentre equations:
Xj = 0.5

1
Yi =7 (Yj—1 + Yj+1)

One can deduce that
1
-1 =il <55

That is, some vertices are exponentially close together.

Aside:

— Commercial graph drawing software
needs good resolution.

How good is Tutte’'s barycentre algorithm?

Efficiency:
» OK

Elegance:
» Excellent

Effectiveness:
» S0-S0

2. How to draw a planar graph?

c) After Tutte: 1970s — 1990s

After Tutte: 1970s — 1990s

Sometime in the 1980s, the motivation for graph drawing changed from
Mathematical curiosity to visual data mining.

Software

O/ A0 C@ME hUALDOTDC

ez ¥ Ve dakow, on - cirt | haatar e | ecamesmia i

|
:
m
m

AL S Ll

1

] =

“@m

File View Options Help Edit Macios
Primary Search Category Dependent Search Criteria Search Detail

FirmFile entry short name x| |cti Q Q = Navigate Orientation Undo Arrange

T

H: Hissz se3.071
FUNEO INC ‘ | COMMUNITIES G
US 360762 b c
H:42,707 043,028
f

= CITIBANK NEW YORK NA T‘
g US 172905 d

M: ¥ M: M
H:$21,324.348 ! 3 : / His292.991.41
GAVESTOP CORP INTERSIL CORP
T414,527 228 b
US 36466R 414,591 659 f / /’1U5 460698
H:
) CITIBANK NA | y /
: US 20000 :

H $.,7 520,382

T ARCAD 14 AUTO

RECEMBLES TRUST
H:4277,383 316 | U$ 039000
] i M
, i Assncwss AUTO
¢ 9 ECEIVABLES TR
F ! / /Aus 045001
/ / I
3 /M
H$10,100,563 | 462,893 07" / ,/ / H:
CITIBANK CANADA | MPATERMARK OLYMPIC FINANCIAL LTD)
172026 3 f ﬂ(ﬂlﬂ)
b / f / / US 651593

T /
u: M: |.|:
H:

: H:$282 391 f
CITIGROUP CAP Il // ASEDCNES CORP NO
US 17305H i ‘ N VN
:$2. 3, i

teneeee

T

H-

E 832
WESTINGHOUSE ELEC

CORP (OLO) 1AlG ' | : : _rvl
»

Risk Exposure

From the 1980s, industrial demand for graph drawing algorithms has
grown

— Software engineering: CASE systems, reverse engineering
Biology: PPI networks, gene regulatory networks
Physical networks: network management tools
Security: risk management, money movements
Social network analysis
Customer relationship management: value identification
Many companies buy graph drawing algorithms, many code them.

Currently the international market for graph drawing algorithms is in the
hundreds of millions of dollars per year.

Tutte’s barycentre
algorithm

Planarity-based Force directed
methods methods

|

Planarity based
methods after
Tutte

Planarity based methods after Tutte

R.C. Read (1979, 1980)

1. Efficient?
> Yes, linear time algorithm

2. Elegant?
» Yes: follows proof of Fary’s theorem, with some tricks to

make it into an efficient algorithm

3. Effective?
» Maybe ...
= Straight-line planar drawings of planar graphs

= But unfortunately, output has poor vertex resolution

Planarity based methods after Tutte

Chiba-Nishizeki-Yamanouchi (1984)

1. Efficienct?
»> Yes, linear time algorithm

2. Elegant?
» Yes, a simple divide&conquer approach

3. Effective?
» Maybe ...
= Straight-line planar drawings of planar graphs
= Convex faces for well connected input

= But unfortunately, output has poor vertex resolution

Planarity based methods after Tutte

Breakthrough in 1989:

de Fraysseix-Pach-Pollack Theorem (1989)
Every planar graph has a planar straight-line drawing
with vertices located on a 2n X 4n integer grid.

Notes:

— Good resolution: the minimum distance between vertices is
at least screensize/4n.

— Linear time (Chrobak, 1990)

The deFraysseix-Pach-Pollack Theorem gave much hope for
planarity-based methods, and many refinements appeared
1990 — 2000.

de Fraysseix-Pach-Pollack-Chrobak Algorithm

1. Add dummy edges to make the graph into a triangulation

2. Construct an ordering uq, u,, ..., u, of the vertices, called the
canonical ordering.

3. Draw the graph, adding one vertex at a time, in order u,, u,, ... , U,

Wikipedia proof of Fary’s Theorem

Step 1: Add dummy edges to make the graph into a triangulation

Topological
embedding of G

Picture of G

1t
€mo Ve au /77/77y
€dges

Triangulation T

that contains G Picture of T

Drawing algorithm

Step 2: Construct an ordering u4, u,, ... , u, of the vertices , called the
“canonical ordering”.

A canonical ordering is an ordering u,, u,, ..., u, of the vertices of a
triangulation having the property that, for each 3 < k < n, the graph
G, induced by uy, U, ..., U, has the following properties

G, is biconnected
G, contains the edge (u,4, u,) on its outer face,
Any vertices in G, adjacent to u,,, are on the outer face of G,

The vertices in G, adjacent to u,,, form a path along the outer
face of G,

graph G, induced
by uy, Uy, ..., Uy

Step 3: Draw the graph, adding one vertex at a time in
order u,, Uy, ..., U,

a) Start with the edge (u,4, u,) at y=0
b) For each k>1:
 addug,ony=k
* Choose x coordinate of u,,, so that there are
no edge crossings.

At each stage, there is
a drawing of G, as a

Drawnlg< “terrain”.
of G,

Drawing of G,

Some details of deFraysseix-Pach-Pollack-Chrobak algorithm are
needed to show

— |t runs in linear time

— It is possible to avoid edge crossings

— Each vertex lies on an integer grid of size at most 4nX2n

Also:

For restricted classes of planar graphs, there are algorithms with better
resolution, for example:

— Outerplanar graphs: algorithms with output with area
min(k,n'*8, k,dnlogn) (Frati 2009)

And some lower bounds:

— Planar graphs: area Q(n?) is necessary (Leighton(?), about
1970)

— Series-parallel graphs:(Q) (nZVlOg") is necessary (Frati, 2010)

The deFraysseix-Pach-Pollack-Chrobak algorithm

Efficiency:

» Yes, linear time

Elegance:
» Not bad; can be coded by a student in a week or so.

Effectiveness:
» Maybe pretty good:
« Straight-line edges
* No edge crossings
» Good vertex resolution

 But unfortunately -->

The deFraysseix-Pach-Pollack-Chrobak algorithm gave much hope
for planarity-based methods, and many refinements appeared
1990 — 2000.

But unfortunately, we found that the first step (increasing connectivity
by triangulation) gives some problems.

Topological .
embedding of G { Picture of G J

nt by
Augme dummy re

edges 80ges

Triangulation T Drawing algorithm |
that contains G Picture of T

1. Add dummy
edges to
triangulate

—

ﬁ
2.Draw the

augmented
graph.

3. Delete the dummy edges

Note: the resulting drawing is ugly. A better drawing

()
—/

This kind of ugly drawing is a typical
output from methods that use
augmentation to increase connectivity

The deFraysseix-Pach-Pollack-Chrobak algorithm

Efficiency:

» Yes, linear time

Elegance:
» Not bad; can be coded by a student in a week or so.

Effectiveness:
> S0-so

« Straight-line edges * Augmentation step gives
« No edge crossings poor angular resolution

« Good vertex resolution and weird shapes

Aside

What if the input graph is non-planar?

Classical approach: planarization
Input: a graph ¢ = (V,E)
1. Find an approximately maximal planar
subgraph ¢' = (V,E") with E' C E.

Find a topological embedding of G'.

Route each edge e € E — E' in such a way to
locally minimise crossings.

Put dummy vertices at each crossing point, to
give a vertex set V' with V c V"',

The graph ¢" = (V',E") is then planar. Use a
planarity-based drawing algorithm to draw G".

Current state-of-the-art for planarity based methods:

There are many small improvements to the
deFraysseix-Pach-Pollack-Chrobak algorithm.

But none have overcome all the connectivity
augmentation problem.

Current state-of-the-art for planarity based methods:

* Almost no planarity based methods have been adopted
in commercial software ... despite the fact that planarity
is the single most important aesthetic criterion.

Tutte’s barycentre
algorithm

T~

Planarity-based Force directed
methods methods

Energy/force
methods
after Tutte

Tutte’s algorithm gives poor vertex resolution: vertices can be
exponentially close to each other.

To solve this problem, we need to prevent vertices from becoming very
close together.

This can be done with forces:-

1. Use springs of nonzero natural length

2. Use an inverse square law repulsive force between
nonadjacent vertices.

Force exerted by a vertex v on a vertex u:

If u and v are adjacent:
fspring (u,v) = kyp, (AW, v) — qup) iy

where
k.., is the strength of the spring between u and v
d(u,v) is the Euclidean distance between u and v
q, is the natural length of the u-v spring
i, 1S @ unit vector in the direction from u to v.

If u and v are not adjacent:

fnonadjac (u,v) = T Ly
d(u,v)?

where
v IS the strength of the repulsive force

Total force on a vertex u:
F(u) — Z(u,v)eE fspring (u' U) + Z(u,w)etE fnonadjac (u: W)-

A (locally) minimum energy configuration satisfies
F(u) =0
for each vertex u.

This is a system of nonlinear equations.

Note

1. In general, the solution to this system of equations is not unigue,
that is, there are local minima that may not be global.

2. Many methods to solve systems of equations like this are available.
Some methods are fast, some are slow, depending on the specific
equations.

Force-based
techniques can
be constrained
In various
ways.

The constants in the force definitions

fspring (w,v) = kypy(d(W, v) — qup) iy

fnonadjac (u,v) = T Ly
d(u,v)?

can be chosen to reflect the relationships in the
domain.

For example

» |If the edge between u and v is important in
the domain, then we can choose k, to be
large and q,, to be small.

Force-based
techniques can
be constrained
In various
ways.

Nails can be used to
hold a node in place.

Magnetic fields and
magnetized springs can be

used to align nodes in various

Attractive forces can be used to
keep clusters together.

These constraints are very useful in customizing the
general spring method to a specific domain.

Domain specific constraints

Generic

spring
method

Custom

spring
method

picture

[Simi_Functions |
[Semi_Methods Cobol

Semi_Objects
|Semi_ Library | C++

[Semi_Products| [Procedure_Library |
1991 Comp222
, Comp328
1997 |0bjBCt1 |

1996

[Comp3z6]

| Software_Library | ~__|Comp321|
& 4 Comp114
Image_Library | Compnets {Comp332]

S Comp226

_ Comp110
Comp443

Object2 Comp111 [\, Comp224
| Research_Products | \
Comp330
Comp324
Comp221 Comp331

Comp445
[Monetary_System || [Virtual_Memory| Comp411

[Graph_drawing | |Comp333|

Example:

Metro Maps

« Damian Merrick
« SeokHee Hong
* Hugo do Nascimento

The Metro Map Problem

— Existing metro maps, produced by professional graphic artists,
are excellent examples of network visualization

— Challenge: Can we produce good metro maps automatically?

— Possible solution:
« Use a force-directed approach
 Define forces that map good layout to low energy

CityRail Network

ey
uTneow O # O
ZoZx

™
e
Bactesn O ¥
vescs tan
KATOOMSA O O
O
Whesecn fam O B
Bt B
s O B
ook ¥ O
asrd P

L »
AN 00 8
s O ®
Coactmcn B SorotmnO P

Lageione

A gn tatner.
e P e Coror |

32

K
QP Qrwwar 457,
OQ@PARRAMATTA i
[

»
OF @ rammILY

O Cariy Ve
oy e

O Catramana

Roaet O 7
R GIAINOOID
255 lu-m-n-ng
A SYDNEY KARBOUR
P " "
T)
OWORTH SYONEY Cier 0arQ 00
a0 6 Q0 + Mmors Pt
b uesaneas O
) OOwrnvars ,._
b Corvs West O Ovown Illll ll gn Come Q.

lll e

= =
oy,
- ’ r Py
s / o";:‘{‘// (..{}/ ’
-y o o
=L
—

OFQ caursriLTOWN

o-mi

W v
sarvcms 1o e Gty
00 atweer Camgtutionn

BOTANY BAY

Abamat
HURSTVILLED
[T,y

:

CityRail

© Copyright GyRall Jaruary 2000

Merry s

20
s - .
Pt
@"%\‘2_‘;“‘%*@4‘* Jg;vﬂ 2
Sradest

& ;
TR o n o i oo R
s S ahE B Fo PLEF B K EIES o f VS e
S XL P VAL L Pt SR el s oo
i imere
" Dumcts.
o Tekpa

Carligfrd

£ sa00r

Al P

=

i

o

L s & e o o el

) vemisvann- s cu

LY wmewe
RERERERN

Com
Cann

U — N

=

2o
—
L
u'-«“.‘
e
T uren
X P

. vy

Laz Tex Torex

La Boreroa
Virarar

= | Peaents

Mroapmiet - LY fer Canrilet

Ao Coupy it
Dt
[T 1y Cammtnn

IS Fooa Liarga

LA e e

T o
£ P e >
L 23] -
LTy wo

o

7 | Parc de Bontjuic
7 | Parc do Mortjuk

B\, e 'y 3

frana v

T

o Nod Rraoyw

9 -
Avitsate

Viaphia

b B Purme

b M0

LR

Fontasa

Lt Trinitat Nova) L4 Trinat Nove

Y sk

.
el b AT T

s ATM

@PepVenwa

@Corg

L

ArtiguesSantAdria

TrinitatNova

PMercatNou
SantaEullia

Tomassa

Florida

CanSerra
RblaJustOliveras
AvCarrilet
Bellvitge

Febal largn

PaluReil

ZonaUniversitaria

O REILLY 2003 OPEN SOURCE ROUTE MAP

Web Perl
Technologie & . :
K N R N Gesellschaft Programmieren mit Perl DBI Pasicto Pess Technologie & Gesellschaft

Beyond Contact Writing Apache Modules Programmieren von Free asin Open Sources Database The Cathedral 1 5 o
with Perl and € Grafiken mit Perl Freedom Nation &The Bazaar Sichere Server mit Linux

Network i i
SSH —Das Security Perl fir § o1 & LWP Managing RAID on Linux

umfassende with System- Exim: The Mail Unix System-
Handbuch OpenSSL Administration | Transfer Agent Samba sendmail Administration Linux — Wegweiser fiir Netzwerker

Netzwerk- Apache — Netzwerk- & System-
& System- Das umfassende Samba kurz & gut Administration
Administration Referenzwerk vi kurz & gut LPI Linux_
Perlina Nutshell sed & awk cercicstion

Apache Perl fur Website- iala
kurz & gut Management MacO0S X

P ing Web Writing GNU Emacs
?E:I;T\I:gth P:rl Extensions Nutshell &

Advanced Perl, .
PerliTk Programming Learning GNU Emacs Mac 0S X
Pocket Reference Effective awk kurz & gut
Practical mod_perl - . — Programming
_ rogrammieren mit Mac 0§ X:
Algo:snhl;l::; sed & awk The Missing
i i Manual

Nutshell & Creating Applications :““E'E;P:"“"S mit
Regulare Ausdriicke with Mozilla MySQL Reference Manual e o Einfiihrung in
Unix - Ein praktischer | Unix fir Mac0S X

Einstieg

MySQL Cookbook Unix Mac 08 X
Using csh Programmieren Programming power for Unix
& tesh Learning the Korn Shell mit Perl with Qt Tools Developers

Mastering Perl/Tk

e Bioinformatik Python in Webdatenbank- MySQL - Practical Programming Exploring Learning

a Nutshell applikationen mit Einsatz & PostgreSQL with GNU Expect the bash

Python kurz & gut = 2 P

Perl Kochbuch PHP & MySoL ung Shell AppleSeript
— Linux Python Cookbook Linux ina Nutshell
Einfiihrung in Per| @ Learning Perl on Server Hacks
—— Mac OS X Win 32 Systems Web Services Essentials GNU Emacs
Python Standard-Bibliothek kurz & gut

— Java®

Netzwerk- & System-

Administration Linux ina

Programming Python @ems=g Python il SVG Essentials Nutshell
ms Nutshell & Taschen- Programming Linux Geritetreiber

bibliothek (kurz & gut) " R on Win32
Einfiihrung in Python e g
— Peri DocBook: The Definitive Guide Understanding
Einfiihrung in XML the Linux Kernel

s Python

. Linux - Wegweiser zur
Jythen Web, Graphics & Perl/Tk: 2 Installation & Konfiguration
Essentials XML Schema || Best of The Perl Journal Running Weblogs
e Ui with Slash

Computer Science & Perl Programming:
—Web ML EXHTH Best of The Perl Journal

Referenzwerk

e Technologie & Gesellschaft

Linux Security Cookbook

Learning Red Hat Linux
Games, Diversions & Perl Culture:
Best of The Perl Journal NetBeans: Ant: The Building Embedded

Einfithrung in Perl The Definitive Definitive f
fiir Bioinformatik i i Guide Guide Linux Systems

Die Griibelei hat ein Ende!

. e Perl Linux
Biicher von O'Reilly

WritingGNUEmacsExtensions

LearmingGNUEmacs

EffectiveawkProgramming

ProgrammicrenmitPerl DBI

@ L PILinuxC

sedfawk

Tol/TkinaNutshell

grammingwithGNU Software

MacOSXforUnixDevelopers

MySQLReferenceManual

caningthe bashShell PracticalPostgreSQL

BeyoodContact

P Exploringiipect

AppleScriptinaNutshel

URlzroerTools MySQL-Einsatz& Programmicrung,

'LinuxServerHacks

PerlinaNutshell

LinuxGeraetetreiber

o ingWeb!

AdvancedPerlProgramming

BuildingEmbedded] inuxSystem)
Practicalmod_perl
@ AlgorithmenmitPer!

QReguiacreAusdruecke @ Apachekurzgut

VebServicesEssentials
MasteringPerl/Tk

rammierenmitPerl

SVGEssentials

RunningVeblogswithS]
@ Perl/ TkPocketReference

LearningtheKomShefl

Ant: TheDefinitiveGuidd§
@ periKochbuch

NetBeans-TheDefinitiveGui infuchrungiaPerl

PythonCookbook
Usingeshiicsh

LeamingPerloaWia)2Systems
Graphif PythonStandard- Bibliothek

Computers:
BestofThePerlioun

DiversionsiPeriCulture: Bestof ThePerl ProgrammingPython

EinfuchnunginPerl fuer ioinforma

JavadXm]

PythonProgrammingoaWinl2

DevelopingBioinformaticsComputerSkill

many
large applications
ABSTRACT HUMAN cognition
DYANWN PERCEPTION
multi-attributed 6

finding physiology sensory bias .
SR e Human Perception MS-Process

i sensory
MINING i mescin [SOWAISENOINEEHNGIN
automated
VIRTUAL intelligent tools perceptual [)

AV IRONMENTS data mining
human vision hearing haptics

new user-interface perceptual "
technology tools ()

many interaction inforrlnation information Lnformation - .
visualisation sonification aptisation ; Information
WIES | NFORMATION Py spatial metaphors
DISPLA o virtual
increase human- abstract
computer bandwidth worlds : VE

. virtual a platforms

virtual real C\Xﬂ&%
worlds temporal

etaphors
SOFTWARE P consider consider
ENGINEERJA Cacs _quidelines S-TAXONOMY hardware software
STUDY for information platform platform

display
_ stock guidelines @ o
abstraction [)market for perception

- P .
architecture e guidelines ~ guidelines for i-CONE grl])arbtar

trading rules MS-Taxonom:
Y structure Barco Baron

taxonomy

iterative technical
prototyping analysis
design

Drocess
O ¢

MS-PROCESS

quality
principles

guidelines guidelines uidelines
for spatial for direct g
il e for temporal

task process [) ()

analwcic structure ‘- \ ' \
o N ¢ ik @ T o

data display mapping mapping mapping
design characterisation mapping spatial direct temporal
guidelines g metaphors metaphors metaphors

summative formative
evaluatjag evaluation

MS-GUIDELINES

Responsive
Workbench

Haptic
Workbench
WEDGE

prototyping

expert

heuristic .
ovalyatinn evaluatigg

moving

. average

surface
. bidAsk
landscape
haptic
() 3D bar
chart
haptic
‘ moving
average
surface
auditory

bidAsk
landscape

®
&
&
s
D findingtradingrules
'datacharacterisation
'mappingspatialmetaphors
expertheuristicevaluati@
mappingdirectmetaphors
mappingtemporalmetaphors
evaluatiol
prototyping
@ stockmarket

auditorybidAsklandscal

Q@WEDGE

hapticmovingaveragesurf

) @ HapticWorkbench
haptic3Dbarch:

ResponsiveWorkbench
guidelinesforinformationdis)

guidelinesforperceptit

directmetaph

spatialmetaph

temporalmetaph
automatedintelligenttools

4 ington Cnﬂl: Homerton Wick ’

W

y Dalston
Kingsland

[Notting Lancaster Bond
HillGste Gste Street Canning Town

| HighStreat
Kensington

Hyde Park Comner
Knightsbridge Hill Prince Regent
Gloucester Gateway Royal Albert
Road Stoane West Incia &
Beckton Park

Rotherhithe Canary Wharf
“lll|H||m|||||||||||H||||H|||\|1|| Silvertown Cyprus
Canada Heron Guays & London

3 City Aliport Gallions Reach

Surrey Quays

Heathrow
Terminal 41

O Interchange stations
% Connections with National Raltways

UNDERGROUND i . Conoectons with National Ratwars with

walking
* Closed Sundays
Waterloo & City ¥ ## Closed Saturdays and Sundays
Served line trains
;;I.dﬂmdill(htlllwly A Mwbyﬂnudly early morning

London Travel Information 0171-222 1234 24 hours
Minicom 0171-918 3015

a National

1 For apening times see poster journey planners.
[EEERTTTT T et S restricted service Certaln stations are closed on public holidays.
© London Regional Transport

&F
&
&

S

athioodin

Acesum

Chstar
Clelfassd ains
Chrrdeyaneed
Wt
Ridarmswath
Crd
MocrFarh
Nty
NartrocdHiI®
P %
KA
NertiHbam ®,
&
Haowanthe H
& & thwckPrk
& g oyl
T & 5 berort)
F F St adirg: ; "‘“'““
, g aineCommn rrloiiist
Y, & sk
- %, % I
fltds
Pt wbbiding
Actailom
Vot Harprtan)
Ealingfieon
Finctley ChisutcsPak
SutssCutag
W Acter TumdwoGror

S
Hellowayfioe)

CabskniariRon)

LiveoolSireg

Bthvwi v

StJarisWood

%,
“,

Mayjgbern

Btk
C——
T—
gl
pcrsCam
rtrCon ot
ETR—
WesKarsiegson
&
e
Yoncaylane St
S5
S0

nightebmice

lcreSquue

4
N Al
RN A
ey by B &*
. &
Vst Homi &‘ p-*'
g -

&
s 4"’7 &
o
% g
o
&
L}&
NesiGrens

NewCrossCse

Lokwiicy

Pindico
arion

onsshull

5
i,
5

Hsahrow T4

ttvou Termimls 23

B L VN %,g*@ »
'L‘}% Wi fcpmmj 4 AN [
o /‘8"@%\’1"
o

AR = A
F P

&
; P

WL 8 42 5 A
Wy

ﬁ?’ﬂ_’g;!ﬁ“aﬁgl: e *4....'.,/ i

'flﬁ li'

A —— PN ‘ S A A 0 @ [L

%ﬂ ' 48 = | B s~ i) I = e

s . . 2 RS maEES

EMEDSF T — ﬂzi’f?m‘ L | . i e

et il SN e _, L mEmew

e MRS BT e iSO AT il wanh peRRETaRE
RN :

Designed by AEI DESION CORPORATION

Metro Network

7 & 4 : el
PACT AL » " s
gy v = el] IR T

S —

©1996.2.

Yushima

Aippori

hintomi
; ’~§§_
e $.
\é& g %
%,
oy 2,

Nihombashi

Informal conclusion:

» The force directed method is a little bit effective,
but not very effective.

Efficiency

London

Informal conclusion:

» The force directed method for metro maps
IS not computationally efficient.

The performance of force directed methods on metro maps is typical
force directed methods:

» Elegant and easy to implement
> Effective but not very effective

> Not very efficient

For some data sets, force directed methods give
reasonably good drawings.

\\
// |

n
ge,
o
c
e
)
&
T
@
]
O
@
=
O
o)
O
| S
L
- O
m.m
o =
O «—
e
S 3
®
O o
E o
wv
e
o
LL

How good are current force directed methods?

Elegance:
» Many simple methods, easy to implement
» Numerical software often available

Effectiveness:

> Very flexible

» Straight-line edges

> Planar graphs are not drawn planar [X

» Very poor untangling for large graphs

Efficiency:
» OK for small graphs

» Sometimes OK for larger graphs (using sophisticated numerical
methods)

The commercial state-of-the-art for force directed methods:

» Many commercial force-directed tools graph drawing methods
are available

* IBM (ILOG)
 TomSawyer Software
« yWorks

» Much free software available
« GEOMI
* GraphVis

» Many patents on variations of force-directed methods

» Force-directed methods account for 90% of commercial and
free graph drawing software for undirected graphs

The scientific state-of-the-art for force directed methods

» Very few scientific human experiments have been done on the
results of force directed methods.

» Very few theorems have been proven about force directed
methods

« Tutte’'s theorem
« A theorem on symmetry of the output
« Some theorems on multidimensional scaling can be applied.

» Some empirical comparisons (in terms of hard metrics) have
been done.

» Many informal (unscientific?) investigations have been done
« Appeal to developer intuition
« Case studies in context

Tutte’s barycentre
algorithm

/\

Planarity-based methods Force directed methods
« Good underpinning by theory ||+ Not many scientific assertions
v' Mathematical of quality
v" Psychological Very little empirical validation
Strong empirical evidence of Almost no underlying theory

quality

Seldom used in practice Universally used in practice
No patents Many patents

Planarity algorithms can be Many force-directed methods
difficult to code are easy to code

Flexible, can easily
accommodate constraints

2. How to draw a planar graph?

d) Recent work

Recent work

— slightly non-planar graphs

Motivation

Mutzel experiment 1997 - 98
 Informal “experiment”, performed at a talk
« Audience members were the “subjects”

Results
» People prefer (a) over (b)
* People erroneously see

(a) as having fewer
crossings than (b)

21 23 29 28 25 26 27 20
(a)

21 23 29 28 26 25 27 20
(b)

Motivation

Tony Huang 2003*
« Series of formal human experiments using eye-tracking.

The Question b
et 13 (b gy atiom eved of ihe (e heghighied s ©

Huang'’s thesis
If the crossing angles are large, then non-planar drawings are OK.

Slightly non-planar graphs

Right-Angle Crossing (RAC) graphs:
— Straight-line edges

— If two edges cross, then the crossing
makes a right angle

Questions for slightly non-planar graphs:

» How dense can a RAC graph be?

Theorem (Liotta, Didimo, Eades, 2009)

Suppose that G is a RAC graph with n vertices and m edges.
Then m £ 4n-10.

Questions for slightly non-planar graphs:

» How dense can a RAC graph be?

» How can you compute a drawing of a RAC graph?

Theorem (Liotta, Eades, unpublished*)
The following problem is NP-hard:
Input: A graph G
Question: Is there a straight-line RAC drawing of G?

*Independently proved and published by Argyriou, Bekos and Symvonis

Proof
Reduction from planar-3-sat
Draw the instance H of planar-3-sat as a template

Fill in details of the template H to form a graph G that has a RAC
drawing if and only if H is satisfiable.

Fairly generic proof strategy for NP-hardness for layout problems.

Instance H of planar 3-sat graph
1. Draw H as a visibility drawing

2. Enhance the drawing:
* “node boxes” for
» clauses c1, c2, ...
» variables u1, u2, ...

3. Transform to a 2-bend drawing
» “pipes” to communicate between variables and clauses

4. Transform to a no-bend drawing
» extra nodes at bend points

5. Triangulate every face to make it impassable

variable

External appearance of “node boxes”, with
“pipes” attached

External appearance of “node box”, with pipes attached, showing
some of the external triangulation

S‘ ﬂ$\ﬁ 0‘\0 Q\Q
BELE

‘.&A

Logical view of variable gadget

Logical view of variable gadget

u is false

Logical view of variable gadget

u is false

Each pipe
goes to a
clause in

which u
occurs

Logical view of variable gadget

Literals are
attached to the
clauses in which
they occur, using
chains threaded
through the pipes

Logical view of variable gadget

Chains attached to
the rear literal
spend an extra link
before getting into
the pipe.

Suppose that & occurs in ¢

There is a pipe from the
variable gadget for u to the
clause gadget for ¢

There is a chain through the

pipe from d to ¢

Logical view of clause gadget

O— 3
< O—3
—0—3

The barrier allows
»Any number of brown links to pass through
» At most two red links to pass through
Thus at least one chain needs to be long enough to reach past
the barrier

Suppose that & occurs in ¢

If G is true, then the chain is
long enough so that it does
not need a red link to pass

through the barrier

Suppose that & occurs in ¢

If G is false, then the chain
shorter, so that it needs a
red link to pass through the
barrier

Thus for each clause, at
most two literals can be
false.

Notes

» This is a fairly generic proof strateqy for NP-hardness
for layout problems.

Details of clause and variable gadgets are
straightforward but tedious

The same proof works for 1-planar graphs: just
choose different gadgets for clauses and variables.

What about heuristics?

— Several force-directed methods (Huang, Nguyen, Hong, et al.)
have been tested and seem to work OK to produce larger
crossing angles than regular force-directed methods.

— No combinatorial heuristics known

What about special classes of graphs?

Theorem (Liotta, Didimo, di Giacomo, Eades)

There is a linear time algorithm to test and draw graphs
restricted to two layers with right-angle crossings.

What about special classes of graphs?

Theorem (Reisi)

There is a linear time
algorithm to test and
draw outer-1-planar
graphs with right-angle
crossings.

However:

— the problem of drawing graphs with large crossing angles
remains mostly open, both from both practical and theoretical
points of view.

(@)
=
/)]
7p)
o
—
@)
)
C
o
(-
©
e
——
O]
—
O
&
(7))
©
i
)
(@]
©
)
O
prd

More slightly-non-planar graphs

e

i
&
&
i
W
4

£

e,
S

i,

L

Questions for 1-planar graphs:
4n-8 (Ackerman-Tardos)

» How dense can a 1-planar graph be?

NP-hard (Korzhik- Mohar)

» How can you compute the topology of 1-planar graph?

» Given the topology, how can you compute a drawing of
a 1-planar graph?

Recent algorithm
(Hong-Eades-Liotta-Poon)

» What is the relationship between 1-planar graphs and
RAC graphs?

Recent theorem
(Eades-Liotta)

Some 1-planar graphs have a 1-planar straight-line drawing,
others have no 1-planar straight-line drawing.

Chanel graph

The chanel graph has a
straight-line drawing

Gucci graph

Lemma:

The gucci graph has no
straight-line drawing

Bulgari graph

Lemma:

The bulgari graph has no
straight-line drawing

Theorem (Hong, Liotta, Poon, Eades, 2011)

Suppose that G is a 1-planar topological embedding. Then G has a
straight-line drawing if and only if G has no gucci subgraph and no
bulgari subgraph.

Theorem (Hong, Liotta, Poon, Eades, 2011)

Suppose that G is a 1-planar topological embedding. Then G has a
straight-line drawing if and only if G has no gucci subgraph and no
bulgari subgraph.

Proof
« Necessity for bulgari graph:
» Angles in the triangle aby add

up tomr

» Thus 3 angles at y add up to
strictly less than rr

» This is impossible if ad and bc
are straight lines.

« Similar argument for the gucci
graph

Theorem (Hong, Liotta, Poon, Eades, 2011)

Suppose that G is a 1-planar topological embedding. Then G has a
straight-line drawing if and only if G has no gucci subgraph and no
bulgari subgraph.

Proof
« Sufficiency
» Much more complicated
» Provides an algorithm:

Input: a 1-planar topological embedding G with no gucci
subgraph and no bulgari subgraph.

Output: a straight line drawing of G

Algorithm for Straight-line 1-planar graph drawing

Input: a 1-planar topological embedding G
Output: a straight line drawing of G, if it exists

Testing: Test whether G has a gucci subgraph or a bulgari
subgraph.

Augmentation: Add non-crossing edges to make an
augmented graph G*, with higher connectivity.

Drawing: Apply a convex drawing algorithm together with an
SPQR trees to G*.

2. Augmentation: Add non-crossing edges to make an augmented
graph G*, with higher connectivity.

Red and blue edges
» Red edges: no crossings
» Blue edges: 1 crossing

Red-maximal:

» Agraph is red-maximal if
adding an edge causes a
crossing
ie, a graph is red-maximal if
whenever a pair a, b of

vertices share a face, then
(a,b) is an edge.

Naive augmentation algorithm
to obtain red-maximality:

For each nonadjacent pair
a,b of vertices that share
a face, add the edge

(a,b)

» But: the naive algorithm does not work

Some augmentations may not be correct

Augmentation 1: introduces a bulgari subgraph

Some augmentations may not be correct

Augmentation 2: no bulgari subgraph

2. Augmentation: Add non-crossing edges to make an augmented

graph G*, with higher connectivity.

Prob

lem:

» Naive algorithm does not work.
» Red-maximal supergraph is not unique

We need to choose a red-maximal supergraph with no
bulgari/gucci subgraphs

Augmentation: Add non-crossing edges to make an augmented
graph G*, with higher connectivity.

Augmentation algorithm

» Augmentation can be done an edge at a time, but when

two crossings share two endpoints, we must be carefully
order the edge insertions.

Can be done in linear time.

3. Drawing: Use a convex drawing algorithm together with an SPQR
trees to G*.

Drawing Algorithm
If the red subgraph R of G* is triconnected

Then
— Draw R using a convex drawing algorithm
— Insert crossing edges

Else
— Use SPQR tree in a recursive way to build a
drawing.

Relationships between the various classes of
slightly non-planar graphs:-

Observationl
There are 1-planar graphs that are not RAC.

Observation 2
There are RAC graphs that are not 1-planar.

Theorem (Liotta, Eades)
If G is RAC and has 4n-10 edges, then G is 1-planar.

1-planar

Final remarks

Other classes of slightly-non-planar graphs

 2-planar: each edge has at most 2 crossings

» Quasi-planar: no three edges mutually cross each other

» Fan-crossing-free: no pair of incident edges cross another edge

» Twist-crossing-free: no path of length 3 crosses itself

» 1-skew: deletion of one edge makes it planar

Open problems for curious people

Maximum
density

Computing
topology

Computing
straight-line
drawing

Planar

3n-6

Linear time

Linear time

1-planar

4n-8

NP-hard

Linear time*

Fan-crossing-free

?

?

?

Twist-crossing-free

?

Quasi-planar

?
?

?
?

Right-angle-
crossing (RAC)

NP-hard

?

1-skew

Quadratic(?)

Linear time*

Wild conjecture

Suppose that H is a topological graph, other than a pair of
crossing edges.

Then the following problem is NP-hard.

Instance: A graph G

Question: Does G have a topological embedding in
which H is not a subgraph?

Open problems for practical people with some mathematical skills

We say that a graph drawing D has crossing resolution &(D) if each
crossing angle is at least 6.

Investigate graph drawings D with &(D) 2 /3.

Consider the following problem:
Maximum Crossing Resolution
Input: a graph G
Output: a drawing D of G with maximum crossing
resolution (D).

Isolate the continuous and discrete parts of this optimisation
problem.

Open problems for people with some HCI/Psych skills

Investigate the perceptual and mathematical relationships
between crossing resolution and the number of crossings.

Open problems for practical people with lots of mathematical skills:

Randomisation
— In a “random” graph drawing with “short” edges:
« How many edge crossings?
* What is the crossing resolution?
* What is the vertex resolution?

* How do these parameters vary with graph theoretic
parameters, such as diameter?

— Implications for graph drawing algorithms
« Can we design algorithms that exploit randomization?
« Can we provide stochastic guarantees of performance?

Open problem for computational geometry people:-

* Given a straight-line graph drawing, what is the smallest
crossing angle?

General open problems

Information
visualization

Inspires
Interesting
problems

Solves
problems

Geometric
and
topological
graph theory

Play video ...

Quan Nguyen: edge bundling problems

24-May-2011 13:30:00.000

081
v

124

074
.i]«_‘
014
L
046
089
.
ols
057
- .
73024
P22
006
P .‘..',I &
pr
os0ub

24-May-2011 13:30:03.000 039

974
111
© g
014
®

o717
9831495
086
Pk
g ; 254
044 .
- .
019
083p97 |)28

Problems:

What mathematically-sound measures of edge bundling pictures
define good visualizations?

What algorithms can be used to optimise these measures?

What are the mathematical limits on geometric graphs with as a
function of these measures?

Final final conjecture

o
[
o
=

O

=

g
C

Q
©)

7))

Tutte’s barycentre
algorithm

/\

Planarity-based methods Force directed methods
* Good underpinning by theory * Not many scientific assertions
v" Mathematical of quality
v" Psychological Very little empirical validation
Empirical evidence of quality Almost no underlying theory
Seldom used in practice Universally used in practice
No patents Many patents
Planarity algorithms are difficult to Many force-directed methods
code are easy-to-code versions

Flexible, can easily
accommodate constraints

Conjecture:

PIOM [BIDJSWIWOYN)

Investigations of slightly-non-planar graphs will lead to
more commercial value for planarity-based methods

