Using Position Extrema Points to Capture Shape in On-line
Handwritten Signature Verification

G. K. Gupta!

Faculty of Information Technology
Monash University
Clayton, Victoria 3800, Australia
(gopal@infotech.monash.edu.au)

R. C. Joyce
Outsource Laboratories
Eatontown, NJ 07724-1878, USA

Abstract

There is considerable interest in authentication based on handwritten signature
verification (HSV) because of the long—standing tradition of its use in many common
authentication tasks. HSV may be considered superior to many other biometric
authentication techniques, for example fingerprints or retinal patterns, which are more
reliable but also more intrusive. Furthermore, they require special and relatively expensive
hardware to capture the image. The present paper is an attempt to develop a reliable HSV
technique by capturing the shape of the signature using the position extrema points of a
signature. The technique presented essentially captures the directions of pen motion during
the writing of the signature and this is represented in a simple way by a string. The
technique is evaluated and shown to be promising.
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1 Introduction

In the modern society, there has been a vast increase in the number of documents that are
being transmitted and stored electronically. Just like paper documents, and perhaps more,
electronic documents are subject to forgery. This increasing dependence on electronic
storage and transmission of documents has created a need for electronically verifying the
identity of the sender. Handwritten signatures have been the normal and customary
method of identity verification that has worked well over the years and there is an obvious
need for computer verification of handwritten signatures.

It is well known that no two genuine signatures of a person are precisely the same and
some signature experts note that if two signatures written on paper were the same they
could be considered forgery by tracing. Successive signatures by the same person will differ,
both globally and locally and may also differ in scale and orientation. Osborn [12] notes
that the variations in signatures of a person are themselves habitual and are clearly shown
in any collection of genuine signatures produced at different times and under a great
variety of conditions. When carefully examined the signature will show running through
them a marked, unmistakable individuality even in the manner in which they vary as
compared with one another. Hilton [6] notes that once a person is used to signing his/her
signature, the nerve impulses are controlled by the brain without any particular attention
to detail. This is in contrast to normal handwriting, which relies on position and visual
feedback during the writing. Signature writing is considered ballistic motion, which is rapid
practised motion which is not driven by feedback but is predetermined by the brain and
which cannot be done slowly.

The dynamics of the signature are captured by a graphics tablet in the data that is given
by:

S@)=[x@), y@®), pIT t=0,1,2, ..., n

that is, it is a collection of x, ylocation values of the pen tip and pen tip pressure values
usually at equal time intervals. Some devices also capture azimuth and attitude. Many
tablets sample at the rate of 200 times a second and the resolution of such devices is often
1000 pixels/inch although some have finer resolution. Typical American signatures are a
writing of the person’s name and therefore for American signatures the xvalues typically
grow linearly with time with small oscillations on the linear curve while the y~values show
a more oscillatory variation with time, becoming positive and negative many times during a
signature. An example of x and y profiles of a signature is given in Figure 1. Note the three
pen-ups in the profiles. The tablet used provided a resolution of 277 dots/inch and sampled
at the rate of 200 samples per second.
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Figure 1. xand y profiles of a signature

Given the variation in genuine signatures of a person, every time a person signs his/her
signature the number of samples obtained is somewhat different. This variation in genuine
signatures of an individual makes it difficult to compare point-to-point one set of values
from one genuine signature with a set from another.

Most HSV techniques use the following six—step procedure for performance evaluation:

1.

Registration — Obtain a number of signatures for each individual at enrolment or
registration time (these signatures are called sample signatures although other
terms like training signatures have also been used).

Pre-processing and Building Reference Signature(s) — pre-process the sample
signatures if required, compute the features required, and produce one or more
reference signatures. Decide on what threshold will be used.

Test Signature — when a user wishes to be authenticated, he/she presents a
signature (we call this signature the test signature). Compute the features of this
signature.

Comparison Processing — the test signature is compared with the reference
signature(s) based on the features’ values and the difference between the two is then
computed using one of the many existing (or specially developed) distance measures.

Performance Evaluation — for each signature that claims to be a genuine signature,
compare the distance computed with the threshold decided in Step 2 above. If the
difference between the two is smaller, accept the signature otherwise reject.

Repeat Steps 3-5 for the given set of genuine signatures and forgery attempts,
compute the false rejection rate (FRR), the skilled false acceptance rate (FAR) and
the random FAR.
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Obtaining good estimates of FAR is very difficult, since actual forgeries are impossible to
obtain. Performance evaluations therefore rely on two types of forged signatures. A forgery
may be skilledif it is produced when the forger has had access to one or more genuine
signatures for viewing and/or practice. A forgery is called zero-effort or random when either
another person’s genuine signature is used as a forgery or the forger has no access to the
genuine signature and is either only given the name of the person whose signature is to be
forged or just asked to sign any signature without even knowing the name. Random
forgeries generally lead to much smaller FAR than skilled forgeries.

Many on-line signature verification techniques focus primarily on the dynamics of the
signature and they ignore the shape since matching signature shape is difficult and good
results can be obtained even if the shape is ignored. However highly reliable on-line
signature verification techniques must, we believe, require consideration of the shape as
well as the dynamics of the signature.

The present paper describes one approach to representing signature shape in on-line HSV.

The paper is organized as follows. We first present, in Section 2, a brief review of recent
literature in the field of on-line HSV. Section 3 describes the proposed shape representation
while Section 4 discusses performance evaluation. Section 5 discusses further work and
concludes the paper.

2. Review of Some Earlier Work

Early HSV work is described by Herbst and Liu [5], Plamondon and Lorette [14], Leclerc
and Plamondon [8] and Gupta and McCabe [4].

Two different approaches to signature verification are common. In the first approach, called
the functional approach, all the collected position (or velocity or acceleration) values of the
test and reference signatures are compared point-to-point, perhaps by computing a set of
correlation coefficients between the two signatures. Such comparison may require signature
segmentation and comparison of corresponding segments may require alignment. In the
second approach, called the parametric approach, all the available values are not used.
Instead, a number of global values, called statistical features or parameters, are computed
and compared.

Nalwa [11] challenges the notion that the success of on-line HSV hinges on capturing
velocities or forces during signature production. His approach is based on using jitter,
aspect normalization, parameterization over normalized length, sliding computation
window, center of mass, torque, moments of inertia, moving coordinate frame and
saturation, weighted cross—correlation and warping. It is recommended that errors from
different models be combined using the harmonic mean so that if one of the errors is low
then the mean is low and the signature is verified.

Jitter is proposed since it is claimed that a person forging a signature is constantly
correcting the pen trajectory to conform to an a priori curve. Aspect normalization is based
on the observation that individuals do not scale their signatures equally along both xand y
dimensions. Parameterization of a signature over its normalized arc-length is recommended
as opposed to parameterization over time. Once parameterized, a sliding window is used to
compute the following five characteristics of the signature over each window: center of mass
(x and y coordinates of the center in the window), torque (twice the signed area, negative if
clockwise, swept with respect to the origin by the portion of the signature within the
window), and moments of inertia about the x-axis and y-axis within the window. Warping is
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now used in comparing the reference signatures with the test signature so that an overall
error measure is minimized.

Three signature databases were used to test the proposed algorithm. Some genuine
signatures and forgeries from the datasets were removed. The results from the three test
databases and one that included all three, using 4, 5 and 6 reference signatures, are
presented. Equal error rate (EER) was found to vary between 2 and 5.

Jain, Griess and Connell [7] present a system in which certain critical points, for example,
start and end points of a stroke and points of trajectory change, are extracted for each
signature before pre-processing. Signature samples are then resampled uniformly with
equidistant spacing. Each signature is then transformed into one long stroke by
concatenating all the strokes followed by smoothing. The original number of strokes is used
as a global feature. Two types of local features, spatial and temporal, are extracted from the
xand y coordinates before pre-processing. The spatial features are static features that
relate to the shape of the signature. They are the x and y coordinate differences between
two consecutive points, the absolute y coordinates with reference to the center of the
signature, the sine and cosine of the angles with the x-axis, the curvature, and the grey
values in a 9 x 9 pixel neighborhood. The temporal feature is the speed at local points as it
was found to be very effective.

Local features of each signature are represented as a string and a modified string matching
is used to find dissimilarity values. A penalty for differences in the number of strokes is
included. In the verification process, a test signature is compared with each reference
signature and the dissimilarity values are combined into one value. The proposed technique
was tested using two datasets. The best error rates using a common threshold were 3.3%
FRR and 2.7% FAR and the best error rates using writer-dependent thresholds were 2.8%
FRR and 1.6% FAR. The FAR rates appear to be based on random forgeries. No FAR for
skilled forgery was reported.

Feng and Wah [3] present a technique called extreme points warping (EPW), which uses
dynamic time warping of selected important points (the peaks and valleys) of a signature.
EPW involves first finding these points (the algorithm ignores small peaks and valleys),
matching them and then warping the segments between them. The test results were
encouraging but the error rates were quite high.

Ortega-Garcia et al. [13] present results of using the usual five time sequences, x and y
coordinates, pressure, inclination and attitude as well as three derived sequences, path
tangent angle, path velocity and log curvature radius. These eight sequences and their first
and second derivatives make up 24 sequences at each sample point. Signatures are modeled
using hidden Markov models (HMM) based on the sequences. The technique was tested
using a signature database of 15 genuine signatures and 15 forgeries each from 50 people.
The tests, using the same threshold for all, resulted in 4.83% EER which reduced to 0.98%
by using user-specific thresholds.

Quan and Ji [15] define sixteen types of extrema points including eight maxima and
minima in the x and y directions (they differentiate between an extreme point reached by
clockwise motion of the pen and another reached by anticlockwise motion) and eight
different combinations of maxima and minima (for example, two different points where
both x maxima and y minima occur). These extrema are identified in the signature and
some that are too close to other extrema are removed. The pattern for the test signature is
then compared with that of the reference signature using derivative dynamic time warping.
The distance between the two is computed. Six sample signatures for each signer were used
to find a reference signature by comparing each of the six samples with the other five and
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counting the number of matching points. The signature with the largest total matching
points was chosen as the reference. Using random forgeries, an EER of 3.8% was obtained.

3. A New Technique of Capturing On—line Signature Shape

We believe we need a signature shape representation technique that overcomes the problem
posed by variations in the genuine signatures of a person. Although the variations for most
people are not great, they can be quite significant for some people. The variations are
perhaps worst for people that have more than one type of signature. Liu, Herbst and
Anthony [9] found that in their experimentation with 248 users, three users continually
varied between two signatures. Even when such dramatic variation is not present,
signature variations are often significant enough to make point-to-point comparison even
with dynamic time warping difficult.

We present a representation for signature shape that captures the essentials of the shape
but allows considerable variation. The representation is related to the work of Ehrich and
Foith [2], Lu [10] and Chen and Lu [1] for representing the shape of a waveform by a tree.
Wave representation is relevant to signature verification since the x and y profiles (as in
Figure 1), in spite of pen-up times, may be considered waveforms and may be represented
by any of the tree representations cited above. We however do not follow the tree
representation but instead adapt it to develop a more convenient string representation.

The technique proposed uses x and y profile extrema values to capture the essence of a
signature’s shape. It is best described using an example. Consider Figure 2 which shows the
x and y profiles of a signature fragment of about one second, the full profiles are given in
Figure 1. Before developing the signature representation, the local minima and maxima of
both x and y profiles are identified. This may involve ignoring some minor maxima and
minima because of jitter. Now the following symbols are used to label the extrema: A and B
for local maxima and minima of the x profile, C and D for a local maxima and minima of the
yprofile and P for pen-up. The extrema of both profiles together and the pen-up events
from left to right of the profiles in Figure 2 may be represented by the string
ADBCABDPBCDCABDPBCADBC.

The representation presents some difficulty in labeling the end points of the strokes. We
have used the convention that an end point on the left (right) will be considered minimum if
the value is growing (increasing) after (before) it and maximum if the opposite is the case.
Since both x and y end points are usually together, we have adopted the convention of
putting the x extremum label before the y extremum label.
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Figure 2. xand y profiles of a signature fragment
(Time and Position units are the same as in Figure 1)

Another way to look at this representation is to view it as a description of pen motion since
the pen moving from the current position to the first quadrant will eventually lead to both x
and y maxima (AC or CA), in the second quadrant to x minimum and y maximum (BC or
CB) and similarly BD or DB in the third quadrant and AD or DA in the fourth. For example
BCADB shows that the pen moved in the north-west direction, then the north-east
direction, followed by south-east and south-west. The representation ignores the curvature
or the size of the curves that BCADB describes and is a representation for many curves
that look somewhat similar. Thus the representation provides considerable flexibility and
tolerates considerable variation in the way the pen moves while capturing the shape as well
as the direction of pen movement during signature writing. Given the flexible
representation, similar strings should always be obtained for the genuine signatures of a
person in spite of minor variations in them.

To test this technique, one or more reference signatures are needed. One approach would be
to build a signature representation for each of the say five sample signatures and then
combine them into one reference signature, but there is no simple technique to combine
several different strings into one that is typical of all. A simple solution is to use all the
sample signatures as reference signatures and to compare the test signature against each
of them and obtain either the mean or the smallest distance. The basis of using the smallest
distance is that the sample signatures provide a collection of signatures that show the
habitual variations in a person’s signature and the test signature should be compared with
a reference signature closest to it.

To compare two signatures, the string representations of both are found and compared and
distance between them is calculated. The distance so computed is now compared with the
threshold and if lower the test signature is accepted.
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4. Experimentation and Performance Evaluation

A number of experiments were conducted to evaluate the performance of the technique in
Section 3 and a number of its variations. The following procedure based on earlier
discussion was followed:

(a) Select five sample signatures randomly for each person from the given set of genuine
signatures and find the string representation for each using the technique that is
being evaluated.

(b) Compute the distance between each of the ten possible pairings of the sample
signatures. Distance was computed using the algorithm of Wagner and Fischer
(1974) as described below. Compute the mean and standard deviations of the
distances.

(¢) For each signature in the test database (other than the five sample signatures), find
its string representation.

(d) Compare the test signature with each of the five reference signatures of the person.
Compute the mean distance.

(e) Compare the distance computed in (d) with the mean computed in (b) plus the
threshold times the standard deviation. If the test difference is smaller, accept the
signature, otherwise reject.

(f) Repeat Steps (c) — (e) for the given set of genuine signatures and forgery attempts,
compute the FRR, the skilled FAR and the random FAR.

The string distance algorithm of Wagner and Fischer (1974) uses a dynamic programming
approach to successively evaluate the distance between longer and longer prefixes of the
two strings from previous values until the final result is obtained. We briefly describe the
algorithm.

Let the distance between the prefixes of strings x and y, of lengths 7 and j, respectively, be
denoted by dj which is given by

dy = dx(1,1), y(1,7)

Assuming the costs of a symbol substitution, s(a with b), symbol deletion, d(a), and symbol
insertion, 7(a), to be all equal to 1, the cost dj may be computed using the following
recurrent formula:

dy =min {di1; + dxi), dij1 + 1(yy), dy + s(xiwith yi)

We conducted experimentation using a signature database of 60 users which included 15
genuine signatures and 5 skilled forgeries for each. For each user, five signatures were
selected randomly to be used as reference signatures and the remaining ten were used as
test signatures. The results of the experiments are now described.

4.1 The Basic Technique

Experiment 1

In the first experiment, the performance of the basic technique presented in Section 3 was
evaluated. As given in the last section, each signature was represented by a string of x and
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yprofile extrema and pen-up events. Skilled forgeries EER of 14% and random forgeries
EER of 7% was obtained.

Experiment 2

Disappointed by the results of Experiment 1, it was decided to include additional signature
detail in the representation by including information about the magnitude of the extrema.
Rather than representing extrema by A, B, C and D, extrema with large magnitudes (as
measured from the last extreme point) were represented by two identical symbols (e.g. AA
or BB) while low magnitudes were represented by a single symbol. This improved the
results somewhat, skilled forgeries EER was close to 11% and random forgeries EER was
down to 4.5%.

4.2 Combining Shape and Motion

Experiment 3

In this experiment some global features’ information about the signature was used in
addition to the extrema information. A two-step procedure using dynamic global features as
well as the representation developed in the last section was designed and tested. The first
stage consisted of using seven dynamic features (viz. total time, number of sign changes in
the x and y velocities and x and y accelerations, pen-up time and the total path length). The
second stage used the extrema representation described in the last section. Both stages
used the same five reference signatures but employed different thresholds. The verification
process consisted of passing both the first stage and the second stage successfully. The
technique resulted in skilled forgeries EER of 7% and random forgeries EER of 4.4%.

Experiment 4

The three experiments above suggested that the representation of x and y extrema, even
when used in combination with global features’ information of the signature, was not
sufficient to accurately verify a signature. A final modification of the basic scheme was now
considered and evaluated.

This modification involved information about the length of time gaps between successive
extrema included in the signature representation. The approach investigated was to use
one or more symbols to represent the length of time gaps between successive extrema. In
our view, it was not desirable to represent the time information accurately since flexibility
to deal with variation in genuine signatures is required. Just a rough indication of the
length of the gap in the signature representation was called for. Using different symbols for
different time gaps was rejected since somewhat different time gaps in signature
representations being compared would then result in a mismatch if the lengths were
different. Multiple instances of the same symbol were used instead. It was necessary to
ensure that the number of time gap symbols (say T) in the signature representation were
not large as compared to the number of symbols that represented the signature extrema
since the extrema are considered by this approach to be the important features of a
signature. A time symbol T for each time gap of four pen samples was inserted in the
signature representation. Therefore 10 pen samples between successive extrema resulted in
TT being inserted between the two extrema symbols while 20 samples resulted in TTTTT
being inserted. A typical signature representation of a signature was found to be more than
100 symbols long, including 2-3 P symbols, perhaps 20 T symbols and the remaining
extrema symbols (A, B, C and D).

The results obtained are presented in Table 1. Skilled forgeries EER of 4.8% and random
forgeries EER of 2.25% were now achieved.
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Threshold FRR Skilled FAR | FRR + FAR Random FAR
0.0 18.9% 0.0% 18.9% 0.0%
0.5 11.8% 0.6% 12.4% 0.1%
1.0 6.4% 4.0% 10.4% 0.6%
1.5 4.6% 4.9% 9.5% 1.4%
2.0 2.8% 6.2% 9.0% 2.6%

Table 1. Results of including length of time gaps information between successive extrema in
the signature representation

4.3 Using Variable Thresholds

Experiment 5

The results in Table 1 were obtained by using the same predetermined threshold for each
person. When individual thresholds were used, we were able to obtain skilled EER of 2.5%
and random EER of 1.5%. We found that we could obtain EER of 0% for 90% of the
individuals. For the remaining 10%, 0% EER was not possible and for one or two
individuals a low error rate appeared impossible using the techniques described in this

paper.
5. Conclusions and Further Work

We have presented a signature representation that captures the essentials of the signature
shape and the way the pen moves during signature writing by using a string representation
for the extrema of the x and y profiles of the signature as well as information about the
length of time gaps between successive extrema. The proposed HSV technique is simple,
attractive and flexible. The signature representation proposed is small enough (perhaps of
the order of 100 bytes) to be stored on a credit card strip or embedded in a document for
verification. We expect that some further improvements may be possible. An interesting
conclusion of this study is that a very reliable algorithm for say 90% of the population may
be possible but no current algorithm will perform at close to 0% EER for the whole
population.

Although we have so far discussed a representation that combines information from the x
and y profiles (as well as pen-up and time), the approach may be used to combine four or
more different waves corresponding to a signature to arrive at one combined string
representation. For example, it is possible to build a single representation for the extrema
of a signature’s x, y profiles, velocities profiles and accelerations profiles. We have not tried
such a representation since in our experience we have found that often the simple
techniques are the most effective.

A number of variations of the signature representation technique presented above are
possible. For example, it may be worthwhile to consider the following:

1. Can we improve on the current string representation and the string matching
algorithm?

2. In Experiment 2 we included some information about extrema magnitudes. Further
work may be required to more effectively represent magnitude in the signature
representation. What should be the granularity of magnitude information if it is to
be included?
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3. The proposed signature representation implicitly records information about the pen
direction of motion. Would it be more effective to explicitly include further
information about the direction, perhaps as suggested by Quan and Ji [15]?

4. Is it possible to design a more effective two-stage HSV technique similar to that
employed in Experiment 3?
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