
2010 TRICS

Proceedings

September 6, 2010

St. Andrews, Scotland

Workshop at the 16th International Conference on Principles
and Practice of Constraint Programming

Techniques
R
Implementing
Constraint programming
Systems

fo

3rd workshop on

Preface

Aim

Constraint programming systems are software systems that support the modeling and solving of prob-
lems using constraint programming. Such systems include constraint programming libraries and runtime
systems for constraint programming languages.
After two very successful workshops in 2000 (Singapore) and 2002 (Ithaca), this third iteration will again
provide a forum for research in implementation of constraint programming systems.
The workshop encourages submissions and participation from all members of the CP community and all
people interested in the implementation of constraint programming systems. It provides a place at CP
where useful results, practical tricks and preliminary work can be presented, which by itself may not be
sufficent for a submission to the full conference but is still of interest to other CP practitioners.

Topics

The topics of the workshop include

• data structures and algorithms for constraint solving

• parallelization approaches

• surveys and evaluation of often-used techniques

• machine learning approaches for constraint solver configuration

• debugging of constraint problems

Organization

The workshop is organized as a half-day workshop at the Sixteenth International Conference on Princi-
ples and Practice of Constraint Programming, CP 2010, and takes place in St. Andrews, Scotland, on
September 6, 2010.

iii

Workshop Organization

Organizers:

Christopher Jefferson, University of St. Andrews, UK
Peter Nightingale, University of St. Andrews, UK
Guido Tack, Katholieke Universiteit Leuven, Belgium

Program Committee:

Mats Carlsson, Swedish Institute of Computer Science, Sweden
Ian Gent, University of St. Andrews, UK
Youssef Hamadi, Microsoft Research, Cambridge, UK
Xavier Lorca, Ecole des Mines de Nantes, France
Christian Schulte, KTH - Royal Institute of Technology, Sweden
Peter Stuckey, University of Melbourne, Australia
Radoslaw Szymanek, École Polytechnique Fédérale de Lausanne, Switzerland
Pascal Van Hentenryck, Brown University, USA

Additional Reviewers:

Alejandro Arbelaez
Mikael Zayenz Lagerkvist

v

Workshop Program

Monday, September 6, 2010

09:00–09:10 Opening remarks

09:10–09:30 Combining Parallel Search and Parallel Consistency in Constraint Programming
Carl Christian Rolf, Krzysztof Kuchcinski

09:30–09:50 Distributed solving through model splitting
Lars Kotthoff, Neil C.A. Moore

09:50–10:10 Experimental Evaluation of Branching Schemes for the CSP
Thanasis Balafoutis, Kostas Stergiou, Anastasia Paparrizou

10:10–10:30 GenDebugger: An Explanation-based Constraint Debugger
(System Demonstration)
Reuven Naveh, Giora Alexandron, Aaron Rich, Vitaly Lagoon

10:30–10:50 Tea break

10:50–11:10 Implementing Efficient Propagation Control
Christian Schulte, Guido Tack

11:10–11:30 Handling Heterogeneous Constraints in Revision Ordering Heuristics
Julien Vion, Sylvain Piechowiak

11:30–11:50 Machine learning for constraint solver design – A case study for the alldifferent
constraint
Ian Gent, Lars Kotthoff, Ian Miguel, Peter Nightingale

11:50 Lightning talks session

12:40 Lunch

vii

Table of Contents

Experimental Evaluation of Branching Schemes for the CSP . 1
Thanasis Balafoutis, Kostas Stergiou, Anastasia Paparrizou

Machine learning for constraint solver design – A case study for the alldifferent constraint 13
Ian Gent, Lars Kotthoff, Ian Miguel, Peter Nightingale

Distributed solving through model splitting . 26
Lars Kotthoff, Neil C.A. Moore

GenDebugger: An Explanation-based Constraint Debugger (System Demonstration) 35
Reuven Naveh, Giora Alexandron, Aaron Rich, Vitaly Lagoon

Combining Parallel Search and Parallel Consistency in Constraint Programming 38
Carl Christian Rolf, Krzysztof Kuchcinski

Implementing Efficient Propagation Control . 53
Christian Schulte, Guido Tack

Handling Heterogeneous Constraints in Revision Ordering Heuristics 68
Julien Vion, Sylvain Piechowiak

ix

Third workshop on Techniques foR Implementing Constraint programming Systems (TRICS), 2010, pages 1–12,
St. Andrews, UK, 6 September 2010.

Experimental Evaluation of Branching Schemes
for the CSP

Thanasis Balafoutis1, Anastasia Paparrizou2, and Kostas Stergiou2

1 Department of Information and Communication Systems Engineering,
University of the Aegean, Greece.

2 Department of Informatics and Telecommunications Engineering,
University of Western Macedonia, Greece.

Abstract. The search strategy of a CP solver is determined by the
variable and value ordering heuristics it employs and by the branching
scheme it follows. Although the effects of variable and value ordering
heuristics on search effort have been widely studied, the effects of dif-
ferent branching schemes have received less attention. In this paper we
study this effect through an experimental evaluation that includes stan-
dard branching schemes such as 2-way, d-way, and dichotomic domain
splitting, as well as variations of set branching where branching is per-
formed on sets of values. We also propose and evaluate a generic approach
to set branching where the partition of a domain into sets is created using
the scores assigned to values by a value ordering heuristic, and a cluster-
ing algorithm from machine learning. Experimental results demonstrate
that although exponential differences between branching schemes, as pre-
dicted in theory between 2-way d-way branching, are not very common,
still the choice of branching scheme can make quite a difference on cer-
tain classes of problems. Set branching methods are very competitive
with 2-way branching and outperform it on some problem classes. A sta-
tistical analysis of the results reveals that our generic clustering-based
set branching method is the best among the methods compared.

1 Introduction

Complete algorithms for CSPs are based on exhaustive backtracking search in-
terleaved with constraint propagation. Search is typically guided by variable and
value ordering heuristics and makes use of a specific branching scheme like 2-
way or d-way branching. Although the impact of variable and value ordering
heuristics on search performance are topics that have received very wide atten-
tion from the early days of CP, the impact of different branching schemes has
not been as widely studied. As a result, the majority of modern finite domain
CP solvers offer a wide range of variable and value ordering heuristics for the
user/modeller to choose from, but at the same time they typically always em-
ploy 2-way branching. Some solvers allow for the user to implement different
branching schemes, but it is not clear in which cases this may be desirable, and
which particular scheme should be prefered.

1

In 2-way branching, after a variable x with domain {a1, . . . , ad} is chosen, its
values are assigned through a sequence of binary choices [14]. The first choice
point creates two branches, corresponding to the assignment of a1 to x (left
branch) and the removal of a1 from the domain of x (right branch). An alterna-
tive branching scheme which was extensively used in the past, and is still used
by some solvers, is d-way branching. In this case, after variable x is selected,
d branches are built, each one corresponding to one of the d possible value as-
signments of x. 2-way branching was described by Freuder and Sabin within the
MAC algorithm [14] and in theory it can achieve exponential savings in search
effort compared to d-way branching [8]. However, the few experimental studies
comparing 2-way and d-way branching have not displayed significant differences
between the two [11, 16]. Very recently Balafoutis and Stergiou showed that de-
pending on the variable ordering heuristic used there can be from marginal to
exponential differences between the two schemes [1].

Another technique that is sometimes used is dichotomic domain splitting
[4]. This method originates from numerical CSPs and proceeds by splitting the
current domain of the selected variable into two sets, usually based on the lex-
icographical ordering of the values. In this way branching is performed on the
two created sets and the branching factor is reduced to two. Although domain
splitting drastically reduces the branching factor, it can result in a much deeper
search tree since the effects of propagation after a branching decision may be
diminished.

In addition to these standard schemes, techniques that group together the
values of the selected variable, and branch on these created groups instead of
individual values, have been proposed [7, 10, 15, 2, 17, 9]. The criteria used for
the grouping of values and the methods used to perform the grouping can be
different, but all these techniques aim at reducing the size of the search tree. In
this paper, following [9], we call any such method a set branching method.

Our first goal in this paper is to experimentally study the effect of differ-
ent branching schemes for finite domain CSPs on search performance. Although
some existing branching methods have been compared to one another (e.g. [16]),
to our knowledge this is the first systematic evaluation of several existing al-
ternatives. In addition, we propose and study a generic set branching method
where the partition of a domain into sets is created using the scores assigned
to values by a value ordering heuristic, and a clustering algorithm. Before em-
ploying such a method, two fundamental questions need to be adressed: What
is the measure of similarity between values, and how do we partition domains
using such a measure? Most of the approaches to set branching that have been
proposed in the past have either used very strict measures of similarity or are
problem specific. Our method offers a generic solution to both the problem of
similarity evaluation and the partitioning of domains. For the former we exploit
the information acquired from the value ordering heuristic, while for the latter
we use a clustering algorithm from machine learning.

Experimental results from a wide range of benchmarks demonstrate that ex-
ponential differences between branching schemes, as predicted in theory between

2

2-way d-way, are not very common. But although the choice of branching scheme
does not have as a profound effect as the choice of variable ordering heuristic, it
can still make a difference. The generic set branching methods we evaluate out-
perform the standard 2-way branching scheme in many problem classes resulting
in better average performance. It is notable that our clustering-based set branch-
ing method displays very promising results without any tuning of the clustering
algorithm applied. Importantly, a statistical analysis of the experimental results
reveals that this method is the best among the methods compared.

The rest of the paper is organized as follows. Section 2 gives necessary back-
ground. In Section 3 we discuss past work on set branching for CSPs and propose
a new generic method for set branching. In Section 4 we report results from an
experimental evaluation of the various branching schemes including a statistical
analysis. Finally, in Section 5 we conclude.

2 Background

A Constraint Satisfaction Problem (CSP) is a tuple (X, D, C), where X is a set
containing n variables {x1, x2, ..., xn}; D is a set of domains {D(x1), D(x2),...,
D(xn)} for those variables, with each D(xi) consisting of the possible values
which xi may take; and C is a set of constraints {c1, c2, ..., ce} between variables
in subsets of X. Each constraint c ∈ C expresses a relation rel(c) defining the
variable assignment combinations that are allowed for the variables in the scope
of the constraint vars(c).

Complete search algorithms for CSPs are typically based on backtracking
depth-first search where branching decisions (e.g. variable assignments) are in-
terleaved with constraint propagation. Search is guided by variable ordering
heuristics and value ordering heuristics.

One of the most efficient general purpose variable ordering heuristics that
have been proposed is dom/wdeg [3]. This heuristic assigns a weight to each
constraint, initially set to one. Each time a constraint causes a conflict, i.e. a
domain wipeout, its weight is incremented by one. Each variable is associated
with a weighted degree, which is the sum of the weights over all constraints
involving the variable and at least another unassigned variable. The dom/wdeg
heuristic chooses the variable with minimum ratio of current domain size to
weighted degree.

A well-known generic value ordering heuristic for binary CSPs is Geelen’s
promise [6]. For each value a ∈ D(x) this heuristic counts the number of values
that are compatible with a in each future unassigned variable that x is con-
strained with. The product of these counts is the promise of a. The value with
the maximum promise is selected.

3 Branching Schemes

From the early days of CSP research, search algorithms were usually imple-
mented using either a d-way or a 2-way branching scheme. The former works

3

as follows. After a variable x with domain D(x) = {a1, a2, ..., ad} is selected, d
branches are created, each one corresponding to a value assignment of x. In the
first branch, value a1 is assigned to x and constraint propagation is triggered.
If this branch fails, a1 is removed from D(x). Then the assignment of a2 to x
is made (second branch), and so on. If all d branches fail then the algorithm
backtracks. An example of a search tree explored with d-way branching is shown
in Figure 1a.

In 2-way branching, after a variable x and a value ai ∈ D(x) are selected,
two branches are created. In the left branch ai is assigned to x, or in other
words the constraint x=ai is added to the problem and is propagated. In the
right branch the constraint x 6= ai is added to the problem and is propagated. If
there is no failure then any variable can be selected next (not necessarily x). If
both branches fail then the algorithm backtracks. Figure 1b shows a search tree
explored with 2-way branching.

There are two differences between these branching schemes. In 2-way branch-
ing, if the branch assigning a value ai to a variable x fails then the removal of ai
from D(x) is propagated. Instead, d-way branching tries the next available value
aj of D(x). Note that the propagation of aj subsumes the propagation of ai’s re-
moval. In 2-way branching, after a failed branch corresponding to an assignment
x=ai, and assuming the removal of ai from D(x) is then propagated success-
fully, the algorithm can choose to branch on any variable (not necessarily x),
according to the variable ordering heuristic. In d-way branching the algorithm
has to again branch on x after x=ai fails.

x=a1 x=a2 x=a3

y=a1 y=a2 y=a3 y=a1 y=a2 y=a3 y=a1 y=a2 y=a3

x<>{ a3,a4} x<>{ a1,a2}

y<>{a3,a4} y<>{a1,a2} y<>{a3,a4} y<>{a1,a2}

x=a1 x<>a1

y=a1 y<>a1 x=a2 x<>a2

a) d-way branching

c) domain splittingb) 2-way branching

Fig. 1. Examples of search trees for the three branching schemes.

Another option, that originates from numerical CSPs, is dichotomic domain
splitting [4]. This method proceeds by splitting the current domain of the selected
variable into two sets, usually based on the lexicographical ordering of the values.
Once the domain has been split, the second set of values is removed from the
domain and this removal is propagated. In this way branching is performed on the
two created sets and the branching factor is reduced to two. However, domain

4

splitting tends to achieve weaker propagation compared to d-way and 2-way
branching. So, although it drastically reduces the branching factor, it can result
in a much deeper search tree. Domain splitting is mostly used on optimization
problems and especially when the domains of the variables are very large. An
example of a search tree explored with domain splitting is shown in Figure 1c.

3.1 Set Branching

Very recently, Kitching and Bacchus explored the applicability of set branching
for constraint optimization problems [9]. The basic idea is to group together
values that offer similar improvement to the currently computed bounds. In this
way entire groups of values that offer no improvement to the bounds can be
refuted, resulting in smaller tree sizes.

In this paper we use the term set branching to refer to any branching tech-
nique that, using some similarity criterion, identifies values that can be grouped
together and branched on as a set. Dichotomic domain splitting and 2-way
branching can be seen as manifestations of this generic method that use simple
grouping criteria. Domain splitting creates two sets of values based on their lexi-
cographical ordering. 2-way branching splits the domain into two sets where the
first includes a single value and the second the rest of the values. In general, in
order to define a set branching technique, two questions need to be addressed:
What is the measure of similarity between values, and how are domains parti-
tioned using such a measure?

The idea of set branching for CSPs has been explored in the past. Freuder
introduced the notion of interchangeability, substitutability, and their weaker,
but tractable, neighborhood versions as means to identify values with similar
behavior [5]. Two values of a variable are neighborhhood interchangeable iff they
have exactly the same supports in all constraints. One value a is neighborhood
substitutable for another value b if the set of values inconsistent wth a is a subset
of the values inconsistent with b. These notions were exploited, for example in
[7, 2, 13], to group together values when branching and in this way perform set
branching. The drawback of these techniques is that their conditions are too
strong, as in many problems neighborhood interchangeable and substitutable
values are very rare.

Larrosa investigated the merging of similar subproblems during search using
forward checking [10]. According to this approach, values whose assignment leads
to similar subproblems are grouped together and branched on as a set. Experi-
ments performed on crossword puzzle generation problems displayed promising
results. However, the measure of subproblem similarity and the algorithm used
to partition the domains according to this measure are both problem specific.

Silaghi et al. proposed a method for partitioning the domains of variables
based on the Cartesian product representation of the search space [15]. This
method is particularly suitable for finding all solutions but it requires an explicit
extensional representation of the constraints in the problem.

A generic and simple approach to set branching that can be applied on a
wide range of problems was proposed by van Hoeve and Milano [17]. In this

5

approach, values that are “tied” according to their value ordering heuristic score
are grouped together and branching is performed on the sets of values created.
Assignment of specific values to variables is postponed until lower levels of the
search tree (which is also done in Larossa’s method). Experiments using both
depth-first search and limited discrepancy search displayed promising results.
However, this method relies heavily on the particular value ordering heuristic
used and the number of ties produced by the value ordering heuristic, which can
be quite low in many cases. Also, this method distinguishes between values that
have very close but not equal scores and as a result such values will be placed
into different sets. As noted in [17], the concept of a tie can be extended to refer
to values having close scores. In this paper we explore this idea further.

3.2 Clustering for Set Branching

As we intend to apply set branching dynamically throughout search, after select-
ing a variable x with current domain D(x) = {a1, . . . , ad}, we are faced with the
following problem. We have to create a partition SD(x) = {s1, . . . , sm} of D(x)
into m sets s.t. each value ai ∈ D(x) belongs to only one set sj ∈ S. Ideally,
we want all the values that have been assigned to a specific set to be similar
according to some measure of similarity.

Following van Hoeve and Milano, we use a generic measure of similarity that
is based on the score of the values according to a value ordering heuristic. In order
to perform the dynamic partitioning of domains into sets, we propose the use of
clustering algorithms from machine learning. Our approach can be summarized
as follows. A value ordering heuristic is used to assign a score vi to each value
ai ∈ D(x). The collection of d items (values) and the matrix of their scores are
given as input to a clustering algorithm. The output of the algorithm will be the
partition SD(x) = {s1, . . . , sm}.

Compared to [17] our approach has the following potential benefits. First,
not only will tied values be placed in the same set, but with high probability so
will values that have very close scores. Hence, there will be fewer sets, resulting
in lower branching factor. Second, in cases where there are no ties, the method
of [17] uses d-way branching. In contrast, our approach will still partition the
domain if there are groups of values with similar score.

The algorithm we currently use to create the clustering of values is x-means
[12]. This is an extension of the well known k-means algorithm that is consider-
ably faster and does not require to predetermine the desired number of clusters.
The algorithm starts with randomly selected points (values in our case) as clus-
ter centroids and iteratively improves the computed clustering until a fixpoint is
reached. Several parameters of the algorithm can be tuned to give more accurate
results on a specific application, including the starting centroids, the number of
iterations, the measure of distance between points, etc. Although we intend to
investigate this in the future, in the experiments reported below we use the Weka
implementation of the x-means algorithm as is, without any tuning.

6

4 Experimental Evaluation

We have experimented with 350 instances from ten classes of real world, aca-
demic, patterned, and random CSPs taken from C.Lecoutre’s XCSP repository.
We included both satisfiable and unsatisfiable instances. Each selected instance
involves constraints defined either in intension or in extension. The CSP solver
used in our experiments is a generic solver and has been implemented in the Java
programming language. This solver essentially implements the M(G)AC search
algorithm, where (G)AC-3 is used for applying (G)AC. Since our solver does
not yet support global constraints (apart from the table constraint) , we have
left experiments with problems that include such constraints as future work. All
experiments were run on an Intel dual core PC T4200 2GHz with 3GB RAM.

For a fair evaluation of the different branching schemes we use the same
propagation method during search (arc consistency), the same variable ordering
heuristic (dom/wdeg [3]) and value ordering heuristic (Geelen’s promise [6]). The
promise metric is calculated over all the visited nodes of the search tree. This
penalizes run times and as a result may be inefficient in some problems, but
for the purposes of this initial investigation we only wanted to use a reasonably
sophisticated value ordering heuristic throughout all the tried instances. In the
future we intend to experiment with different value ordering heuristics and study
their effect on the performance of the clustering set branching method.

We compare the following branching schemes:

2-way Values are chosen in descending order of their promise.
d-way Values are chosen in descending order of their promise.
domain splitting The values are ordered according to their promise and then

the domain is split in half. The part with the top ranked values is tried first.
ties set branching This is the method of [17] where values with the same

promise form a set. The sets are tried in descending order of promise.
clustering set branching This is our method where x-means is used to par-

tition the domain into sets based on the promise of the values. The sets
are tried in descending order of promise. Note that the clusters are linearly
ordered since clustering is done over only one dimension.

The two set branching methods have been implemented using a 2-way and a
d-way branching style, giving four alternatives. More specifically, past works on
set branching for CSPs perform set branching using a d-way style. That is, once
the partition of the domain SD(x) = {s1, . . . , sm} is created, search proceeds
by removing from D(x) any value a, s.t. a /∈ s1, and propagating. If there is a
failure, the same process is repeated for s2 and so on. We have also implemented
and evaluated 2-way style set branching. In this case the generated sets are tried
in a series of binary choices. That is, after the reduction of D(x) to s1 fails, we
propagate the removal from D(x) of all the values in s1. If this succeeds then we
reduce D(x) to s2 and so on.

We must clarify here that in all the “2-way style” branching variants (domain
splitting, ties, clustering) the set branching method allows to jump from one
variable to another as standard 2-way branching does.

7

In addition, for domain splitting and the set branching methods we have tried
two options: 1) Domain splitting (resp. set branching) is performed throughout
search on all variables. 2) Domain splitting (resp. set branching) is performed
on a variable only if its domain size is greater than a certain percentage of its
original domain size. We have tried several values for this percentage, with 25%
giving the best results. This can improve the performance of domain splitting
by 30% on average, and it can offer (minor) improvement to set branching.
Therefore, in the reported experiments with these methods Option 2 is followed.

Table 1. Cpu times (t), and nodes (n) from specific instances. Cpu times are in seconds.
The best result for each instance is given in bold.

d-way 2-way d-way 2-way

Problem d-way 2-way dom ties ties clust. clust.

Class split. set branch. set branch. set branch. set branch.

frb35-17-2 t 43.3 98.4 954 60.1 98.3 134 154

(sat) n 16241 45098 515909 27160 50713 58633 75743

scen3-f11 t 73.7 6.9 33.8 40.1 11.3 43.5 14.5

(unsat) n 11056 1739 5318 11019 4021 13631 5705

pigeons-30-ord t 2435 572 762 1259 773 1322 639

(unsat) n 376384 135031 128286 338049 247792 364343 228190

geo50-20-d4-75-7 t 472 1338 2815 190 1309 365 543

(sat) n 108027 404918 686333 58411 443724 111505 174716

langford-2-10 t 300 129 605 108 120 116 127

(unsat) n 199104 247286 372733 199609 235912 203580 238314

driverw-09 t 177 145 243 103 164 180 143

(sat) n 75625 93236 97180 46823 76510 77509 64798

qcp-15-120-6 t 23.8 12.4 26 28.8 9.6 133 94.6

(sat) n 19074 20179 19353 33003 12019 136599 99847

qcp-15-120-8 t 50 35.4 53.2 44.4 130 1.01 1.01

(sat) n 38227 49680 38551 46188 146342 845 845

geo50-20-d4-75-11 t 41.6 38.9 94.2 32.5 37.9 12.2 15.1

(sat) n 9027 10044 21926 8990 12620 3486 5111

queensKnights-15-5-add t 1506 1001 2245 1502 737 999 594

(unsat) n 42154 15393 86199 42309 38836 28312 30890

Table 1 compares the various branching methods on specific instances from
the tested problem classes. We display CPU times as well as nodes. A node in
2-way branching can correspond to a value assignment or to a value removal,
while in d-way branching it can only correspond to a value assignment. Hence,
they cannot be compared directly. The instances in this table are chosen to
highlight the gaps in performance that can occur when using different branching
schemes. As can be seen any method can be the best on a given instance, and
there can be very considerable variance in the performance of the methods. For
instance, clustering set branching can be very effective on certain problems (e.g.
qcp-15-120-8) but it can also be quite ineffective on others (e.g. qcp-15-120-6).

8

However, these are some of the most ‘extreme’ instances. Exponential differences,
as predicted between 2-way and d-way in theory, occured rarely3.

Table 2. Average speed-up (positive values) or slow-down (negative values) achieved
by 2-way branching compared to the other branching methods. Cpu time (t) in seconds
and visited nodes (n) have been measured.

% d-way 2-way d-way 2-way

Problem graph d-way dom ties ties clust. clust.

Class density split. set branch. set branch. set branch. set branch.

langford 1.045 t 2.88 5.08 -1.21 -1.11 -1.20 -1.04

(unsat) n -1.27 1.52 -1.26 -1.06 -1.23 -1.03

pigeons 1 t 1.13 1.24 -1.53 -1.89 -1.07 -1.32

(unsat) n -1.21 1.33 -1.7 -1.66 -1.25 -1.12

queensKnights 0.70 t 1.49 1.99 1.75 -1.21 -1.02 -1.48

(unsat) n 2.85 4.96 3.47 3.04 1.87 2.39

forced random 0.65 t -1.22 1.88 -1.30 -1.03 -1.14 1.14

(sat) n -1.41 1.52 -1.11 -1.1 -1.24 1.07

geometric 0.35 t -2.48 2.07 -4.55 -1.03 -3.83 -2.58

(sat) n -3.02 1.79 -3.77 1.18 -3.53 -2.25

qcp − qwh 0.125 t 1.78 2.34 1.28 1.99 6.08 5.63

(sat) n -1.09 1.12 -1.06 1.5 4.08 3.84

driver 0.082 t 1.18 1.53 -1.33 1.10 1.21 1.00

(sat) n -1.23 -1.06 -1.71 -1.24 -1.23 -1.43

rlfap (ScensMod) 0.052 t 5.39 3.07 3.52 1.07 3.70 1.26

(mixed) n 4.63 2.73 4.28 1.77 4.94 2.1

graphColoring 0.05 t -1.50 1.01 -1.58 1.00 -1.49 -1.03

(mixed) n -1.28 1.15 -1.18 1.14 -1.17 -0.92

In Tables 2 and 3 we summarize the results of our experimental evaluation.
We use 2-way branching as the standard all other branching methods are com-
pared against. In Table 2 we give the average slow-down (or speed-up) of the
methods compared to 2-way for each problem class (the two quasigroup classes
qcp and qwh are grouped together). We have mostly selected problem classes
that contain either only satisfiable or only unsatisfiable instances. However, we
have also experimented with “mixed” problem classes. That is classes that con-
tain both satisfiable and unsatisfiable instances. For example, on langford prob-
lems all instances are unsatisfiable and 2-way is 2.88 times better than d-way
on average, while it is 1.2 times worse than d-way clustering set branching. As
mentioned above, it is difficult to accurately compare the numbers of visited
nodes under different branching schemes. However, in most problem classes the
differences in Cpu times roughly reflect the differences in visited nodes.

In Table 3 we give the percentage of instances, over all the tried instances,
where each method was faster (> 1), at least 2 times faster (> 2), and at least

3 But this observation concerns the variable ordering heuristic and propagation
method used here and may not generalize as shown in [1].

9

3 times faster (> 3) than 2-way branching. Similarly for instances where each
method was slower by < 1, < 2, and < 3 times compared to 2-way.

Table 2 shows that although differences between methods can be quite large
on single instances, the average differences between the most competitive meth-
ods are smaller. Dichotomic domain splitting is apparently the worst among the
branching methods. However, it may fare better in problems with very large do-
main sizes4. Excluding domain splitting, the other methods are usually no more
that 2 times better or worse than 2-way branching on average. But there are
cases where even the average differences are quite large.

The set branching methods, and especially the d-way style ones, have slightly
better or very close performance compared to 2-way branching on most classes.
Also, these methods clearly outperform d-way branching. Interestingly, the set
clustering methods are typically very competitive on the denser classes.

Table 3. % categorization of all tried instances according to the performance of the
branching methods compared to 2-way branching.

d-way 2-way d-way 2-way

Problem speedup d-way dom ties ties clust. clust.

Class split set branch. set branch. set branch. set branch.

all instances

>1 29% 11% 47% 68% 50% 45%
>2 8% 0% 8% 2% 15% 16%
>3 2% 0% 3% 0% 10% 6%
<1 71% 89% 53% 32% 50% 55%
<2 24% 56% 21% 2% 21% 15%
<3 11% 34% 6% 3% 11% 6%

Table 3 shows that 2-way ties set branching is better than 2-way on most
instances. However, the margins are usually small. This is because the number
of ties that occur during search is usually low, meaning that 2-way ties set
branching often emulates the standard 2-way scheme. The other set branching
methods are better than 2-way on roughly half of the instances. However, they
can be significantly better, and worse, on quite a few.

Table 4. Paired t-test measurements for evaluation of the significance of the experi-
mental results. 2-way branching is compared with the other branching schemes.

Mean SD t-value 95% C.I.

d-way -29.8 341.7 -0.68 (-116, 57)

domain splitting -241 456 -4.1 (-357, -125)

d-way ties set branching 9.48 326.3 0.23 (-73.3, 92.3)

2-way ties set branching 31.7 234 1.06 (-27.7, 91.1)

d-way clustering set branching 13.75 217.9 0.49 (-41.6, 69)

2-way clustering set branching 32.4 182.5 1.4 (-13.9, 78.7)

4 Most domains included between 2 and 50 values, with maximum 225.

10

In order to obtain a global view and to evaluate the statistical significance
of our experimental results, a set of paired t-tests were performed. In these tests
we compared the CPU performance of the 2-way branching scheme against all
the other branching schemes, over all the instances used in the experiments. We
measured the mean difference, standard deviation, t-value and the 95% confi-
dence interval. The risk level (called alpha level) was set to 0.05. Results are
collected in Table 4.

As the results show, d-way branching and domain splitting are clearly in-
efficient compared to 2-way branching. The mean CPU reduction in the all
set branching techniques is always greater than zero with 2-way clustering set
branching being slightly better. However, the negative values at the confidence
interval indicate that this reduction was not observed in all the tried instances.
Although 2-way ties and clustering set branching achieve equivalent mean CPU
reduction, the t-values score show that the spread (or variability) of the scores
for 2-way clustering set branching is significantly higher compared to 2-way ties
set branching. The t-value scores lead us to conclude that 2-way clustering set
branching is a promising branching technique, since in our experiments it has
displayed the best overall performance.

Finally, we have to mention that the number of clusters produced by x-
means during search was usually quite low (2-3). In some cases, typically for
small domain sizes, there was only one cluster generated because all values had
similar score. In such a case our method switched to either d-way or 2-way
branching depending on the style of set branching employed.

5 Conclusions

We performed an experimental evaluation of branching methods for CSPs includ-
ing the commonly used 2-way and d-way schemes as well as other less widely
used ones. We also proposed and evaluated a generic set branching method that
partitions domains into sets of values by using information provided by the
value ordering heuristic as input to a clustering algorithm. Results showed that
set branching methods, including our approach, are competitive and often bet-
ter compared to standard 2-way branching. We now plan to investigate ways to
achieve more efficient domain partitions by automatically tuning the parameters
of the clustering algorithm. Also, it would be interesting to study clustering of
domains using information from multiple value ordering heuristics.

References

1. T. Balafoutis and K. Stergiou. Adaptive Branching for Constraint Satisfaction
Problems. In Proceedings of ECAI-2010, 2010.

2. A. Beckwith and B. Choueiry. On the dynamic detection of interchangeability in
finite constraint satisfaction problems. In Proceedings of CP-01, page 760, 2001.

3. F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais. Boosting systematic search
by weighting constraints. In Proceedings of ECAI-04, pages 146–150, 2004.

11

4. M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf, and F. Berthier.
The Constraint Logic Programming Language CHIP. In Proceedings of FGCS-88,
pages 693–702, 1988.

5. E. Freuder. Eliminating Interchangeable Values in Constraint Satisfaction Prob-
lems. In Proceedings of AAAI-91, pages 227–233, 1991.

6. P. A. Geelen. Dual viewpoint heuristics for binary constraint satisfaction problems.
In Proceedings of ECAI-92, pages 31–35, 1992.

7. A. Haselbock. Exploiting interchangeabilities in constraint satisfaction problems.
In Proceedings of IJCAI-93, pages 282–287, 1993.

8. J. Hwang and D. Mitchell. 2-Way vs. d-Way Branching for CSP. In Proceedings
of CP-2005, pages 343–357, 2005.

9. M. Kitching and F. Bacchus. Set Branching in Constraint Optimization. In Pro-
ceedings of IJCAI-09, pages 532–537, 2009.

10. J. Larrosa. Merging constraint satisfaction problems to avoid redundant search.
In Proceedings of IJCAI-97, pages 424–433, 1997.

11. V. Park. An empirical study of different branching strategies for constraint satis-
faction problems, Master’s thesis, University of London, 2004.

12. D. Pelleg and A. Moore. X-means: Extending K-means with Efficient Estimation
of the Number of Clusters. In Proceedings of ICML-2000, pages 727–734, 2000.

13. S. Prestwich. Full Dynamic Interchangeability with Forward Checking and Arc
Consistency. In Proceedings of the ECAI Workshop on Modeling and Solving Prob-
lems With Constraints, 2004.

14. D. Sabin and E.C. Freuder. Understanding and Improving the MAC Algorithm.
In Proceedings of CP-1997, pages 167–181, 1997.

15. M. Silaghi, D. Sam-Haroud, and B. Faltings. Intelligent Domain Splitting for CSPs
with Ordered Domains. In Proceedings of CP-99, pages 488–489, 1999.

16. B. Smith and P. Sturdy. Value Ordering for Finding All Solutions. In Proceedings
of IJCAI-05, pages 311–316, 2005.

17. J. van Hoeve and M. Milano. Postponing Branching Decisions. In Proceedings of
ECAI-04, pages 1105–1106, 2004.

12

Third workshop on Techniques foR Implementing Constraint programming Systems (TRICS), 2010, pages 13–25,
St. Andrews, UK, 6 September 2010.

Machine learning for constraint solver design

A case study for the alldifferent constraint

Ian Gent, Lars Kotthoff, Ian Miguel, and Peter Nightingale
{ipg,larsko,ianm,pn}@cs.st-andrews.ac.uk

University of St Andrews

Abstract. Constraint solvers are complex pieces of software which re-
quire many design decisions to be made by the implementer based on
limited information. These decisions affect the performance of the fin-
ished solver significantly [16]. Once a design decision has been made,
it cannot easily be reversed, although a different decision may be more
appropriate for a particular problem.
We investigate using machine learning to make these decisions auto-
matically depending on the problem to solve. We use the alldifferent
constraint as a case study. Our system is capable of making non-trivial,
multi-level decisions that improve over always making a default choice
and can be implemented as part of a general-purpose constraint solver.

1 Introduction

Constraints are a natural, powerful means of representing and reasoning about
combinatorial problems that impact all of our lives. Constraint solving is applied
successfully in a wide variety of disciplines such as aviation, industrial design,
banking, combinatorics and the chemical and steel industries, to name but a few
examples.

A constraint satisfaction problem (CSP [3]) is a set of decision variables,
each with an associated domain of potential values, and a set of constraints. An
assignment maps a variable to a value from its domain. Each constraint speci-
fies allowed combinations of assignments of values to a subset of the variables.
A solution to a CSP is an assignment to all the variables that satisfies all the
constraints. Solutions are typically found for CSPs through systematic search
of possible assignments to variables. During search, constraint propagation algo-
rithms are used. These propagators make inferences, usually recorded as domain
reductions, based on the domains of the variables constrained and the assign-
ments that satisfy the constraints. If at any point these inferences result in any
variable having an empty domain then search backtracks and a new branch is
considered.

When implementing constraint solvers and modelling constraint problems,
many design decision have to be made – for example what level of consistency to
enforce and what data structures to use to enable the solver to backtrack. These
decisions have so far been made mostly manually. Making the “right” decision
often depends on the experience of the person making it.

13

We approach this problem using machine learning. Given a particular prob-
lem class or problem instance, we want to decide automatically which design
decisions to make. This improves over the current state of the art in two ways.
First, we do not require humans to make a decision based on their experience
and data available at that time. Second, we can change design decisions for
particular problems.

Our system does not only improve the performance of constraint solving, but
also makes it easier to apply constraint programming to domain-specific prob-
lems, especially for people with little or no experience in constraint programming.
It represents a significant step towards Puget’s “model and run” paradigm [23].

We demonstrate that we can approach machine learning as a “black box” and
use generic techniques to increase the performance of the learned classifiers. The
result is a system which is able to dynamically decide which implementation
to use by looking at an unknown problem. The decision made is in general
better than simply relying on a default choice and enables us to solve constraint
problems faster.

2 Background

We are addressing an instance of the Algorithm Selection Problem [26], which,
given variable performance among a set of algorithms, is to choose the best
candidate for a particular problem instance. Machine learning is an established
method of addressing this problem [17, 19]. Particularly relevant to our work
are the machine learning approaches that have been taken to configure, to select
among, and to tune the parameters of solvers in the related fields of mathematical
programming, propositional satisfiability (SAT), and constraints.

Multi-tac [21] configures a constraint solver for a particular instance distri-
bution. It makes informed choices about aspects of the solver such as the search
heuristic and the level of constraint propagation. The Adaptive Constraint En-
gine [5] learns search heuristics from training instances. SATenstein [15] config-
ures stochastic local search solvers for solving SAT problems.

An algorithm portfolio consists of a collection of algorithms, which can be
selected and applied in parallel to an instance, or in some (possibly truncated) se-
quence. This approach has recently been used with great success in SATzilla [29]
and CP Hydra [22]. In earlier work Borrett et al [2] employed a sequential port-
folio of constraint solvers. Guerri and Milano [11] use a decision-tree based tech-
nique to select among a portfolio of constraint- and integer-programming based
solution methods for the bid evaluation problem. Similarly, Gent et al [7] in-
vestigate decision trees to choose whether to use lazy constraint learning [9] or
not.

Rather than select among a number of algorithms, it is also possible to learn
parameter settings for a particular algorithm. Hutter et al [14] apply this method
to local search. Ansotegui et al [1] employ a genetic algorithm to tune the pa-
rameters of both local and systematic SAT solvers.

14

The alldifferent constraint requires all variables which it is imposed on to be
pairwise alldifferent. For example alldiff(x1, x2, x3) enforces x1 6= x2, x1 6= x3

and x2 6= x3.

There are many different ways to implement the alldifferent constraint. The
näıve version decomposes the constraint and enforces disequality on each pair
of variables. More sophisticated versions (e.g. [25]) consider the constraint as a
whole and are able to do more propagation. For example an alldifferent constraint
which involves four variables with the same three possible values each cannot
be satisfied, but this knowledge cannot be derived when just considering the
decomposition into pairs of variables. Further variants are discussed in [13].

Even when the high-level decision of how much propagation to do has been
made, a low-level decision has to be made on how to implement the constraint.
For an in-depth survey of the decisions involved, see [10].

We make both decisions and therefore combine the selection of an algorithm
(the näıve implementation or the more sophisticated one) and the tuning of
algorithm parameters (which one of the more sophisticated implementations to
use). Note that we restrict the implementations to the ones that the Minion con-
straint solver [8] provides. In particular, it does not provide a bounds consistency
propagator.

3 The benchmark instances and solvers

We evaluated the performance of the different versions of the alldifferent con-
straint on two different sets of problem instances. The first one was used for
learning classifiers, the second one only for the evaluation of the learned classi-
fiers.

The set we used for machine learning consisted of 277 benchmark instances
from 14 different problem classes. It has been chosen to include as many in-
stances as possible whatever our expectation of which version of the alldifferent
constraint will perform best.

The set to evaluate the learned classifiers consisted of 1036 instances from 2
different problem classes that were not present in the set we used for machine
learning. We chose this set for evaluation because the low number of different
problem classes makes it unsuitable for training.

Our sources are Lecoutre’s XCSP repository [18] and our own stock of CSP
instances. The reference constraint solver used is Minion [8] version 0.9 and
its default implementation of the alldifferent constraint gacalldiff. The ex-
periments were run with binaries compiled with g++ version 4.4.3 and Boost
version 1.40.0 on machines with 8 core Intel E5430 2.66GHz, 8GB RAM running
CentOS with Linux kernel 2.6.18-164.6.1.el5 64Bit.

We imposed a time limit of 3600 seconds for each instance. The total number
of instances that no solver could solve solve because of a time out was 66 for the
first set and 26 for the second set. We took the median CPU time of 3 runs for
each problem instance.

15

0.1 1.0 10.0 100.0 1000.0

1

2

5

10

20

50

default variant solve time [s]

speedup of best over default variant

Fig. 1. Potential speedup a decision algorithm could achieve over always making the
default decision. The crosses represent the instances of the first data set, the pluses
the instances of the second data set. A speedup of one means that the default version
of alldifferent is the fastest version, a speedup of two means that the fastest version of
alldifferent is twice as fast as the default version.

As Figure 1 shows, adapting the implementation decision to the problem in-
stead of always choosing a standard implementation has the potential of achiev-
ing significant speedups on some instances of the first set of benchmark instances
and speedups of up to 1.2 on the second set.

We ran the problems with 9 different versions of the alldifferent constraint
– the näıve version which is operationally equivalent to the binary decompo-
sition and 8 different implementations of the more sophisticated version which
achieves generalised arc consistency (see [10]). The amount of search done by
the 8 versions which implement the more sophisticated algorithm was the same.
The variables and values were searched in the order they were specified in in the
model of the problem instance.

The instances, the binaries to run them, and everything else required to
reproduce our results are available on request.

4 Instance attributes and their measurement

We measured 37 attributes of the problem instances. They describe a wide range
of features such as constraint and variable statistics and a number of attributes
based on the primal graph. The primal graph g = 〈V,E〉 has a vertex for every
CSP variable, and two vertices are connected by an edge iff the two variables
are in the scope of a constraint together.

Edge density The number of edges in g divided by the number of pairs of
distinct vertices.

16

Clustering coefficient For a vertex v, the set of neighbours of v is n(v). The
edge density among the vertices n(v) is calculated. The clustering coefficient
is the mean average of this local edge density for all v [27] . It is intended
to be a measure of the local cliqueness of the graph. This attribute has
been used with machine learning for a model selection problem in constraint
programming [11].

Normalised degree The normalised degree of a vertex is its degree divided
by |V |. The minimum, maximum, mean and median normalised degree are
used.

Normalised standard deviation of degree The standard deviation of ver-
tex degree is normalised by dividing by |V |.

Width of ordering Each of our benchmark instances has an associated vari-
able ordering. The width of a vertex v in an ordered graph is its number
of parents (i.e. neighbours that precede v in the ordering). The width of
the ordering is the maximum width over all vertices [3]. The width of the
ordering normalised by the number of vertices was used.

Width of graph The width of a graph is the minimum width over all possible
orderings. This can be calculated in polynomial time [3], and is related to
some tractability results. The width of the graph normalised by the number
of vertices was used.

Variable domains The quartiles and the mean value over the domains of all
variables.

Constraint arity The quartiles and the mean of the arity of all constraints
(the number of variables constrained by it), normalised by the number of
constraints.

Multiple shared variables The proportion of pairs of constraints that share
more than one variable.

Normalised mean constraints per variable For each variable, we count the
number of constraints on the variable. The mean average is taken, and this
is normalised by dividing by the number of constraints.

Ratio of auxiliary variables to other variables Auxiliary variables are in-
troduced by decomposition of expressions in order to be able to express them
in the language of the solver. We use the ratio of auxiliary variables to other
variables.

Tightness The tightness of a constraint is the proportion of disallowed tuples.
The tightness is estimated by sampling 1000 random tuples (that are valid
w.r.t. variable domains) and testing if the tuple satisfies the constraint. The
tightness quartiles and the mean tightness over all constraints is used.

Proportion of symmetric variables In many CSPs, the variables form equiv-
alence classes where the number and type of constraints a variable is in are
the same. For example in the CSP x1 × x2 = x3, x4 × x5 = x6, x1, x2, x4, x5

are all indistinguishable, as are x3 and x6. The first stage of the algorithm
used by Nauty [20] detects this property. Given a partition of n variables
generated by this algorithm, we transform this into a number between 0 and
1 by taking the proportion of all pairs of variables which are in the same
part of the partition.

17

Alldifferent statistics The size of the union of all variable domains in an
alldifferent constraint divided by the number of variables. This is a measure
of how many assignments to all variables that satisfy the constraint there
are. We used the quartiles and the mean over all alldifferent constraints.

In creating this set of attributes, we intended to cover a wide range of possi-
ble factors that affect the performance of different alldifferent implementations.
Wherever possible, we normalised attributes that would be specific to problem
instances of a particular size. This is based on the intuition that similar instances
of different sizes are likely to behave similarly. Computing the features took 27
seconds per instance on average.

5 Learning a problem classifier

Before we used machine learning on the set of training instances, we annotated
each problem instance with the alldifferent implementation that had the best
performance on it according to the following criteria. If the näıve alldifferent
implementation took less CPU time than all the other ones, it was chosen, else
the implementation which had the best performance in terms of search nodes per
second was chosen. All implementations except the näıve one explore the same
search space. If no solver was able to solve the instance, we assigned a “don’t
know” annotation.

We used the WEKA [12] machine learning software through the R [24] inter-
face to learn classifiers. We used almost all of the WEKA classifiers that were
applicable to our problem – algorithms which generate decision rules, decision
trees, Bayesian classifiers, nearest neighbour and neural networks. Our selection
is broad and includes most major machine learning methodologies. The specific
classifiers we used are BayesNet, BFTree, ConjunctiveRule, DecisionTable,
FT, HyperPipes, IBk, J48, J48graft, JRip, LADTree, MultilayerPerceptron,
NBTree, OneR, PART, RandomForest, RandomTree, REPTree and ZeroR, all of
which are described in [28].

For all of these algorithms, we used the default parameters provided by
WEKA. While the performance would have been improved by carefully tuning
those parameters, a lot of effort and knowledge is required to do so. Instead, we
used the standard parameter configuration which is applicable for other machine
learning problems as well and not specific to this paper.

The problem of classifying problem instances here is different to normal ma-
chine learning classification problems. We do not particularly care about classi-
fying as many instances as possible correctly; we rather care that the instances
that are important to us are classified correctly. The higher the potential gain
is for an instance, the more important it is to us. If, for example, the difference
between making the right and the wrong decision means a difference in CPU
time of 1%, we do not care whether the instance is classified correctly or not.
If the difference is several orders of magnitude on the other hand, we really do
want this instance to be classified correctly.

18

Based on this observation, we decided to measure the performance of the
learned classifiers not in terms of the usual machine learning performance mea-
sures, but in terms of misclassification penalty [29]. The misclassification penalty
is the additional CPU time we require to solve a problem instance when choosing
to solve it with a solver that is not the fastest one. If the selected solver was not
able to solve the problem, we assumed the timeout of 3600 seconds minus the
CPU time the fastest solver took to be the misclassification penalty. This only
gives the lower bound, but the correct value cannot be estimated easily.

We furthermore decided to assign the maximum misclassification penalty (or
the maximum possible gain), cf. Figure 1 as a cost to each instance as follows.
To bias the WEKA classifiers towards the instances we care about most, we used
the common technique of duplicating instances [28]. Each instance appeared in
the new data set 1 + dlog2(cost)e times. The particular formula to determine
how often each instance occurs was chosen empirically such that instances with
a low cost are not disregarded completely, but instances with a high cost are
much more important. Each instance will be in the data set used for training
the machine learning classifiers at least once and at most 13 times for a theoretic
maximum cost of 3600.

To achieve multi-level classification, each individual classifier below consists
of a combination of classifiers. First we make the decision whether to use the
alldifferent version equivalent to the binary decomposition or the other one, then,
based on the previous decision, we decide which specific version of the alldifferent
constraint to use.

Table 1 shows the total misclassification penalty for all classifiers with and
without instance duplication on the first data set. It clearly shows that our
cost model improves the performance significantly in terms of misclassification
penalty for almost all classifiers.

misclass. penalty [s]
classifier all equal cost model

BayesNet 1494 3.9
BFTree 8.4 1.1
ConjunctiveRule 2300 1433
DecisionTable 249 1.6
FT 248 1.2
HyperPipes 867 867
IBk 109 109
J48 8.2 1.2
J48graft 8.2 1.2
JRip 283 1.3

misclass. penalty [s]
classifier all equal cost model

LADTree 8.4 6.5
MultilayerPerceptron 249 8.5
NBTree 9 1.3
OneR 69.5 409
PART 5.9 1
RandomForest 41.9 0.9
RandomTree 1 1
REPTree 1099 10.8
ZeroR 2304 2304

Table 1. Misclassification penalty for all classifiers with and without instances dupli-
cated according to their cost in the training data set. All numbers are rounded.

19

For each classifier, we did stratified n-fold cross-validation – the original
data set is split into n parts of roughly equal size. Each of the n partitions is
in turn used for testing. The remaining n − 1 partitions are used for training.
In the end, every instance will have been used for both training and testing
in different runs [28]. Stratified cross-validation ensures that the ratio of the
different classification categories in each subset is roughly equal to the ratio in
the whole set. If, for example, about 50% of all problem instances in the whole
data are solved fastest with the näıve implementation, it will be about 50% of
the instances in each subset as well.

There are several problems we faced when generating the classifiers. First,
we do not know which one of the machine learning algorithms was suited best
for our classification problem; indeed we do not know whether the features of
the problem instances we measured are able to capture the factors which affect
the performance of each individual implementation at all. Second, the learned
classifiers could be overfitted. We could evaluate the performance of each clas-
sifier on the second set of problem instances and compare it to the performance
during machine learning to assess whether it might be overfitted. Even if we
were able to reliably detect overfitting this way, it is not obvious how we would
change or retrain the classifier to remove the overfitting. Instead, we decided
to use all classifiers – for each machine learning algorithm the n different clas-
sifiers created during the n-fold cross-validation and the classifiers created by
each different machine learning algorithm.

We decided to use three-fold cross-validation as an acceptable compromise
between trying to avoid overfitting and time required to compute and run the
classifiers. We combine the decisions of the individual classifiers by majority vote.
The technique of combining the decisions of several classifiers was introduced
in [6] and formalised in [4].

Table 2 shows the overall performance of our meta-classifier compared to the
best and worst individual classifier for each set and several other hypothetical
classifiers. Our meta-classifier outperforms a classifier which always makes the
default decision even on the second set of problem instances. This set is an
extreme case because just making the default choice is almost always the best
choice – the misclassification penalty for the default choice classifier is extremely
low given the large number of instances. Even though there is only very little
room for improvement (cf. Figure 1), we achieve some of it.

It also shows that the classifiers we have learned on a data set that contains
problem instances from many problem classes can be applied to a different data
set with instances from different problem classes and still achieve a performance
improvement. Based on this observation, we suggest that our meta-classifier is
generally applicable.

Another observation we made is that the performance of the meta-classifier
does not suffer even if a large number of the classifiers that it combines perform
badly individually. This suggests that the classifiers complement each other –
the set of instances that each one misclassifies are different for each classifier.
Note also that the classifier which performs best on one set of instances is not

20

misclassification penalty [s]
instance set 1 instance set 2

classifier all features cheap features all features cheap features

oracle 0 0 0 0
anti-oracle 19993 19993 47144 47144
default decision 2304 2304 223 223
random decision 5550 5550 564 564
best classifier on set 1 0.998 0.994 131 220.3
worst classifier on set 1 2304 2304 223 223
best classifier on set 2 0.998 61.66 131 186
worst classifier on set 2 1.34 1.44 621 610
meta-classifier 1.16 0.996 220 222.95

Table 2. Summary of classifier performance on both sets of benchmarks in terms of
total misclassification penalty in seconds. We first evaluated the performance using the
full set of features described in Section 4, then using only the cheap features. The oracle
classifier always makes the right decision, the anti-oracle always the worst possible
wrong decision. The “default decision” classifier always makes the same decision and
the “random decision” one chooses one of the possibilities at random. Three-fold cross-
validation was used. All numbers are rounded.

necessarily the best performer on the other set of instances. The same observation
can be made for the classifier with the worst performance on one of the instance
sets. This means that we cannot simply choose “the best” classifier or discard
“the worst” for a given set of training instances. Table 3 provides further evidence
for this. The individual best and worst classifiers vary not only with the data
set, but also with the set of features used.

instance set 1 instance set 2
all features cheap features all features cheap features

best classifier IBk BFTree IBk BayesNet

worst classifier ZeroR ZeroR LADTree LADTree

Table 3. Individual best and worst classifiers for the different data and feature sets
for the numbers presented in Table 2.

The time required to compute the features was 27 seconds per instance on
average, and it took 0.2 seconds per instance on average to run the classifiers
and combine their decisions. If we take this time into account, our system is
slower than just using the default implementation. This is mostly because of the
cost of computing all the features required to make the decision. We do however
learn good classifiers in the sense that the decision they make is better than just
using the standard implementation.

21

We now focus on making a decision as quickly as possible. Most of the time
required to make the decision is spent computing the features that the classifiers
need. We removed the most expensive features – all the properties of the primal
graph described in Section 4 apart from edge density.

The results for the reduced set of features are shown in Table 2 as well. The
performance is not significantly worse and even better on the first set of instances,
but the time required to compute all the features is only about 3 seconds per
instance. On the first set of benchmarks, we solve each instance on average 8
seconds faster using our system (misclassification penalty of default decision
minus that of our system divided by the number of instances in the set). We
are therefore left with a performance improvement of an average of 5 seconds
per instance. On the second set, we cannot reasonably expect a performance
improvement – the perfect oracle classifier only achieves about 0.2 seconds per
instance on average.

0.1 1.0 10.0 100.0 1000.0

1

2

5

10

20

50

default variant solve time [s]

speedup over default variant

Fig. 2. Speedup achieved by the meta-classifier using the set of cheaply-computable
features. The figure does not take the overhead of computing the features and running
the classifiers into account. The crosses represent the instances of the first data set, the
pluses the instances of the second data set.

Figure 2 revisits Figure 1 and shows the actual speedup our meta-classifier
achieves for each instance. It convincingly illustrates the quality of our classifier.
The instances where we suffer a slowdown are ones that are solved almost in-
stantaneously, whereas the correctly classified instances are the hard ones that
we care about most. In particular the instances where a large speedup can be
gained are classified correctly by our system.

22

6 Conclusions and future work

We have applied machine learning to a complex decision problem in constraint
programming. To facilitate this, we evaluated the performance of constraint
solvers representing all the decisions on two large sets of problem instances. We
have demonstrated that training a set of classifiers without intrinsic knowledge
about each individual one and combining their decisions can improve perfor-
mance significantly over always making a default decision. In particular, our
combined classifier is almost as good as the best classifier in the set and much
better than the worst classifier while mitigating the need to select and tune an
individual classifier.

We have conclusively shown that we can improve significantly on default
decisions suggested in the state-of-the-art literature using a relatively simple
and generic procedure. We provide strong evidence for the general applicability
of a set of classifiers learned on a training set to sets of new, unknown instances.
We identified several problems with using machine learning to make constraint
programming decisions and successfully solved them.

Our system achieves performance improvements even taking the time it takes
to compute the features and run the learned classifiers into account. For atypical
sets of benchmarks, where always making the default decision is the right choice
in almost all of the cases, we are not able to compensate for this overhead, but
we are confident that we can achieve a real speedup on average.

We have identified two major directions for future research. First, it would
be beneficial to analyse the individual machine learning algorithms and evaluate
their suitability for our decision problem. This would enable us to make a more
informed decision about which ones to use for our purposes and may suggest
opportunities for improving them.

Second, selecting which features of problem instances to compute is a non-
trivial choice because of the different cost and benefit associated with each one.
The classifiers we learned on the reduced set of features did not seem to suffer
significantly in terms of performance. Being able to assess the benefit of each
individual feature towards a classifier and contrast that to the cost of computing
it would enable us to make decisions of equal quality cheaper.

Acknowledgements

The authors thank Chris Jefferson for providing some of the feature descrip-
tions. We thank Jesse Hoey for useful discussions about machine learning and
the anonymous reviewers for their feedback. Peter Nightingale is supported by
EPSRC grants EP/H004092/1 and EP/E030394/1. Lars Kotthoff is supported
by a SICSA studentship.

References

1. Ansótegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm for
the automatic configuration of algorithms. In: CP. pp. 142–157 (2009)

23

2. Borrett, J., Tsang, E., Walsh, N.: Adaptive constraint satisfaction: The quickest
first principle. In: ECAI. pp. 160–164 (1996)

3. Dechter, R.: Constraint Processing. Elsevier Science (2003)
4. Dietterich, T.G.: Ensemble methods in machine learning. In: First International

Workshop on Multiple Classifier Systems. pp. 1–15 (2000)
5. Epstein, S., Freuder, E., Wallace, R., Morozov, A., Samuels, B.: The adaptive

constraint engine. In: CP. pp. 525–542 (2002)
6. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning

and an application to boosting. In: EuroCOLT. pp. 23–37 (1995)
7. Gent, I., Jefferson, C., Kotthoff, L., Miguel, I., Moore, N., Nightingale, P., Petrie,

K.: Learning when to use lazy learning in constraint solving. In: ECAI (2010)
8. Gent, I., Jefferson, C., Miguel, I.: Minion: A fast scalable constraint solver. In:

ECAI. pp. 98–102 (2006)
9. Gent, I., Miguel, I., Moore, N.: Lazy explanations for constraint propagator. In:

PADL (2010)
10. Gent, I., Miguel, I., Nightingale, P.: Generalised arc consistency for the alldifferent

constraint: An empirical survey. Artif. Intell. 172(18), 1973–2000 (2008)
11. Guerri, A., Milano, M.: Learning techniques for automatic algorithm portfolio se-

lection. In: ECAI. pp. 475–479 (2004)
12. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.: The

WEKA data mining software: An update. SIGKDD Explorations 11(1) (2009)
13. van Hoeve, W.J.: The alldifferent Constraint: A Survey (2001)
14. Hutter, F., Hamadi, Y., Hoos, H., Leyton-Brown, K.: Performance prediction and

automated tuning of randomized and parametric algorithms. In: CP. pp. 213–228
(2006)

15. KhudaBukhsh, A., Xu, L., Hoos, H., Leyton-Brown, K.: SATenstein: Automatically
building local search SAT solvers from components. In: IJCAI. pp. 517–524 (2009)

16. Kotthoff, L.: Constraint solvers: An empirical evaluation of design decisions.
CIRCA preprint (2009), http://www-circa.mcs.st-and.ac.uk/Preprints/solver-
design.pdf

17. Lagoudakis, M., Littman, M.: Reinforcement learning for algorithm selection. In:
AAAI/IAAI. p. 1081 (2000)

18. Lecoutre, C.: XCSP benchmarks. http://tinyurl.com/y6hpphs (June 2010)
19. Leyton-Brown, K., Nudelman, E., Andrew, G., McFadden, J., Shoham, Y.: A port-

folio approach to algorithm selection. In: IJCAI. pp. 1542–1543 (2003)
20. McKay, B.: Practical graph isomorphism. In: Numerical mathematics and comput-

ing, Proc. 10th Manitoba Conf., Winnipeg/Manitoba 1980, Congr. Numerantium
30. pp. 45–87 (1981), see also http://cs.anu.edu.au/people/bdm/nauty

21. Minton, S.: Automatically configuring constraint satisfaction programs: A case
study. Constraints 1(1/2), 7–43 (1996)

22. O’Mahony, E., Hebrard, E., Holland, A., Nugent, C., O’Sullivan, B.: Using case-
based reasoning in an algorithm portfolio for constraint solving. In: 19th Irish
Conference on AI (2008)

23. Puget, J.F.: Constraint programming next challenge: Simplicity of use. In: CP. pp.
5–8 (2004)

24. R Development Core Team: R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing (2009)

25. Régin, J.C.: A filtering algorithm for constraints of difference in CSPs. In: AAAI.
pp. 362–367 (1994)

26. Rice, J.: The algorithm selection problem. Advances in Computers 15, 65–118
(1976)

24

27. Watts, D., Strogatz, S.: Collective dynamics of ‘small-world’ networks. Nature 393,
440–442 (1998)

28. Witten, I., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-
niques with Java Implementations. Morgan Kaufmann (2005)

29. Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: SATzilla: Portfolio-based algo-
rithm selection for SAT. J. Artif. Intell. Res. (JAIR) 32, 565–606 (2008)

25

Third workshop on Techniques foR Implementing Constraint programming Systems (TRICS), 2010, pages 26–34,
St. Andrews, UK, 6 September 2010.

Distributed solving through model splitting

Lars Kotthoff and Neil C.A. Moore
{larsko,ncam}@cs.st-andrews.ac.uk

University of St Andrews

Abstract. Constraint problems can be trivially solved in parallel by
exploring different branches of the search tree concurrently. Previous
approaches have focused on implementing this functionality in the solver,
more or less transparently to the user. We propose a new approach,
which modifies the constraint model of the problem. An existing model
is split into new models with added constraints that partition the search
space. Optionally, additional constraints are imposed that rule out the
search already done. The advantages of our approach are that it can be
implemented easily, computations can be stopped and restarted, moved
to different machines and indeed solved on machines which are not able
to communicate with each other at all.

1 Introduction

Constraint problems are typically solved by searching through the possible as-
signments of values to variables. After each such assignment, propagation can
rule out possible future assignments based on past assignments and the con-
straints. This process builds a search tree that explores the space of possible
(partial) solutions to the constraint problem.

There are two different ways to build up these search trees – n-way branching
and 2-way branching. This refers to the number of new branches which are
explored after each node. In n-way branching, all the n possible assignments to
the next variable are branched on. In 2-way branching, there are two branches.
The left branch is of the form x = y where x is a variable and y is a value from
its domain. The right branch is of the form x 6= y.

The more commonly used way is 2-way branching, implemented for example
in the Minion constraint solver [5]1. However, regardless of the way the branch-
ing is done, exploring the branches can be done concurrently. No information
between the branches needs to be exchanged in order to find a solution to the
problem.

We exploit this fact by, given the model of a constraint problem, generating
new models which partition the remaining search space. These models can then
be solved independently. We furthermore represent the state of the search by
adding additional constraints such that the splitting of the model can occur at
any point during search. The new models can be resumed, taking advantage of
both the splitting of the search space and the search already performed.

1 http://minion.sf.net

26

2 Background

The parallelisation of depth-first search has been the subject of much research
in the past. The first papers on the subject study the distribution over various
specific hardware architectures and investigate how to achieve good load bal-
ancing [13, 7]. Distributed solving of constraint problems specifically was first
explored only a few years later [2].

Backtracking search in a distributed setting has also been investigated by
several authors [12, 15]. A special variant for distributed scenarios, asynchronous
backtracking, was proposed in [17]. Yokoo et al formalise the distributed con-
straint satisfaction problem and present algorithms for solving it [18].

Schulte presents the architecture of a system that uses networked comput-
ers [16]. The focus of his approach is to provide a high-level and reusable design
for parallel search and achieve a good speedup compared to sequential solving
rather than good resource utilisation. More recent papers have explored how to
transparently parallelise search without having to modify existing code [10].

Most of the existing work is concerned with the problem of effectively dis-
tributing the workload such that every compute node is kept busy. The most
prevalent technique used to achieve this is work stealing. The compute nodes
communicate with each other and nodes which are idle request a part of the
work that a busy node is doing. Blumofe and Leiserson propose and discuss a
work stealing scheduler for multithreaded computations in [1]. Rolf and Kuchcin-
ski investigate different algorithms for load balancing and work stealing in the
specific context of distributed constraint solving [14].

Several frameworks for distributed constraint solving have been proposed
and implemented, e.g. FRODO [11], DisChoco [3] and Disolver [6]. All of these
approaches have in common that the systems to solve constraint problems are
modified or augmented to support distribution of parts of the problem across
and communication between multiple compute nodes. The constraint model of
the problem remains unchanged however; no special constructs have to be used
to take advantage of distributed solving. All parallelisation is handled in the
respective solver. This does not preclude the use of an entirely different model of
the problem to be solved for the distributed case in order to improve efficiency,
but in general these solvers are able to solve the same model both with a single
executor and distributed across several executors.

The decomposition of constraint problems into subproblems which can be
solved independently has been proposed in [9], albeit in a different context. In
this work, we explore the use of this technique for parallelisation. A similar
approach was taken in [14], but requires parallelisation support in the solver.

3 Model splitting

We now describe our new approach to the distributed solving of constraint prob-
lems which modifies the constraint solver to modify the constraint model and
does not require explicit parallelisation support in the solver.

27

Before splitting, the solver is stopped. As well as stopping, it is designed to
output restart nogoods for the problem in the solver’s own input language [8].
These constraints, when added to the problem, will prevent the search space just
explored from being repeated in any split model2.

To split the search space for an existing model, partition the domain for the
variable currently under consideration into n pieces of roughly equal size. Then
create n new models and to each in turn add constraints ruling out n−1 partitions
of that domain. Each one of these models restricts the possible assignments to
the current variable to one nth of its domain.

As an example, consider the case n = 2. If the variable under consideration is
x and its domain is {1, 2, 3, 4}, we generate 2 new models. One of them has the
constraint x ≤ 2 added and the other one x ≥ 3. Thus, solving the first model
will try the values 1 and 2 for x, whereas the second model will try 3 and 4.

The main problem when splitting constraint problems into parts that can be
solved in parallel is that the size of the search space for each of the splits is im-
possible to predict reliably. This directly affects the effectiveness of the splitting
however – if the search space is distributed unevenly, some of the workers will
be idle while the others do most of the work.

We address this problem by providing the ability to split a constraint model
after search has started. The approach is very similar to the one explained above.
The only difference is that in addition to the constraints that partition the search
space, we also add constraints that rule out the search space that has been
explored already.

Assume for example that we are doing 2-way branching, the variable currently
under consideration is again x with domain {1, 2, 3, 4} and the branches that we
have taken to get to the point where we are are x 6= 1 and x 6= 2. The generated
new models will all have the constraints x 6= 1 and x 6= 2 to get to the point in
the search tree where we split the problem. Then we add constraints to partition
the search space based on the remaining values in the domain of x similar to the
previous example.

Using this technique, we can create new chunks of work whenever a worker
becomes idle by simply asking one of the busy workers to stop and generate
split models. The search is then resumed from where it was stopped and the
remaining search space is explored in parallel by the two workers. Note that
there is a runtime overhead involved with stopping and resuming search because
the constraints which enable resumption must be propagated and the solver
needs to explore a small number of search nodes to get to the point where it
was stopped before. There is also a memory overhead because the additional
constraints need to be stored.

We have implemented this approach in a development version of Minion,
which we are planning to release to the public after further testing and verifi-

2 This same technique allows Minion to be paused and resumed: the nogoods are
provided when the solver is interrupted, and can be used to restart search, potentially
using a different solver, different search strategy or on a different machine.

28

cation. Initial experiments showed that the overhead of stopping, splitting and
resuming is minimal and not significant for large problems.

In practice, we run Minion for a specified amount of time, then stop, split
and resume instead of splitting at the beginning and when workers become idle.
The algorithm is detailed in Figure 1. This creates an n-ary split tree of models
for n new models generated at each split. Initially, the potential for distribution
is small but grows exponentially as more and more search is performed.

Input : constraint problem X, allotted time Tmax and splitting factor n ≥ 2
Output: a solution to X or nothing if no solution has been found

run Minion with input X until termination or Tmax;

if solved?(X) then
terminate workers;
return solution;

else if search space exhausted? then
return;

else
X ′ ← X with new constraints ruling out search already performed;
split X ′ into n parts X ′

1, . . . , X
′
n;

for i← 1 to n do in parallel
distSolve(X ′

n, Tmax,n);
end

end

Fig. 1. distSolve(X,Tmax,n): Recursive procedure to find the first solution to a
constraint problem distributed across several workers.

4 Comparison to existing approaches

We see the main advantage of our approach in not requiring any involved changes
to the constraint solving system to support distributed solving; in particular
communications between workers. Conventionally, distribution is achieved with
the aid of recomputation and cloning; established techniques used e.g. in [16].
We require two features of our solver: partitioning using constraints, and abil-
ity to output restart nogoods. Our system makes use of cloning, which we call
“splitting” and implement by means of nogoods added to the constraint model
in order to partition the domain of a variable. However, where other systems use
recompution, our system uses restart nogoods. In a system based on recompu-
tation the clone begins at specific search path, e.g. stolen from another worker;
with restart nogoods notionally multiple search paths are provided and the solver
may explore these in any way it wishes, not necessarily one after the other. It is

29

merely a convenient and compact way of encoding the situation where a solver
is relinquishing all its remaining work.

Contemporary constraint solvers make it easy to change or amend the search
procedure to support distribution across several executors, but even then changes
to the constraint solving system are required. While an initial implementation
of distributed search can be done relatively quickly, handling failure properly
and supporting things like nodes being added and removed dynamically requires
significantly more effort. Our approach separates this part completely from the
constraint solving system.

There are several advantages to implementing distributed solving the way
given in Figure 1. First, by creating regular “snapshots” of the search done, the
resilience against failure increases. Every time we stop, split and resume, the
modified models are saved. As they contain constraints that rule out the search
already done, we only lose the work done after that point if a worker fails. This
means that the maximum amount of work we lose in case of a total failure of all
workers is the allotted time Tmax times the number of workers |w|.

The fact that the modified models can be stored can also be exploited to
move the solving process to a different set of workers after it has been started
without losing any work. It furthermore means that we require no communication
between the individual workers solving the problem; they only need to be able
to receive the problem to solve and send the solution or split models back.

Another advantage is that small problems which Minion can solve within
the allotted time are not split and no distribution overhead is incurred. Solving
proceeds as it would in a standard, non-distributed fashion.

Our approach is particularly suitable for use with existing grid-computing
software or workload management systems such as Condor3. Every time new
models are generated, they are submitted to the system which queues them
and allocates a worker as soon as one becomes available. By leveraging existing
software to perform this task, a huge amount of development time is saved and
errors are avoided. For large problems, the number of queued jobs will usually
exceed the number of workers, ensuring good resource utilisation.

The management system to monitor the search, queue split models and ter-
minate the workers if a solution has been found can be implemented efficiently in
just a few lines of code. We have written a Ruby script that performs this task in
little more than an hour. Obviously there is potential for trying different search
strategies for different branches or modifying other search parameters in order to
improve efficiency. With the appropriate modifications, the management system
could adapt the search procedure specifically for individual parts of the search
tree. We are planning to explore these possibilities in future work.

A downside of the approach is that the number of models which can be
solved in parallel will be small to start with. This means that the utilisation of
resources in the beginning will be suboptimal. Only as more and more search
space is explored and more and more split models are generated, the utilisation
will improve. This however can be mitigated by dynamically adapting the time

3 http://www.cs.wisc.edu/condor/

30

for which Minion is run before splitting the problem – in the beginning, we set it
to a small value to quickly get many models that we can solve in parallel. Then
we gradually increase the allotted time as the resource utilisation improves.

Our technique is intended to be used for very large problems which take a
long time (many hours, days or weeks) to solve. It is unlikely to be efficient
for problems that can be solved in minutes, but on the other hand there is no
need for distributed solving if the problem can be solved sequentially in a short
amount of time. Only large search spaces can be split in a way that many workers
are kept busy without a high communication overhead.

5 Detailed example

We will now have a detailed look at how our approach works for a specific
problem. Consider the 4-queens problem. We want to place 4 queens on a 4× 4
chessboard such that no queen is attacking another queen. Queens can move
along rows, columns and diagonals. The constraints therefore have to forbid
that two or more queens are in the same row, the same column or on the same
diagonal. The constraint model in Figure 2 captures this problem.

language Dominion 0.1

letting n = 4

dim queens[n]: int

find queens[..]: int {1..n}

such that

alldifferent alldiff(queens[..])

diagonals1 [not(eq1 eq(queens[i], add(queens[j], j-i))) |

i in {0..n-2}, j in {i+1..n-1}]

diagonals2 [not(eq2 eq(queens[i], add(queens[j], i-j))) |

i in {0..n-2}, j in {i+1..n-1}]

Fig. 2. Model for the 4-queens problem in the Dominion language [4]. The model
describes the n-queens problem in general and is specialised for 4-queens in the
second line.

We assume variable ordering queens0, queens1, queens2, queens3, ascending
value ordering from 1 to 4 and n-way branching. The search tree for a simple
backtracking algorithm is depicted in Figure 3. Even for a very small problem
like this, there is significant potential for distributed solving.

We now start solving the problem until we reach the assignment queens0 = 2.
Then we stop. The constraint we need to add to resume the search at the same
point is

resume not(innerresume eq(queens[0], 1))

31

1

1 2 3

1 2 3 4

4

1 2

1 2 3 4

3 4

2

1 2 3 4

1

1 2 3

queens0

queens1

queens2

queens3

Fig. 3. First solution search tree for 4-queens. The triangles depict subtrees
which are not explored because the partial assignment so far cannot be part of
a solution. The bold, rightmost node is where the solution is found. The levels
of the tree show assignments to the variables shown on the left.

(note that resume and innerresume are simply identifiers given to the specific
constraints as required in the Dominion language [4]).

Let us assume a splitting factor of 2. We add the constraints to split the
remaining search space as follows. The variable currently under consideration is
queens1, its domain is {1, 2, 3, 4} and therefore the constraints are

left leq(queens[1], 2) and right leq(3, queens[1]).

The search is restarted with two workers, each exploring separate branches
of the remaining search space. The first worker finds no solutions in its part of
the search space, terminates and returns. The second worker finds a solution and
returns it. Search terminates and no further splitting is performed.

6 Conclusions and future work

We have proposed and detailed a novel approach for distributing constraint
problems across multiple computers. Instead of modifying the solver to support
distributed operation, we only require some simple and generic modifications
that post additional constraints to the model.

The main advantages of our approach are that it does not require networked
machines, is resilient against failure and can be implemented easily in constraint
solvers which are aware of the state of the search.

The main drawback of this paper is that we do not have performed a sys-
tematic experimental evaluation of our approach yet. In the future, we would
like to evaluate it in terms of solving speedup and resource utilisation on large,
real-world problems. Furthermore, we would like to investigate finding all solu-
tions to a constraint problem and solving constrained optimisation problems in
a distributed manner.

32

Adapting the search procedure and parameters dynamically during search is
another promising area for future work. The solving process could be tailored to
the characteristics of parts of the search space to improve efficiency.

Another direction for future work is to support a higher level of abstraction
for decomposing problems into subproblems. This would be necessary to support
problems which cannot be decomposed by simply adding constraints that split
the domain of a variable.

Acknowledgements

The authors thank Chris Jefferson for help with implementing the model split-
ting in Minion and the anonymous reviewers for their feedback. Lars Kotthoff
is supported by a SICSA studentship.

References

1. Blumofe, R.D., Leiserson, C.E.: Scheduling multithreaded computations by work
stealing. J. ACM 46(5), 720–748 (1999)

2. Collin, Z., Dechter, R., Katz, S.: On the feasibility of distributed constraint satis-
faction. In: IJCAI. pp. 318–324 (1991)

3. Ezzahir, R., Bessiere, C., Belaissaoui, M., Bouyakhf, H., Mohammed, U., Agdal,
V.: DisChoco: A platform for distributed constraint programming (2007)

4. Gent, I.P., Jefferson, C., Kotthoff, L., Miguel, I., Nightingale, P.: The DOMINION
input language version 0.1. CIRCA preprint 2009/21, University of St Andrews
(2009), http://www-circa.mcs.st-and.ac.uk/Preprints/InLangSpec.pdf

5. Gent, I.P., Jefferson, C., Miguel, I.: MINION: a fast, scalable, constraint solver. In:
ECAI. pp. 98–102 (2006)

6. Hamadi, Y.: Disolver 3.0: the Distributed Constraint Solver version 3.0 (2007)
7. Kumar, V., Rao, V.N.: Parallel depth first search. Part II. analysis. Int. J. Parallel

Program. 16(6), 501–519 (1987)
8. Lecoutre, C., Sais, L., Tabary, S., Vidal, V.: Nogood recording from restarts. In:

IJCAI’07: Proceedings of the 20th international joint conference on Artifical intel-
ligence. pp. 131–136. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA
(2007)

9. Michel, L., Hentenryck, P.V.: A decomposition-based implementation of search
strategies. ACM Trans. Comput. Logic 5(2), 351–383 (2004)

10. Michel, L., See, A., Hentenryck, P.V.: Parallelizing constraint programs transpar-
ently. In: CP. pp. 514–528 (2007)

11. Petcu, A.: FRODO: a FRamework for Open/Distributed constraint optimization.
Technical report no. 2006/001, Swiss Federal Institute of Technology (EPFL)
(2006), http://liawww.epfl.ch/frodo/

12. Rao, V.N., Kumar, V.: On the efficiency of parallel backtracking. IEEE Trans.
Parallel Distrib. Syst. 4(4), 427–437 (1993)

13. Rao, V.N., Kumar, V.: Parallel depth first search. Part I. implementation. Int. J.
Parallel Program. 16(6), 479–499 (1987)

14. Rolf, C.C., Kuchcinski, K.: Load-balancing methods for parallel and distributed
constraint solving. In: CLUSTER. pp. 304–309 (2008)

33

15. Sanders, P.: Better algorithms for parallel backtracking. In: Workshop on Algo-
rithms for Irregularly Structured Problems. pp. 333–347 (1995)

16. Schulte, C.: Parallel search made simple. In: Proceedings of TRICS. pp. 41–57
(2000)

17. Yokoo, M., Durfee, E.H., Ishida, T., Kuwabara, K.: Distributed constraint satis-
faction for formalizing distributed problem solving. In: 12th IEEE International
Conference on Distributed Computing Systems. pp. 614–621 (1992)

18. Yokoo, M., Durfee, E.H., Ishida, T., Kuwabara, K.: The distributed constraint
satisfaction problem: Formalization and algorithms. IEEE Trans. on Knowl. and
Data Eng. 10(5), 673–685 (1998)

34

Third workshop on Techniques foR Implementing Constraint programming Systems (TRICS), 2010, pages 35–37,
St. Andrews, UK, 6 September 2010.

System Demonstration

GenDebugger: An Explanation-based Constraint

Debugger*

Giora Alexandron
1
, Vitaly Lagoon1, Reuven Naveh1, and Aaron Rich

1
,

1 Cadence Design Systems, Inc.

8 Hamelacha St., Rosh Ha'ain, 48091, Israel

{giora, lagoon, rnaveh, ari}@cadence.com

Simulation-based verification is a technique used to ensure correctness of hardware

designs. To verify a design test scenarios are generated randomly based on

architectural and test dependencies modeled by constraints. This method is supported

by verification-oriented languages such as e [3,7] and System Verilog [1,4].

Environments based on constraints may suffer from coding errors and thus require

debugging tools. Coding errors in constraints are revealed in several forms, such as

failure to find a solution, unexpected values assigned to variables, and unexpected

distribution of values across a set of simulations. Bad runtime and memory

consumption of constraint solving activity is also a common problem.

A tool generating random scenarios for a verification environment is required to meet

several requirements. First and foremost, it must find a proper solution satisfying the

constraints. Second, it must be able to find multiple solutions of a problem, such that

they are properly distributed within the entire solution space. Lastly, as generation is

one of the most time-consuming operations in the verification process, it must be

efficient. The debugging tool needs to address cases in which these requirements are

not fulfilled: either no solution is found, or the solution does not meet user-

expectations, or it takes too long to come up with a solution.

Constraint debugging poses a considerable challenge. Existing approaches, including

adding/removing constraints, tracing of the solving process [5], or printing constraints

participating in a conflict, are insufficient in complex scenarios. Debugging tools such

as source line debuggers, with which most software engineers are familiar, are ill-

suited for debugging constraints. The reason is that source-line debuggers are

normally sequential, showing and executing the line-by-line imperative flow of user

code. Constraints, in contrast, are declarative entities.

In this work we describe GenDebugger, the generation debugger for Specman [7].

Specman is an Electonic Design Automation (EDA) tool that provides advanced

constraint-based functional verification of hardware designs. GenDebugger is a

* This work is a revised version of a paper presented at the Haifa Verification Conference in

2009 [6].

35

component of IntelliGen, the new generator of Specman. GenDebugger has been used

successfully for over three years, and received positive feedback from its customers.

GenDebugger is an explanation-based constraint debugger [2]. While some principles

of GenDebugger are applicable to any solving technique, its sequential depiction of

the generation process best fits propagation-based solvers, such as IntelliGen.

GenDebugger depicts the constraint-solving process as a sequence of elementary

solving steps. The main three kinds of solving steps are assignment of a value to a

variable, reduction of one or more variable domains through propagation, and

backtracking from a previous assignment due to a conflict. There are additional kinds

of steps specific to IntelliGen, corresponding to application/withdrawal of soft

constraints, application of distribution policies, etc. The collection of all solving steps

is organized in a search tree which can be inspected and explored using the rich set of

GUI tools.

GenDebugger shows each step in a detailed, interactive view. The variables and

constraints involved in each step are displayed so that navigation between relevant

kinds of information is quick. The tool displays both the initial and the resulting

domains for steps involving domain reduction. Any variable or constraint can be

selected or queried. For each variable we present the list of steps which modified its

domain, thus giving the explanation. The variables are organized in two different

panes, one showing them according to the chronological order in which they were

assigned, and another one showing the ‘generation tree’, i.e. their hierarchical

positions in the verification environment.

GenDebugger can be invoked in various ways. The process of generation can either

be stopped at a point of conflict, or at the generation of a specific variable, or at the

beginning of the generation process. Additionally, the process can be manually

interrupted by the user and resumed in GenDebugger. The generation itself can be

debugged using either a step-by-step process or retrospectively. By enabling the user

to debug generation as it occurs, GenDebugger gives its users a feeling similar to

debugging of procedural code.

In this talk we demonstrate the GenDebugger GUI and the concepts of explanation-

based constraint debugging. We show on a set of simple examples how the various

types of bugs in constraints can be efficiently diagnosed using GenDebugger.

References

1. Bergeron, J., Cerny, E., Hunter, A., and Nightingale, A. 2005 Verification Methodology
Manual for Systemverilog. Springer-Verlag New York, Inc.

2. Ghoniem M., Jussien N. and Fekete J. D.: VISEXP: Visualizing Constraint Solver Dynamics

Using Explanations. In FLAIRS'04: Seventeenth International Florida Artificial Intelligence

Research Society Conference. AAAI press, Miami Beach, FL (2004)

3. IEEE Standard for the Functional Verification Language 'e', IEEE Computer Society, IEEE,

36

 New York, NY, IEEE Std 1647 (2006)

4. IEEE Standard For System Verilog - Unified Hardware Design, Specification and

Verification Language, IEEE Computer Society, IEEE, New York, NY, IEEE Std 1800

(2005)

5. Meier M.: Debugging Constraint Programs. In V. Saraswat and P.V. Hentenryck (Eds.):

Principles and Practice of Constraint Programming, pp. 204-221. Lecture Notes in Computer

Science 976. MIT (1995)

6. Rich A., Alexandron G. and Naveh R.: An Explanation-Based Constraint Debugger. HVC

2009, Haifa, Israel (October 19-22, 2009)

7. Robinson, D.: Aspect-Oriented Programming with the e Verification Language: A Pragmatic
Guide for Testbench Developers. Elsevier Inc.

37

Third workshop on Techniques foR Implementing Constraint programming Systems (TRICS), 2010, pages 38–52,
St. Andrews, UK, 6 September 2010.

Combining Parallel Search and Parallel Consistency in
Constraint Programming

Carl Christian Rolf and Krzysztof Kuchcinski

Department of Computer Science, Lund University, Sweden
Carl_Christian.Rolf@cs.lth.se, Krzysztof.Kuchcinski@cs.lth.se

Abstract. Program parallelization becomes increasingly important when new
multi-core architectures provide ways to improve performance. One of the great-
est challenges of this development lies in programming parallel applications.
Declarative languages, such as constraint programming, can make the transition
to parallelism easier by hiding the parallelization details in a framework.
Automatic parallelization in constraint programming has mostly focused on par-
allel search. While search and consistency are intrinsically linked, the consistency
part of the solving process is often more time-consuming. We have previously
looked at parallel consistency and found it to be quite promising. In this paper we
investigate how to combine parallel search with parallel consistency. We evaluate
which problems are suitable and which are not. Our results show that paralleliz-
ing the entire solving process in constraint programming is a major challenge as
parallel search and parallel consistency typically suit different types of problems.

1 Introduction

In this paper, we discuss the combination of parallel search and parallel consistency in
constraint programming (CP). CP has the advantage of being declarative. Hence, the
programmer does not have to make any significant changes to the program in order to
solve it using parallelism. This means that the difficult aspects of parallel programming
can be left entirely to the creator of the constraint framework.

Constraint programming has been used with great success to tackle different in-
stances of NP-complete problems such as graph coloring, satisfiability (SAT), and sche-
duling [1]. A constraint satisfaction problem (CSP) can be defined as a 3-tuple P =
(X,D,C), where X is a set of variables, D is a set of finite domains where Di is the
domain of Xi, and C is a set of primitive or global constraints containing several of
the variables in X . Solving a CSP means finding assignments to X such that the value
of Xi is in Di, while all the constraints are satisfied. The tuple P is referred to as a
constraint store.

Finding a valid assignment to a constraint satisfaction problem is usually accom-
plished by combining backtracking search with consistency checking that prunes in-
consistent values. In every node of the search tree, a variable is assigned one of the
values from its domain. Due to time-complexity issues, the consistency methods are
rarely complete [2]. Hence, the domains will contain values that are locally consistent,
i.e., they will not be part of a solution, but we cannot prove this yet.

38

P1 P2 P3

(a)

P1 P2 P3

(b)

Fig. 1. The position of the solution in a search tree affects the benefit of parallelism.

The examples in Fig. 1 illustrates the problem of parallelism in CP. We use three
processors: P1, P2, and P3 to find the solution. We assign the different parts of the
search tree to processors as in the figure. The solution we are searching for is in the
leftmost part of the search tree in Fig. 1(a) and will be found by processor P1. Any
work performed by processor P2 and P3 will therefore prove unnecessary and will only
have added communication overhead. In this case, using P2 and P3 for parallel consis-
tency will be much more fruitful. On the other hand, in Fig. 1(b), the solution is in the
rightmost part of the tree. Hence, parallel search can reduce the total amount of nodes
explored to less than a third. In this situation, parallel consistency can still be used to
further increase the performance.

X ∈ {5..9}X ∈ {0..4}

Y ∈ {0..4}

P1

P2

Y ∈ {0..2}
X ∈ {5..9}
Y ∈ {2..4}

P3

Start

Fig. 2. Parallel search in constraint programming.

In this paper, we will refer to parallel search (OR-parallelism) as data parallelism,
and parallel consistency (AND-parallelism) as task parallelism. Parallelizing search in
CP can be done by splitting data between solvers, e.g., create a decision point for a
selected variable Xi so that one computer handles Xi <

min(Xi)+max(Xi)
2 and another

handles Xi ≥ min(Xi)+max(Xi)
2 . An example of such data parallelism in CP is depicted

in Fig. 2. The different possible assignments are explored by processors P1, P2, and P3.
Clearly, we are not fully utilizing all three processors in this example. At the first level
of the search tree, only two out of three processors are active. Near the leafs of the
search tree, communication cost outweighs the benefit of parallelism. Hence, we often
have a low processor load in later part of the search.

39

X ∈ {0..9}

Y ∈ {0..9}

C2C1

P1

C2C1

C3

C3

P2 P3

Start

Fig. 3. Parallel consistency in constraint programming.

Figure 3 presents the model of parallel consistency in constraint programming which
we will partly discus in this paper. In the example, the search process is sequential, but
the enforcement of consistency is performed in parallel. Constraints C1, C2, and C3
can be evaluated independently of each other on different processors, as long as their
pruning is synchronized. We do not share data during the pruning, hence, we may have
to perform extra iterations of consistency. The cause of this implicit data dependency
is that global constraint often rely on internal data-structures that become incoherent if
variables are modified during consistency.

The problem of idle processors during the latter parts of the search is pervasive [3,
4]. Regardless of the problem, the communication cost will eventually become too big.

Data parallelism can be problematic, or even unsuitable, for other reasons. Many
problems modeled in CP spend a magnitude more time enforcing consistency than
searching. Using data parallelism for these problems often reduces performance. In
these cases, task parallelism is the only way to take advantage of multicore processors.

By combining parallel consistency with parallel search, we can further boost the
performance of constraint programming.

The rest of this paper is organized as follows. In Section 2 the background issues are
explained, in Section 3 the parallel consistency is described. Section 4 details how we
combine parallel search and parallel consistency. Section 5 describes the experiments
and the results, Section 6 gathers our conclusions.

2 Background

Most work on parallelism in CP has dealt with parallel search [5, 6]. While this offers
the greatest theoretical scalability, it is often limited by a number of issues. Today, the
main one is that processing disjoint data will saturate the memory bus faster than when
processing the same data. In theory, a super-linear performance should be possible for
depth-first search algorithms [7]. This, however, has only rarely been reported, and
only for small numbers of processors [6]. The performance-limits of data parallelism in
memory intense applications, such as CP, are especially apparent on modern multi-core
architectures [8].

40

Task parallelism is the most realistic type of parallelism for problems where the
time needed for search is insignificant compared to that of enforcing consistency. This
happens when the consistency algorithms prune almost all of the inconsistent values.
Such strong pruning is particularly expensive and in a greater need of parallelism. The
advantage of these large constraints over a massively parallel search is that the execution
time may become more predictable. For instance, speed-up when searching for one
solution often has a high variance when parallelizing search since the performance is
highly dependent on which domains are split.

Previous work on parallel enforcement of consistency has mostly focused on paral-
lel arc-consistency algorithms [9, 10]. The downside of such an approach is that pro-
cessing one constraint at a time may not allow inconsistencies to be discovered as
quickly as when processing many constraints in parallel. If one constraint holds and
another does not, the enforcement of the first one can be cancelled as soon as the incon-
sistency of the second constraint is discovered.

The greatest downside of parallel arc-consistency is that it is not applicable to global
constraints. These global constraints encompass several, or all, of the variables in a
problem. This allows them to achieve a much better pruning than primitive constraints,
which can only establish simple relations between variables, such as X + Y ≤ Z.

We only know of one paper on parallel consistency with global constraints [11].
That paper reported a speed-up for problems that can be modeled so that load-balancing
is not a big issue. For example, Sudoku gave a near-linear speed-up. However, in this
paper we go further by looking at combining parallel search with parallel consistency.

3 Parallel Consistency

Parallel consistency in CP means that several constraints will be evaluated in paral-
lel. Constraints that contain the same variables have data dependencies, and therefore
their pruning must be synchronized. However, since the pruning is monotonic, the or-
der in which the data is modified does not affect the correctness. This follows from the
property that well-behaved constraint propagators must be both decreasing and mono-
tonic [12]. In our finite domain solver this is guaranteed since the implementation makes
the intersection of the old domain and the one given by the consistency algorithm. The
result is written back as a new domain. Hence, the domain size will never increase.

Our model of parallel consistency is depicted in Fig. 4, this model is described
in greater detail in [11] and in Fig. 6(b). At each level of the search, consistency is
enforced. This is done by waking the consistency threads available to the constraint
program. These threads will then retrieve work from the queue of constraints whose
variables have changed. In order to reduce synchronization, each thread will take sev-
eral constraints out of the queue at the same time. When all the constraints that were
in the queue at the beginning of the consistency phase have been processed, all prun-
ings are committed to the constraint store as the solver performs updates. If there were
no changes to any variable, the consistency has reached a fix-point and the constraint
program resumes the search. If an inconsistency is discovered, the other consistency
threads are notified and they all enter the waiting state after informing the constraint
program that it needs to backtrack.

41

Constraint
Queue

Thread 1 Thread 2 Thread 3

Barrier

Done, waiting
Done, waiting

Perform updates

Add changed constraints to queue

Fig. 4. The execution model for parallel consistency.

Consistency enforcement is iterative. When the threads are ready, the constraint
queue is split between them, and one iteration of consistency can begin. This procedure
will be repeated until we reach a fixpoint, i.e., the constraints no longer change the
domain of any variable. The constraints containing variables that have changes will be
added to the constraint queue after the updates have been performed.

One of the main concerns in parallel consistency is visibility. Global constraints
usually maintain an internal state that may become incoherent if some variables are
changed while the consistency algorithm is running. If we perform the pruning in par-
allel, the changes will only be visible to the other constraints after the barrier. This
reduces the pruning achieved per consistency iteration. Hence, in parallel consistency,
we will usually perform several more iterations than in sequential consistency before
we reach the fixpoint.

4 Combining Parallel Search and Parallel Consistency

The idea when combining parallel search and parallel consistency is to associate every
search thread several consistency threads. A simple example is depicted in Fig. 5. First
the data is split from processor P1 and sent to processor P2. Then the search running on
P1 will perform consistency by evaluating constraints C1 and C2 on processors P1 and
P3 respectively. The search running on P2 will, completely independently, run consis-
tency using processors P2 and P4. Each search has its own store, hence, constraints C1
and C2 can be evaluated by the two searches without any synchronization.

More formally, the execution of the combined search and consistency in CP pro-
ceeds as follows. We begin with a constraint store P = (X,D,C) as defined earlier.
This gives us a search space to explore, which can be represented as a tree. The chil-
dren of the root node represent the values in Di. In these nodes, we assign Xi one of its
possible values and remove Xi from X . For example, assigning X0 the value 5 gives a
node n with Pn = (X \X0, D∪D0∩{5}, C). After each assignment, we apply the the
function enforceConsistency, which runs the consistency methods of C, changing
our store to (X ′, D′, C) where X ′ = X \Xi. D′ is the set of finite domains represent-
ing the possible values for X ′ that were not marked as impossible by the consistency

42

P1 P3 P2 P4
X ∈ {5..9}X ∈ {0..4}

P1

P2

C2C1C2C1

Start

Fig. 5. An example of combining parallel search and parallel consistency.

methods of C. The method enforceConsistency is applied iteratively until D′′ = D′.
Now there are two possibilities: either ∃D′

i = ∅, in which case we have a failure, mean-
ing that there are no solutions reachable from this node, or we progress with the search.
In the latter case, we have two sub-states. Either X ′ = ∅, in which case we have found
a solution, or we need to continue recursively by picking a new Xi.

Parallel search means that we divide Di into subsets and assign them to different
processors. Each branch of the search tree starting in a node is independent of all other
branches. Hence, there is no data dependency between the different parts of the search
space. Parallel consistency means parallelizing the enforceConsistency method. This
is achieved by partitioning C into subsets, each handled by a different processor.

The pseudo code for our model is presented in Fig. 6. When a search thread makes
an assignment it needs to perform consistency before progressing to the next level in
the search tree. Hence, processors P1 and P2 in the example are available to aid in
the consistency enforcement. The consistency threads are idle while the search thread
works. If we only allocate one consistency thread per processor a lot of processors will
be idle as we are waiting to perform the assignment. Hence, it is a good idea to make
sure that the total number of consistency threads exceeds the number of processors.

As Fig. 6 shows, the parallel search threads will remove a search node and explore it.
In our model, a search node represents a set of possible values for a variable. The thread
that removes this set guarantees that all values will be explored. If the set is very large,
the search thread can split the set to allow other threads to aid in the exploration. When
there are no more search nodes to explore, the entire search space has been explored.

Since we have to wait for the different threads, some parts of the algorithm are, by
necessity, synchronized. In Fig. 6(a), line 15 requires synchronization while we wait for
the consistency threads to finish. In Fig. 6(b), lines 15 to 22, which represent the barrier,
are synchronized. However, each thread may use its own lock for waiting. Hence, there
is little lock contention. Furthermore, line 13 has to be synchronized in order to halt
the other threads when we have discovered an inconsistency. Depending on the data
structure, lines 6 and 7 may also have to be synchronized.

43

1 // search nodes to be explored N
2 // variables to be labeled V , with FDV xi ∈ V
3 // domain of xi is di, list of slave computers S
4
5 while N 6= ∅
6 Node ← N.first
7 N ← N \ Node
8 V ← Node.unlabeledV ariables
9 while V 6= ∅

10 V ← V \ xi
11 select value a from di
12 xi ← a
13 for each slave s in S
14 s.enforceConsistency
15 wait //wait for all slaves to stop
16 if Inconsistent
17 di ← di \ a
18 V ← V ∪ xi
19 end while
20 store solution
21 end while

(a)

1 // set of constraints to be processed PC
2 // set of constraints processed in this slave SC
3 // returns result to the constraint program
4
5 boolean enforceConsistency
6 while PC 6= ∅
7 PC ← PC \ SC
8 while SC 6= ∅
9 SC ← SC \ c

10 c.consistency
11 if c.inconsistent
12 for each slave s in S
13 s.stop
14 return Inconsistent
15 if all other slaves waiting
16 perform updates
17 for each changed constraint cd
18 PC ← PC ∪ cd
19 for each slave s in S
20 s.wake
21 else
22 wait //wait for updates
23 end while
24 end while
25 return Consistent

(b)

Fig. 6. The combined parallel search and parallel consistency algorithm. Parallel depth-first
search (a), slave program for parallel consistency (b).

4.1 Discussion

An alternative way to combine parallel search and consistency is to use a shared work-
queue for both types of jobs. Threads that become idle could get new work from the
queue, whether it was running consistency for a constraint or exploring a search space.
However, the performance of such an approach would be heavily dependent on the
priority given to the different types of work. If the priorities were just slightly incorrect,
it would hurt the performance of the other threads. For instance, a thread wanting help
with consistency might never get it because the idle threads are picking up search jobs
instead. It might be possible to solve this problem using adaptive priorities. However,
this is outside the scope of this paper

By combining parallel search and parallel consistency we hope to achieve a better
scalability. Unlike data parallelism for depth-first search, the splitting of data poses a
problem in constraint programming. The reason is that the split will affect the domains
of the variables that have not yet been assigned a value. In the example in Fig. 2, with
a constraint such as X > Y the consistency will change the shape of the search tree
by removing the value 4 from the domain of Y for processor P1. For more complex
problems, the shape of both search trees may be affected in unpredictable ways. Since
the consistency methods are not complete, there is no way to efficiently estimate the
size and shape of the search trees after a split. Parallel consistency allows us to use the
hardware more efficiently when parallel search runs into these kinds of problems.

In [11] we showed that parallel consistency scales best on very large problems con-
sisting of many global constraints. Solving such problems is a daunting task, which
makes it hard to combine parallel search with parallel consistency. Furthermore, find-
ing just one solution to a problem often leads to non-deterministic speed-ups.

The biggest obstacle we faced when developing a scalable version of parallel con-
sistency was the cost of synchronization. The problem comes from global constraints,
these typically use internal data structures. For instance, the bounds consistency for

44

AllDifferent constraint uses a list where the order of variables is given by Hall inter-
vals [13]. If pruning is performed instantly by other threads, instead of being stored
until a barrier, the integrity of these data structures may be compromised. Eliminating
barrier synchronization would greatly increase the performance of parallel consistency.

5 Experimental Results

We used the JaCoP solver [14] in our experiments. The experiments were run on a Mac
Pro with two 3.2 GHz quad-core Intel Xeon processors running Mac OS X 10.6.2 with
Java 6. These two processors have a common cache and memory bus for each of its four
cores. The parallel version of our solver is described in detail in [3].

5.1 Experiment Setup

We used two problems in our experiments: n-Sudoku, which gives an n× n Sudoku if
the square root of n is an integer and n-Queens which consists in finding a placement
of n queens on a chessboard so that no queen can strike another. Both problems use
the AllDifferent constraint with bounds consistency [13], chosen since it is the global
constraint most well spread in constraint solvers. The characteristics of the problems
are presented in Table 1.

The results are the absolute speed-ups when searching for a limited number of so-
lutions to n-Sudoku and one solution to n-Queens. For Sudoku we used n = 100
with 85 % of values set and searched for 200 and 5 000 solutions. For Queens we used
n = 550 and searched for a single solution. We picked these problems in order to il-
lustrate how the size of the search space affects the behavior when combining parallel
search with parallel consistency, while still having a reasonable execution time.

For each problem we used between one and eight search threads. For each search
thread we used between one and eight consistency threads. We used depth-first search
with in-order variable selection for both problems. The sequential performance of our
solver is lower than that of some others. However, this overhead largely comes from
the higher memory usage of a Java based solver. On a multicore system this is a down-
side since the memory bus is shared. Hence, lower sequential performance does not
necessarily make it simpler to achieve a high speed-up.

Table 1. Characteristics of the problems.

Problem Variables
Primitive Global

Constraints Constraints

Sudoku 10 000 0 300
Queens 1 648 1 098 3

45

5.2 Results for Sudoku

The results for 100-Sudoku is presented in Table 2 and Table 3, the speed-ups are de-
picted in Fig. 7 and Fig. 8. The bold number in the table indicates the fastest time and
the gray background marks the times slower than sequential. The results show that there
is a clear difference in behavior as the search space increases. When we have to explore
a larger search space, parallel search is better than parallel consistency. However, if we
have a more even balance between search and consistency, combining the two types of
parallelism increases the performance.

From the diagrams, we can see that it is good to use more consistency threads than
there are processor cores. However, using many more threads is not beneficial, espe-
cially when there are several search threads.

It is noteworthy that there is little overhead for using parallel consistency when
only running one search thread. Search for 200 solutions even increases the perfor-
mance somewhat. This is important because it means that parallel consistency can be
successful when it is difficult to extract data parallelism from the problem.

The reduction in performance when adding parallel consistency to the search for
5 000 solutions comes to some extent from synchronization costs. Synchronization in
Java automatically invalidates cache lines that may contain data useful to other threads.
With more precise control over cache invalidation, the execution time overhead added
by the parallel consistency can be reduced.

Using too many threads will cause an undesirable amount of task switching and
saturation of the memory bus. We measured and analyzed how the number of active
threads, and their type, affects performance. The average number of active threads when
running two search threads and four consistency threads per search thread for 200 so-
lutions to n-Sudoku was 5.5. This is the average over the entire execution time. The
same number for the slowest instance, eight by eight threads, was 59 active threads.
The first case achieves a rather good balance given that it is hard to extract useful data
parallelism for the search threads. The number of active threads for the search threads
alone was 1.5 when using two search threads, and 7.1 when using eight search threads.

Table 2. Execution times in seconds when searching for 200 solutions to 100-Sudoku.

Consistency Threads Search Threads
per Search Thread 1 2 4 8

1 176 125 122 145
2 176 124 143 177
4 158 110 142 210
8 162 127 192 269

The main bottleneck for the performance is the increased workload to enforce con-
sistency. The total number of times constraints are evaluated per explored search node
is depicted in Fig. 9 and Fig. 10. Clearly, using parallel consistency increases the num-
ber of times we have to evaluate the constraints. This is because we cannot share data
between constraints during their execution.

46

Table 3. Execution times in seconds when searching for 5 000 solutions to 100-Sudoku.

Consistency Threads Search Threads
per Search Thread 1 2 4 8

1 3 663 1 882 1 720 1 649
2 3 931 2 293 2 565 2 782
4 3 995 2 161 3 224 2 735
8 4 254 2 556 3 997 3 192

1 2 4 8
0

0.5

1

1.5

2

1 2 4 8Consistency Threads per Search Thread

A
b

s
o

lu
te

 S
p

e
e

d
-u

p

Search Threads

Fig. 7. Speed-up when searching for 200 solutions to 100-Sudoku.

The second bottleneck for the performance of parallel consistency is synchroniza-
tion. In our solution, we have several points of synchronization. The barrier before
updates is particularly costly as the slowest consistency thread determines the speed.

The third bottleneck is the speed of the memory bus. Parallel search can quickly
saturate the bus. Adding parallel consistency will worsen the performance. The perfor-
mance clearly drops off towards the lower right hand corner of Table 2 and to the left of
Table 3. This problem can to some extent be avoided by having a shared queue of tasks
and a fix amount of threads in the program. These threads could then switch between
performing consistency and search in order to adapt to the memory bus load.

The only way to fruitfully combine parallel search with parallel consistency is if we
reduce the number of search nodes more than we increase their computational weight.
The inherent problem in doing this is clear from the differences in results between
Table 4 and Table 5. As shown by Fig. 9, when the problem is small there is an almost
linear increase in the number of consistency checks per search node as we add search
threads. On the other hand, Fig. 10 shows that the number of consistency checks varies
a lot depending on the number of consistency threads. The reason is that when we
have to explore a large search space we will run into more inconsistencies, which can
be detected faster when using parallel consistency. However, inconsistent nodes have
less computational weight. In conclusion, when parallel search starts to become useful,
parallel consistency cannot pay off the computational overhead it causes.

47

1 2 4 8
0

0.5

1

1.5

2

2.5

1 2 4 8Consistency Threads per Search Thread

A
b

s
o

lu
te

 S
p

e
e

d
-u

p

Search Threads

Fig. 8. Speed-up when searching for 5 000 solutions to 100-Sudoku.

Table 4. Number of times consistency was called for the constraints in 100-Sudoku when search-
ing for 200 solutions.

Consistency Threads Search Threads
per Search Thread 1 2 4 8

1 23 475 47 487 122 587 217 339
2 36 585 73 017 171 613 243 754
4 36 585 72 833 169 849 231 745
8 36 585 73 369 160 696 242 317

Table 5. Number of times consistency was called for the constraints in 100-Sudoku when search-
ing for 5 000 solutions.

Consistency Threads Search Threads
per Search Thread 1 2 4 8

1 364 718 435 524 1 102 162 1 613 385
2 721 723 933 104 2 453 025 1 604 395
4 720 976 925 494 2 089 093 1 571 044
8 720 980 920 276 1 731 205 1 470 914

Table 6. Number of search nodes explored when searching for 200 solutions to 100-Sudoku.

Consistency Threads Search Threads
per Search Thread 1 2 4 8

1 35 953 34 914 44 473 52 382
2 35 953 35 394 41 669 45 467
4 35 953 35 358 41 785 45 380
8 35 953 35 296 40 949 45 832

48

Table 7. Number of search nodes explored when searching for 5 000 solutions to 100-Sudoku.

Consistency Threads Search Threads
per Search Thread 1 2 4 8

1 763 827 784 204 958 969 1 002 032
2 763 827 784 980 920 223 881 475
4 763 827 785 547 915 305 894 489
8 763 827 784 443 923 470 886 828

1 2 4 8
0

1

2

3

4

5

6

1 2 4 8Consistency Threads per Search Thread

C
o
n
s
is

te
n
c
ie

s
 p

e
r

S
e
a
rc

h
 N

o
d

e

Search Threads

Fig. 9. Consistency enforcements per search node when searching for 200 solutions to Sudoku.

1 2 4 8
0

1

2

3

1 2 4 8Consistency Threads per Search Thread

C
o

n
s
is

te
n

c
ie

s
 p

e
r

S
e

a
rc

h
 N

o
d

e

Search Threads

Fig. 10. Consistency enforcements per search node when searching for 5 000 solutions to Sudoku.

5.3 Results for Queens

It is much harder to achieve an even load-balance for Queens than for Sudoku. The
structure of Queens is quite different from Sudoku. In Sudoku we only have global
constraints with a high time complexity. In Queens, there are lots of small constraints to
calculate the diagonals. Hence, for most of the execution, we have a very low processor
load if we only use parallel consistency [11].

We used Queens in order to illustrate how parallel consistency can be useful when
parallel search is not. Problems with little need for parallel consistency have more room
for the parallel search threads to execute. However, Queens is a highly constrained prob-

49

lem. Even with 550 queens, there are very few search nodes that need to be explored.
Hence, parallel search will usually only add overhead. However, adding parallel con-
sistency can compensate for the performance loss.

As shown in Table 8 and Fig. 11, parallel search reduces performance. However,
parallel consistency gives a speed-up even when we loose performance because of par-
allel search. We can also see that adding search threads can lead to sudden performance
drops. This is largely because we end up overloading the memory bus and the processor
cache. For eight search threads the performance increases compared to four threads.
The reason is that we find a solution in a more easily explored part of the search tree.

Table 9, Table 10, and Fig. 12 all support our earlier observation that the workload
increases heavily if we use barrier synchronization. The results come from that we have
to evaluate the simple constraints many more times if we do not share data between
them and the alldifferent constraints. The reason why we still get a speed-up is that the
alldifferent constraints totally dominate the execution time and do not have to be run
that much more often in parallel consistency.

Table 8. Execution times in seconds when searching for one solution to 550-Queens.

Consistency Threads Search Threads
per Search Thread 1 2 4 8

1 107 109 464 325
2 95 101 454 191
4 77 82 405 213
8 77 82 426 215

1 2 4 8
0

0.5

1

1.5

1 2 4 8Consistency Threads per Search Thread

A
b

s
o

lu
te

 S
p

e
e

d
-u

p

Search Threads

Fig. 11. Speed-up when searching for one solution to 550-Queens.

50

Table 9. Number of times consistency was called for the constraints in 550-Queens when search-
ing for one solution.

Consistency Threads Search Threads
per Search Thread 1 2 4 8

1 322 415 662 392 2 475 709 2 560 781
2 772 585 1 566 891 5 551 542 6 159 671
4 771 537 1 554 595 5 182 159 6 153 881
8 769 972 1 543 778 5 014 605 6 152 789

Table 10. Number of search nodes explored when searching for one solution to 550-Queens.

Consistency Threads Search Threads
per Search Thread 1 2 4 8

1 1 246 2 624 20 866 11 200
2 1 246 2 787 23 114 10 193
4 1 246 2 735 22 072 10 292
8 1 246 2 834 23 025 10 591

1 2 4 8
0

100

200

300

400

500

600

1 2 4 8Consistency Threads per Search Thread

C
o

n
s
is

te
n

c
ie

s
 p

e
r

S
e

a
rc

h
 N

o
d
e

Search Threads

Fig. 12. Consistency enforcements per search node when searching for one solution to Queens.

6 Conclusions

The main conclusion is that it is possible to successfully combine parallel search and
parallel consistency. However, it is very hard to do so. The properties of a problem, and
size of the search space determines whether parallelism is useful or not. When trying to
add two different types of parallelism, these factors become doubly important.

In general, if a problem is highly constrained, there is little room to add parallel
search. If it is not constrained enough, there will be too many inconsistent branches for
successfully adding parallel consistency. Finally, if a problem is reasonably constrained,
the size of the search space, the uniformity of constraints, and the time complexity of
the consistency algorithms determine whether fruitfully combining parallel search and
parallel consistency is feasible.

51

In order to make sure that parallel consistency becomes less problem dependent, the
need for synchronization must be reduced. This requires data to be shareable between
global constraints during their execution. Since pruning is monotonic, this should be
possible. However, it depends on the internal data structures used by the consistency
algorithms. Hence, parallel consistency algorithms for each constraints may be a better
direction of future research. Another interesting aspect is how much the order in which
the constraints are evaluated matter to the performance. This is especially important for
inconsistent states.

References

1. Marriott, K., Stuckey, P.J.: Introduction to Constraint Logic Programming. MIT Press,
Cambridge, MA, USA (1998)

2. Dechter, R.: Constraint Processing. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA (2003)

3. Rolf, C.C., Kuchcinski, K.: Load-balancing methods for parallel and distributed constraint
solving. Cluster Computing, 2008 IEEE International Conference on (2008) 304–309

4. Chu, G., Schulte, C., Stuckey, P.J.: Confidence-based work stealing in parallel constraint
programming. In Gent, I., ed.: Fifteenth International Conference on Principles and Practice
of Constraint Programming. Volume 5732 of Lecture Notes in Computer Science., Lisbon,
Portugal, Springer-Verlag (2009) 226–241

5. Schulte, C.: Parallel search made simple. In Beldiceanu, N., Harvey, W., Henz, M., Labur-
the, F., Monfroy, E., Müller, T., Perron, L., Schulte, C., eds.: Proceedings of TRICS: Tech-
niques foR Implementing Constraint programming Systems, a post-conference workshop of
CP 2000, Singapore (2000)

6. Michel, L., See, A., Hentenryck, P.V.: Parallelizing constraint programs transparently. In
Bessiere, C., ed.: CP. Volume 4741 of Lecture Notes in Computer Science., Springer (2007)
514–528

7. Rao, V.N., Kumar, V.: Superlinear speedup in parallel state-space search. In: Proceedings of
the Eighth Conference on Foundations of Software Technology and Theoretical Computer
Science, London, UK, Springer-Verlag (1988) 161–174

8. Sun, X.H., Chen, Y.: Reevaluating amdahl’s law in the multicore era. J. Parallel Distrib.
Comput. 70(2) (2010) 183–188

9. Nguyen, T., Deville, Y.: A distributed arc-consistency algorithm. Sci. Comput. Program.
30(1-2) (1998) 227–250

10. Ruiz-Andino, A., Araujo, L., Sáenz, F., Ruz, J.J.: Parallel arc-consistency for functional
constraints. In: Implementation Technology for Programming Languages based on Logic.
(1998) 86–100

11. Rolf, C.C., Kuchcinski, K.: Parallel consistency in constraint programming. PDPTA ’09:
The 2009 International Conference on Parallel and Distributed Processing Techniques and
Applications 2 (2009) 638–644

12. Schulte, C., Carlsson, M.: Finite domain constraint programming systems. In Rossi, F., van
Beek, P., Walsh, T., eds.: Handbook of Constraint Programming. Foundations of Artificial
Intelligence. Elsevier Science Publishers, Amsterdam, The Netherlands (2006) 495–526

13. Puget, J.F.: A fast algorithm for the bound consistency of alldiff constraints. In: AAAI/IAAI.
(1998) 359–366

14. Kuchcinski, K.: Constraints-driven scheduling and resource assignment. ACM Transactions
on Design Automation of Electronic Systems (TODAES) 8(3) (2003) 355–383

52

Third workshop on Techniques foR Implementing Constraint programming Systems (TRICS), 2010, pages 53–67,
St. Andrews, UK, 6 September 2010.

Implementing Efficient Propagation Control

Christian Schulte1 and Guido Tack2

1 KTH – Royal Institute of Technology, Sweden
2 Katholieke Universiteit Leuven, Belgium

Abstract. In propagation-based constraint solvers, propagators imple-
ment constraints by removing inconsistent values from variable domains.
To make propagation efficient, modern constraint solvers employ two
mechanisms of propagation control, event-based and prioritized propa-
gation. Events, such as a bounds change of a particular variable, control
which propagators need to be scheduled for re-evaluation. Prioritization
controls which of the scheduled propagators is executed next.
While it has been shown that the combination of event-based and priori-
ty-based scheduling is an efficient approach for propagation control, this
is the first publication on the implementation details of such a system.
This paper presents the design of efficient data structures for propagator
priority queues and the event system. The paper introduces the notions
of modification events and propagation conditions, which refine the event-
based model of propagation and yield an efficient implementation. The
presented architecture is the basis of Gecode.

1 Introduction

In propagation-based constraint solvers, each constraint is implemented by a
propagator, whose task it is to prune variable domains, removing values that are
inconsistent with the implemented constraint. The constraint solver executes the
propagators in turn until none of them can prune any domain any longer, thus
establishing a fixpoint.

The fixpoint computation is the core of the solving process, its efficiency in
terms of runtime and memory is vital for a solver’s performance. Apart from
actually executing the propagators, the solver has to perform efficient propaga-
tion control, which has two aspects: (1) if the propagator has modified some
variable domains, the solver decides which other propagators it has to reconsider,
or schedule, for propagation due to the changes; and (2) the solver picks one of
the scheduled propagators for execution.

The standard technique for (1) is to specify which events a propagator de-
pends on. An event describes how a particular variable has been changed, and a
propagator that depends on a certain event will only be scheduled if that event
happens. For example, a propagator for the constraint x ≤ y only depends on
the events that the lower bound of x or the upper bound of y changes. In any
other case, it cannot prune any variable domain and is thus at a fixpoint.

For (2), it is essential to organize the scheduled propagators in a queue (as
opposed to a stack, which can suffer from starvation). Furthermore, it can be

53

beneficial to prioritize propagators by their estimated runtime cost of propaga-
tion, first picking cheap propagators, and only later executing more expensive
ones that can then take advantage of the cheap pruning done before.

Schulte and Stuckey [16] have performed a thorough evaluation of event-based
and prioritized propagation.

Contributions. This paper develops implementation techniques and concrete
data structures for efficient event-based, prioritized propagation control. It es-
tablishes the notions of modification events and propagation conditions, which
are used to describe sets of events in a compact way. The paper develops in-
dexed dependency arrays as an efficient data structure for the dependencies,
and priority bucket queues for prioritized propagator scheduling. The developed
architecture has been fully implemented and is the basis of Gecode [5].

Plan. After setting up the preliminaries in Section 2, Section 3 introduces prop-
agation conditions and modification events, and Section 4 develops indexed de-
pendency arrays. Section 5 discusses prioritized propagation and presents the
priority bucket queue. Section 6 discusses related work, and Section 7 concludes
the paper.

2 Preliminaries

This section recapitulates propagator-centered propagation, presenting the basic
notions such as variables, propagators, and events.

Variables, constraints, domains, propagators. Constraint problems are
modeled in terms of variables, representing the objects of the problem, and
constraints, representing the relations that the objects are engaged in. In pro-
pagation-based constraint solvers, each variable has a variable domain, a set of
values that it can take.

A domain d is a function mapping variables to sets of values. The set of
values in d for a particular variable x, d(x), is called the variable domain of x.
A domain d is stronger than a domain d′, written d ⊆ d′, iff for all variables x,
d(x) ⊆ d′(x).

Each constraint is implemented by a propagator, whose task it is to prune the
domains. A propagator is a function that takes a domain and returns a stronger
domain, possibly removing inconsistent values from the variable domains.

The constraint solver executes the propagators in turn until none of them
can contribute any more pruning. The system thus reaches a mutual fixpoint.
For a discussion of the properties of propagators that guarantee fixpoints, see
[17]. Constraint propagation is incomplete, so the solver interleaves propagation
with tree search, which yields a sound and complete solution procedure.

A propagator is subsumed in a domain d if it is at a fixpoint for any stronger
domain d′ ⊆ d, i.e., p(d′) = d′. As subsumed propagators do not prune in the
remaining subtree of the search, they can be removed.

54

In this paper, we will use the terms variable, domain, and propagator more
freely, sometimes referring to the mathematical objects introduced above, some-
times referring to objects as implemented in a concrete constraint solver.

Events. An event describes how a variable domain was modified. Events are
used to determine which propagators have to be re-executed when a variable
domain is modified.

In the most basic event system, propagators only notify the solver of which
variables they are interested in. For example, a propagator for the constraint
x ≤ y only needs to be re-executed if either x or y has been modified since its
last execution.

Most solvers use more complex events, which not only describe which domains
have changed, but also how they have changed. A typical system for integer vari-
ables may consist of the events asn (the variable was assigned a value), lbc (the
lower bound changed), ubc (the upper bound changed), and dmc (the domain
changed). Events can overlap, for example, whenever the event lbc happens, also
dmc happens. Looking again at the x ≤ y example, the propagator only needs
re-execution when a lbc event on x or a ubc event on y happens.

An event e is characterized by a condition e(d(x), d′(x)) for two variable
domains d′(x) ⊆ d(x). For variable domains d′′(x) ⊆ d′(x) ⊆ d(x), it must satisfy
e(d(x), d′′(x)) if and only if e(d(x), d′(x)) or e(d′(x), d′′(x)). An event always
describes an actual domain modification: if d(x) = d′(x), then e(d(x), d′(x))
must be false.

We define the set events(d(x), d′(x)) := {e | e(d(x), d′(x))} for two variable
domains d′(x) ⊆ d(x). This construction ensures that events are monotonic, they
are never discarded by further changes to a variable domain. For three variable
domains d′′(x) ⊆ d′(x) ⊆ d(x), monotonicity implies that events(d(x), d′′(x)) =
events(d(x), d′(x)) ∪ events(d′(x), d′′(x)).

We say that an event e implies an event e′ (written e → e′) if and only if for
all variable domains d(x) and d′(x), e(d(x), d′(x)) implies e′(d(x), d′(x)).

Our example event system features the following implications:

asn

dmc

lbc ubc

A simple propagation loop. The goal of the propagation loop is to compute
a fixpoint of all propagators. Instead of re-executing all propagators in a loop,
constraint solvers typically keep track of which propagators are known to be at a
fixpoint; these are called idle. All other propagators are called active and are kept
in a data structure called the agenda. The propagation loop picks a propagator
p from the agenda, executes it, and determines which other propagators need to
be put on the agenda again, based on what kind of events p caused. When the
agenda is empty, propagation stops with a mutual fixpoint of all propagators.

The following pseudo-code is a high-level implementation of the propagation
loop, assuming an object-oriented implementation language where q is an agenda
of propagator objects, and each propagator object has a method propagate that

55

(destructively) performs the propagation. This code leaves out the details of how
the agenda q is implemented, or how the dependent propagators P are computed
exactly. The rest of this paper fills in these details.

fixpoint()

1 while not q.empty()
2 p = q.head()
3 q.idle(p)
4 p.propagate()
5 P = propagators depending on events generated by p
6 ∀p′ ∈ P : q.enqueue(p′)

Recomputation versus trailing. Constraint solvers backtrack during search:
The solver builds one path in the tree, and if it hits a failed state, it returns to a
previous search state, chooses a different alternative, and continues the search.

Backtracking can be implemented using two different techniques, trailing and
recomputation [15]. The former relies on storing undo information, which can be
used to revert all the changes made during propagation and search between the
failed state and the state that the solver is backtracking to. The latter, on the
other hand, stores information how to redo the steps between a copy of the state
higher up in the tree and the backtracking target state.

This paper describes the architecture of the Gecode [5] propagation kernel,
which is based on copying and recomputation. The data structures are therefore
designed to be memory efficient, because in a copying system, memory efficiency
immediately yields a runtime advantage, too.

3 Modification Events and Propagation Conditions

This section introduces the notions of modification events and propagation con-
ditions, which both capture different sets of events that a solver needs for prop-
agator scheduling.

In order to perform propagator scheduling, the solver needs to record which
events happen on which variables, and then determine the propagators that
depend on these events. We are thus dealing with two different types of sets of
events. A modification event is the set of events that happen when a variable
domain is modified. A propagation condition is the set of events on a particular
variable that a certain propagator depends on.

For example, when increasing the lower bound of an integer variable, the
corresponding modification event may be {lbc, dmc}. A propagator that reacts
to changes of either bound of a variable x has propagation condition {lbc, ubc} on
x. The solver schedules those propagators where for any variable, the intersection
of the modification event and the propagation condition is not empty.

Propagator scheduling is one of the critical operations of a constraint solver
kernel. The goal is therefore to make two operations as efficient as possible:

56

maintaining the set of events that has happened, and computing its intersection
with the propagation conditions.

This can be achieved by representing each modification event and each prop-
agation condition by an integer that can be used as an index into an appropriate
data structure that represents the dependencies, as developed in the following
section. The remainder of this section shows how to arrive at minimal definitions
for propagation conditions and modification events, in order to keep the integer
encoding as small as possible.

Propagation conditions. Some event sets are equivalent for the purpose of
propagator scheduling. For example, the event sets {lbc, dmc} and {dmc} are
equivalent, as lbc implies dmc. More generally, if a propagator should be sched-
uled by an event e, then it will also be scheduled by any event e′ such that
e′ → e. We therefore restrict propagation conditions to the equivalence classes
with respect to reverse implication:

A propagation condition π is a set of events that is closed under the converse
of implication: for any two events e and e′, if e ∈ π and e′ → e, then e′ ∈ π.

Our example event system yields the following propagation conditions:

{asn, lbc, ubc, dmc}
{asn, lbc, ubc}

{asn} {asn, lbc} {asn, ubc}
{lbc} {ubc} {lbc, ubc}

Modification events. Event-directed scheduling requires determining the set
events(d(x), d′(x)) when the domain changes from d to d′. Instead of comput-
ing this set from two given domains, an implementation will maintain a set of
events incrementally during propagation. Such a set of events represents the
modifications between two variable domains, and we call it a modification event.

Similar to propagation conditions, not all sets of events actually occur as
modification events in practice. For instance, the set {lbc} cannot occur, as an
lbc event always implies that a dmc event has happened, too. In general, we
therefore define that a modification event me is a set of events that is closed
under implication.

The definition implies that modification events are closed under union. This
makes it easy to maintain the set of events incrementally for any variable. Again,
as there are only few events in typical event systems, we can enumerate all mod-
ification events for a particular event system. An implementation can therefore
represent modification events as small integers. In our example event system,
we can simplify even further, as the asn event always implies either lbc or ubc.
Therefore, the modification event {asn, dmc} does not have to be represented.

The following modification events are therefore derived from the example
event system:

{asn, lbc, ubc, dmc}
{asn, lbc, dmc} {lbc, ubc, dmc} {asn, ubc, dmc}

{lbc, dmc} {dmc} {ubc, dmc}

57

The asn event. The event system presented above can be simplified further by
treating the asn event as if it implies any other event:

asn

dmc

lbc ubc

Consequently, the propagation conditions are now:

{asn, lbc, ubc, dmc}
{asn, lbc, ubc}

{asn} {asn, lbc} {asn, ubc}

And the modification events look as follows:

{asn, lbc, ubc, dmc}
{lbc, ubc, dmc}

{lbc, dmc} {dmc} {ubc, dmc}

In this simplified system, all propagators are executed at least once when all
variables are assigned. In a solver that is based on copying, this additional strong
invariant proves useful because it means that all propagators will eventually
test for and report subsumption. Subsumed propagators are removed from the
system and therefore do not have to be copied any longer, which saves memory
and runtime. Gecode uses the simplified system for all its variable types3.

4 Dependencies

This section develops the data structures that represent the propagator depen-
dencies.

The propagation loop in Section 2 defined scheduling in a high-level way:

P = propagators depending on events generated by p
∀p′ ∈ P : q.enqueue(p′)

Instead of collecting the events and then computing the set of propagators
to schedule, we embed the scheduling into the variable modification operations.
Whenever a propagator updates a variable domain in its propagate method,
the variable computes the corresponding modification event me and schedules
all propagators with corresponding propagation conditions.

The dependency data structure must therefore provide three basic operations:

– x.subscribe(p, π) adds the propagator p to the dependencies of x at prop-
agation condition π.

3 For integer variables, Gecode uses a single event bnd instead of two separate events
lbc and ubc. This was shown to be sufficient and increase efficiency [16]. We chose
the more complicated setup for this paper to be able to discuss the full system.

58

– x.cancel(p, π) removes the propagator p from the dependencies of x at prop-
agation condition π.

– x.schedule(πi, πj) iterates over the propagators between propagation con-
ditions πi and πj of x to schedule them.

The most important operation is iteration. It is performed whenever an event
happens, so we will design the data structure to be as efficient as possible in this
case. For subscription and canceling, efficiency is not quite as important, as they
happen less frequently.

We enforce a strong contract between propagators and the dependencies. A
propagator must not cancel subscriptions that it has not established before, and
it must cancel all its subscriptions when it ceases to exist (e.g. because it detects
subsumption). We will discuss below why the invariants enforced by this contract
are important.

Furthermore, the data structure must be backtrackable, i.e., the solver must
be able to revert it to a previous state. We will discuss how to achieve this using
either copying or trailing.

4.1 Indexed dependency arrays

The most efficient data structure for fast iteration is an array. So, in principle,
we could have one array of propagators per propagation condition. However, in
practice a single modification event often triggers several propagation conditions.

The dependencies are therefore stored in a single dependency array dep,
sorted by propagation condition. In addition, we maintain the dependency index
idx, which partitions the dependency array by propagation condition. Figure 1
shows this architecture.

Propagators p1 p2 p3 p4 p5 p6 p7 p8 p9

Dependency array dep =

Dependency index idx =
π0 π1 π2 π3 πend

Fig. 1: Dependency data structures

For each propagation condition πi, the dependency index points to the first
propagator in the dependency array that is subscribed with πi. For example, the
first propagator subscribed with π1 in Figure 1 is dep[idx[π1]] = p7. To iterate

59

subscribe(p, πi)

1 for j = k downto i
2 dep[idx[πj+1]] = dep[idx[πj]]
3 idx[πj+1] = idx[πj+1] + 1
4 dep[idx[πi]] = p

(a)

cancel(p, πi)

1 jp = idx[πi]
2 while dep[jp] 6= p do jp = jp + 1
3 dep[jp] = dep[idx[πi+1] − 1]
4 for j = i + 1 to k
5 dep[idx[j] − 1] = dep[idx[πj+1] − 1]
6 idx[πj] = idx[πj] − 1
7 idx[πend] = idx[πend] − 1

(b)

Fig. 2: Subscribing (a) and canceling (b)

over all propagators subscribed with a certain propagation condition πi, we start
at dep[idx[πi]] and finish at dep[idx[πi+1]−1]. There is one additional propaga-
tion condition, πend, so that πi+1 and idx[πi+1] are defined for all propagation
conditions πi.

Again for the example in Figure 1, scheduling all propagators that are sub-
scribed with propagation condition π1 would amount to scheduling the propa-
gators p7 and p8. No propagator is subscribed with π2 (as idx[π2] = idx[π3]).
Through this index data structure, iterating over all propagators subscribed with
a particular propagation condition is as efficient as possible, taking constant time
per propagator, and with low constants in practice.

We can now define the method schedule(πi, πj), which schedules all propaga-
tors starting at propagation condition πi and finishing at propagation condition
πj . For the above example, schedule(π0, π2) would thus schedule p1, p2, p5, p7,
and p8. The following code implements schedule, assuming a method enqueue

that puts a propagator into the right queue:

schedule(πi, πj)

1 for k = idx[πi] to idx[πj+1] − 1
2 enqueue(dep[k])

4.2 Subscribing and cancelling

The remaining operations to be defined are subscribing and canceling. Subscrib-
ing a propagator p with propagation condition πi means adding it at the appro-
priate position to the dependency array and modifying the index accordingly.
Assuming that the dependency array is resized dynamically, subscription can be
implemented to have amortized run-time O(k−i) as shown in Figure 2(a). First,
some space is cleared for the new subscription at dep[idx[πi]] (lines 1–3). Then
the new subscription is entered (line 4).

A subscription can be canceled in O(idx[πi+1] − idx[πi] + i) (Figure 2(b)).
The while loop in line 2 finds the index of p in the dependency array (note that

60

the loop is only correct if the propagator is actually subscribed to the variable).
After finding the index jp, the position dep[jp] is reused (lines 3–7).

Assigned variables. Variables that are assigned, i.e., whose domain is a single-
ton, cannot produce any events any more. Therefore, subscribing and canceling
on these variables is useless, and the overhead can be avoided by a simple check.

Scheduling upon subscription. A propagator typically subscribes to its vari-
ables when it is created. A newly created propagator must be scheduled for exe-
cution (otherwise, no propagation would happen for the first fixpoint). There is
one exception: If the propagator subscribes only with {asn} propagation condi-
tions and none of the variables is assigned, it does not have to be scheduled.

Rewriting. A special case of canceling and subscribing is propagator rewriting.
E.g., consider the case when all but two variables in a long linear equation are
assigned. Then the propagator for the linear equation can be rewritten to a sim-
pler, more efficient binary version. The old propagator cancels its subscriptions,
and the new propagator subscribes. Note that this order is essential: it means
that the dependency arrays will not need resizing, as the old propagator leaves
enough space for the new one.

4.3 Scheduling

When a variable domain is modified resulting in a modification event me, the
variable determines which ranges of propagation conditions intersect with me
(this is implemented as a lookup table), and then schedules each of those ranges
πi, πj using schedule(πi, πj).

Assume the following enumeration of the propagation conditions of our sim-
plified event system:

π4 = {asn, lbc, ubc, dmc}
π3 = {asn, lbc, ubc}

π0 = {asn} π1 = {asn, lbc} π2 = {asn, ubc}

The scheduling then looks as follows:

1 case me of
2 {asn, lbc, ubc, dmc}: x.schedule(π0, π4)
3 {lbc, ubc, dmc}: x.schedule(π1, π4)
4 {lbc, dmc}: x.schedule(π1, π1); x.schedule(π3, π4)
5 {ubc, dmc}: x.schedule(π2, π4)
6 {dmc}: x.schedule(π4, π4)

61

4.4 Copying and trailing

Dependencies can be modified dynamically. For example, a propagator may “lose
interest” in some of its variables, if it can determine that no further change of
their domains will cause any propagation. Or, propagators can replace themselves
with simpler versions. Or, in the most dynamic case, the propagator only needs
subscriptions to a dynamically changing subset of the variables, such as for the
watched literals technique [12,7].

In most of these cases, the dependencies must be backtrackable. We can
achieve this either by copying them, or by trailing any changes [15].

Copying. When copying the dependency arrays, it is advantageous to allocate
enough memory for all dependency arrays of all variables in one block. That
way, the copy will be compact and the overhead for allocation is low.

Trailing. Dynamic dependencies change infrequently (typically much less than
variable domains). A simple trailing scheme that stores a function pointer to-
gether with the data which dependency needs to be changed works well [15].

5 Propagator Priority Queue

This section develops a priority queue data structure that provides efficient op-
erations for priority-based propagator scheduling. We first recapitulate priority-
based propagator scheduling, and then present the priority bucket queue.

5.1 Propagator priorities

Schulte and Stuckey showed [16] that propagator priorities are an important
technique for efficient propagator scheduling4.

Obviously, prioritized propagation requires some measure to determine a
propagator’s priority. For this paper, we assume that priorities model the es-
timated runtime cost of propagation. The execution of propagators with high
estimated runtime cost is postponed, so that they can take advantage of the
pruning of the cheaper propagators that are run first.

A straightforward way to estimate the cost is to classify the propagators
according to their algorithmic complexity. We will use the following system
of costs and priorities: unary = 7, binary = 6, ternary = 5, linear = 4,
quadratic = 3, cubic = 2, veryslow = 1. The names suggest the arity of
the corresponding propagator (for the highest three priorities), or the asymp-
totic run-time for n-ary propagation algorithms. The cost of propagation often
changes dynamically. For instance, a typical algorithm for propagating linear
equations has an asymptotic run-time linear in the number of unassigned vari-
ables. Accordingly, when all but three variables are assigned, the cost should be
reported as ternary instead of linear.

4 Priorities are particularly useful for implementing staged propagation [16], which is
out of the scope of this paper, but can be implemented easily on top of the presented
prioritized, event-based system.

62

5.2 Priority bucket queue

For our purposes, the priority queue must provide four operations:

– enqueue(p) adds propagator p at the priority determined by its cost method.
If p is already in the queue, it is re-prioritized according to its current cost.

– empty() tests whether the queue is empty.
– head() returns the oldest propagator at the highest priority.
– idle(p) removes propagator p from its current queue and marks it as idle.

All four operations are performed extremely often during the fixed point com-
putation, and are hence crucial for the solver’s performance.

Common algorithms for priority queues are based on variations of the heap
data structure (see for example [11,3]). Heaps support an arbitrary number of
priority levels. For most types of heaps, the run-time complexity of the enqueue
and dequeue operations depends on the number of elements in the queue. For
example, using binary heaps, both operations require time in O(log n) if n is the
number of elements in the queue.

In order to make enqueue and dequeue as efficient as possible, we restrict
the number of priority levels to a small, fixed set of integers (such as the cost
values introduced above). Then, a priority queue based on buckets can be used
(see [11]), providing constant-time enqueue and dequeue operations. We will
now see how a bucket-based priority queue of propagators can be implemented.

The bucket queue. A bucket-based priority queue consists of an array of
doubly-linked lists of propagators. The list at array index i represents the queue
of propagators at priority i. Furthermore, a propagator can only be in one queue
at a time. We can hence embed the links for the doubly-linked lists into the
propagator objects. In addition to the lists for each priority, the solver maintains
the list of idle propagators, the so-called idle queue (in our case modeled as
priority 0). The invariant is then that a propagator is always in exactly one
queue.

Each list of propagators is cyclic and terminated by a sentinel element. The
sentinels are kept in an array that represents the priority queue. Figure 3 depicts
an example of this architecture. An empty queue is depicted as a sentinel with
a simple cycle (as at priority k − 1).

This implementation of a bucket queue yields efficient access. Inserting and
removing a propagator can be done in constant time—unlink it from its cur-
rent queue, and link it at the position before the sentinel element of the target
queue. Finding the next propagator to schedule costs at most k tests. Queues
are managed as follows:

– The solver can access the queue with priority i as Q[i].
– p.next() returns the propagator following p in the linked list.
– p.unlink() removes propagator p from its current queue.
– Q[i].tail(p) adds p as the last propagator to the queue with priority i.

63

Sentinel Propagators

idle p6 p4 p3

prio. 1 p7 p2 p1 p9

prio. k − 1

prio. k p5 p8

Fig. 3: Propagators in prioritized queues

A propagator is added to the queue that corresponds to its cost, which it
reports using the cost method. The following code implements the enqueue,
head, and idle methods, as well as a method empty that reports whether all
queues except the idle queue are empty, indicating that propagation has reached
a fixpoint.

enqueue(p)

1 p.unlink() // remove p from current queue
2 Q[p.cost()].tail(p) // put p into new queue

head()

1 for i = k downto 1
2 if Q[i].next() 6= Q[i] then return Q[i].next()

idle(p)

1 p.unlink() // remove p from current queue
2 Q[0].tail(p) // put p into idle queue

empty()

1 for i = k downto 1
2 if Q[i].next() 6= Q[i] then return false
3 return true

Avoiding re-scheduling of propagators. The code above schedules a prop-
agator anytime its propagation condition matches a modification event. This
involves unlinking the propagator, re-evaluating its cost, and putting it into
the queue again. If the propagator already was in the queue due to a previous
variable modification, the overhead of re-scheduling it should be avoided.

64

As an indication of whether the propagator is already in the correct queue,
we will use the set of events since its last invocation, called the modification event
delta ∆me, and store it in every propagator. Before executing a propagator, it
is set to the empty set. The schedule method then takes the modification event
that caused the scheduling as an additional argument:

schedule(πi, πj ,me)

1 for k = idx[πi] to idx[πj+1] − 1
2 if me * dep[k].∆me then
3 dep[k].∆me = dep[k].∆me ∪ me
4 enqueue(dep[k])

Line 2 makes sure that a propagator is only added to the queue if the new
modification event me is not already contained in the propagator’s modification
event delta. This is correct because if me ⊆ dep[k].∆me, then the propagator
has already been put into the queue before through line 3.

Memory and run-time efficiency. The bucket queue is as efficient as possible,
both in terms of memory requirements and run-time. The asymptotic run-time
for all operations is a small constant if we restrict the priorities to a small, fixed
set. Priority-based scheduling with a fixed number of priorities is the standard in
all propagation-based solvers (see Section 6), and has proven effective in practice.
In terms of memory, this architecture requires two pointers per propagator for
the doubly-linked list, which, theoretically, is an overhead of one pointer per
propagator compared to an array-based implementation. However, using arrays
for the queues would require dynamic resizing, which again costs memory and/or
runtime. In practice, embedding the double links in the propagator objects is
therefore without overhead.

6 Related Work

Most constraint solvers are based on propagator-centered, event-directed, prior-
itized propagation as presented in this paper.

◮ SICStus Prolog [1] employs a priority queue of propagators, using two
priority levels.
◮ Mozart OZ [13] maintains a two-level priority queue of propagators, and
scheduling is based on events. Mozart offers additional priorities for non-mono-
tonic propagators (as described in [14]): each non-monotonic propagator gets its
own priority level, effectively fixing the order in which non-monotonic propaga-
tors are run and hence maintaining the guarantee to compute a unique fixed
point.
◮ Eclipse Prolog [18] has a feature called suspension, which attaches a Prolog
goal to finite domain variables. When the variable domain changes, the goal,
which may implement a propagator, is scheduled. The Eclipse system features
twelve priority levels, but like SICStus and Mozart, its finite domain solver only
makes use of two levels.

65

◮ B-Prolog [19] queues action rules, which correspond to propagator invoca-
tions. A particularity of B-Prolog is that the same propagator can appear several
times in the queue, once for each variable that triggered its scheduling.
◮ Choco [9] provides a sophisticated priority system with seven levels and both
FIFO and LIFO scheduling, but is not propagator-centered, as explained below.

Variable-centered propagation. In our setup, the agenda holds the prop-
agators that are not necessarily at a fixed point. Some solvers, notably ILOG
Solver [8], Choco [2], and Minion [6], use an alternative approach: an agenda
of modified variables instead of an agenda of propagators. A solver that bases
scheduling on an agenda of variables performs variable-centered propagation.

ILOG Solver, Choco, and Minion actually implement a hybrid approach.
When a modified variable is taken from the queue, its dependent propagators
can either be run immediately, or put into a queue of propagators.

The advantage of variable-centered over propagator-centered propagation is
that whenever a propagator is invoked, the information which variable exactly
triggered the propagation is directly available. The propagator can take this
information into account in order to compute the new domain incrementally,
without recomputing from scratch. Lagerkvist and Schulte [10] show how advi-
sors can be used to implement incremental propagation in a propagator-centered
system. Their implementation is a straightforward extension of the data struc-
tures presented in this paper.

Propagator queues. It is folklore knowledge that propagators should be sched-
uled in a FIFO fashion. Similarly, using events to prevent gratuitous scheduling
of propagators has been used in constraint solvers for a long time—one can ar-
gue that it was already present in the early DPLL algorithm [4]. Schulte and
Stuckey [16] perform detailed experiments with different agenda strategies as
well as priority queues, substantiating this folklore knowledge with empirical ev-
idence. They also provide a comprehensive study of events, including a detailed
experimental evaluation of different event schemes, fixed point reasoning, and
staged propagation.

7 Conclusions

This paper developed an architecture and concrete data structures for event-
based, prioritized propagator scheduling. It introduced the notions of modifica-
tion events and propagation conditions, which capture exactly the sets of events
that occur during propagator scheduling. Based on these notions, the paper de-
veloped indexed dependency arrays, an efficient data structure for storing and
accessing the dependency information.

Furthermore, the paper presents the design of priority bucket queues, which
are used to implement propagator scheduling prioritized by estimated cost of
propagation.

The presented data structures are the core of the Gecode constraint solver,
one of the most efficient solvers available today.

66

Acknowledgements. The authors would like to thank Mikael Z. Lagerkvist for
many discussions about details of the Gecode architecture, and the anonymous
reviewers for helpful comments that improved this version of the paper.

References

1. Mats Carlsson, Greger Ottosson, and Björn Carlson. An open-ended finite domain
constraint solver. In Hugh Glaser, Pieter H. Hartel, and Herbert Kuchen, editors,
PLILP’97, volume 1292 of LNCS, pages 191–206. Springer, 1997.

2. CHOCO, 2010. http://choco-solver.net.
3. Thomas M. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

Introduction to Algorithms. MIT Press, 2nd ed. edition, 2001.
4. Martin Davis, George Logemann, and Donald Loveland. A machine program for

theorem-proving. Communications of the ACM, 5(7):394–397, 1962.
5. Gecode, generic constraint development environment, 2010.

http://www.gecode.org.
6. Ian P. Gent, Christopher Jefferson, and Ian Miguel. Minion: A fast scalable con-

straint solver. In Gerhard Brewka, Silvia Coradeschi, Anna Perini, and Paolo
Traverso, editors, ECAI 2006, pages 98–102. IOS Press, 2006.

7. Ian P. Gent, Christopher Jefferson, and Ian Miguel. Watched literals for constraint
propagation in Minion. In Frédéric Benhamou, editor, CP 2006, volume 4204 of
LNCS, pages 182–197. Springer, 2006.

8. ILOG Solver, part of ILOG CP, 2009. http://www.ilog.com/products/cp.
9. F. Laburthe. Choco: Implementing a CP kernel. In TRICS, pages 71–85, September

2000.
10. Mikael Z. Lagerkvist and Christian Schulte. Advisors for incremental propagation.

In Christian Bessière, editor, CP 2007, volume 4741 of LNCS, pages 409–422.
Springer, 2007.

11. Kurt Mehlhorn and Stefan Näher. LEDA - A platform for combinatorial and
geometric computing. Cambridge University Press, 1999.

12. Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad
Malik. Chaff: engineering an efficient SAT solver. In DAC ’01, pages 530–535, New
York, NY, USA, 2001. ACM Press.

13. The Mozart programming system, 2009. http://www.mozart-oz.org.
14. Tobias Müller. Constraint Propagation in Mozart. Doctoral dissertation, Univer-

sität des Saarlandes, Naturwissenschaftlich-Technische Fakultät I, Fachrichtung
Informatik, Saarbrücken, Germany, 2001.

15. Raphael M. Reischuk, Christian Schulte, Peter J. Stuckey, and Guido Tack. Main-
taining state in propagation solvers. In Ian Gent, editor, CP 2009, volume 5732 of
LNCS, pages 692–706. Springer, 2009.

16. Christian Schulte and Peter J. Stuckey. Efficient constraint propagation engines.
Transactions on Programming Languages and Systems, 31(1):2:1–2:43, dec 2008.

17. Christian Schulte and Guido Tack. Weakly monotonic propagators. In Ian Gent,
editor, Proceedings of the 15th international conference on principles and practice
of constraint programming, volume 5732 of LNCS, pages 723–730. Springer, 2009.

18. Mark Wallace, Stefano Novello, and Joachim Schimpf. Eclipse: A platform for
constraint logic programming. Technical report, IC Parc, Imperial College, London,
1997.

19. Neng-Fa Zhou. Programming finite-domain constraint propagators in action rules.
Theory and Practice of Logic Programming, 6:483–507, 2006.

67

Third workshop on Techniques foR Implementing Constraint programming Systems (TRICS), 2010, pages 68–82,
St. Andrews, UK, 6 September 2010.

Handling Heterogeneous Constraints in Revision
Ordering Heuristics

Julien Vion and Sylvain Piechowiak

Université de Valenciennes et du Hainaut Cambrésis,
LAMIH CNRS FRE 3304,

59313 Valenciennes Cedex 9, France.
{julien.vion|sylvain.piechowiak}@univ-valenciennes.fr

Abstract. Most constraint solvers use the general AC-5 scheme [17] to
handle constraint propagation. AC-5 generalizes the concept of constraint
revision. Each constraint type can thus be shipped with its own revision
algorithm, with various complexities and performances.
Previous papers showed that the order in which constraints are revised
have a non-negligible impact on performances of propagation [20,6,1].
However, most of the ideas presented on these papers are based on the use
of homogeneous propagators for binary constraints defined in extension.
This paper give ideas to handle heterogeneous constraints in a general
revision schedule.

1 Introduction

The constraint satisfaction problem (CSP) consists in deciding whether a so-
lution to a discrete constraint network (CN) exists. A CN consists in a set of
discrete variables and constraints. Each constraint has one or more variables in
its scope, and defines which instantiations of these variables are allowed. A solu-
tion to the CN is an instantiation of all variables which satisfies all constraints.
The CSP is a standard NP-complete problem and generalizes very naturally
many real-life industrial problems such as scheduling, rostering, etc.

Standard techniques for solving CSP instances use interleaved decision, prop-
agation and backtrack steps. Most often, the propagation phase consists in es-
tablishing arc consistency by pruning all values that are inconsistent (i.e. cannot
appear in any solution of the CSP according to the current decisions) from the
point of view of a single given constraint. The resulting search algorithm is called
MAC (see Page 2). The AC function performs the propagation step (see below),
and returns false if the CN is inconsistent (e.g., one variable domain is empty).
N = > means that the CN is trivially consistent (e.g., there are no constraints,
or all variable domains are singletons). In the given algorithm, δ should not be
trivially implied by N , and the final disjunction has a short-circuit behavior.
This algorithm is of course very schematic. In particular, users are often inter-
ested in obtaining a solution, not simply knowing that one exists. Obtaining a
consistent solution from the given algorithm is trivial. The nature of the decisions
δ is a major issue in Constraint Programming. Standard all-purpose algorithms

68

Function MAC(N): boolean
1 N ′ ← N ;
2 if ¬AC(N ′) then return false;
3 if N ′ = > then return true;
4 Let δ be some logical decision;
5 return MAC(N ′|δ) ∨ MAC(N ′|¬δ);

usually make variable assignements (reduce the domain of a chosen variable to a
singleton). The choice of the variable is important. Common decision heuristics
are the dom/ddeg or dom/wdeg variable assignment ordering heuristics [5].

Removing values that are inconsistent w.r.t. a given constraint is called a
constraint revision and propagation algorithms are designed to perform such re-
visions until some fix-point is reached. As constraint revisions are NP-hard in
the general case (i.e. without any clue on the semantics of the constraint), for a
long time, CSP were limited so as only to involve binary constraints (two vari-
ables per constraint). The binary CSP is NP-complete, but AC can be enforced
on any binary CN in polynomial space and time.

Dozens of algorithms have been proposed during the last 40 years for per-
forming the propagation step: AC-1 to AC-8, numerous variants of AC-3, etc.
Most of these algorithms are actually the combination of a propagation and a
general constraint revision algorithms (either NP-hard or limited to binary con-
straints). However, two propagation algorithms, AC-5 [17] and GAC-schema [3],
consider a generic revision process, and thus generalize most other algorithms.
In particular, AC-5 opened enormous perspectives to constraint programming.
The main idea of AC-5 is that each constraint in the CN has semantic proper-
ties, that can be exploited by a specific (often polynomial) algorithm to perform
the constraint revision. Thus, CSP solvers provide a “toolbox” of known useful
constraints (less than, not equal, sum, all different. . .), each of which is shipped
with its own propagator. This scheme gave birth to global constraints [2], which
permitted to reuse powerful graph theory, artificial intelligence or operational
research algorithms for performing constraint revision, and are now of primary
importance to handle industrial-class problems. Most modern constraint solvers
are based on AC-5.

AC-5, as all AC algorithms since AC-3 [12], are based on a propagation queue.
When a variable loses a value, constraints involving this variable may no longer
be AC, and requires to propagate the removed value to other variables. The
propagation queue is used to keep track of such modifications, from which the
propagation algorithms deduce which constraint revisions must be performed.
The nature of the data stored in the queue (values, constraints and/or variables),
as well as the order in which the different constraint revisions are processed,
have a significant impact on the performance of the propagation. Works have
been dedicated to devise a “good” ordering of the revisions [20,6,1], but they
are usually focused on binary CSP with general propagators. Applying these
techniques to heterogeneous propagators may lead to trivial pathological cases.

69

Note: in this paper, we distinguish generic from general concepts. A generic
scheme can be specialized to the most efficient technique for the sought problem.
A general algorithm works on any problem without specialization.

The contributions of this paper are :

1. establish a clear state-of-the-art on coarse-grained, generic propagation al-
gorithms (Section 3),

2. define a generic, constraint-based revision ordering heuristic (Section 4.2),
3. survey data structures proposed in the algorithmic literature and show exper-

imentally how they can improve the performance of propagation algorithms
(Section 4.3).

2 Background

Definition 1 (Constraint Network, Variable, Domain, Constraint, In-
stantiation). A Constraint Network N is a pair (X ,C) which consists of :

– a set of n variables X ; a domain dom(X) is attached to each variable X ∈
X and denotes the finite set of at most d values that the variable X can be
instantiated to, and

– a set of e constraints C ; each constraint C ∈ C involves at most k variables
vars(C) ⊆ X ; the constraint specifies the allowed instantiations for these
variables.

The set of constraints with a given variable X in scope is denoted ctr(X).
A constraint can be defined in extension (i.e., an exhaustive list of allowed

or forbidden instantiations), or in intention (i.e., using some application fC :∏
X∈vars(C) dom(X) → B). Global constraints define some property of arbitrary

arity that the values of the variables in its scope must verify (e.g., all different).
The Constraint Satisfaction Problem (CSP) consists in deciding whether a

solution to a CN (i.e., an instantiation of all variables satisfying all constraints
of the CN) exists. A constraint check consists in testing whether a constraint
allows a given instantiation of variables. When all constraints can be checked in
polynomial space and time, the CSP is NP-complete.

Definition 2 (Arc consistency). Let C be a constraint and X ∈ vars(C).
Value v ∈ dom(X) is Arc-Consistent (AC) w.r.t. C iff there exists an instantia-
tion of vars(C), allowed by C, which instantiates X to v (such an instantiation
is called a support of v w.r.t. C). C is AC iff ∀X ∈ vars(C), ∀v ∈ dom(X), v
is AC.
N = (X ,C) is AC iff ∀C ∈ C , C is AC.

In the literature, the definition of Arc Consistency is often restricted to binary
CNs, and the extension of AC to non-binary CNs is called Generalized AC,
Hyper-AC, or Domain Consistency. In this paper we refer to Arc Consistency
for both binary and non-binary CNs.

70

Definition 3 (Closure). Let N = (X ,C) be a constraint network. AC(N , C)
is the closure of N for AC on C, i.e. the CN obtained from N where ∀X ∈
vars(C), all values v ∈ dom(X) that are not AC w.r.t. C have been removed.

AC(N) is the closure of N for AC, i.e. the CN obtained from N where
∀C ∈ C , C have been made AC by closure.

For any CN N (X ,C), AC(N , C) for any C ∈ C and AC(N) are unique. In
the general case, computing the closure for AC on a CN is NP-hard. Optimal
algorithms such as GAC-schema are in O(ekdk) [3].

Definition 4 (Propagator). Given a CN N = (X ,C), the propagator for a
given constraint C ∈ C is the algorithm that computes AC(N , C).

3 A generic, coarse-grained propagation algorithm

This section does not intend to bring out innovative propagation algorithms,
but instead aims to establish a clear state-of-the-art of coarse-grained, generic
propagation techniques.

The main difference between AC algorithms lies in the way the general con-
straint propagator works. However, independently of the general propagator,
these algorithms are often sorted in two families, depending on the nature of
the data stored into the propagation queue. So-called fine-grained algorithms
store every single value that have been removed from the domain of the differ-
ent variables in the propagation queue, and try to exploit this information to
avoid unecessary work. Coarse-grained algorithms only store the variable where
a value have been removed, and/or constraints involving them, that thus must
be revised. Although using fine-grained propagation queues is essential in de-
signing optimal algorithms, the theoretical difference is at best marginal (the
coarse-grained GAC-2001 algorithm is in O(ek2dk) [4]), and the simpler data
structures used by coarse-grained algorithms usually make them as much effi-
cient in practice.

Mackworth’s original AC-3 algorithm [12] was arc-oriented, that is, the prop-
agation queue was composed of (Variable,Constraint) pairs. The Variable part
of the pair identifies a variable which is not guaranteed to be AC w.r.t. the
Constraint. McGregor showed in [13] that a similar behavior could be obtained
by simply storing the modified variables in the queue. However, when working
with non-binary constraints, variable-oriented propagation is not informative
enough to avoid all useless revisions: when two variables involving the same
non-binary constraint are in the queue, the domain of each variable involved by
the constraint should be controlled for arc-consistency only once.

Boussemart et al. proposed in [6] to introduce an auxiliary data structure we
call modified[C] to emulate the benefits of an arc-oriented propagation scheme
in a variable-oriented propagation algorithm. It is used to keep track of which
variables have been actually modified since the last revision of a constraint.
Interestingly enough, this auxiliary data structure can also be used to devise
a purely constraint-oriented propagation algorithm which avoids these useless

71

Algorithm 1: AC-5v(N = (X ,C)) : CN
1 Q← X ;
2 foreach C ∈ C do modified[C]← vars(C);
3 while Q 6= ∅ do
4 Pick X from Q;
5 foreach C ∈ ctr(X) s.t. modified[C] 6= ∅ do
6 ∆← C.revise(modified[C]) ;
7 if ∆ = ⊥ then return false ;
8 Q← Q ∪∆;
9 modified[C]← ∅;

10 foreach Y ∈ ∆ do
11 foreach C′ ∈ ctr(Y)\C do
12 modified[C′]← modified[C′] ∪ {Y };

13 return true;

revisions. The version presented here is slightly optimized (with O(k) overhead
in Algorithm 3 against O(k2) in the original version).

The original AC-5 algorithm was fine-grained, so we propose our coarse-
grained variants.

3.1 Variable-oriented propagation

In AC-5v (Algorithm 1), the propagation queue Q contains recently modified
variables, which require the revision of the constraints involving them (loop
starting on Line 5). Initially, all variables are put in Q, however, when using the
MAC procedure, only variables involved by the decisions δ are concerned.

The call to C.revise(modified[C]) on Line 6 calls C’s propagator, which
may remove values from vars(C). The propagator returns a set ∆ ⊆ vars(C) of
modified variables,1 or ⊥ if an inconsistency has been detected (e.g., the domain
of a variable has been emptied).

3.2 Constraint-oriented propagation

In this variant, called AC-5c (Algorithm 2), constraints yet to be revised are
stored in the queue. This leads to a somewhat simpler algorithm and finer queue,
but the modified data structure is even more important to avoid unecessary work:
when a constraint C is put in the queue due to some removals in the domain of
a variable X involved by C, C’s propagator only needs to control the domains
of the other variables for arc consistency.

72

Algorithm 2: AC-5c(N = (X ,C)) : CN
1 Q← C ;
2 foreach C ∈ C do modified[C]← vars(C);
3 while Q 6= ∅ do
4 Pick C from Q;
5 ∆← C.revise(modified[C]) ;
6 if ∆ = ⊥ then return false ;
7 modified[C]← ∅;
8 foreach Y ∈ ∆ do
9 foreach C′ ∈ ctr(Y)\C do

10 Q← Q ∪ {C′};
11 modified[C′]← modified[C′] ∪ {Y };

12 return true;

Algorithm 3: reviserm(modified: {Variable}): {Variable}
1 ∆← ∅;
2 foreach X ∈ vars(this) s.t. modified 6= {X} do
3 foreach v ∈ dom(X) s.t. this.res[X][v] is not valid do
4 τ ← this.findSupport(X, v) ;
5 if τ = ⊥ then
6 remove v from dom(X);
7 if dom(X) = ∅ then return ⊥;
8 ∆← ∆ ∪ {X};
9 else

10 foreach Y ∈ vars(this) do this.res[Y][τ [Y]]← τ ;

11 return ∆;

3.3 The AC-3rm propagator

To illustrate the use of our AC-5v/AC-5c scheme, we give a sample general propa-
gator, called reviserm, extracted from the AC-3rm algorithm [9] and extended to
handle non-binary constraints (Algorithm 3). this denotes the current constraint.
τ is a tuple containing a value, denoted τ [X], for every variable X ∈ vars(C). τ
is said to be valid iff ∀X ∈ vars(C), τ [X] ∈ dom(X). The findSupport method
seeks for an allowed, valid tuple supporting the given value for the current con-
straint, and returns ⊥ if no such tuple can be found. If a support is found, it is
recorded as a residue [11], exploiting the multidirectionality of the constraints.
A most interesting feature of residues is that they are stable on backtrack, that
is, when using the MAC procedure, residues that are found at some point of the
search tree will also be valid after a backtrack. No update of the data structures
is thus necessary upon backtracking.
1 Many solvers use events to avoid the management of ∆ sets.

73

reviserm may be considered as the state-of-the-art algorithm to propagate,
within MAC and using coarse-grained propagation queues, constraints defined in
extension.2 It can be used as a “fallback” propagator when no better algorithm
exists or is implemented yet. Many efficient propagators may also be built on
this algorithm, simply by specializing the findSupport method: although the
standard behavior consists in iterating over all the O(dk−1) valid tuples, checking
the constraint (in O(k)) until an allowed tuple is found, better methods may be
devised when working with known constraints. For example, with the X = Y +Z
constraint, a support for a value x ∈ dom(X) can be found in O(d): the algorithm
iterates over the values y ∈ dom(Y), and checks whether the value z = x− y ∈
dom(Z).

4 Managing the propagation queue

Note: In this paper, all heuristics and sorting algorithms are min-based (mini-
mum value first). Of course, it is perfectly feasible to reverse all comparisons to
obtain max-based heuristics and sortings, without any impact on the algorithms
and complexities.

4.1 Related work on ordering heuristics

The order in which the constraints are revised has an important impact on the
performance of the propagation, and several works have been devoted to devise
a good heuristic to know which constraint to propagate first. The original work
is by Wallace & Freuder [20]. In their work, they study the impact of various
ordering heuristics in an arc-oriented AC-3 propagation algorithm, restricted to
binary CSPs. The heuristics devised by Wallace & Freuder follow this principle:
for an efficient propagation, values should be filtered as soon as possible, so most
constraining constraints should be propagated first.

Of course, it is very difficult to predict how strong a constraint is beforehand.
Wallace & Freuder use the tightness (proportion of instantiations forbidden by
the constraint) as an heuristic to estimate the strength of the constraint, which is
reasonable when working on small binary CSP. However, computing the tightness
of a general constraint is #P -hard. Proposed less time-consuming alternatives
consider the domain size (we call this the dom heuristic) or the degree of the
variable in the arc. Note that even when working on tiny binary CSP, Wallace
& Freuder’s best results were obtained by applying an heuristic before the first
propagation (using a pigeonhole sort algorithm), and rely on simple queues or
stacks afterwards. An interesting alternative, proposed by Balafoutis & Stergiou
in [1], is to exploit the constraint weights obtained from the dom/wdeg variable
assignment heuristic [5] to devise the most interesting constraints. Moreover,
this strategy seems to interact positively with the variable assignment heuristic.
Both Wallace & Freuder and Balafoutis & Stergiou works are primarily oriented
towards binary CSPs, using plain AC-3 for propagation.
2 For binary constraints, one can refer to [10] for the revisebit propagator.

74

Boussemart et al. study and experiment in [6] different revision ordering
strategies, using either arc, variable or constraint-oriented propagation queues.
As in previously cited works, Boussemart et al. perform their experiments on bi-
nary CSPs and use an homogeneous propagation algorithm, an improved variant
of AC-3. The main result of their work is that the best variant in this context
is the variable-oriented propagation scheme with the dom variable revision or-
dering heuristic, a result quite close to Wallace & Freuder’s. Indeed, although
constraint or arc-oriented revision ordering heuristics (using the product of the
size of the domains of the variables in the scope of a constraint, an heuristic we
call Πdom) successfully reduces the number of constraint checks compared to
variable-oriented heuristics, they require a high overhead to compute the heuris-
tics. However, the data structures used by Boussemart et al. can be greatly
improved.

Another work of interest is [15] by Schulte & Stuckey. The authors explain the
propagation scheme implemented at the core of the Gecode solver [14]. The tech-
nique is based on another folklore knowledge: since we cannot predict whether
a constraint will filter values or not, let us minimize lost time by propagating
the fastest constraints first. This technique may only be used with an arc or
constraint-based propagation queue. An small integer identifier is associated to
each constraint: 0 for very fast constraints (i.e., constant-time or O(k) propa-
gators), 1 for fast constraints (i.e., O(d) propagators), up to 7 for the slowest
constraints (i.e., NP-hard propagators). The propagation queue is divided in 8
FIFOs, and the integer identifies the queue in which the constraint is assigned.
When picking a constraint for revision, the first FIFO is polled first, then the
second if the first is empty, and so on. Moreover, Schulte & Stuckey propose to
adapt the identifier dynamically, as even a NP-hard propagator can be applied
quite quickly if most variables in the scope of the constraint are assigned.

Interestingly enough, the most successful ordering heuristics devised by Wal-
lace & Freuder or Boussemart et al. (dom or Πdom) also cover the “fastest con-
straints first” principle: the AC-3-based propagations algorithms used in their
experiments use propagators whose time complexities are highly correlated with
the size of the domains.

4.2 Fine, constraint-based revision ordering heuristics

Firstly, we give a simple example showing the limits of the variable-based prop-
agation scheme when the CSP include large arity constraints. Let N be a CSP
with n variablesX1 toXn, dom(Xi) = {1, . . . , n}, and the constraintsXi ≤ Xi+1
∀i ∈ {1, . . . , n − 1} and alldifferent(X1, . . . , Xn). The alldifferent constraint is
implemented using an easy algorithm, which filters out all values present in
singleton domains, and checks whether

∣∣∣
⋃
X∈vars(C) dom(X)

∣∣∣ ≤ |vars(C)|. This
propagator does not establish (G)AC but is idempotent, detects trivial pigeon-
hole cases and has a quite low complexity (O(kd)).

Let us remove the lowest value from the domain of X1 and propagate. Using
a variable-based propagation scheme with any heuristic, or a constraint-based

75

Constraint Evaluator

X{<,≤, >,≥, 6=}Y 2∨
(. . .) log2(|vars(C)|)∑
X∈vars(C) X ≤ k |vars(C)|

alldifferent(. . .) |vars(C)|2
a×X + b = Y min(|dom(X)| , |dom(Y)|)
X = Y {+,×}Z |dom(X)| |dom(Y)|+ |dom(X)| |dom(Z)|+ |dom(Y)| |dom(Z)|
X ⇐⇒ C(. . .) evaluator(C) + evaluator(¬C)
positive table table size× |vars(C)|
reviserm ∏

X∈vars(C) |dom(X)|
revisebit [10] |dom(X)| |dom(Y)| ÷ 10

Table 1. Evaluators for various constraints.

propagation scheme with simple FIFO behavior, the propagator for X1 ≤ X2 is
called, removing the lowest value from X2, then the propagator for alldifferent,
then the propagator for X2 ≤ X3, then alldifferent again, etc. With a constraint-
based propagation scheme and a simple heuristic that prioritizes the stronger
and faster ≤ constraints over alldifferent, the propagator for alldifferent would
be called only once, hence a much faster propagation.

As a reference, our implementation requires 4 s to propagate the above sce-
nario with n = 1,000 using a variable-based propagation scheme and 50ms with
a prioritized constraint-based propagation scheme.

We define a constraint-based heuristic as follows: each constraint type must
implement an evaluator, i.e., a method that returns a float number. The number
gives an estimation of the time required to propagate the constraint. In our
implementation, we use either the average-case complexity if available, or the
worst-case complexities of the propagators to compute the estimation. For the
general-purpose reviserm propagator, we fallback to the Πdom heuristic. Table 1
summarizes the evaluators we use for the various constraints implemented in
our constraint solver. In the remaining of this paper, we will call this constraint
revision ordering heuristic eval.

We combine our scheme with the ideas from Balafoutis & Stergiou [1], by
dividing the value computed by the evaluator by the constraint weight, leading
to the so-called eval/w constraint revision ordering heuristic.

4.3 Data structures for priority queues: a survey

When using a heuristic for extracting the variable/constraint with the high-
est/lowest score, the queue is basically a priority queue. Various data structures
have been proposed in the algorithmic literature for handling these. This section
surveys a few of them.

AC-5v and AC-5c require two basic operations: inserting an object in the
priority queue, and extracting the “best” object, that minimizes the score com-
puted by some heuristic. Upon insertion, if the object is already in the queue, its

76

Data structure Insert Update Remove min Heuristics Plot

m linked lists O(1) O(1) O(m) FIFO + m levels priority
Bit vector O(1) O(1) Θ(λ) Any
Binary heap O(log λ) O(log λ) O(log λ) Any
Binomial heap O(1)* O(log λ) O(log λ) Any
Fibonacci heap O(1) O(1)* O(log λ)* Any
Soft heap O(1)* N/A O(1)* Any (approximated)

Table 2. Various data structures for implementing priority queues. * denotes an amor-
tized complexity.

101 102 103 104
100

200

300

400

500

600

Insert

C
PU

tim
e

[µ
s]

101 102 103 104

Update
101 102 103 104

Remove min

Fig. 1. Actual performance of our implementations: time to insert, update or remove
minimum in a set of λ elements. Notice the semilog scale: straight plots are actually
log-like.

position is updated. All heuristics devised so far may only evolve during propa-
gation when a variable domain is modified. Thus, it is perfectly sound to update
the heuristic score of a constraint only when such an event occur.

In order to experiment the various data structures, all queues implement
the generic Queue interface as defined in the Java 1.6 API. All queues must be
backed by a Set implementation in order to support the Update operation and
preventing the same object to be inserted twice.

Here follows the list of data structures we implemented and experimented.
Table 2 give the worst-case time complexities for both three basic operations on
a structure containing λ elements. Space complexity is Θ(λ) for all structures
except multiple linked lists which are in Θ(m + λ). Figure 1 shows the per-
formance of our implementations. We implemented the data structures in Java
and benchmarked them using Sun’s Java 1.6u21 64-bit HotSpot Virtual Machine
for Linux, running on a Intel Core 2 Duo processor @ 2.53 GHz. The JiP 1.2
profiler [21] was used to measure the performance of the various operations, us-
ing the following experimental protocol: λ random integer values are inserted in
the priority queue. Then the three following operations are performed 1,000,000
times: an additional random integer value is inserted, the minimum integer is
extracted from the queue, then an element is randomly updated. The profiler is

77

used to measure the time consumed by each of these three operations. Reported
times are for inserting/updating/removing one single element.

Linked lists are the most common way to implement queues in propagation
algorithms. Actually, FIFO queues are in the core of most solvers.3 However,
linked lists are not designed to be sorted, and picking the smallest element
requires to parse all elements. Using multiple linked lists is an efficient way to
implement very coarse heuristics. The heuristic computes an small integer
number that identifies a FIFO queue in which the variable/constraint is
stored. Our benchmarks used 8 FIFO linked lists. To try to emulate the
behavior described in [15], the appropriate FIFO is chosen based on the result
of the operation blog3(h)c (h is the score computed by the heuristic). Indeed,
the main factor Schulte & Stuckey use to choose the appropriate FIFO is
the arity of the constraint, and the score h computed by the traditional
Πdom heuristic is in O(dk). The base 3 was chosen in order to normalize
the use of all 8 FIFOs in the average case. When an update is requested, the
variable/constraint is moved to the tail of the appropriate FIFO if needed.

Bit vectors can replace linked lists when static or heuristic ordering is used.
One bit is associated to each variable or constraint. The bit is set upon
insertion, and cleared upon removal. This ensures very fast insertion and
update operations, but finding the minimal element still requires to parse all
elements. Boussemart et al. used this scheme in their paper [6].

Binary heap is a well known data structure, and can be used for implementing
priority queues. A binary heap is a naturally balanced binary tree in which
each parent node is smaller than its children. The smallest element is thus
always at the root of the tree. Inserting, updating and removing an element
requires O(log λ) sift operations to maintain the heap property.

Binomial heap [19] use a special tree structure (a “forest” of heap trees) to
achieve fast insertions, although removing the smallest element has the same
performance as insertion. Updates are basically performed by removing and
reinserting the element.

Fibonacci heap [7] is a “lazy” variant of binomial heaps, in which most com-
putations are delayed until the remove min operation is called. Insertions and
updates are thus very fast, although the remove min operation is not much
slower than with binomial heaps, and even more robust for large amounts of
data.

Soft heap [8] is a variant of binary heap in which the heap property is only
maintained on the top of the tree. The root of the tree is thus no longer
guaranteed to be the smallest element. However, the “corruption” is mini-
mal and can be parameterized (we used ε = 10 %). This permits constant
O(log 1

ε) complexities for both insert and remove min operations. However,
insertion is noticeably slower than with other data structures, and update
is not supported by our implementation (the element is simply left in place
upon updating).

3 Simple experiments show that LIFO strategies are almost always worse than FIFO.

78

AC-5v AC-5c

n e Inserts Updates Remvs Inserts Updates Remvs

bqwh-18-141-0-ext 141 879 4.0M 647 k 2.2M 21M 4.3M 14M
bqwh-18-141-47-glb 141 36 29M 6.2M 15M 28M 7.7M 20M
frb40-19-1 40 410 2.3M 1.4M 1.3M 19M 16M 14M
series-18 69 36 3.1M 963 k 2.5M 3.5M 2.1M 3.3M
ruler-44-9-a3 45 74 2.9M 1.5M 2.0M 4.5M 6.0M 3.3M
langford-3-13 65 27 11M 6.0M 8.3M 9.0M 15M 7.4M
bmc-ibm-02-02 50 k 48 k 91 k 23 k 91 k 94 k 23 k 94 k
crossword-m1-lex-15-04 4.4 k 7.9 k 12M 569 k 11M 167M 8.0M 167M
lemma-24-3 552 924 20M 0 14M 57M 2.8M 47M
os-taillard-5-100-3 625 500 66M 6.1M 59M 125M 15M 103M
scen4 8.3 k 7.6 k 55 k 24 k 53 k 95 k 47 k 92 k
bigleq-70 70 70 18M 16M 10M 30M 36M 19M

Table 3. Number of operations required to solve various problems with the eval heuris-
tic.

Choosing the best data structure may depend on the number of elements
it will contain, as well on the relative importance of the insert, update and re-
move operations. As a reference, the problems used as benchmarks during the
CPAI’08 Itl Solver Competition [16] had on average 863 explicit variables (from
2 to 62,704, std dev is 3,100, median 120) and 5,129 explicit constraints (from
1 to 546,105, std dev is 20,065, median 458). Moreover, using techniques such
as constraint decomposition, symmetry breaking, implicit constraint detection,
second-order consistencies or nogood learning can increase the number of vari-
ables and/or constraints significatively.

Table 3 gives an idea of the relative number of operations required to solve
some well-known benchmark problems using the eval revision heuristic and the
dom/ddeg decision heuristic (the more efficient dom/wdeg heuristic was not used
to avoid any interference with the revision heuristic). The second and third
columns, n and e, respectively show the number of variables and constraints
actually present in the problem once the solver has performed appropriate de-
compositions. The number of removals is usually less than the number of inserts
because the propagation is interrupted (and the priority queues cleared) when
an inconsistency is encountered.

4.4 Note on Set implementation
Several data structures can be used to implement sets: hashtables, ordered trees,
etc. For best, constant-time performance, we rely on simple arrays. An contigu-
ous integer identifier is associated to each object upon creation, which identifies
the index of the array where the structures will be stored. A basic set implemen-
tation can thus use an array of booleans (or a bit vector).

Clearing the sets is also an operation that can have a non negligible impact
on the performances of the resolution. In some of our experiments, an O(λ)

79

Bit vector 8 FIFOs Bin Heap Binom H Fib Heap Soft Heap

bqwh-18-141-0-ext 20.0 s 11.6 s 26.3 s 11.4 s 12.0 s 14.8 s
bqwh-18-141-47-glb 35.4 s 32.6 s 35.6 s 34.3 s 34.8 s 35.4 s
frb40-19-1 27.8 s 11.8 s 23.0 s 11.0 s 12.4 s 13.7 s
series-18 5.7 s 5.0 s 0.4 s 4.8 s 4.9 s 4.9 s
ruler-44-9-a3 8.3 s 7.2 s 27.1 s 6.8 s 7.0 s 6.8 s
langford-3-13 15.1 s 13.7 s 1.9 s 14.2 s 14.3 s 13.7 s
bmc-ibm-02-02 339.0 s 20.2 s 20.3 s 20.5 s 20.8 s 20.0 s
crossword-m1-lex-15-04 2,204.3 s 210.1 s 433.0 s 265.0 s 273.8 s 283.0 s
lemma-24-3 85.0 s 74.4 s 113.0 s 82.9 s 87.8 s 96.2 s
os-taillard-5-100-3 1,579.6 s 205.7 s 113.3 s 188.9 s 199.0 s 291.7 s
scen4 11.3 s 6.2 s 7.1 s 6.4 s 6.7 s 6.9 s
bigleq-70 318.9 s 45.8 s 50.3 s 42.9 s 43.8 s 42.0 s

Table 4. Time to solve the problems using AC-5c and eval heuristic with various
priority queues.

clear operation could take more than 90% of the CPU time required to solve
the problem! Set clearing can be performed in O(1) by using integer counter, as
proposed in [6] for the modified data structure. An integer number i is associated
to the set, and is incremented when clearing is requested. When an object O is
put in the set, the number iO = i is stored in the structure representing the
object. The object is considered to be present in the set iff iO = i.

5 Experiments

These experiments are performed in the same conditions as before (Sun’s Java
1.6u21 64-bit HotSpot Virtual Machine for Linux, running on a Intel Core 2
Duo processor @ 2.53 GHz), but without the use of a profiler. The constraint
solver used is CSP4J [18]. We selected representative problem instances from
the CPAI’08 competition, that could be solved between 2 and 300 s using the
dom/ddeg decision heuristic. Our experiments are still preliminar: our solver
only implements a few constraint types, and the problem base of CPAI’08 lacks
challenging problems with global constraints, which reduces the “heterogeneity”
of the selected problems. In particular, few of them use global constraints at all.

A first set of experiments, summarized on Table 4, compares the different
data structures using the plain eval constraint revision ordering heuristic. These
results tend to show that either multiple FIFOs or Binomial heaps are the most
efficient data structures for handling constraint revision ordering heuristics (and
that linear-time data structures such as bit vectors definitively are not, despite
their very fast insert and update operations).

Finally, Table 5 compares the different variable- and constraint-based heuris-
tics. AC-5v uses a Binomial heap in these experiments. The dom/ddeg decision
heuristic was used, but constraint weights are still computed as for the dom/wdeg
decision heuristic. These weights can thus be used for the dom/wdeg variable

80

AC-5v AC-5c/8 FIFOs AC-5c/Binomial heap

dom dom
wdeg Πdom Πdom

w
eval eval

w
Πdom Πdom

w
eval eval

w

bqwh-18-141-0-ext 9.0 9.2 8.9 11.7 10.8 10.9 10.4 11.4 10.5 11.5
bqwh-18-141-47-glb 32.5 32.3 33.8 33.8 33.4 33.7 35.1 33.8 36.2 33.0
frb40-19-1 7.8 8.7 9.7 12.7 12.0 13.2 12.1 14.2 12.2 14.2
series-18 4.9 5.3 5.2 5.1 5.0 5.2 5.1 5.0 5.5 5.5
ruler-44-9-a3 8.9 11.2 7.6 9.1 8.4 10.2 7.2 7.3 7.3 7.8
langford-3-13 17.1 18.1 15.3 15.3 14.4 16.2 15.4 15.9 14.6 16.7
bmc-ibm-02-02 19.6 20.5 19.8 20.0 19.7 19.1 19.6 19.5 19.3 19.2
crosswd-m1-lex-15-04 152.0 139.3 190.6 175.2 220.8 190.9 219.5 187.0 262.6 204.4
lemma-24-3 80.2 85.6 97.7 96.0 91.8 88.6 86.8 89.1 87.0 85.9
os-taillard-5-100-3 206.4 224.1 249.5 190.4 212.6 232.0 257.1 197.9 211.4 205.1
scen4 7.0 6.7 7.4 7.7 7.8 6.4 6.2 6.7 7.0 6.6
bigleq-70 92.4 100.9 34.5 34.5 28.2 97.8 30.8 31.4 27.6 91.2

Table 5. Time (in seconds) to solve the problems with the dom/ddeg decision heuristic
and different revision ordering heuristics.

and for Πdom/w or eval/w constraint revision ordering heuristics. Following
Balafoutis & Stergiou results described in [1], these ordering heuristics are more
senseful when combined with the dom/wdeg decision heuristic.

Although we are aware that these experiments still fail to demonstrate a clear
superiority of constraint-based heuristics, we are convinced that (1) constraint-
based propagation is actually competitive w.r.t. variable-based propagation,
(2) it successfully avoids pathological cases (our bigleq problem), and (3) opens
a new field of research to devise better heuristics.

6 Conclusion & Perspectives

In this paper, we devised AC-5v and AC-5c, generic coarse-grained propagation
algorithms using respectively variable- and constraint-based propagation queues.
After recalling why the management of the propagation queue is important, we
surveyed a few data structures that can be used to control the order in which
variables or constraints will be revised.

We proposed a new, generic way to control the order in which the constraints
are revised using the constraint-based propagation scheme, and showed exper-
imentally that using clever data structures, this way of controlling the prop-
agation can be competitive w.r.t. variable-based propagation, and can avoid
pathological cases. These cases will occur frequently when using heavy global
constraints, such as NP-hard constraints introduced by Lazy Clause Generation
or algorithm hybridization. Variable-based propagation will then no longer be a
viable alternative.

Although our heuristics are still not clearly better than standard general
heuristics, we hope to open the perspectives to devise new techniques, either
adaptative or by taking into account the strength of the constraints.

81

References

1. T. Balafoutis and K. Stergiou. Exploiting constraint weights for revision ordering in
arc consistency algorithms. In Proceedings of the ECAI-2008 workshop on Modeling
and Solving Problems with Constraints, 2008.

2. N. Beldiceanu and E. Contejean. Introducing global constraints in CHIP. Mathl.
Comput. Modelling, 20(12):97–123, 1994.

3. C. Bessière and J.-C. Régin. Arc consistency for general constraint networks:
preliminary results. In Proceedings of IJCAI’97, pages 398–404, 1997.

4. C. Bessière, J.-C. Régin, R.H.C. Yap, and Y. Zhang. An optimal coarse-grained
arc consistency algorithm. Artificial Intelligence, 165(2):165–185, 2005.

5. F. Boussemart, F. Hemery, C. Lecoutre, and L. Saïs. Boosting systematic search
by weighting constraints. In Proceedings of ECAI’04, pages 146–150, 2004.

6. F. Boussemart, F. Hemery, and C. Lecoutre. Revision ordering heuristics for the
Constraint Satisfaction Problem. In Proceedings of CPAI’04 workshop held with
CP’04, pages 29–43, 2004.

7. M.L. Fredman and R.E. Tarjan. Fibonacci heaps and their uses in improved net-
work optimization algorithms. Journal of the ACM, 34(3):596–615, 1987.

8. H. Kaplan and U. Zwick. A simpler implementation and analysis of chazelle’s soft
heaps. In Proc. of the 19th ACM-SIAM Symposium on Discrete Algorithms, pages
477–485, 2009.

9. C. Lecoutre and F. Hemery. A study of residual supports in arc consistency. In
Proceedings of IJCAI’2007, pages 125–130, 2007.

10. C. Lecoutre and J. Vion. Enforcing Arc Consistency using Bitwise Operations.
Constraint Programming Letters, 2:21–35, 2008.

11. C. Likitvivatanavong, Y. Zhang, J. Bowen, and E.C. Freuder. Arc consistency in
MAC: a new perspective. In Proceedings of CPAI’04 workshop held with CP’04,
pages 93–107, 2004.

12. A.K. Mackworth. Consistency in networks of relations. Artificial Intelligence,
8(1):99–118, 1977.

13. J.J. McGregor. Relational consistency algorithms and their application in finding
subgraph and graph isomorphisms. Information Sciences, 19:229–250, 1979.

14. C. Schulte, M. Lagerkvist, G. Tack, et al. Generic Constraint Development Envi-
ronment (Gecode). http://www.gecode.org/, 2005-2010.

15. C. Schulte and P.J. Stuckey. Efficient Constraint Propagation Engines. ACM
Transactions on Programming Languages and Systems, 31(1):1–43, 2008.

16. M. van Dongen, C. Lecoutre, and O. Roussel. Third International CSP Solvers
Competition. http://www.cril.univ-artois.fr/CPAI08, 2008.

17. P. van Hentenryck, Y. Deville, and CM. Teng. A generic arc-consistency algorithm
and its specializations. Artificial Intelligence, 57:291–321, 1992.

18. J. Vion. Constraint Satisfaction Problem for Java. http://cspfj.sourceforge.net/,
2006.

19. J. Vuillemin. A Data Structure for Manipulating Priority Queues. Communications
of the ACM, 21:309–314, 1978.

20. R.J. Wallace and E.C. Freuder. Ordering heuristics for arc consistency algorithms.
In Proceedings of NCCAI’92, pages 163–169, 1992.

21. A. Wilcox and P. Hudson. Java Interactive Profiler. http://jiprof.sourceforge.
net/, 2005–2010.

82

Author Index

Alexandron, Giora, 35

Balafoutis, Thanasis, 1

Gent, Ian, 13

Kotthoff, Lars, 13, 26
Kuchcinski, Krzysztof, 38

Lagoon, Vitaly, 35

Miguel, Ian, 13
Moore, Neil C.A., 26

Naveh, Reuven, 35
Nightingale, Peter, 13

Paparrizou, Anastasia, 1
Piechowiak, Sylvain, 68

Rich, Aaron, 35
Rolf, Carl Christian, 38

Schulte, Christian, 53
Stergiou, Kostas, 1

Tack, Guido, 53

Vion, Julien, 68

83

	Preface
	Workshop Organization
	Program
	Table of Contents
	Experimental Evaluation of Branching Schemes for the CSP
	Machine learning for constraint solver design – A case study for the alldifferent constraint
	Distributed solving through model splitting
	GenDebugger: An Explanation-based Constraint Debugger
	Combining Parallel Search and Parallel Consistency in Constraint Programming
	Implementing Efficient Propagation Control
	Handling Heterogeneous Constraints in Revision Ordering Heuristics

