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Chapter 1

Introduction

“The mathematical sciences particularly exhibit order, symmetry, and
limitation; and these are the greatest forms of the beautiful.”

Aristotle (383 B.C. – 322 B.C.)

Nowadays the theory of groups has applications in the most branches of math-
ematics and also in many areas of science, for example quantum theory, crys-
tallography, and cryptography. Therefore it is a natural ambition to know as
much as possible about the different structures of groups and it is an interest-
ing problem in group theory to construct all groups of a certain order up to
isomorphism.

The general idea of classification is to find for a given order n an explicit list of
groups so that every group of order n is isomorphic to a group in the list and
no two groups in the list are isomorphic to each other. The primary difficulty
is not to determine a list containing all possible isomorphism types but to
reduce this list to isomorphism type representatives.

In this thesis we consider the special type of groups whose order factorizes in
a certain form: the groups of cube-free order or the so-called cube-free groups;
that is, we investigate the groups of order n where the prime-power factoriza-
tion of n is of the form n = pe11 · · · perr with ei ∈ {1, 2}. Hence, the aims of
this thesis are to describe the structure of the groups of cube-free order and
to develop an algorithm to construct all groups of a given cube-free order up
to isomorphism.

Unless otherwise noted, all considered groups are finite.

1.1 Approach and results

Depending on the structure or significant properties of the considered groups
- for example p-groups or solvable groups - there exist different approaches to
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2 Chapter 1. Introduction

classify them. For more details see [4, 5].

The approach of this thesis to construct the groups of cube-free order is based
on the Frattini extension method. This method is also described in [4, 5] and
has been used to construct the groups of order at most 2 000. It follows a brief
survey of this method.

Let G be a finite group. The Frattini subgroup Φ(G) of G is defined to be the
intersection of all maximal subgroups of G. Since the Frattini factor G/Φ(G)
has a trivial Frattini subgroup, every finite group is an extension of a Frattini-
free group by its Frattini subgroup. In particular, a group G is a Frattini
extension of a group H by an H-module M if there exists a normal subgroup
N �G with N ∼= M and G/N ∼= H such that G/Φ(G) ∼= H/Φ(H).

Thus the main idea to construct all groups of cube-free order n is as follows:

1. Determine the list F of all possible Frattini factors up to isomorphism.

2. For each F ∈ F determine the list EF of all Frattini extensions of order
n of F up to isomorphism.

Then the union of all elements in EF , F ∈ F , forms a complete and irredun-
dant list of groups of order n.

Motivated by this method, the following three main theorems will be proved
in this thesis; see Theorem 2.7, Theorem 7.8, and Corollary 7.13.

Theorem 1: The group G is a simple group of cube-free order if and only if
G ∼= Cp for a prime p or G ∼= PSL(2, r) for a prime r > 3 with r+1 and r−1
cube-free.

Theorem 2: Every cube-free group is either solvable or it is a direct product
of a non-abelian simple group with a solvable group.

Theorem 3: There is a one-to-one correspondence between the solvable cube-
free groups of order n = pe11 . . . perr (prime-power factorization) and the solvable
Frattini-free groups F with |F | | n and p1 . . . pr | |F |.

Taunt [28] has also considered the solvable groups of cube-free order, since he
has investigated solvable groups with abelian Sylow subgroups. Compared to
the approach of Taunt, the approach of this thesis has the advantage that it
translates to an effective construction algorithm – which is the second aim of
this thesis.

An implementation of this algorithm is available in Gap [29], see [10], and a
published version of some of the results of this thesis can be found in [11].
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1.2 Structure of the thesis

The above algorithm – that is, the Frattini extension method – motivates the
steps of this thesis:

As a preliminary step, Chapter 2 investigates the cube-free groups within
the classes of simple and nilpotent groups, respectively. Some special matrix
groups of cube-free order are examined in Chapter 3. For this purpose a brief
introduction into module theory is needed. Chapter 4 gives an introduction
into the theory of group extensions and cohomology groups. We go back to
the results of these chapters in later examinations.

The construction of all possible Frattini factors relies on [16], where Gaschütz
prepared the classification of the Frattini-free groups. For this purpose Chap-
ter 5 examines the Frattini subgroup of a group. The theory of Frattini-free
groups is presented in Chapter 6. In particular, we examine the socle of a
group and the Fitting-free groups, and then provide a theorem of Gaschütz.
Applying this theorem, we investigate the structure of the cube-free Frattini-
free groups.

The cube-free groups are discussed in Chapter 7. We investigate Frattini
extensions and exhibit the main results of this thesis. Therefore Chapter 7
completes our theoretical examinations of the cube-free groups.

A group whose order is not divisible by any prime-square is called a square-
free group. Chapter 8 applies the results of Chapter 6 to the case of groups of
square-free order.

Chapter 9 gives a summary of the results and an outlook on further possible
investigations.

Finally, in Chapter 10 the algorithm to construct all groups of a given cube-
free order is presented. Also a report on experiments with the implementation
of this algorithm is included.

1.3 Historical remarks

The origins of the axiomatic group theory are settled in the middle of the
18th century. At this time, mathematicians like Joseph Louis Lagrange (1736
– 1813), Paulo Ruffini (1765 – 1822), and Évariste Galois (1811 – 1832) inves-
tigated the theory of algebraic equations and the corresponding permutations
of roots of polynomials. In 1854 Arthur Cayley (1821 – 1895) developed the
concept of an abstract group. He denoted the group elements by abstract
symbols and defined the group operation in an abstract way. Some years later
Walther von Dyck (1856 – 1934) introduced the presentations of groups.

The idea to construct all groups of a given order has been initiated by Cay-
ley [7] and it has developed a long history since then. We refer to [5] for
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an overview. Historically, the approaches to this problem involved a large
number of hand-computations and case distinctions. Therefore many of them
contained significant errors.

It follows a small selection of some papers dealing with groups whose order
factorizes in a certain way. The symbols p, q, and r denote distinct primes.

Introducing the idea of an abstract group, Cayley [7, 8] considered the cyclic
groups and groups of order 4, 6, and 8 in the middle of the 19th century. In
1893 Hölder [19] examined the groups of order p3, p2q, pqr, and p4.

The groups of square-free order have been known for a long time; Hölder [21]
investigated the square-free groups in the year 1895.

The groups of order p5 were investigated for example by Bagnera [2], Miller
[22], Schreier [26] and Bender [3].

Western [34] considered groups of order p3q and Le Vavasseur [31, 32] exam-
ined groups of order p2q2.

In the beginning of the 20th century Tripp [30] considered groups of order p3q2

and Potron [23, 24] was engaged in groups of order p6. In 1988 Wilkinson [35]
examined groups of order p7.

As mentioned before, Taunt [28] discussed the solvable groups of cube-free
order in the middle of the 20th century.

In 1938 Fitting [14] developed a concept to construct all finite groups. Fifteen
years later Gaschütz acted on this suggestion and modified this concept in
[16]. The results of Gaschütz play a fundamental role in this thesis.



Chapter 2

Special types of cube-free
groups

In this chapter we consider some special classes of groups and determine the
cube-free groups in them. We will utilize most of these results in later inves-
tigations.

2.1 Nilpotent groups

As a first step, we examine the structure of cube-free p-groups. The m-fold
direct product of cyclic groups of order n is denoted with Cm

n .

2.1. Lemma: Let G be a group with |G| ∈ {p, p2} for a prime p. Then G ∼= S
for some S ∈ {Cp, Cp2 , C

2
p}.

Proof: This is well-known: One can show readily that G has to be abelian, see
[25], Proposition 1.6.15, and then the assertion follows from [25], Proposition
4.2.10. •

We recall that P ≤ G is a Sylow p-subgroup of the finite group G if P is
a p-group and p - [G : P ]. Further, a finite group is nilpotent if and only
if it is a direct product of its Sylow subgroups; that is, if and only if every
Sylow subgroup is normal. Together with Lemma 2.1 this implies the following
theorem.

2.2. Theorem: Let G be a nilpotent group of cube-free order. It follows that
G ∼= Sp1 × . . . × Spr for distinct primes p1, . . . , pr and Sp ∈ {Cp, C

2
p , Cp2}

for every prime p.

2.2 Simple groups

A group G 6= {1} is said to be simple if {1} and G are the only normal
subgroups of G. The classification of the finite simple groups was one of the
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6 Chapter 2. Special types of cube-free groups

major projects in the theory of finite groups in the last century. The existent
proof is divided into over 500 papers, which were published between 1950 and
1980, and there is no complete proof published yet. For more details and a
list of all finite simple groups up to isomorphism we refer to [9] and [17].

We recall that every finite group G has a composition series; that is, there
exists a sequence of subgroups G = G1 � G2 � . . . � Gl � Gl+1 = {1} with
simple composition factors Gi/Gi+1 for 1 ≤ i ≤ l. It follows that every
composition factor of a cube-free group is a simple group of cube-free order.
Thus the simple groups of cube-free order are the basic building blocks for all
groups of cube-free order and, consequently, the results of this section will be
used as a basis for later investigations.

As a preliminary step some comments concerning the notation follow. Let
n ∈ N. With An and Sn we denote the alternating group and the symmetric
group of degree n, respectively. For a prime power q the symbol GL(n, q)
denotes the group of invertible n × n matrices over the finite field Fq with
q elements. The subgroup SL(n, q) ≤ GL(n, q) consists of all matrices with
determinant 1. If G is a group, then ζ(G) = {g ∈ G | ∀h ∈ G : hg = gh}
denotes its center.

2.3. Lemma: Let Z = ζ(GL(n, q)). The projective linear group is defined
by PGL(n, q) = GL(n, q)/Z and the projective special linear group is given by
PSL(n, q) = SL(n, q)/(Z ∩SL(n, q)). Let k = gcd(q−1, n) and l = n(n−1)/2.

a) |PSL(n, q)| = ql(qn − 1) · · · (q2 − 1)/k,

b) |PGL(n, q)| = k|PSL(n, q)|,

c) PSL(2, 4) ∼= PSL(2, 5) ∼= A5.

Proof: Proofs can be found in [20], Theorems (II, 6.2) and (II, 6.14). •

Using the classification theorem of the finite simple groups, it is straightfor-
ward to determine the simple groups of cube-free order. Nevertheless, we are
able to provide an alternative proof not based on the classification theorem.
Our proof uses the Odd-Order Theorem of Feit and Thompson.

2.4. Theorem (Odd-Order Theorem): Every group of odd order is solv-
able.

Proof: The proof of this important theorem is about 254 journal pages and
can be found in [13]. •

We recall that a group G acts on a group H if there exists a group homo-
morphism ψ : G → Aut(H) from G into the group of automorphisms of H.

Usually one identifies gψ = g and writes hg = h(gψ) for g ∈ G and h ∈ H.

2.5. Corollary: The order of a non-abelian simple group is divisible by 4.
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Proof: Let G be a group of order n. Since G acts on itself via right mul-
tiplication, there is a mapping G → Sn, g 7→ g, and thus a homomorphism
σ : G → {±1}, g 7→ sign(g). Let g ∈ G be an element of order r and let
{g1, . . . , gk} be a left transversal to 〈g〉 in G; that is, k = n/r. One can
observe that g written as a permutation has the form

g = (g1, g1g, g1g
2, . . . , g1g

r−1) . . . (gk, gkg, gkg
2, . . . , gkg

r−1)

and, as sign((gi, gig, gig
2, . . . , gig

r−1)) = (−1)r−1, we have gσ =
(
(−1)r−1

)k
.

Now let G be non-abelian simple. By the Odd-Order Theorem it follows that
2 | n. Suppose that 4 - n; that is, n = 2k and k is odd. Then there is
g ∈ G with |g| = 2 and n/|g| = k is odd; that is, gσ = −1. The Isomorphism
Theorem shows that G/ ker σ ∼= {±1} and therefore kerσ is a normal subgroup
of G of index 2. This is a contradiction and thus 4 | n. •

It follows that the order of a cube-free non-abelian simple group G has the
form |G| = 4k and k is odd. The next theorem classifies this special type of
simple groups.

2.6. Theorem: If G is a non-abelian simple group with |G| = 4k and k is
odd, then G ∼= PSL(2, q) for some prime-power q.

Proof: A proof can be found in [18], Theorem 2. •

The main result of this section follows.

2.7. Theorem: The group G is a simple cube-free group if and only if

a) G ∼= Cp for a prime p or

b) G ∼= PSL(2, p) for a prime p > 3 with p+ 1 and p− 1 cube-free.

Proof: We observe that |PSL(2, p)| = p(p−1)(p+1)/2 and gcd(p−1, p+1) = 2
for an odd prime p. Hence, by [20], Theorem (II, 6.11), it follows that the
groups listed in a) and b) are simple groups of cube-free order, and it is left
to show that these are the only groups with this property.

Every abelian simple group is isomorphic to a group in a). By Theorem 2.6,
every non-abelian simple group G of cube-free order is isomorphic to a group
PSL(2, q) for some prime-power q = pr. Then the order of G is given by
|G| = q(q2 − 1)/k where k = gcd(q − 1, 2). Suppose that this order is cube-
free. Then:

• r ∈ {1, 2} holds: If r ≥ 3, then p3 | q and |G| is not cube-free.

• r = 1 holds if p is odd: If r = 2, then |G| = q(q + 1)(q − 1)/2 = q(q + 1)
(p− 1)(p+ 1)/2 holds and hence 8 | |G| follows, since 4 | p− 1 or 4 | p+ 1.

• Now p ∈ {2, 3} can be ignored: PSL(2, 2) and PSL(2, 3) are not simple
and PSL(2, 4) ∼= PSL(2, 5) is covered by b).
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• Now p is odd and r = 1 holds. Thus |G| = p(p + 1)(p − 1)/2 with
gcd(p + 1, p − 1) = 2. Hence |G| is cube-free if and only if p + 1 and
p− 1 are cube-free.

This completes the proof. •



Chapter 3

Subgroups of GL(2, p)

Let p be a prime and let G ≤ GL(2, p) be a subgroup such that p2|G| is cube-
free. If F2

p is the natural G-module, then the group Gn F2
p is cube-free and a

prototype for later constructions. Thus, as a preliminary step, the examination
of these matrix subgroups follows. We will exhibit that each of these groups
is solvable.

3.1 Module theory

First, we recall some notations and an important representation theoretical
theorem of Maschke to which we also refer in later investigations. A more
detailed description and proofs can be found in [25], Section 8.1. All considered
vector spaces are finite-dimensional.

3.1. Definition: Let G be a finite group.

a) An abelian group (A,+) is a G-module if G acts on A; that is, there exists
a homomorphism ψ : G→ Aut(A). One often identifies gψ = g for g ∈ G.

b) Let A and B be G-modules and let ψ : A→ B be a group homomorphism.
If (ag)ψ = (aψ)g holds for all a ∈ A and g ∈ G, then ψ is a G-module
homomorphism. The set of all G-module homomorphism from A to B is
denoted by HomG(A,B).

c) Let A be a G-module and let B ≤ A. If bg ∈ B for all b ∈ B and g ∈ G,
then B is a G-submodule of A.

d) If the only G-submodules of a G-module A are {0} and A, then A is called
irreducible.

It is well-known that HomG(A,B) has the structure of an abelian group.

3.2. Lemma: Let A be a G-module. If G is a simple group, then G is either
isomorphic to a subgroup of Aut(A) or A is trivial as a G-module.

9



10 Chapter 3. Subgroups of GL(2, p)

Proof: Denote with ψ : G → Aut(A) the action of G on A. As G is simple,
it follows that kerψ ∈ {G, {1}}. If kerψ = {1}, then, by the Isomorphism
Theorem, it follows that G ∼= Gψ ≤ Aut(A). The case kerψ = G implies that
G acts trivially on A. •

Obviously, if G ∼= Cp ∼= A for a prime p, then A is trivial as a G-module.

Now we recall the definition of an R-module for a ring R with identity element.

3.3. Definition: Let R be a ring with identity element.

a) An abelian group (A,+) is an R-module if there is a mapping R×A→ A,
(r, a) 7→ ra, such that the following holds for all a, b ∈ A and r, s ∈ R:

• r(a+ b) = ra+ rb,

• (r + s)a = ra+ sa,

• (rs)a = r(sa), and

• 1a = a where 1 ∈ R.

b) An R-module A is a free R-module if A has an R-basis; that is, there
exists {a1, . . . , am} ⊆ A such that every a ∈ A can be written uniquely as

a =
m∑
i=1

riai with ri ∈ R.

c) If M is a non-empty set, then the set of all formal sums

∑

m∈M

rmm with rm ∈ R

together with the following rules of addition

∑

m∈M

rmm+
∑

m∈M

r′mm =
∑

m∈M

(rm + r′m)m

and multiplication

r(
∑

m∈M

rmm) =
∑

m∈M

rrmm, (r ∈ R),

forms a free R-module with basis M .

d) Let A,B be R-modules and let ψ : A → B be a group homomorphism. If
(ra)ψ = r(aψ) holds for all a ∈ A and r ∈ R, then ψ is called an R-module
homomorphism. The abelian group of all these homomorphisms is denoted
by HomR(A,B).

e) An exact sequence of R-modules is a sequence of R-modules (Ai)i∈N0
to-

gether with a sequence of mappings (µi)i∈N with µi ∈ HomR(Ai, Ai−1) and
kerµi = im µi+1 for i ≥ 1.
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The next definition considers a special type of a ring which is induced by a
group.

3.4. Definition: Let G be a finite group.

a) Let R be a ring with identity element. The group ring RG = {
∑

g∈G rgg |
rg ∈ R} is the free R-module with basis G together with the rule of
multiplication

(
∑

g∈G

rgg)(
∑

h∈G

r′hh) =
∑

g∈G

(
∑

g=yz

ryr
′
z)g.

b) Let F be a field. The group algebra of G over F is the group ring FG
together with the F -module structure given by

(
∑

x∈G

fxx)
f =

∑

x∈G

(ffx)x, (f ∈ F ).

Obviously, the group ring RG is a ring with identity element and the group
algebra FG, in addition to be a ring, is a vector space over F with (uv)f =
ufv = uvf for all u, v ∈ FG and f ∈ F . We identify g ∈ G with 1g ∈ RG and
1g ∈ FG, respectively.

In particular, if A is a G-module, then we define an action of
∑
g∈G

zgg ∈ ZG on

a ∈ A by ∑

g∈G

zga
g =

∑

g∈G

sign(zg) (ag + . . .+ ag)︸ ︷︷ ︸
|zg | times

∈ A,

which furnishes A with the structure of a ZG-module. Conversely, every ZG-
module structure on A yields a G-module structure on A. Thus it is common
to write HomG instead of HomZG.

3.5. Definition: Let G be a group and let F be a field. An F -vector space A
is called an FG-module if A is an FG-module in the sense of Definition 3.3a)
together with the property that g(af ) = gfa = (ga)f for all g ∈ FG, f ∈ F
and a ∈ A.

An important example is the field Fp, a matrix group G ≤ GL(n, p) and the
n-dimensional F -vector space Fnp . Using the well-known multiplications, the
group Fnp is the so-called natural FpG-module.

3.6. Definition: We consider a group G, a field F , and an FG-module A.

a) A subspace B ≤ A of the F -vector space A is an FG-submodule if gb ∈ B
for all b ∈ B and g ∈ FG.

b) Let A be the sum of two FG-submodules U and V ; that is, A = U + V =
{u+ v | u ∈ U, v ∈ V }. If U ∩V = {1}, then A is the direct sum of U and
V and we write A = U ⊕ V .
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c) If {0} and A are the only FG-submodules of A, then A is called irreducible.

d) The FG-module A is called completely reducible if every FG-submodule
B of A has a complement; that is, there exists an FG-submodule C ≤ A
with A = B ⊕ C.

Similar to vector spaces, the intersection and sum of two FG-submodules are
FG-submodules. Next, it follows a useful equivalence.

3.7. Lemma: Let A be an FG-module. Then A is completely reducible if and
only if A is the direct sum of irreducible FG-submodules.

Proof: “⇒” Let S = S1+ . . .+Sr be the sum of all irreducible FG-submodules
of A. If S < A, then there exists an FG-submodule T 6= {0} with A = S ⊕ T .
Since T contains an irreducible FG-submodule of A, we obtain a contradiction
to the choice of S and hence it follows that A = S. Let W ≤ A be maximal
with respect to be a direct sum of some Si. If W < A, then there exists
1 ≤ j ≤ r with Sj 6≤ W and U = W ⊕ Sj is an FG-submodule of A with
W < U . This contradiction yields that A = W .

“⇐” Let A = S1 ⊕ . . . ⊕ Sr be the direct sum of irreducible FG-submodules
and let V ≤ A be an arbitrary FG-submodule. Since A is finite-dimensional,
there is an FG-submodule U being maximal with respect to U ∩ V = {0}. If
U⊕V < A, then there exists 1 ≤ j ≤ r with Sj∩(U⊕V ) = {0} and U < U⊕Sj.
If v = u+ s ∈ V ∩ (U ⊕Sj) with u ∈ U and s ∈ Sj, then v− u ∈ Sj ∩ (U ⊕ V )
and hence v − u = 0. This shows that v = u ∈ V ∩ U = {0} and thus
V ∩ (U ⊕ Sj) = {0} which contradicts the choice of U . Hence the assertion
follows. •

Now we can phrase Maschke’s Theorem, see also [25], Proposition 8.1.2, and
the examination of the required matrix groups follows.

3.8. Theorem (Maschke): Let G be a finite group and let F be a field
whose characteristic does not divide the order of G. Then every FG-module
is completely reducible.

Proof: Let V be an FG-module and let W ≤ V be an FG-submodule. There
is a subspace U ≤ V with V = U ⊕W (as subspaces). The aim is to modify
the subspace U to obtain an FG-submodule and for this purpose we define

Θ : V →W, v 7→
1

|G|

∑

g∈G

g−1π(gv)

where

π : V = U ⊕W →W, v = u+ w 7→ w.

Note that |G| is invertible in F by assumption. One can check readily that Θ
is a linear mapping with Θ(hv) = hΘ(v) for all v ∈ V and h ∈ G. Therefore
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L = ker Θ is an FG-submodule of V which complements W in V : Let v ∈ V
with Θ(v) = w. Then l = v − w satisfies Θ(l) = Θ(v) − Θ(w) = w − w = 0
and thus l ∈ L. This shows that v = l + w ∈ L + W and V = L + W . If
w ∈ L ∩W , then 0 = Θ(w) = w and hence L ∩W = {0}. Together we have
V = L⊕W and V is completely reducible. •

3.2 Matrix groups

For a prime p we consider a subgroup G ≤ GL(2, p) and the corresponding
group algebra FpG. As mentioned before, the Fp-vector space F2

p can be consid-
ered as the natural FpG-module. It follows readily that the FpG-submodules of
F2
p are exactly the subgroups of F2

p which are invariant under the action of G;
these subgroups are called G-invariant. Thus the irreducible FpG-submodules
are exactly the minimal G-invariant subgroups.

For the sake of completeness we recall that the group algebra FpG acts (or is)
reducible if there exists a proper non-trivial FpG-submodule of F2

p. Equiva-
lently, we also say that G acts (or is) reducible if there exists a proper non-
trivial G-invariant subgroup of F2

p. Otherwise, FpG and G, respectively, are
said to act (or to be) irreducible.

As a preliminary step, some useful definitions follow. With NG(U) = {g ∈ G |
Ug = U} we denote the normalizer of a subgroup U ≤ G in G.

3.9. Definition: Let p be a prime.

a) The subgroup of all diagonal matrices of GL(2, p) is denoted by D(2, p).

b) The subgroup of all monomial matrices of GL(2, p) is defined as

M(2, p) = 〈D(2, p), a〉 where a =

(
0

1

1

0

)
.

c) Let S(2, p) ≤ GL(2, p) and N(2, p) ≤ GL(2, p) be defined by

S(2, p) = 〈b〉 with b =

(
0 1

−αp+1 α+ αp

)

and

N(2, p) = 〈b, c〉 with c =

(
1 0

α+ αp −1

)

where α is a generator of the multiplication group of the field Fp2 . The
group S(2, p) is called a Singer cycle of GL(2, p).

3.10. Lemma: The Singer cycle S(2, p) is cyclic of order p2 − 1. The group
N(2, p) is the normalizer of S(2, p) in GL(2, p) and [N(2, p) : S(2, p)] = 2.
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Proof: A proof and a more detailed description can be found in [27], Theorems
2.3.5 and 2.3.6, and in [15], Section 4. •

Now we can examine the required matrix groups.

3.11. Lemma: Let p be a prime and let G ≤ GL(2, p) be a subgroup with
p - |G|. Further, let V = F2

p be the natural FpG-module.

a) The group V is a direct product of G-invariant subgroups.

b) If G is reducible, then G conjugates into the group D(2, p).

Proof: a) By Theorem 3.8, the FpG-module V is the direct sum of irreducible
FpG-submodules; that is, the group V is the direct product of G-invariant
subgroups.

b) Since G is reducible, there exists a non-trivial FpG-submodule U < V .
Thus, by Theorem 3.8, the group V is the direct product of two proper G-
invariant subgroups and therefore G is conjugated in GL(2, p) to a subgroup
of D(2, p). •

It remains to consider the irreducible cube-free subgroups of GL(2, p). These
subgroups are determined up to conjugacy by Flannery and O’Brien in [15],
Section 4, and we use this to obtain the following.

3.12. Theorem: Let p be a prime and let G ≤ GL(2, p). If G has cube-free
order with p - |G|, then G is conjugated in GL(2, p) to a subgroup of M(2, p)
or to a subgroup of N(2, p).

Proof: If G is reducible, then it conjugates into the group D(2, p) ≤ M(2, p)
by Lemma 3.11. Therefore let G be irreducible. By [15], Theorems 4.1 – 4.4,
the group G is either conjugated in GL(2, p) to a subgroup of N(2, p) or
M(2, p), or it has a central quotient G/ζ(G) of isomorphism type in
{A4, S4, A5,PSL(2, p),PGL(2, p)}. If G/ζ(G) ∼= S4, then 8 | |G| and G is
not cube-free. If p > 5 and G/ζ(G) is of the isomorphism type A4 or A5, then,
by [15], Theorem 4.5 and Theorem 4.8, respectively, the group G has a center
of even order and thus 8 | |G|. One can check readily that the same holds in
the case of p ∈ {2, 3, 5}. Since p | |PSL(2, p)| and p | |PGL(2, p)|, the theorem
is proved. •

It is obvious that U ∈ {M(2, p),N(2, p)} is solvable; that is, U has a series
U = U1 ≥ . . . ≥ Ul ≥ Ul+1 = {1} of normal subgroups Ui � U with abelian
factors Ui/Ui+1 for 1 ≤ i ≤ l. As a subgroup of a solvable group is solvable
as well, it follows that every cube-free group G ≤ GL(2, p) with p - |G| is
solvable.

For the sake of completeness we recall an equivalent definition of a solvable
group: A group U is solvable if and only if there exists i ∈ N with

U = U (0)
� . . .� U (i+1) = {1}
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where U (j+1) = (U (j))′ and G′ = 〈g−1h−1gh | g, h ∈ G〉 denotes the commuta-
tor subgroup of a group G. The integer i is called the derived length of U .
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Chapter 4

Extensions

It follows an introduction into the theory of group extensions. Then we provide
some useful results on cohomology theory. We will use these results in later
investigations.

4.1 Group extensions

First, we recall the definition of an extension.

4.1. Definition: Let G, H, and M be finite groups. The group G is an
extension of H by M , if there exists N �G with N ∼= M and G/N ∼= H.

Obviously, if G is an extension of H by M , then one can identify N and M as
well as G/N and H.

Now we introduce some notations and recall several well-known facts concern-
ing group extensions. For further background we refer to [25], Chapter 11,
and [20], Sections I.14 and I.16.

Let H be a group and let (A,+) be an H-module. For an arbitrary mapping
γ : H ×H → A with

∀h, k, l ∈ H : γ(h, k) + γ(l, hk) = γ(lh, k) + γ(l, h)k

we define a group

Gγ = {(h, a) | h ∈ H, a ∈ A}

with group operation

(h1, a1)(h2, a2) = (h1h2, a
h2

1 + a2 + γ(h1, h2)).

Then Gγ has a normal subgroup A ∼= {1} × A with factor group Gγ/A =
H × {1} ∼= H; that is, Gγ is an extension of H by A.

17
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Conversely, if G is an extension of a group H by an abelian group A with
A�G and G/A = H, then the action

H → Aut(A), gA 7→ (A→ A, a 7→ ag)

furnishes A with the structure of an H-module and there exists a mapping
γ : H ×H → A as above with G ∼= Gγ . This partly motivates the following
definition.

4.2. Definition: For a group H and an H-module A let

C2(H,A) = {γ : H ×H → A | ∀h ∈ H : γ(1, h) = γ(h, 1) = 0},

Z2(H,A) = {γ ∈ C2(H,A) | ∀h, k, l ∈ H :

γ(h, k) + γ(l, hk) = γ(lh, k) + γ(l, h)k},

B2(H,A) = {γ ∈ C2(H,A) | ∃δ : H → A ∀k, h ∈ K :

γ(k, h) = δ(kh) − δ(k)h − δ(h)}.

The elements of Z2(H,A) and B2(H,A) are called 2-cocycles and 2-cobound-
aries, respectively.

Obviously, C2(H,A) has the structure of an abelian group where the group
operation is given by

(γ + δ) : H ×H → A, (h, k) 7→ (γ + δ)(h, k) = γ(h, k) + δ(h, k),

and it follows that B2(H,A) ≤ Z2(H,A) ≤ C2(H,A).

4.3. Definition: Let H be a group and let A be an H-module.

a) The second cohomology group of H in A is defined by

Ĥ2(H,A) = Z2(H,A)/B2(H,A).

b) The symbol E(H,A) denotes the set of all extensions of H by A up to
isomorphism.

Originally the second cohomology group is denoted by H 2(H,A), but for tech-
nical reasons we will temporarily use the “hat”-notation Ĥ2(H,A).

As indicated above, there is an important connection between the second co-
homology group of H in A and the set E(H,A):

4.4. Theorem: Let H be a group and let A be an H-module. For an extension
G of H by A let G ∈ E(H,A) be defined by G ∼= G. Then the mapping

Ĥ2(H,A) → E(H,A), γ +B2(H,A) 7→ Gγ

is well-defined and onto.
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Proof: This follows from [25], Proposition 11.1.4. •

Since the mapping of Theorem 4.4 does not have to be injective, it may occur
that distinct elements of Ĥ2(H,A) induce isomorphic extensions of H by A:

4.5. Example: Let H = V4 and let A = C2. Then A is trivial as an H-
module and one can show that Z2(H,A) ∼= C3

2 and B2(H,A) = {0}; that

is, |Ĥ2(H,A)| = 8. A complete and irredundant list of isomorphism types of
groups of order 8 is given by

C8, C3
2 , C4 × C2,

D8 = 〈x, y | x4 = y2 = xyx = 1〉,

Q8 = 〈x, y | x4 = y2x−2 = xyx = 1〉.

Since C8 is not an extension of H by A, one obtains that |E(H,A)| = 4.

This isomorphism problem is difficult to solve in general, but we will find an
improvement of the situation.

4.6. Definition: Let Gi be an extension of a group H by an H-module A
and let Ai �Gi be the subgroup corresponding to A for i ∈ {1, 2}. Then G1

and G2 are strongly isomorphic if there exists an isomorphism ι : G1 → G2

with Aι1 = A2.

The following theorem yields a criterion when two extensions are strongly
isomorphic. The restriction of a mapping f : A → B to a subset U ⊆ A is
denoted as f |U .

4.7. Theorem: Let Gi be an extension of a finite group H by an H-module A
via the cocycle ψi for i ∈ {1, 2}. Denote with h ∈ Aut(A) the action of h ∈ H
on A and let T be the group of compatible pairs; that is,

T = {(α, β) ∈ Aut(H) × Aut(A) | ∀h ∈ H : hα = (h)β},

which acts on Ĥ2(H,A) via

γ +B2(H,A) 7→ γ(α,β) +B2(H,A)

where
γ(α,β) =

[
(l, h) 7→ γ(lα, hα)β

−1
]
.

Then G1 is strongly isomorphic to G2 if and only if there exists an element

(α, β) ∈ T such that ψ
(α,β)
1 ≡ ψ2 mod B2(H,A).

Proof: We identify Gi = Gψi and A = {1} × A ≤ Gi for i ∈ {1, 2}. It
is straightforward, but technical, to prove that T is a group which acts on
Ĥ2(H,A) via the above defined operation. A more detailed description and



20 Chapter 4. Extensions

references can be found in [4], Section 4.2.1.

“⇒” Let ι : G1 → G2 be a strong isomorphism. Since Aι = A, the restriction
ι|A = β−1 is an automorphism of A. Therefore ι induces an automorphism
ι|G1/A = α−1 on H = G1/A = G2/A. Let (1, a), (h, 0) ∈ G1. The 2-cocycle
condition yields that

ψ1(h
−1, h) = ψ1(h, h

−1)h

and since
(h, a)−1 = (h−1,−ψ1(h, h

−1) − ah
−1

)

it follows that
(1, a)(h,0) = (h, 0)−1(1, a)(h, 0) = (1, ah).

The equation

(1, a)(h,0)
ι

= ((h, 0)−1)ι(1, a)(h, 0)ι = (1, a)ι
−1(h,0)ι

together with

(1, a)(h,0)
ι

= (1, ah
α−1

) and (1, a)ι
−1(h,0)ι = (1, aβhβ

−1

)

implies that (α−1, β−1) ∈ T and thus also (α, β) ∈ T .

Let the mapping η : H → A, h 7→ ah, be defined by

(hα, 0)ι = (h, ah) ∈ G2

and, as a1 = 0, let γ : H×H → A, (g, h) 7→ agh−(ag)
h−ah, be the coboundary

corresponding to η. The aim is to show that ψ
(α,β)
1 + γ = ψ2. Let g, h ∈ H.

It follows that

((gα, 0)(hα, 0))ι = (gα, 0)ι(hα, 0)ι

= (g, 0)(1, ag)(h, 0)(1, ah)

= (g, 0)(h, 0)(1, (ag )
h)(1, ah).

On the other hand, we have

((gα, 0)(hα, 0))ι = ((gαhα, 0)(1, ψ1(g
α, hα)))ι

= (gh, agh)(1, ψ1(g
α, hα)β

−1

)

= (gh, 0)(1, agh)(1, ψ
(α,β)
1 (g, h)).

Combining the results of these two equations, one obtains that

(1, ψ2(g, h)) = (gh, 0)−1(g, 0)(h, 0)

= (1, agh)(1, ψ
(α,β)
1 (g, h))(1, ah)

−1(1, (ag)
h)−1

= (1, ψ
(α,β)
1 (g, h))(1, agh)(1,−ah)(1,−(ag)

h)
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= (1, ψ
(α,β)
1 (g, h) + γ(g, h))

which yields the first part of the equivalence.

“⇐” Let (α, β) ∈ T and γ ∈ B2(H,A) with ψ
(α,β)
1 + γ = ψ2. By definition,

there exists a function η : H → A, h 7→ ah corresponding to the coboundary γ,
and we define

ι : G1 → G2, (h, a) 7→ (hα
−1

, a
hα−1 + aβ

−1

).

If (h, a), (g, b) ∈ G1, then it follows from the assumptions that

(h, a)ι(g, b)ι = (hα
−1

, a
hα−1 + aβ

−1

)(gα
−1

, a
gα−1 + bβ

−1

)

= ((hg)α
−1

, (a
hα−1 )g

α−1

+ (aβ
−1

)g
α−1

+ a
gα−1 +

+ bβ
−1

+ ψ2(h
α−1

, gα
−1

))

= ((hg)α
−1

, (a
hα−1 )g

α−1

+ agβ
−1

+ a
gα−1 + bβ

−1

+

+ ψ1(h, g)
β−1

− (a
hα−1 )g

α−1

− a
gα−1 + a

(hg)α−1 )

= ((hg)α
−1

, agβ
−1

+ bβ
−1

+ ψ1(h, g)
β−1

+ a
(hg)α−1 )

= (hg, ag + b+ ψ1(h, g))
ι

= ((h, a)(g, b))ι

and therefore ι is a group homomorphism. As a1 = 0, it is easy to see that ι is
injective and hence, because |G1| = |G2|, it has to be surjective as well. Since
Aι = A, it is shown that ι is a strong isomorphism from G1 to G2. •

Thus the T -orbits on Ĥ2(H,A) correspond one-to-one to the strong isomor-
phism classes of extensions of H by A.

Now we consider a special type of extensions.

4.8. Definition: An extension G of a group H by an H-module A is a split
extension if G ∼= H nA where H nA = Gγ0 with γ0 : H ×H → A, (g, h) 7→ 0.

In particular, a group G is a split extension of A�G if and only if there is a
subgroup H ≤ G with G = HA and H ∩ A = {1}. Then one also says that
G splits over A. In this case G ∼= H nA where H acts on A via conjugation.
The group H is called a complement to A in G.

4.9. Theorem: Let H be a group and let A be an H-module. An extension
of H by A is a split extension if and only if the corresponding element of
Ĥ2(H,A) is trivial.
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Proof: A proof can be found in [25], Proposition 11.1.4. •

The investigation of the special case whenH and A are cyclic with prime order
follows.

4.10. Lemma: Let H ∼= Cp be a group of prime order and let h ∈ H be a
generator. Let A ∼= Cp be trivial as an H-module.

a) The mapping

α : Z2(H,A) → A, γ 7→

p−1∑

i=1

γ(h, hi)

is an epimorphism with kernel B2(H,A).

b) For t ∈ A let

γt : H ×H → A, (hi, hj) 7→

{
0 : i+ j < p

t : i+ j ≥ p

where z = z mod p for z ∈ Z. Then γt ∈ Z2(H,A) and γαt = t.

c) The group Ĥ2(H,A) is of the isomorphism type Cp.

Proof: a) The mapping α is a homomorphism and it follows from b) that it is
surjective. Let γ ∈ B2(H,A) and let δ : H → A be the function corresponding
to the coboundary γ. Then

p−1∑

i=1

γ(h, hi) =

p−1∑

i=1

(
δ(hi+1) − δ(hi) − δ(h)

)
= −

p∑

i=1

δ(h) = 0

and thus B2(H,A) ≤ kerα ≤ Z2(H,A).
Now let γ ∈ kerα. Then the corresponding group extension Gγ contains a
subgroup

U = 〈(h, 0)〉 = {(hj ,

j−1∑

i=1

γ(h, hi)) | 0 ≤ j ≤ p− 1}

of order p which complements A = {1} × A in Gγ . Therefore Gγ is a split
extension of H by A and hence γ ∈ B2(H,A) by Theorem 4.9.

b) Let t ∈ A and 0 ≤ i, j, l ≤ p− 1 be arbitrary. An elementary computation
with case distinctions shows that

γt(h
i, hj) + γt(h

l, hi+j) = γt(h
l+i, hj) + γt(h

l, hi)

and hence γt ∈ Z2(H,A). Further, one obtains that

γαt =

p−1∑

i=1

γt(h, h
i) = γt(h, h

p−1) = t.
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c) From a) it follows that

Z2(H,A)/B2(H,A) = Z2(H,A)/ ker α ∼= A ∼= Cp

and thus the lemma is proved. •

4.2 Cohomology groups

This section provides some properties of the second cohomology group and for
this purpose we introduce a generalized definition of cohomology groups. For
proofs and further background we refer to [20], Section (I, §16), as well as [1],
Chapters 2 and 3, and [33], Chapters 1 – 3.

Throughout this section the action of a mapping f on an element x is written
as f(x); further, all considered modules are left modules.

Let H 6= {1} be a finite group with a subgroup P ≤ H and let A be an
H-module. We consider Z as a ZH-module where the action of H on Z is
trivial. By [20], Theorem (I, 16.11), there exists a free resolution of Z as a
ZH-module; that is, an exact sequence

. . . → Xn
µn
→ Xn−1 → . . . → X0

µ0
→ Z → 0

with free ZH-modules Xi. In particular, this exact sequence is also a free
resolution of Z as a ZP -module: Let X be a free ZH-module with basis
{x1, . . . , xr} and let {h1, . . . , hk} be a right transversal to P in H. Then ZH
can be considered as a free ZP -module with basis {h1, . . . , hk}. Consequently,
X is a free ZP -module with basis {hjxi | 1 ≤ i ≤ r, 1 ≤ j ≤ k}.

Next, for every i ∈ N0 we define a homomorphism

δi :

{
HomH(Xi−1, A) → HomH(Xi, A),

f 7→ [x 7→ f(µi(x))] .

and obtain a sequence

HomH(X0, A)
δ1
→ HomH(X1, A)

δ2
→ HomH(X2, A) → . . .

of Z-modules with im δj ≤ ker δj+1 for all j ∈ N since kerµj = im µj+1.

4.11. Definition: With the above notations, for n ∈ N we define

Hn(H,A) = ker δn+1/im δn

as the nth cohomology group of the H-module A.



24 Chapter 4. Extensions

By [20], Theorem (I, 16.8), the definition of Hn(H,A) does not depend on the
choice of the free resolution of Z. In particular, throughout this section we
use the following free resolution to define Hn(H,A):

For i ∈ N let Xi be the free ZH-module generated by all elements of

H \ {1} × . . .×H \ {1}︸ ︷︷ ︸
i times

,

and let X0
∼= Z be the free ZH-module generated by the abstract symbol ().

Next, for i ∈ N we describe a ZH-module homomorphism µi : Xi → Xi−1 via
its action on the basis elements (g1, . . . , gi) ∈ Xi of Xi: We set

µi(g1, . . . , gi) = (g2, . . . , gi) +
i−1∑

k=1

εik(g1, . . . , gi) + (−1)igi(g1, . . . , gi−1)

where

εik(g1, . . . , gi) =

{
(−1)k(g1, . . . , gk−1, gkgk+1, gk+2, . . . , gi) : if gkgk+1 6= 1,

0 : otherwise

and further we define µ0 : X0 → Z via

µ0 : X0 → Z, () 7→ 1.

Then, by [1], Sections 16.1, 16.2, and 19.2, this yields a free resolution of Z as
a ZH-module, which is called the normalized standard free resolution.

4.12. Remark: If one applies these definitions to the case H = {1}, then one
obtains that Hn(H,A) = {0} for all n ∈ N.

4.13. Theorem: If H is a group and A is an H-module, then

H2(H,A) ∼= Ĥ2(H,A).

Proof: Since a homomorphism is described completely by its action on a basis,
one can observe that the mapping

ψ : HomH(X2, A) → C2(H,A), f 7→ f̂ ,

where

f̂
∣∣
X2

= f and f̂(1, h) = f̂(h, 1) = 0 (∀h ∈ H)

is an isomorphism. Identifying HomH(X2, A) with C2(H,A), it is straightfor-
ward to check that the induced second cohomology group H 2(H,A) coincides
with Ĥ2(H,A). •
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4.14. Lemma: Let H 6= {1} be a group and let A be an H-module. If A is a
p-group and n ∈ N, then Hn(H,A) is a p-group as well.

Proof: Let l = (|H| − 1)n and n ∈ N. As in the proof of Theorem 4.13, one
can identify HomH(Xn, A) with

Cn(H,A) = {f : Hn → A | f(h1, . . . , hn) = 0 if there is hi = 1}.

Since the mapping

Cn(H,A) → Al, γ 7→ (γ(h1, . . . , hn))h1,...,hn∈H\{1}

is an isomorphism, one obtains that |HomH(Xn, A)| = |A|l and thus Hn(H,A)
is a p-group. •

The next theorems define three useful mappings between cohomology groups
and then partially translate them to the special case when the second cohomol-
ogy group is defined as in Definition 4.3. Since much more theory is necessary
to prove this theorem, we only refer to a proof.

4.15. Theorem: Let H be a group and let A be an H-module. We consider
a subgroup P ≤ H and a left transversal {h1, . . . , hk} to P in H. Let n ∈ N.

a) The inclusion r̂esn(P,H) : HomH(Xn, A) ↪→ HomP (Xn, A) induces a ho-
momorphism

resn(P,H) : Hn(H,A) → Hn(P,A),

the so-called restriction-mapping.

b) For g ∈ H let

ĉonn(P, g) :

{
HomP (Xn, A) → HomgPg−1(Xn, A)

f 7→
[
x 7→ g(f(g−1x))

]
.

Then ĉonn(P, g) induces a homomorphism

conn(P, g) : Hn(P,A) → Hn(gPg−1, A)

which is called the conjugation-mapping.

c) The mapping

ĉorn(H,P ) :





HomP (Xn, A) → HomH(Xn, A)

f 7→

[
x 7→

k∑
i=1

hi(f(h−1
i x))

]

is independent of the choice of the transversal and it induces a homomor-
phism

corn(H,P ) : Hn(P,A) → Hn(H,A).

This is called the corestriction-mapping.
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Proof: A proof can be found in [6], Section (XII, §8), or [33], Sections 2.3
and 2.4. •

As a consequence of the definitions, for P1 ≤ P2 ≤ H and x ∈ H and all
γ ∈ Hn(P2, A) we have

conn(P1, x)res
n(P1, P2)(γ) = resn(xP1x

−1, xP2x
−1)conn(P2, x)(γ)

and

resn(P1, P2)res
n(P2,H)(γ) = resn(P1,H)(γ).

4.16. Theorem: With the notations of Theorem 4.15 one can observe the
following:

a) If one defines H2(P,A) via the normalized standard free resolution of Z as
a ZP -module and identifies H2(P,A) with Ĥ2(P,A), then the action of x ∈
NH(P ) on H2(P,A) via con2(P, x) translates to an action on Ĥ2(P,A);
written exponentially, that is to say

γ = f +B2(P,A) 7→ γx = fx +B2(P,A)

where

fx =
[
(s, t) 7→ f(xsx−1, xtx−1)x

]
.

b) For h ∈ H let h̃ ∈ {h1, . . . , hk} be defined by hP = h̃P . Written expo-
nentially, the explicit formula for cor2(H,P ) in terms of the normalized
standard free resolution is given by

cor2(H,P ) : γ +B2(P,A) 7→ γ̂ +B2(H,A)

where

γ̂(u, v) =

k∑

i=1

γ(ũhi
−1
uhi, ṽuhi

−1
vũhi)

h−1
i .

Proof: The proof is based on the more elaborated theory of cohomology groups
presented in [33], Chapters 1 – 3, and can be found in [33], Propositions 2.5.1
and 2.5.2. •

Now we exhibit some useful properties of the mappings defined in Theorem
4.15.

4.17. Lemma: With the notations of Theorem 4.15 it follows that

corn(H,P )resn(P,H)(γ) = [H : P ]γ = γ + . . . + γ︸ ︷︷ ︸
k times

, (γ ∈ Hn(H,A)).



4.2. Cohomology groups 27

Proof: Let γ ∈ Hn(H,A); that is, γ = f + im δn for some f ∈ HomH(Xn, A).
Now the assertion follows from

ĉorn(H,P )r̂esn(P,H)(f) : x 7→
k∑

i=1

hi(f(h−1
i x)) =

k∑

i=1

f(x).

•

In particular, we have the following corollary.

4.18. Corollary: Let H be a group and let A be an H-module. The order of
γ ∈ Hn(H,A), n ∈ N, is a divisor of |H|.

Proof: Since Hn({1}, A) = {0}, we have resn({1},H)(γ) = 0. Now the asser-
tion follows from Lemma 4.17 with P = {1}. •

The next aim is to show that for a p-group A with an H-module structure one
can determine H2(H,A) from H2(P,A) where P ≤ H is a Sylow p-subgroup
of H. For this issue some preliminaries are needed:

4.19. Definition: We consider a group H, an H-module A, and a subgroup
P ≤ H. An element γ ∈ Hn(P,A) is stable if for every x ∈ H we have

resn(P ∩ xPx−1, P )(γ) = conn(x−1Px ∩ P, x)resn(x−1Px ∩ P, P )(γ)

or equivalently

resn(P ∩ xPx−1, P )(γ) = resn(xPx−1 ∩ P, xPx−1)conn(P, x)(γ).

The proof of the following lemma can be found in [6], Proposition (XII, 9.4).

4.20. Lemma: With the notations of Definition 4.19 it follows that

resn(P,H)corn(H,P )(γ) = [H : P ]γ

for every stable element γ ∈ H2(P,A).

Proof: Let H be written as a disjoint union of double cosets H =
⋃
i PxiP

with xi ∈ H. We define Wi = P ∩ xiPx
−1
i and consider a representation of

P as a disjoint union of left Wi cosets; that is, P =
⋃
j yjiWi with yji ∈ P .

Hence one can write

Pxi =
⋃

j

yji(Pxi ∩ xiP )

and

PxiP =
⋃

j

yji(PxiP ∩ xiP ) =
⋃

j

yjixiP.
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This union is still disjoint: If yj1ixip1 = yj2ixip2 for some p1, p2 ∈ P , then
yj2 ∈ yj1ixiPx

−1
i . Now yj2iWi = yj1iWi shows that yj2i = yj1i. Therefore H is

the disjoint union of left P cosets

H =
⋃

i,j

yjixiP

and it follows that

[H : P ] =
∑

i

[P : Wi].(4.1)

Let Xn be a part of the normalized standard free resolution of Z as a ZH-
module. If f ∈ HomP (Xn, A), then, by using the above transversals and the
definitions, one can check readily that

r̂esn(P,H)ĉorn(H,P )(f) =
∑

i

ĉorn(P,Wi)r̂es
n(Wi, xiPx

−1
i )ĉonn(P, xi)(f)

Passing to cohomology, for a stable element γ ∈ H 2(P,A) one obtains that

resn(P,H)corn(H,P )(γ)

=
∑

i

corn(P, P ∩ xiPx
−1
i )resn(P ∩ xiPx

−1
i , xiPx

−1
i )conn(P, xi)(γ)

=
∑

i

corn(P, P ∩ xiPx
−1
i )resn(P ∩ xiPx

−1
i , P )(γ),

and Lemma 4.17 proves the assertion:

resn(P,H)corn(H,P )(γ) =
∑

i

[P : P ∩ xiPx
−1
i ]γ

(4.1)
= [H : P ]γ.

•

The proof of the next theorem is taken from [6], Proposition (XII, 10.1).

4.21. Theorem: Let P be a Sylow p-subgroup of the group H and let A
be a p-group with an H-module structure. Then resn(P,H) maps Hn(H,A)
monomorphically to Hn(P,A) and the image consists of the stable elements of
Hn(P,A).

Proof: From Lemma 4.14 it follows that Hn(H,A) is a p-group and hence
every element of Hn(H,A) has p-power order. If γ ∈ ker resn(P,H), then, by
Lemma 4.17, one obtains that

0 = corn(H,P )resn(P,H)(γ) = [H : P ]γ

and thus γ = 0 since p - [H : P ]. Therefore resn(P,H) is a monomorphism
from Hn(H,A) to Hn(P,A).
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Let γ = resn(P,H)(δ) be an element of the image of resn(P,H) and let x ∈ H
be arbitrary. Then conn(H,x)(δ) = δ and thus

conn(P, x)(γ) = conn(P, x)resn(P,H)(δ) = resn(xPx−1,H)conn(H,x)(δ)

= resn(xPx−1,H)(δ).

It follows that

resn(xPx−1 ∩ P, xPx−1)conn(P, x)(γ) = resn(xPx−1 ∩ P,H)(δ)

= resn(xPx−1 ∩ P, P )resn(P,H)(δ)

= resn(xPx−1 ∩ P, P )(γ)

and therefore γ is stable.

Now suppose that γ ∈ Hn(P,A) is stable. Then Lemma 4.20 shows that

resn(P,H)corn(H,P )(γ) = [H : P ]γ.

As gcd([H : P ], |P |) = 1, there exist i, j ∈ Z with i[H : P ] = 1 + j|P |, and
from Corollary 4.18 it follows that

resn(P,H)
(
icorn(H,P )(γ)

)
= (1 + j|P |)γ = γ ∈ im resn(P,H).

•

Now we can state an important corollary.

4.22. Corollary: Let P ∼= Cp be a Sylow p-subgroup of H and let A ∼= Cp be
an H-module. Then

Ĥ2(H,A) ∼= {γ ∈ Ĥ2(P,A) | ∀x ∈ NH(P ) : γ = γx}

with γx as in Theorem 4.16a).

Proof: It follows from Theorem 4.21 that the group H 2(H,A) is isomorphic
to {γ ∈ H2(P,A) | γ stable}. Since res2(P, P ) = [γ 7→ γ] and res2({1}, P ) =
[γ 7→ 0], as H2({1}, P ) = {0}, one obtains that

H2(H,A) ∼= {γ ∈ H2(P,A) | ∀x ∈ NH(P ) : γ = con2(P, x)(γ)}.

Identifying H2(H,P ) with Ĥ2(H,P ) and using Theorem 4.16a), the assertion
follows. •

4.23. Remark: From now on the group H2(H,A) will be identified with
Ĥ2(H,A).
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4.3 The Schur multiplicator

For the purpose of further examinations another cohomology theoretical the-
orem follows. We recall that every group G has a presentation; that is, there
exists a free group F and a normal subgroup R� F with G ∼= F/R.

4.24. Definition: For a group G with presentation R� F we define

M(G) = (F ′ ∩R)/[F,R]

where
[F,R] = 〈f−1r−1fr | f ∈ F, r ∈ R〉.

The isomorphism type of M(G) is called the Schur multiplicator of G and it is
independent from the presentation. For a more detailed description we refer
to [25], Theorem 11.4.15, and to [20], Theorem (V, 23.5).

Denote with Hom(G,A) the abelian group of all group homomorphisms from
the group G to the group A.

4.25. Theorem: If G is a non-abelian simple group and A is trivial as a
G-module, then

H2(G,A) ∼= Hom(M(G), A).

Proof: This is a corollary of the Universal Coefficients Theorem; see [25],
Theorem 11.4.18. •

The following corollary will be useful later.

4.26. Corollary: Let G = PSL(2, q) for a prime q > 3 and let A ∼= Cp for a
prime p > 2 be a G-module. Then H2(G,A) = {0}.

Proof: By [9], Section 3.3, one obtains that |M(G)| = 2, and therefore
Hom(M(G), A) = {0}. Since G is simple and A is trivial as a G-module
by Corollary 3.2, the assertion follows from Theorem 4.25. •



Chapter 5

The Frattini subgroup

As indicated in the introduction of this thesis, it is essential to study the
structure and the properties of the Frattini subgroup of a group. Therefore this
chapter yields some important propositions concerning the Frattini subgroup.

All proofs in this chapter can also be found in [16] or [20, 25].

As a first step, we recall the definition. Let U < G be a proper subgroup of
a group G. If there exists no subgroup V < G with U < V < G, then U is
called a maximal subgroup of G and this is denoted with U <m G.

5.1. Definition: Let G be a group.

a) The Frattini subgroup Φ(G) of G is defined to be the intersection of all
maximal subgroups of G.

b) If Φ(G) = {1}, then G is called Frattini-free.

A subgroup U ≤ G is called characteristic if Uα = U holds for all α ∈ Aut(G).
Since group automorphisms map maximal subgroups on maximal subgroups,
it follows from the definition that Φ(G) is a characteristic subgroup of G.

The Frattini subgroup Φ(G) has the characterizing property to consist of all el-
ements of G which are unnecessary in every generating set of G; such elements
are called non-generators of G.

5.2. Theorem: The Frattini subgroup Φ(G) consists of all non-generators
of G.

Proof: Let g ∈ Φ(G). If g is not a non-generator of G, then there is X ⊆ G
with 〈X, g〉 = G and 〈X〉 < G. Let M < G be maximal with respect to
X ⊆ M and g /∈M . If M < H ≤ G, then g ∈ H and thus H = G. It follows
that H <m G. Since g ∈ Φ(G) ≤ H, this is a contradiction.

Now let g ∈ G be a non-generator. If g /∈ Φ(G), then there is M <m G with
g /∈ M . Hence it follows that G = 〈M, g〉 and since g is a non-generator, one
obtains that G = M . This is a contradiction and it follows that g ∈ Φ(G). •

An immediate consequence is the following corollary.

31
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5.3. Corollary: Let N �G. There is a subgroup U < G with G = UN if and
only if N 6≤ Φ(G).

The next lemmas list some more properties of the Frattini subgroup.

5.4. Lemma: Let N �G be a normal subgroup. Then the following holds:

a) Φ(G)N/N ≤ Φ(G/N).

b) If N ≤ Φ(G), then Φ(G)/N = Φ(G/N).

Proof: a) It is well-known that a subgroup U ≤ G/N has the form U = V/N
where N ≤ V ≤ G. One can prove immediately that V/N <m G/N if and
only if V <m G. Therefore V/N <m G/N implies that Φ(G)N ≤ V and the
assertion follows.

b) Part a) yields that Φ(G)/N ≤ Φ(G/N). If M <m G, then N ≤ Φ(G) ≤M
and thus M/N <m G/N . Hence it follows that Φ(G/N) ≤ Φ(G)/N . •

In particular, Lemma 5.4 shows that the Frattini factor G/Φ(G) of a group G
is always Frattini-free.

5.5. Lemma: Let σ be a group homomorphism of G. Then Φ(G)σ ≤ Φ(Gσ).

Proof: Let U <m Gσ be a maximal subgroup and let U ? ≤ G be the preimage
of U under σ. If U ? < H ≤ G, then U < Hσ ≤ Gσ and thus Hσ = Gσ . Since
kerσ ≤ H, it follows that H = G and hence U ? <m G. The equation

(A ∩B)? = A? ∩B?

holds for all subgroups A,B ≤ Gσ and therefore

(Φ(Gσ))? =
⋂

V <mGσ

V ?.

This shows Φ(G) ≤ (Φ(Gσ))? and the assertion follows. •

One can observe that Φ(G)σ 6= Φ(Gσ) in general:

5.6. Example: Let G = 〈a, b | a5 = b4 = a−1b−1a2b = 1〉. By Lagrange,
the groups 〈b〉 and 〈ab〉 are maximal subgroups of G and it follows that G is
Frattini-free. If σ : G → G/〈a〉, g 7→ g〈a〉, is the natural epimorphism, then
Φ(Gσ) ∼= Φ(〈b〉) = 〈b2〉 and thus Φ(G)σ < Φ(Gσ).

We provide two well-known lemmas:

5.7. Lemma: Let M �G. If N ≤M is a characteristic subgroup of M , then
N �G.

Proof: Since Inn(G)|M = {α|M | α ∈ Inn(G)} is a subgroup of Aut(M), the
group N is invariant under Inn(G) and hence N �G. •
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5.8. Lemma (Dedekind’s Modular Law): Let A,B,C ≤ G with A ≤ C
and C ≤ AB. Then C = AB ∩ C = A(B ∩ C).

Proof: The equation C = AB ∩C holds obviously. Let c = ab ∈ C with a ∈ A
and b ∈ B. It follows that b = a−1c ∈ C and thus c ∈ A(B ∩ C). Conversely,
if c = ad ∈ A(B ∩C) with a ∈ A and d ∈ B ∩ C, then c ∈ C. •

Now we can prove the following:

5.9. Lemma: Let U ≤ G be a subgroup and N �G.

a) If N ≤ Φ(U), then N ≤ Φ(G).

b) Φ(N) ≤ Φ(G).

Proof: a) If N 6≤ Φ(G), then there is a maximal subgroup M <m G with
N 6≤ M . Hence G = NM and Lemma 5.8 yields that U = N(M ∩ U). Since
N ≤ Φ(U), Lemma 5.2 applies and thus U = M ∩ U and N ≤ U ≤ M . This
is a contradiction and therefore N ≤ Φ(G).

b) Since Φ(N) ≤ N is a characteristic subgroup, the assertion follows from
Lemma 5.7 and a). •

If U ≤ G is not normal, then Φ(U) 6≤ Φ(G) in general. An example is D8 =
〈(1, 2, 3, 4), (1, 4)(2, 3)〉 ≤ S4 with Φ(D8) = 〈(1, 3)(2, 4)〉 and Φ(S4) = {()}.

5.10. Lemma: If G = G1 ×G2, then Φ(G) = Φ(G1) × Φ(G2).

Proof: By Theorem 5.9, it follows that Φ(Gi) ≤ Φ(G1×G2) for i ∈ {1, 2}, and
hence Φ(G1) × Φ(G2) ≤ Φ(G1 ×G2). The equation

⋂

M<mG1×G2

M ≤
⋂

A<mG1

(A×G2) ∩
⋂

B<mG2

(G1 ×B),

implies that Φ(G1 ×G2) ≤ Φ(G1) × Φ(G2). •

5.11. Lemma: If A�G is an abelian normal subgroup with A∩Φ(G) = {1},
then G splits over A.

Proof: One can assume that A < G. Let H ≤ G be minimal with respect
to G = HA. Since A is an abelian normal subgroup of G, it follows that
H ∩ A � HA = G. If H ∩ A ≤ Φ(H), then H ∩ A ≤ Φ(G) ∩ A = {1} by
Lemma 5.9 and thus G splits over A. Conversely, if H ∩A 6≤ Φ(H), then there
is M <m H with H = M(A ∩ H). It follows that G = HA = MA which
contradicts the choice of H. •

This yields the following important corollary. We recall that a minimal normal
subgroup of G is a non-trivial normal subgroup that does not contain a smaller
non-trivial normal subgroup of G.
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5.12. Corollary: Let N �G be an abelian minimal normal subgroup. There
is a complement to N in G if and only if N 6≤ Φ(G).

Proof: If N ≤ Φ(G), then N is non-complemented in G by Corollary 5.3. If
N 6≤ Φ(G), then G splits over N by Lemma 5.11. •

The next lemma is often referred to as the Frattini argument and, as a corol-
lary, one obtains that the Frattini subgroup is always nilpotent. We recall
that Sylp(G) denotes the set of all Sylow p-subgroups of a group G and that
all elements of Sylp(G) are conjugated in G.

5.13. Lemma (Frattini argument): If H � G is a normal subgroup and
P ∈ Sylp(H), then G = NG(P )H.

Proof: Let g ∈ G. It follows that P g ∈ Sylp(H) and thus there exists an

element h ∈ H with P g = P h. Then gh−1 ∈ NG(P ) and g ∈ NG(P )H. Since
NG(P )H ≤ G, the assertion is proved. •

5.14. Corollary: The Frattini subgroup Φ(G) of G is nilpotent.

Proof: If P ∈ Sylp(Φ(G)) is an arbitrary Sylow p-subgroup of Φ(G), then
Lemma 5.13 and Theorem 5.2 yield that G = NG(P )Φ(G) = NG(P ). It
follows that every Sylow p-subgroup of Φ(G) is normal and hence Φ(G) is
nilpotent. •

The following lemma provides an important property concerning the order of
the Frattini subgroup.

5.15. Lemma: If p | |G| for a prime p, then p | |G/Φ(G)|.

Proof: Suppose that p - |G/Φ(G)| and let P ∈ Sylp(Φ(G)). The fact that
Φ(G) is nilpotent implies that P ≤ Φ(G) is a characteristic subgroup. Hence
P�G and gcd(|P |, |G/P |) = 1. By the Theorem of Schur-Zassenhaus, see [20],
Theorem (I, 18.1), there exists a complement Q to P in G. Since P ≤ Φ(G),
it follows that G = Q, and this contradiction shows that p | |G/Φ(G)|. •

As a final result of this section, Lemma 5.15 implies a corollary concerning the
structure of the Frattini subgroup of a cube-free group.

5.16. Corollary: If G is a cube-free group, then Φ(G) ∼= Cp1 × . . .× Cpk for
distinct primes p1, . . . , pk.

Proof: It follows from Lemma 5.15 that |Φ(G)| is square-free; that is, |Φ(G)| =
p1 · · · pk for distinct primes p1, . . . , pk. The assertion holds, because Φ(G) is
nilpotent. •
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Frattini-free groups

The main aim of this chapter is to provide a theorem of Gaschütz which
classifies the groups with trivial Frattini subgroup. It turns out that every
group F with trivial Frattini subgroup has the form F = K n S where S
is contained in the so-called socle of F and K ≤ Aut(S). Hence, as a first
step, we define and examine the structure of the socle of a group. Then we
investigate the structure of the cube-free Frattini-free groups.

Concerning our aim to implement an algorithm to construct the cube-free
Frattini-free groups of a given order, Section 6.5 supplies some notes on the
construction of K ≤ Aut(S) by so-called subdirect products.

6.1 Completely reducible groups

First, we recall the definition of the socle of a group.

6.1. Definition: The socle Soc(G) of a group G is the subgroup generated
by all minimal normal subgroups of G.

In particular, the socle of a group is a characteristic subgroup since group
automorphisms map minimal normal subgroups on minimal normal subgroups.

The group of inner automorphisms of G is defined by

Inn(G) = {α ∈ Aut(G) | ∃g ∈ G : α = (G→ G, h 7→ hg)}

and Inn(G) is a normal subgroup of Aut(G).

The next definition generalizes the concept of a group. This is useful to prove
the following theorem of Remak in a more general context.

6.2. Definition: An operator group is a triple (G,Ω, α) consisting of a group
G, a set Ω called the operator domain, and a function α : G×Ω → G such that
g 7→ (g, ω)α is a group endomorphism of G for every ω ∈ Ω. If the function α
is understood, then we write gω for (g, ω)α and speak of the Ω-group G.

35
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Thus an operator group is a group with a set of operators which act on the
group like endomorphisms. In particular, every group is an operator group
with empty operator domain.

Analogue to groups one can define Ω-subgroups: If G is an Ω-group, an Ω-
subgroup of G is a subgroup H ≤ G such that hω ∈ H for all h ∈ H and
ω ∈ Ω. One can check readily that the intersection of a set of Ω-subgroups is
an Ω-subgroup.

An Ω-subgroup {1} < H ≤ G is called Ω-simple if H has only the trivial
normal Ω-subgroups. If Ω = Inn(G), then the Ω-simple subgroups of G are
exactly the minimal normal subgroups of G. If Ω = ∅, then the Ω-simple
subgroups of G coincide with the simple subgroups of G.

Next, we provide two theorems concerning the decomposition of a group. The
proofs are basically from [25], Section 3.3.

6.3. Theorem (Remak): Let G = G1 × . . .×Gn be an Ω-group where Gi is
Ω-simple for 1 ≤ i ≤ n. Suppose that N is a normal Ω-subgroup of G.

a) There exists M = {i1, . . . , it} ⊆ {1, . . . , n} with G = N × Gi1 × . . . × Git
and hence N is a direct product of Ω-simple groups.

b) If ζ(G) = {1}, then N is the direct product of some Gi.

Proof: a) If N = G, then we take M to be empty. Now we assume that N 6= G
and hence there exists a group Gi 6≤ N . Since Gi is Ω-simple, it follows that
NGi ∼= N ×Gi. Let M ⊆ {1, . . . , n} be maximal with regard to the property
that

GM = 〈N,Gj | j ∈M〉 ∼= N ×
∏

j∈M

Gj .

For every j ∈ {1, . . . , n}\M it follows that Gj∩GM 6= {1} and thus Gj ≤ GM .
Therefore G = GM and a) is proved.

b) Factoring out any Gj contained in N , one can assume that Gi ∩N = {1}
for all 1 ≤ i ≤ n. Since N and all Gi are normal in G, it follows that
[N,Gi] ≤ N ∩ Gi = {1}; that is, elements of N commutate with elements of
Gi for 1 ≤ i ≤ n. This implies that N ≤ ζ(G) = {1} and b) is proved. •

6.4. Theorem: Let G be a group.

a) A product of minimal normal subgroups of G is a direct product of some
of them.

b) A minimal normal subgroup of G is a direct product of simple groups.

c) If G decomposes into a direct product of simple subgroups and ζ(G) = {1},
then this decomposition is unique up to the order of the factors.

d) Let H ≤ N ≤ G with H,N � G. If N is a direct product of non-abelian
simple groups, then there exists M � G with M ≤ N and N = H ×M ,
and M is a direct product of non-abelian simple groups.
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Proof: a) Let N = N1 · · ·Nk be a product of minimal normal subgroups of G
and let P ≤ N be maximal with respect to be a direct product of some Ni. If
P < N , then there exists Nj 6≤ P and thus PNj

∼= P ×Nj . This contradicts
the choice of P and therefore N = P .

b) Let M be a minimal normal subgroup of G. By Lemma 5.7, the group M is
characteristic simple; that is, M contains no smaller non-trivial characteristic
subgroup of G. Let U ≤M be a minimal normal subgroup of M and therefore
Uα ∩ U ∈ {U, {1}} for all α ∈ Aut(M). Since M and Aut(M) are finite, it
follows that

A = 〈Uα | α ∈ Aut(M)〉 = Uα1 × . . .× Uαt

for some α1, . . . , αt ∈ Aut(M) and, as M is characteristic simple, one obtains
that A = M . If there exists {1}�H�Uαj for some j ∈ {1, . . . , t}, then H�M
which contradicts the choice of Uαj ∼= U . Hence the groups Uα1 , . . . , Uαt are
simple and M is a direct product of simple groups.

c) A proof can be found in [25], Theorem 3.3.10.

d) Since ζ(N) = {1}, part c) yields that the decomposition of N into simple
groups is unique up to the order of the factors. Then, by Theorem 6.3, there
exists an unique complement M �N of H in N . For all g ∈ G it follows that

H ×M = N = N g = H ×M g

and thus M = M g; that is, M �G. •

In particular, every product N of minimal normal subgroups of a group G is
completely reducible; that is, N is a direct product of simple groups. The
following definition extends the definition of a completely reducible group.

6.5. Definition: Let G be a group and let Inn(G) ≤ Γ ≤ Aut(G).

a) The group G is completely reducible if G is a direct product of simple
groups.

b) A minimal Γ-subgroup of G is a subgroup U ≤ G which is minimal with
respect to Uα = U for all α ∈ Γ. The group G is called Γ-completely
reducible if G is a product of minimal Γ-subgroups.

c) Let N � G. Then N is G-completely reducible, if N is Γ-completely re-
ducible for Γ = Inn(G)|N .

It follows from the definition that the socle of a finite group G is the largest
normal subgroup of G which is G-completely reducible.

6.6. Lemma: Let G be a group and let N �G. Then the following properties
are equivalent:

a) N is G-completely reducible.

b) N is a direct product of minimal normal subgroups of G.
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c) For every M �G with M ≤ N there exists K �G with N = M ×K.

Proof: “a)⇒ b)” This follows from Theorem 6.4a).

“b) ⇒ c)” This follows from Theorem 6.3.

“c) ⇒ a)” Let M = N1 · · ·Nt be the product of all minimal normal subgroups
Ni�G withNi ≤ N . IfM < N , then there existsK�G withN = M×K which
contradicts the choice of M . It follows that M = N and N is G-completely
reducible. •

We recall that the class of nilpotent groups is closed under forming subgroups
and that the product of two normal nilpotent subgroups is a normal nilpotent
subgroup; see [20], Theorem (III, 4.1). This allows the following definition.

6.7. Definition: Let G be a group.

a) The Fitting subgroup Fit(G) of G is the unique largest normal nilpotent
subgroup of G.

b) If Fit(G) = {1}, then G is called Fitting-free.

It is easy to see that G is Fitting-free if and only if every abelian normal
subgroup of G is trivial. Often this property is also called semisimple.

Since the socle of a group is completely reducible, the next theorem examines
its structure.

6.8. Theorem: Let S be a completely reducible group and let Rad(S) be the
unique largest solvable normal subgroup of S.

a) The group Rad(S) is a direct product of cyclic groups of prime order. In
particular, Rad(S) is the product of all abelian minimal subgroups of S.

b) There exists an unique subgroup N(S) ≤ S with S = Rad(S) × N(S).
The group N(S) is Fitting-free and a direct product of non-abelian simple
groups.

Proof: a) By Theorem 6.3, it follows that Rad(S) is a direct product of solvable
simple groups. A solvable simple group H is abelian since it has a trivial
commutator subgroup. Therefore H is cyclic of prime order. Now it follows
from the definition that Rad(S) is the product of all abelian minimal normal
subgroups of S.

b) Let N be the product of all non-abelian minimal normal subgroups of S.
By Theorems 6.4a) and 6.3, the group N is Fitting-free and it follows that
N ∩Rad(S) = {1} and thus S = N×Rad(S). If K is a complement to Rad(S)
in N , then K ∼= N and K is a direct product of non-abelian simple groups.
Hence K = N and we define N(S) = N . •

6.9. Definition: Let S be a completely reducible group. The groups Rad(S)
and N(S) in Theorem 6.8 are called the abelian and Fitting-free components
of S.
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In particular, Rad(S) and N(S) are characteristic subgroups of S.

Finally, we exhibit an important result of this section.

6.10. Theorem: A completely reducible group S has cube-free order if and
only if S has the form S ∼= A×B × C with

• A ∈ {PSL(2, r) | r > 3 prime with r + 1 and r − 1 cube-free} ∪ {{1}},

• B = Cp1 × . . . × Cpn for different primes p1, . . . , pn with p2
i - |A|, and

• C = C2
q1 × . . . × C2

qm for different primes q1, . . . , qm - |A||B|.

Proof: The assertion follows from Theorem 2.7 together with the fact that
4 | |PSL(2, p)| for every prime p > 3. •

6.2 Finite Fitting-free groups

We provide some useful propositions about Fitting-free groups. The main
result of this section is the following theorem which will be used in later
investigations.

6.11. Theorem: Let S be a direct product of non-abelian simple groups and
let A and B be groups with Inn(S) ≤ A,B ≤ Aut(S). If there is a group
isomorphism α : A → B, then there exists an element Θ ∈ Aut(S) with
aΘ = aα for all a ∈ A.

Theorem 6.11 is proved by the subsequent theorems. We recall that the
center of a direct product is the direct product of the centers. If G is a
group and M ⊆ G is a subset, then the centralizer of M in G is defined by
CG(M) = {g ∈ G | ∀m ∈M : mg = gm}.

The proof of the next theorem is partially from [25], Proposition 3.3.18.

6.12. Theorem: Let H be a finite Fitting-free group and S = Soc(H).

a) The socle S is a direct product of non-abelian simple groups.

b) The centralizer CH(S) of S in H is trivial.

c) There exists Inn(S) ≤ K ≤ Aut(S) with K ∼= H.

d) If T is a direct product of non-abelian simple groups and K is a group with
Inn(T ) ≤ K ≤ Aut(T ), then K is a finite Fitting-free group with socle
Soc(K) = Inn(T ) ∼= T .

Proof: a) It follows from the assumptions that Rad(S) = {1}. By Theorem
6.8b), the group S = N(S) is a direct product of non-abelian simple group.

b) Since S is normal in H, it follows that CH(S) � H. If CH(S) 6= {1},
then there exists a minimal normal subgroup N of H in CH(S). Therefore
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N ≤ S ∩ CH(S) = ζ(S) = {1} which yields a contradiction.

c) Let τ : H → Aut(S) be the conjugation homomorphism; that is, τ maps

h ∈ H onto hτ = (S → S, s 7→ sh). It follows that ker τ = CH(S)
b)
= {1} and

hence H is isomorphic to K = Hτ with Inn(S) ≤ K ≤ Aut(S).

d) Due to the fact that ζ(T ) = {1} is the kernel of the conjugation homomor-
phism τ : T → Inn(T ), it follows that T ∼= T τ = Inn(T ). Obviously, the group
K is finite. If α ∈ C = CAut(T )(Inn(T )), then the following equation holds for
all t ∈ T :

tτ = α−1tτα = (tα)τ .

As τ is injective, it follows that t = tα for all t ∈ T . Therefore α = 1 and
C = {1}. If A�K is an abelian normal subgroup, then A∩ Inn(T ) is normal
in Inn(T ). Since Inn(T ) ∼= T is Fitting-free by Theorem 6.3, one obtains that
A ∩ Inn(T ) = {1}. Hence AInn(T ) = A × Inn(T ) as A and Inn(T ) are both
normal in K. It follows that A ≤ C = {1} and therefore K is Fitting-free. In
particular, the socle of K is a direct product of non-abelian simple groups.
The group I = Inn(T ) ∩ Soc(K) is normal in K. By Theorem 6.4d), there
exists a normal subgroup M1 �K with Inn(T ) = M1 × I. It follows that

Soc(K) ∩M1 = Soc(K) ∩M1 ∩ Inn(T ) = I ∩M1 = {1}

and thus
Soc(K)Inn(T ) = Soc(K)IM1 = Soc(K) ×M1

is a direct product of non-abelian simple groups. Applying Theorem 6.4d)
again, there exists a normal subgroup M2 �K with

Soc(K)Inn(T ) = M2 × Inn(T ).

This shows that M2 ≤ C = {1} and hence Soc(K)� Inn(T ). Now there exists

M3 � K with Inn(T ) = Soc(K) ×M3. Since M3 ≤ CK(Soc(K))
a)
= {1}, it

follows that Soc(K) = Inn(T ). •

Since isomorphic groups have isomorphic socles, the next theorem classifies
the finite Fitting-free groups having a fixed isomorphism type of socle; see
[25], Proposition 3.3.19.

6.13. Theorem: Let S be a direct product of non-abelian simple groups and

A = {H | Inn(S) ≤ H ≤ Aut(S)}.

If R is a complete and irredundant list of conjugacy class representatives of
A in Aut(S), then R is also a complete and irredundant list of isomorphism
type representatives of

B = {H | H a finite Fitting-free group with Soc(H) ∼= S}.
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Proof: From Theorem 6.12d) it follows that R ⊆ A ⊆ B. As a first step,
we show that the isomorphism classes of A are exactly the conjugacy classes
of A in Aut(S). Obviously, conjugated elements are isomorphic. Now let
H1,H2 ∈ A be isomorphic groups with a group isomorphism α : H1 → H2.
Since Soc(H1) = Inn(S) = Soc(H2) by Theorem 6.12d), one obtains that the
restriction α|Inn(S) is an automorphism. Further, the conjugation homomor-
phism τ : S → Inn(S) is an isomorphism and hence

Θ = τατ−1 : S → S, s 7→ sτατ
−1

,

is an automorphism with Θτ = τα. For all s ∈ S and f ∈ Aut(S) we observe
that

(sf )τ = f−1sτf.(6.1)

If s ∈ S and h ∈ H1 ≤ Aut(S), then

(sΘ
−1hΘ)τ = ((sΘ

−1h)τ )α
(6.1)
= (h−1(s(Θ

−1))τh)α = (hα)−1sΘ
−1ταhα

= (hα)−1sτhα
(6.1)
= (s(h

α))τ .

Since the mapping τ is injective and s ∈ S was chosen arbitrarily, it follows that
Θ−1hΘ = hα. Hence Θ−1H1Θ = Hα

1 = H2, and H1 and H2 are conjugated in
Aut(S). It remains to show that every M ∈ B is isomorphic to a group N ∈ A
and this follows from Theorem 6.12c). •

Finally, Theorem 6.11 is a corollary of Theorem 6.13.

6.3 A theorem of Gaschütz

Using the results of the last sections, we now provide the announced theorem
of Gaschütz which permits a classification of the Frattini-free groups. The
theory and proofs of this section are mainly from [16].

As isomorphic groups have isomorphic socles, we consider a fixed isomorphism
type S of socle and classify all Frattini-free groups with socle isomorphic to S.
Thus throughout this section let S = R × N be a fixed completely reducible
group with R = Rad(S) and N = N(S).

Since R and N are characteristic in S, one can identify Inn(S) = Inn(N) and
observe that Inn(N) ∼= N . Further, there is an isomorphism

Aut(S) → Aut(R) × Aut(N), β 7→ (β|R, β|N ),

and every s ∈ S and γ ∈ Aut(S) can be written uniquely as

s = sαsη with sα ∈ R and sη ∈ N, and
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γ = γαγη with γα = γ|R ∈ Aut(R) and γη = γ|N ∈ Aut(N).

Consequently, for a subgroup Γ ≤ Aut(S) let

Γα = {γα | γ ∈ Γ} and Γη = {γη | γ ∈ Γ}.

By definition, Γα and Γη act trivially on N and R, respectively, and elements
of Γα commutate with elements of Γη.

As a preliminary step, some useful lemmas follow.

6.14. Lemma: If Inn(S) ≤ Γ ≤ Aut(S), then the mapping

Γ/CΓ(Inn(S)) → Γη, γCΓ(Inn(S)) 7→ γη

is a group isomorphism.

Proof: It is sufficient to prove that the homomorphism ϕ : Γ → Γη, γ → γη
has kernel CΓ(Inn(S)). For this purpose let τ : N → Inn(N) = Inn(S) be the
conjugation isomorphism and observe that the following equation holds for all
nτ ∈ Inn(S) and β ∈ kerϕ:

∀x ∈ S : xn
τβ = (n−1)βxβnβ = n−1xβn = xβn

τ

.

Hence it follows that kerϕ ≤ CΓ(Inn(S)). Now let β ∈ CΓ(Inn(S)). If n ∈ N ,
then

∀x ∈ S : (xβ)(n
βτ ) = xn

τβ = xβn
τ

= (xβ)(n
τ ).

Since β : S → S is an isomorphism, it follows that nβτ = nτ and, because τ
is injective, one obtains that nβ = n. Since n ∈ N was chosen arbitrarily, this
shows β ∈ kerϕ and thus CΓ(Inn(S)) = kerϕ •

6.15. Lemma: Let Inn(S) ≤ Γ ≤ Aut(S) and δ ∈ Aut(S). If R is Γ-
completely reducible, then R is Γδ-completely reducible.

Proof: First, one can observe that Inn(S) ≤ Γδ ≤ Aut(S) for all δ ∈ Aut(S). If
R = R1 · · ·Rn is a product of minimal Γ-subgroups, then R = Rδ = Rδ1 · · ·R

δ
n

is a product of Γδ-subgroups. It is easy to show that Rδ
i is a minimal Γδ-

subgroup for 1 ≤ i ≤ n and hence R is Γδ-completely reducible. •

For the remaining part of this section let Inn(S) ≤ Γ ≤ Aut(S) such that R is
Γ-completely reducible. Further, for this Γ a group FΓ is defined by

FΓ = Γ nR.

6.16. Lemma: The socle Soc(FΓ) of FΓ is isomorphic to S.
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Proof: Since Inn(S) acts trivially on R and Inn(S) is normal in Aut(S), the
group

S? = Inn(S) ×R

is a normal subgroup of FΓ with S? ∼= S, as Inn(S) = Inn(N) ∼= N . Next,
we show that S? = Soc(FΓ). The fact that R is abelian and Γ-completely
reducible yields that {1} × R is a product of minimal normal subgroups
of FΓ. The same holds for Inn(S) × {1} since Inn(S)α = {1} and since

Inn(S) = Inn(N)
6.12d)

= Soc(Γη) is a product of minimal normal subgroups
of Γη. Therefore

S? = (Inn(S) × {1})({1} ×R)

is a product of minimal normal subgroups of FΓ and hence S? ≤ Soc(FΓ).
If (γ, b) ∈ CFΓ

(S?) and (σ, a) ∈ S?, then

(γ, b)(σ, a) = (γσ, bσa) = (σγ, aγb) = (σ, a)(γ, b).(6.2)

We note that bσ = b and since R is abelian, Equation (6.2) yields that γα = 1
and γ = γη. Hence

γ ∈ CAut(N)(Inn(N))
6.12b)

= {1}

and it follows that CFΓ
(S?) ≤ S?. If B � FΓ is a minimal normal subgroup of

FΓ with B 6≤ S?, then BS? = B × S? and hence B ≤ CFΓ
(S?) ≤ S?. This is

a contradiction and thus Soc(FΓ) ≤ S?. •

6.17. Lemma: Let G be a group with socle S. Then G is Frattini-free if and
only if G splits over R.

Proof: “⇒” By Theorem 6.8a), it follows that R is an abelian normal subgroup
of G with R ∩ Φ(G) = {1}, as Φ(G) = {1}. Therefore G splits over R by
Lemma 5.11.

“⇐” Let Φ(G) 6= {1} and assume, for a contradiction, that there exists a
complement H to R in G. Let N be a minimal normal subgroup of G in Φ(G).
Since N is nilpotent, it follows that N is abelian and thus N ≤ R. By Lemma
6.6c), there exists M ≤ R with R = N ×M and thus G = HR = HNM .
This shows that |G| = |H||N ||M | and MH < G, and Corollary 5.3 yields that
N 6≤ Φ(G). This contradiction proves the assertion. •

6.18. Lemma: The group FΓ has a trivial Frattini subgroup.

Proof: Lemma 6.16 yields that Soc(FΓ) = Inn(S) ×R ∼= N ×R and therefore

A = Rad(Soc(FΓ)) = {1} ×R.

If one defines H = Γ × {1} ≤ FΓ, then

FΓ = HA and H ∩A = {1},
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and the assertion follows from Lemma 6.17. •

After all this preparations we can state the main theorem of this chapter.

6.19. Theorem (Gaschütz): Let S = R×N be a completely reducible group
with R = Rad(S) and N = N(S). Let L be a complete and irredundant list of
conjugacy class representatives of subgroups of Aut(S) in Aut(S). If R is the
set of all Γ ∈ L with

(i) Inn(S) ≤ Γ and (ii) R is Γ-completely reducible,

then {FΓ | Γ ∈ R} is a complete and irredundant list of isomorphism type
representatives of Frattini-free groups with socle isomorphic to S.

Proof: Lemma 6.15 yields that the definition of R is independent from the
choice of L. Further, Lemma 6.16 and Lemma 6.18 show that the groups FΓ,
Γ ∈ R, are Frattini-free and have the socle

S? = Inn(S) ×R ∼= S

with Rad(S?) = {1} ×R and N(S?) = Inn(S) × {1}.

The remaining proof is divided into three parts. Let Γ1,Γ2 ∈ R.

(1) We show: If FΓ1
∼= FΓ2

, then Γ1 and Γ2 are conjugated in Aut(S).

Let Λ : FΓ1
→ FΓ2

be an isomorphism. Hence Λ|S? is an automorphism
and Rad(S?)Λ = Rad(S?). One can observe the following:

• If a ∈ R, then (1, a)Λ = (1, aλ1) for some λ1 ∈ Aut(R) induced by Λ.

• If γ ∈ Γ1, then (γ, 1)Λ = (γ
eΛ, cΛ,γ) for some cΛ,γ ∈ R and a mapping

Λ̃ : Γ1 → Γ2 induced by Λ.

Thus Λ acts on (γ, a) ∈ FΓ1
via

(γ, a)Λ = (γ, 1)Λ(1, a)Λ = (γ
eΛ, aλ1cΛ,γ).

Let γ ∈ Γ1. For every a ∈ R it follows that

(γ
eΛ, aγλ1cΛ,γ) = (γ, aγ)Λ = ((1, a)(γ, 1))Λ

= (1, a)Λ(γ, 1)Λ = (1, aλ1 )(γ
eΛ, cΛ,γ)

= (γ
eΛ, aλ1γ

eΛ

cΛ,γ)

and therefore

(γ
eΛ)α = (λ−1

1 γλ1)α = λ−1
1 γαλ1.(6.3)
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The mapping

Λ̃ : Γ1 → Γ2, γ 7→ γ
eΛ,

is an isomorphism: The fact that Λ is an isomorphism yields that Λ̃
is an epimorphism. If γ ∈ ker Λ̃, then (γ, 1)Λ ∈ Rad(S?) and thus
(γ, 1) ∈ Rad(S?). It follows that γ = 1 and Λ̃ is injective.

Let ϕ : Aut(S) → Aut(N), γ 7→ γη. By Lemma 6.14, it follows that

(Γi)
ϕ = (Γi)η ∼= Γi/CΓi(Inn(S)), i ∈ {1, 2},

and thus there are isomorphisms

ϕi : Γi/CΓi(Inn(S)) → (Γi)η, γCΓi(Inn(S)) 7→ γη, i ∈ {1, 2}.

We recall that N(S?)Λ = Inn(S) × {1} and thus Inn(S)
eΛ = Inn(S). It

follows that
(CΓ1

(Inn(S)))
eΛ = CΓ2

(Inn(S))

and Λ̃ induces an isomorphism

Λ? :

{
Γ1/CΓ1

(Inn(S)) → Γ2/CΓ2
(Inn(S))

γCΓ1
(Inn(S)) 7→ γ

eΛCΓ2
(Inn(S)).

Defining the projections πi : Γi → Γi/CΓi(Inn(S)), i ∈ {1, 2}, one ob-
tains the following commutative diagram:

(Γ1)η

∼=

ϕ−1
1

''OOOOOOOOOOO
Γ1

eΛ
∼=

//

π1

��

Γ2

π2

��

(Γ2)η

Γ1/CΓ1
(Inn(S))

Λ?

∼=
// Γ2/CΓ2

(Inn(S))

∼=

ϕ2

77ooooooooooo

This implies an isomorphism

Λ̃? : (Γ1)η → (Γ2)η, γη 7→ (γ
eΛ)η.

Since Inn(N) ≤ (Γ1)η , (Γ2)η ≤ Aut(N), Theorem 6.11 applies and there
is an element Θ ∈ Aut(N) with

∀γη ∈ (Γ1)η : Θ−1γηΘ = (γη)
eΛ? = (γ

eΛ)η.(6.4)

Finally, we define λ = λ1Θ ∈ Aut(S) with λ1 ∈ Aut(R) and Θ ∈ Aut(N)
as in (6.3) and (6.4), respectively. If γ ∈ Γ1, then

γλ = (γα)λ1(γη)
Θ = (γ

eΛ)α(γ
eΛ)η = γ

eΛ,

and thus (Γ1)
λ = (Γ1)

eΛ = Γ2.
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(2) We show: If (Γ1)
λ = Γ2 for some λ ∈ Aut(S), then FΓ1

∼= FΓ2
.

Let
Ψ : FΓ1

→ FΓ2
, (γ, a) 7→ (γλ, aλ) = (λ−1γλ, aλ).

Since λ ∈ Aut(S) and the conjugation with λ in Aut(S) is bijective, it
follows immediately that Ψ is bijective. Now let (γ, a), (δ, b) ∈ FΓ1

. One
can observe that

(γ, a)Ψ(δ, b)Ψ = (γλδλ, aλ(λ−1δλ)bλ) = ((γδ)λ, aδλbλ) = (γδ, aδb)Ψ

= ((γ, a)(δ, b))Ψ ,

and hence Ψ is an isomorphism.

(3) We show: If F is a finite Frattini-free group with Soc(F ) ∼= S, then
F ∼= FΓ for some Γ ∈ R.

W.l.o.g. one can assume that Soc(F ) = S and Rad(Soc(F )) = R. By
Lemma 6.17, there is V to R in F . Let σ : V → Aut(S) be the conjuga-
tion homomorphism and

Γ = V σ = {S → S, s 7→ sv | v ∈ V } ≤ Aut(S).

An abelian minimal normal subgroup B � F is contained in R and for
every f = av ∈ F with a ∈ R and v ∈ V it follows that B = Bf = Bav =
Bv. Therefore B is a Γ-subgroup and it is easy to show that B is minimal
with this property. As R is the product of all abelian minimal normal
subgroups of F , the abelian component R of S is Γ-completely reducible.

Let τ : N → Inn(S) be the conjugation homomorphism and let
n = av ∈ N with a ∈ R and v ∈ V . Since R is abelian, the ele-
ment v commutates as well as the element n with every element of R.
Hence nτ maps s = sαsη ∈ S onto snαs

av
η = sαs

v
η and it follows that

nτ = vσ. Thus Inn(S) ≤ Γ and Γ satisfies the conditions (i) and (ii). In
particular, one can assume that Γ ∈ R.

Next, we consider an element v ∈ ker σ = CV (S) = CF (S) ∩ V and the
normal closure [v] = {v}F of {v} in F ; that is,

[v] = 〈vg | g ∈ F 〉 � F.

Let g ∈ F and s ∈ S. Since v ∈ CF (S) and S � F , it follows that

vgs = (vs̃)g = (s̃v)g = svg

with s̃ = gsg−1 ∈ S. Hence vg ∈ CF (S) and thus [v] ≤ CF (S). For all
f = wa ∈ F with w ∈ V and a ∈ R ≤ S it follows that

([v] ∩ V )f = ([v] ∩ V )wa = ([v] ∩ V )a = [v] ∩ V
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and therefore v ∈ [v]∩ V �F . Since [v] is the smallest normal subgroup
containing v, one obtains that [v] ≤ V .

If [v] 6= {1}, then there is a minimal normal subgroup B of F in [v]. Since
R contains all abelian minimal normal subgroups of F and V ∩R = {1},
the group B has to be non-abelian. This is a contradiction to B ≤ S
and B ≤ [v] ≤ CF (S). Hence [v] = {1} which shows that σ : V → Γ is
an isomorphism.

Since F splits over R, one can identify F = V nR. Next, we define

ϑ : F → FΓ, (v, a) 7→ (vσ, a).

If (v, a), (u, b) ∈ F , then

(v, a)ϑ(u, b)ϑ = (vσ , a)(uσ , b) = (vσuσ, a(uσ)b) = ((vu)σ , aub)

= (vu, aub)ϑ = ((v, a)(u, b))ϑ.

Obviously, ϑ is bijective and hence F ∼= FΓ.

Finally, (1), (2), and (3) complete the proof. •

Theorem 6.19 yields a method to construct all cube-free Frattini-free groups
with a socle isomorphic to a completely reducible S. This intention will be
concretized in the following section.

6.20. Example: We determine the isomorphism types of Frattini-free groups
having a socle isomorphic to V4 = 〈(1, 2)(3, 4), (1, 3)(2, 4)〉 ≤ S4. First, one
can observe that S4, A4, and V4 are Frattini-free groups with

Soc(S4) = Soc(A4) = Soc(V4) = V4.

If one identifies Aut(V4) = S3, then

K1 = {()}, K2 = 〈(1, 2)〉, K3 = 〈(1, 2, 3)〉, and K4 = S3

is a complete and irredundant list of conjugacy class representatives of sub-
groups of Aut(V4). Further, one can observe that {1} = Inn(V4) ≤ Ki for
1 ≤ i ≤ 4. Now the only possibilities to write V4 as a product of different
subgroups are

V4 = 〈(1, 2)(3, 4)〉〈(1, 3)(2, 4)〉 = 〈(1, 2)(3, 4)〉〈(1, 4)(2, 3)〉

= 〈(1, 3)(2, 4)〉〈(1, 4)(2, 3)〉

In particular, the group V4 is K1-, K3-, and K4-completely reducible, but not
K2-completely reducible. Hence Theorem 6.19 yields that

FK4
= K4 n V4

∼= S4,

FK3
= K3 n V4

∼= A4, and

FK1
= K1 n V4

∼= V4

are all isomorphism types of Frattini-free groups having a socle isomorphic
to V4.
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6.4 Frattini-free groups of cube-free order

Based on Theorem 6.19, we investigate the structure of the cube-free Frattini-
free groups. We recall that the socle S of a cube-free group has the form
S = A×B×C with A, B, and C as in Theorem 6.8, and we use this notation
throughout this section. In particular, Rad(S) = B × C and N(S) = A.

First, it is necessary to examine the automorphism group of S.

6.21. Lemma: If S = A×B×C is a completely reducible group of cube-free
order, then the following holds:

a) Aut(S) = Aut(A) ×Aut(B) × Aut(C),

b) Inn(S) ∼= Inn(A) ∼= A and [Aut(A) : Inn(A)] | 2,

c) Aut(B) =
∏
iAut(Cpi)

∼= Cp1−1 × . . .× Cpn−1,

d) Aut(C) =
∏
iAut(C2

qi)
∼= GL(2, q1) × . . .× GL(2, qm).

Proof: The groups S, B, and C decompose into direct products of characteris-
tic subgroups and thus also Aut(S), Aut(B), and Aut(C) decompose accord-
ingly. This shows a) and the first parts of c) and d).

For i ∈ {1, 2} we consider C i
p
∼= Fip as an Fp-vector space and observe that

Aut(Fip) can be identified with GL(i, p). Obviously, GL(1, p) ∼= Cp−1, and thus
c) and d) are proved.

The isomorphisms in b) are already shown in the previous sections. The group
A is either trivial or A = PSL(2, r) for some prime r. If A = PSL(2, r), then
[9], Section 3.3, yields that |Aut(A)/Inn(A)| = 2. •

6.22. Theorem: Let S = A × B × C be a completely reducible group of
cube-free order.

a) The group F is a Frattini-free group of cube-free order with socle S if and
only if F ∼= A× (K n (B ×C)) with K ≤ Aut(B × C) such that |K||S| is
cube-free.

b) Two Frattini-free groups Fi = A×(Kin(B×C)), i ∈ {1, 2}, are isomorphic
if and only if K1 is conjugated to K2 in Aut(B × C).

Proof: a) “⇒” By Theorem 6.19, it follows that F ∼= L n (B × C) for some
Inn(S) ≤ L ≤ Aut(S). Thus the case A = {1} follows directly and it remains
to consider the case A 6= {1}. By Lemma 6.21b), one can identify A =
Inn(A) = Inn(S). Thus 4 | |Inn(A)| and it follows that 2 - [L : Inn(A)] as L
has cube-free order. Now [Aut(A) : Inn(A)] = 2 implies that

Inn(A) ≤ L ≤ Inn(A) × Aut(B) × Aut(C).
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Let λ : L → Aut(Inn(A)) be the conjugation homomorphism and note that
Lλ = Inn(Inn(A)). Denote with δ : L → L/Inn(A) the natural epimorphism
and let

µ : L→ Inn(Inn(A)) × L/Inn(A), l 7→ (lλ, lδ),

be the combination of these two mappings. We show that µ is bijective. Let
(aλ, bδ) ∈ Inn(Inn(A))×L/Inn(A) with a, b ∈ L. Then there are x, y ∈ Inn(A)
with xλ = aλ and yλ = (bλ)−1. It follows that (byx)µ = (aλ, bδ) and µ is
surjective. If l ∈ kerµ, then l ∈ Inn(A). Since Inn(A) is non-abelian simple,
the conjugation homomorphism Inn(A) → Inn(Inn(A)) is injective and thus
l = 1. Hence µ is an isomorphism and it follows that

L ∼= Inn(Inn(A)) ×K ∼= Inn(A) ×K

for some K ≤ Aut(B) × Aut(C). Therefore

F ∼= Ln (B × C) ∼= (Inn(A) ×K) n (B × C) ∼= A× (K n (B × C)).

“⇐” Let F ∼= A× (K n (B×C)) with K ≤ Aut(B×C) and |K||S| cube-free.
Then F ∼= Ln(B×C) with L = A×K and, by Lemma 6.21b), one can identify
L = Inn(S) ×K . Thus L is a cube-free group with Inn(S) ≤ L ≤ Aut(S).
The image of the projection K → GL(2, qi) ≤ Aut(B × C) is a cube-free
subgroup Ki ≤ GL(2, qi) with qi - |Ki| for 1 ≤ i ≤ m. Hence Theorem 3.11a)
applies and it is easy to show that C is K-completely reducible. Further, B
is K-completely reducible by the definition of B. Since Inn(S) acts trivial on
B × C, it follows that B × C is L-completely reducible. Now a) is proved by
Theorem 6.19.

b) As shown in part a), one can identify Fi = (Inn(S) × Ki) n (B × C) for
i ∈ {1, 2}. Since Inn(S) ×K1 and Inn(S) ×K2 are conjugated in Aut(S) if
and only if K1 and K2 are conjugated in Aut(B × C), the assertion follows
directly from Theorem 6.19. •

Thus every cube-free Frattini-free group F with socle S = A×B ×C has the
form F = A× (K n (B × C)) with a cube-free K ≤ Aut(B × C). By Lemma
6.21, the group K can be identified with a cube-free subgroup of

Cp1−1 × . . .× Cpn−1 × GL(2, q1) × . . . × GL(2, qm).

Every projection of K into a direct factor is solvable by Theorem 3.12. Since
K is a subgroup of the direct product of these projections, K and hence also
K n (B × C) are solvable. In particular, it follows a corollary concerning the
structure of cube-free Frattini-free groups.

6.23. Corollary: A Frattini-free group F of cube-free order decomposes into
a direct product F = A × L where A is either trivial or a non-abelian simple
group and L is solvable. If A is non-trivial, then 4 | |A| and |L| is odd.
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This yields a method to construct the Frattini-free groups of a given cube-free
order n up to isomorphism. First, all possible completely reducible groups
S = A×B × C of order dividing n are determined using Theorem 6.8. Then
all subgroups K of Aut(B × C) with |S||K| = n are computed up to conju-
gacy in Aut(B × C). By Lemma 6.21, such a group K is a subgroup of a
direct product of groups of the type Cp−1 and GL(2, q). As it will be shown in
the following section, the possible groups K can be determined up to conju-
gacy from their projections into the direct factors using a so-called subdirect
product construction. The possible projections into a group of the type Cp−1

can be determined readily and the possible projections into a group of the
type GL(2, q) are considered in Lemma 3.12. Once all possible groups K are
determined, it is straightforward to construct all products A× (Kn (B×C)).

6.5 Subdirect products

We investigate the question how one can compute all subgroups of a direct
product having given projections into the direct factors. Such subgroups are
called subdirect products of these projections and this section outlines their
construction. The theory of this section is based on [12], Section 2.2.1.

First of all, we specify the definition of a subdirect product. All direct products
are to be regarded as internal direct products.

6.24. Definition: Let D = D1 × . . . × Dn be a direct product of groups
D1, . . . , Dn and let πi : D → Di for i ∈ {1, . . . , n} be the corresponding
projections. A subdirect product of D1, . . . , Dn is a subgroup U ≤ D such that
Uπi = Di for 1 ≤ i ≤ n.

In particular, it is sufficient to consider the case n = 2. For this purpose we
analyze the situation and assume that U ≤ D1 × D2 is a subdirect product
of D1 and D2. Then kerπ1 = U ∩D2 and ker π2 = U ∩D1 are normal in U
and hence also in D2 and D1, respectively. If M = (U ∩ D1)(U ∩ D2), then
Mπi ≤M for i ∈ {1, 2}. Since U/M → DiM/M , uM 7→ uπiM , is bijective for
i ∈ {1, 2}, it follows that

D1/U ∩D1
∼= D1M/M ∼= U/M ∼= D2M/M ∼= D2/U ∩D2

and
U/M ∩D1M/M ∼= {1} ∼= U/M ∩D2M/M.

Therefore the following lemma reduces the investigations to subdirect products
U of D1 and D2 with trivial intersections; this means that D1 ∩U and D2 ∩U
are trivial.

6.25. Lemma: Let U ≤ D1 ×D2 and M = (U ∩D1)(U ∩D2). Then U is a
subdirect product of D1 and D2 if and only if U/M is a subdirect product of
D1M/M and D2M/M .
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Proof: Since U ∩ D1 and U ∩D2 are the kernels of the projections U → D2

and U → D1, respectively, the assertion follows immediately. •

Consequently, the first step to determine all subdirect products of D1 and D2

is the computation of all candidates for the intersections U ∩D1 and U ∩D2;
that is, one has to determine all pairs (N1, N2) with Ni �Di, i ∈ {1, 2}, and
D1/N1

∼= D2/N2. Then one computes all subdirect products V of D1/N1 and
D2/N2 with trivial intersections V ∩Di/Ni, i ∈ {1, 2}. The final step is to lift
V to its preimage concerning the projection

D1 ×D2 → D1/N1 ×D2/N2 = (D1 ×D2)/(N1 ×N2).

Thus it remains to examine the subdirect products with trivial intersections.

6.26. Lemma: If ψ : D1 → D2 is an isomorphism, then

Uψ = {(g, h) | g ∈ D1, h ∈ D2, g
ψ = h} ≤ D1 ×D2

is a subdirect product of D1 and D2 with trivial intersections Uψ ∩ D1 and
Uψ ∩D2.

Proof: The assertion follows from the construction. A more generalized version
of this lemma can be found in [20], Theorem (I, 9.11). •

If U is a subdirect product of D1 and D2 with trivial intersections, then the
projections πi : U → Di, i ∈ {1, 2}, are isomorphisms. Therefore ψ = π−1

1 π2 :
D1 → D2 is an isomorphism and U = Uψ as in Lemma 6.26. Since different
isomorphisms yield different subdirect products, there is a bijection between
all isomorphisms D1 → D2 and all subdirect products U of D1 and D2 with
trivial intersections D1 ∩ U and D2 ∩ U . This completes the described algo-
rithm to compute all subdirect products of D1 and D2.

In the context of this thesis it is necessary to reduce these subdirect products
of D1 and D2 to conjugacy class representatives in a group G = G1 ×G2 with
D1 ×D2 ≤ G. This requires some extra propositions and we refer to [12], Sec-
tion 2.2.1, for more details and some comments concerning an implementation.
As the algorithm to construct all subdirect products indicates, the main run-
time of this function is spent to the computation of group isomorphisms.

6.27. Example: We construct all subdirect products of G = 〈g | g8 = 1〉 and
H = 〈h | h4 = 1〉. First, all pairs (N,M) of normal subgroups N � G and
M �H with G/N ∼= H/M are determined:

(i) (〈g〉, 〈h〉),

(ii) (〈g2〉, 〈h2〉), and

(ii) (〈g4〉, 〈1〉).
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If (N,M) = (〈g〉, 〈h〉), then G̃ = G/N ∼= {1} ∼= H/M = H̃ and the identity
mapping is the only isomorphism from G̃ to H̃. Hence Uid = {(1N, 1M)} and
this induces the direct product:

U1 = G×H.

If (N,M) = (〈g2〉, 〈h2〉), then G̃ = G/N ∼= C2
∼= H/M = H̃ and, again, the

identity mapping is the only isomorphism from G̃ to H̃. Now Uid = 〈(gN, hM)〉
induces the subdirect product of order 16:

U2 = 〈(g7, h3), (g2, 1)〉.

If (N,M) = (〈g4〉, 〈1〉), then G̃ = G/N ∼= C4
∼= H/M = H. There are two

isomorphisms from 〈gN〉 to H, that is to say

ψ1 : gN 7→ h and

ψ2 : gN 7→ h3.

Thus Uψ1
= 〈(gN, h)〉 and Uψ2

= 〈(gN, h3)〉 and the subdirect products of
order 8 follow:

U3 = 〈(g, h)〉, and

U4 = 〈(g, h3)〉.

Finally, U1, . . . , U4 are the only subdirect products of G and H, and since
G×H is abelian, no two of these subdirect products are conjugated in G×H.
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Cube-free Frattini extensions

We discusses the second step in the algorithm to construct all groups of a
given cube-free order up to isomorphism: Assuming that a Frattini-free group
F of cube-free order is given, we want to determine all Frattini extensions G
of F with cube-free order up to isomorphism.

At first we define and investigate Frattini extensions. Then we introduce the
main results of this thesis.

7.1 Frattini extensions

First, we specify the definition of a Frattini extension.

7.1. Definition: Let G, H, and M be finite groups.

a) The group G is a Frattini extension of H by M , if G is an extension of H
by M and G/Φ(G) ∼= H/Φ(H).

b) The group G is a minimal Frattini extension of H by M , if G is a Frattini
extension of H by M and there exists a minimal normal subgroup N �G
with N ∼= M and G/N ∼= H.

7.2. Lemma: If G is a Frattini extension of a Frattini-free group F by a
normal subgroup M �G, then Φ(G) = M .

Proof: It follows from Lemma 5.4a) that

Φ(G)M/M ≤ Φ(G/M) ∼= Φ(F ) = {1}

and thus Φ(G) ≤M . Since G/Φ(G) ∼= G/M , one obtains that M = Φ(G). •

Now we consider the minimal Frattini extensions.

7.3. Lemma: Let G be an extension of H by an H-module M ; that is, we
assume that M �G and G/M = H. Then G is a minimal Frattini extension
of H by M , if and only if M is a minimal non-complemented normal subgroup
of G.

53
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Proof: “⇒” Suppose M is a complemented. Then Corollary 5.12 yields that
M ∩ Φ(G) = {1}, and it follows from Φ(G)M/M ≤ Φ(G/M) that

|H|

|Φ(H)|
=

|G/M |

|Φ(G/M)|
≤

|G|

|Φ(G)M |
<

|G|

|Φ(G)|
.

Thus H/Φ(H) 6∼= G/Φ(G) and G is not a Frattini extension of H by M . This
is a contradiction and hence M has to be non-complemented.

“⇐” It follows from Corollary 5.12 that M ≤ Φ(G) and this shows that
Φ(H) = Φ(G/M) = Φ(G)/M . Hence H/Φ(H) ∼= (G/M)/Φ(G/M) ∼= G/Φ(G)
and G is a minimal Frattini extension of H by M . •

As a consequence, one obtains the following corollary.

7.4. Corollary: The minimal Frattini extensions of a group H are exactly
the non-split extensions of H by an irreducible H-module M .

In particular, it follows from Theorem 4.9 that there is no minimal Frattini
extension of H by M if H2(H,M) = {0}.

7.2 Reduction to minimal Frattini Extensions

Now we examine the cube-free Frattini extensions. By Corollary 5.16, the
Frattini subgroup of a cube-free group G has the form

Φ(G) ∼= Cp1 × . . . × Cps

for distinct primes p1, . . . , ps. Let p be a prime. If M ∼= Cp is an F -module,
then, by Corollary 7.4, every non-split extension of F by M is a Frattini
extension of F . Conversely, Corollary 5.16 indicates that these extensions are
essentially all possible extensions which can occur.

Hence as a first step, we show that it is sufficient to consider minimal Frattini
extensions. For this purpose we introduce the following notation. IfG1, . . . , Gs
are extensions of F by N1, . . . , Ns, respectively, then the subdirect product

G1 � . . . �Gs ≤ G1 × . . .×Gs

is defined by

G1 � . . . �Gs = {(g1, . . . , gs) | g1N1 = . . . = gsNs}

where we identify Gi/Ni = F .

Further, for a group M ∼= Cp1 × . . .×Cps we define Mi ≤M by Mi
∼= Cpi and

M(i) ≤M by

M(i) ∼= Cp1 × . . .× Cpi−1
× Cpi+1

× . . . × Cps.

Thus one can identify M = M1 × . . . ×Ms = M(i) ×Mi for 1 ≤ i ≤ s.
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7.5. Theorem: Let F be a cube-free Frattini-free group and let M be an
F -module of isomorphism type Cp1 × . . .× Cps.

a) If G is a Frattini extension of F by M , then G/M(i) is a minimal Frattini
extension of F by Mi for 1 ≤ i ≤ s.

b) If G1, . . . , Gs are minimal Frattini extensions of F by M1, . . . ,Ms, respec-
tively, then the group G1 � . . . �Gs is a Frattini extension of F by M .

c) If G is a Frattini extension of F by M , then G/M(1) � . . . �G/M(s) ∼= G.

Proof: a) Obviously, G/M(i) is an extension of F by Mi. By Lemma 7.2, one
can identify Φ(G) = M . Then Φ(G/M(i)) = Φ(G)/M(i) = M/M(i) and thus
(G/M(i))/Φ(G/M(i)) ∼= G/M = G/Φ(G) ∼= F .

b) Let D = G1 � . . . � Gs. Since F ∼= G1/M1 and because the mapping
µ : D → G1/M1, (g1, . . . , gs) 7→ g1M1, is an epimorphism with kernel M , it
follows that that D/M ∼= F . Next, we show that M = Φ(D). The group

Ji = {1} × . . . × {1} ×Mi × {1} × . . .× {1}

is a minimal normal subgroup of D and

Ji = M1 × . . .×Mi−1 × {1} ×Mi+1 × . . .×Ms

is a complement to Ji in M . Since gcd(|M/Ji|, |Ji|) = 1, the Schur-Zassenhaus
Theorem shows that this complement is unique; see [25], Theorem 9.1.2. Sup-
pose, for a contradiction, that there exists a complement R to Ji in D. Then
ψi : R→ D/Ji, r 7→ rJi, is an isomorphism. If Ki is the preimage of M/Ji un-
der ψi, then Ki∩Ji ≤ R∩Ji = {1} and KiJi = M . Hence Ki complements Ji
inM and thusKi = Ji. Let νi : D → D/Ki be the natural epimorphism. Then
Rνi complements Jνii in D/Ki as R is a complement to Ji in D and Ki ≤ R.
By Corollary 5.12, this contradicts Φ(D/Ki) = Φ(D/Ji) = Jνii , and it follows
that Ji has no complement R in D. Now Corollary 5.12 shows that Ji ≤ Φ(D)
and thus M = J1 · · · Js ≤ Φ(D). Using the projection µi : D → Gi, Lemma
5.5 yields that Φ(D)µi ≤ Φ(Dµi) = Φ(Gi) = Mi and therefore Φ(D) ≤M . In
summary, it follows that Φ(D) = M .

c) By a), the group Gi = G/M(i) is a minimal Frattini extension of F by Mi.
Let

ψ : G→ G1 × . . .×Gs, g 7→ (gM(1), . . . , gM(s)).

If gψ = 1, then g ∈
⋂s
i=1M(i) = {1} and hence ψ is a monomorphism. Since

M(i)Mi = M , one obtains that Gψ ≤ G1 � . . . �Gs. This proves the assertion
because |G| = |F ||M | = |G1 � . . . �Gs|. •

One can observe that Theorem 7.5 reduces the construction of cube-free Frat-
tini extensions of F by a module of the isomorphism type Cp1 × . . . × Cps
to the construction of minimal Frattini extensions of F by a module of the
isomorphism type Cpi .

It follows a comment on the minimal Frattini-extensions in the cube-free case.
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7.6. Remark: We have given a cube-free Frattini-free group F and an F -
module M of the isomorphism type Cp. The aim is to construct a cube-free
Frattini extension of F by M . For this purpose one has to assume that there
is a Sylow p-subgroup P ∈ Sylp(F ) with P ∼= Cp; see Lemma 5.15. Let P be
generated by g ∈ P . Let {h1, . . . , hk} be a left transversal to P in F and for
f ∈ F define f̃ ∈ {h1, . . . , hk} by fP = f̃P . We recall that res2(P, F ) maps
H2(F,M) monomorphically to the subgroup of stable elements of H 2(P,M).
To guarantee the existence of a Frattini extension of F by M , one has to
assume that H2(F,M) 6= {0}. In this case every element of H2(P,M) has
to be stable and thus H2(F,A) ∼= Cp. Let 0 6= t ∈ M . As shown in Lemma
4.10b), the cocycle

γt : P × P →M, (gi, gj) 7→

{
0 : i+ j < p

t : i+ j ≥ p

yields a generator γt + B2(P,M) of H2(P,M) ∼= Cp. If follows from Lemma
4.20 that

γ̂t +B2(F,M) = k−1cor2(F, P )(γt +B2(P,M))

is a generator of H2(F,M). By Theorem 4.16b), we have an explicit formula
for cor2(F, P ) in terms of the normalized standard free resolution and hence

γ̂t : F × F →M, (u, v) 7→ k−1
k∑

i=1

γt(ũhi
−1
uhi, ṽuhi

−1
vũhi)

h−1
i .

Obviously, the cocycle γ̂t ∈ Z2(F,M) induces a minimal Frattini extension of
F by M .

7.3 A direct product decomposition

This section provides the first main result of this thesis: We show that every
cube-free group is either solvable or it is a direct product of a non-abelian
simple group with a solvable group.

For this purpose we reduce to the construction of solvable minimal Frattini
extensions of cube-free order. We recall that, by Corollary 6.23, a cube-free
Frattini-free group F has the form F = A×L, where A is non-abelian simple
or trivial and L is solvable. The following theorem addresses the case that A
is non-abelian simple.

7.7. Theorem: Let F = A×L be a Frattini-free group of cube-free order such
that A is non-abelian simple and L is solvable. Let G be a cube-free Frattini
extension of F by an F -module M ∼= Cp. Then G = A×H and H is a solvable
Frattini extension of L by M .
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Proof: Theorem 2.7 yields that A ∼= PSL(2, q) for some prime q > 3. Since
4 | |A| and G/M ∼= A × L, it follows that p 6= 2. Now Corollary 4.26 shows
that H2(A,M) = {0}. Let ψ : G → G/M ∼= F be the natural epimorphism
and let A? � G and H � G be preimages of A and L under ψ, respectively.
Due to the fact that H2(A,M) is trivial, the group A? is a split extension of
A by M , and, because M is trivial as an A-module by Lemma 3.2, one can
identify A? = M × A. Since (A?)′ = A is a characteristic subgroup of A? , it
follows that A�G and H ∩A = {1}. Thus G = A×H and, as Φ(A) = {1},

M = Φ(G) = Φ(A) × Φ(H) = Φ(H).

Hence it follows that H/Φ(H) ∼= L. Therefore H is a solvable Frattini exten-
sion of L by M . Figure 1 summarizes the situation. •
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Figure 1.

The main result of this section is implied by Theorems 7.5 and 7.7:

7.8. Theorem: A group G of cube-free order decomposes into a direct product
G = A × L where A is either trivial or a non-abelian simple group and L is
solvable. If A is non-trivial, then 4 | |A| and |L| is odd.

7.4 Uniqueness of Frattini extensions

By Theorem 7.7, it is sufficient to consider cube-free Frattini extensions of
a solvable group L by an L-module M of the isomorphism type Cp. The
following theorem shows that the existence and uniqueness of such Frattini
extensions depend on the module structure of M .

If M and P are N -modules with a group isomorphism ψ : M → P and
(mn)ψ = (mψ)n for all m ∈ M and n ∈ N , then M and P are isomorphic as
N -modules. This is denoted by M ∼=N P .
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7.9. Theorem: Let G be a group and let P ∈ Sylp(G). Suppose that P ∼= Cp
and let N = NG(P ) the Sylow normalizer. Let M ∼= Cp be a G-module.

a) If M ∼=N P , then up to isomorphism there exists exactly one Frattini
extension of G by M .

b) If M 6∼=N P , then there exists no Frattini extension of G by M .

Proof: Lemma 4.10c) yields that H2(G,M) ∼= Cp. Let P = 〈g〉 and M = 〈m〉.
It follows from Lemma 4.10a) that

α : Z2(P,M) →M, γ 7→

p−1∑

i=1

γ(g, gi)

is an epimorphism with kernel B2(P,M). As in Lemma 4.10b), for an arbitrary
t ∈M let

γt : P × P →M, (gi, gj) 7→

{
0 : i+ j < p

t : i+ j ≥ p

where z = z mod p for z ∈ Z. Then γt ∈ Z2(P,M) and γαt = t. Since
γt1 ≡ γt2 mod B2(P,M) implies t1 = t2, the set {γs | s ∈M} is a transversal
to B2(P,M) in Z2(P,M); that is, every element γ ∈ Z2(P,M) can be written
uniquely as γ = γt + δ for some t ∈M and δ ∈ B2(P,M).
The group N acts on P with kernel C = CG(P ) = CN (P ) and therefore one
obtains that N/C ↪→ Aut(P ) ∼= Cp−1 and thus N = 〈x,C〉 for some x ∈ N \C.
Let the operation of x on P and M , respectively, be denoted by

x−1 : P → P , g 7→ ga,

x : P → P , g 7→ gb, and
x : M →M, m 7→ cm

with a, b, c ∈ {1, . . . , p− 1} and ab ≡ 1 mod p.

As mentioned in Theorem 4.16a), an element l ∈ N acts on Z 2(P,M) via

γ 7→ γl =
[
(s, t) 7→ γ(sl

−1

, tl
−1

)l
]

and there is an induced action of N on H2(P,M). The subgroup of all fixed
points is denoted by

FixN (H2(P,M)) = {γ ∈ H2(P,M) | ∀l ∈ N : γl = γ}.

Let 0 6= t ∈ M . Then γxt ≡ γt mod B2(P,M) if and only if (γxt )
α = γαt = t.

For k ∈ {1, . . . , p− 1} one obtains that

γxt (g, g
k) = γt(g

x−1

, (gk)x
−1

)x = γt(g
a, gak)x =

{
0 : a+ ak < p

ct : a+ ak ≥ p
,
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and it follows that

(γxt )α =

p−1∑

i=1

γxt (g, g
i) = λct,

where λ = |{k ∈ {1, . . . , p− 1} | ak ≥ p− a}|.

Using l = b−1k one obtains that ak = abl = l and thus λ = a. It follows that
γxt ≡ γt mod B2(P,M) if and only if ac ≡ 1 mod p; that is, if and only if x
acts on P as on M . Since C acts trivially on P , the equation (γyt )

α = ty holds
for all y ∈ C. Therefore γns ≡ γs mod B2(P,M) for every s ∈ M and n ∈ N
if and only if M ∼=N P . Since {γs | s ∈ M} is a transversal to B2(P,M) in
Z2(P,M), one obtains the following equivalence:

FixN (H2(P,M)) = H2(P,M) ⇐⇒ M ∼=N P.(7.1)

a) Corollary 4.22 and Equation (7.1) yield that

H2(G,M) ∼= FixN (H2(P,M)) = H2(P,M) ∼= Cp.

Denote with j ∈ Aut(M) the action of j ∈ G on M . As in Theorem 4.7 let

T = {(α, β) ∈ Aut(G) × Aut(M) | ∀j ∈ G : jα = (j)β}

be the group of compatible pairs which acts on H 2(G,M) via

γ 7→ γ(α,β) =
[
(l, h) 7→ γ(lα, hα)β

−1]
.

As Aut(M) is abelian, it follows that

T̂ = {(1, β) | β ∈ Aut(M)} ≤ T.

By construction, there are two orbits in H2(G,M) under the action of T̂ : the
trivial orbit {0} and the orbit H2(G,M) \ {0} of size p− 1. Thus by Theorem
4.7, this yields that there are two isomorphism types of extensions of G by
M : the split extension which corresponds to the trivial orbit and a non-split
extension which corresponds to the non-trivial orbit. By Corollary 7.4, the
non-split extension is the only Frattini extension of G by M .

b) From Corollary 4.22 and Equation (7.1) it follows that H 2(G,M) = {0},
and thus, by Corollary 7.4, there exists no Frattini extension of G by M . •

In particular, if there exists a unique Frattini extension, then Remark 7.6
indicates the structure of the corresponding cocycle.

Finally it remains to investigate the question how many G-modules M with
M ∼= Cp and M ∼=N P exist up to G-isomorphism. The next theorem solves
this problem in our considered case. As a preliminary step, we provide the
following lemma. The symbol AG denotes the normal closure of a subset
A ⊆ G in the group G.
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7.10. Lemma: Let G be a group and let A,B ≤ G and N �G.

a) (AN)G = AGN .

b) If N ≤ A, then (A/N)G/N = AG/N .

c) If N ≤ A, then

A/N ∩BN/N = (A ∩BN)/N = (A ∩B)N/N.

Proof: a) The group AGN is a normal subgroup of G with AN ≤ AGN ; that
is, (AN)G ≤ AGN . Since A,N ≤ (AN)G, it follows that AGN = (AN)G.

b) The group AG/N is a normal subgroup of G/N with A/N ≤ AG/N and it
follows that (A/N)G/N ≤ AG/N . Let M�G be defined by (A/N)G/N = M/N .
Then AG ≤M and thus AG/N = (A/N)G/N .

c) Obviously, (A ∩ BN)/N ≤ A/N ∩BN/N . Let mN ∈ A/N ∩BN/N ; that
is, there exist a ∈ A and b ∈ BN with mN = aN = bN . Then there is n ∈ N
with b = an ∈ A ∩BN and thus mN = anN ∈ (A ∩BN)/N . This shows the
first equation.
If a = bn ∈ A ∩ BN with a ∈ A, b ∈ B, and n ∈ N , then b = an−1 ∈ A ∩ B
and thus A ∩BN ≤ (A ∩B)N . If cn ∈ (A ∩B)N with c ∈ A ∩B and n ∈ N ,
then cn ∈ A ∩BN . This implies the second equation. •

7.11. Theorem: Let G be a cube-free group and let P ∈ Sylp(G) such that

P ∼= Cp. Denote N = NG(P ) and Z = CG(P ) and let R = ZG be the normal
closure of Z in G.

a) There exists a G-module M with M ∼=N P if and only if R ∩N = Z.

b) If M is a G-module with M ∼=N P , then M is unique up to G-isomorphism.

c) If G is solvable, then R ∩N = Z.

Proof: One can observe that R � G and Z ≤ R ∩N . Since N = NG(P ) and
P ∈ Sylp(R), the Frattini argument yields that G = RN ; see Lemma 5.13.
Thus the situation is as displayed in Figure 2; see page 61.

a) “⇒” Let M be a G-module with M ∼=N P and let H = CG(M)�G be the
kernel of the operation of G on M . Since M is trivial as a P -module by Lemma
3.2, it follows that P ≤ H and the Frattini argument yields that G = HN .
The group P is trivial as a Z-module and, because P ∼=Z M , it follows that
Z ≤ H �G and R = ZG ≤ H. Since H ∩N = CN (M) = CN (P ) = CG(P ) =
Z ≤ R ∩N , the equation

|G| =
|H||N |

|H ∩N |
=

|N ||R|

|N ∩R|

shows that |H| ≤ |R| and therefore R = H. Hence R ∩ N = H ∩ N = Z is
proved.
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Figure 2.

“⇐” Let G = RN and R ∩ N = Z, and denote the action of N on P by
α : N → Aut(P ). If g = r1n1 = r2n2 ∈ G with r1, r2 ∈ R and n1, n2 ∈ N ,
then n1n

−1
2 ∈ N ∩ R = Z and thus nα1 = nα2 . Let g ∈ P be a generator of P .

We define M = 〈m〉 ∼= Cp and δ : Aut(P ) → Aut(M), (g 7→ gi) 7→ (m 7→ mi),
and observe that the operation

β : G→ Aut(M), h = rn 7→ (nα)δ,

of G on M is well defined. Obviously, β is a homomorphism and the mapping
P →M , g 7→ m, induces an N -module isomorphism from P to M . In partic-
ular, M is a G-module with M ∼=N P .

b) Suppose there are two G-modules M1 and M2 with M1
∼=N P ∼=N M2. Let

Hi = CG(Mi) be the kernel of the operation of G on Mi for i ∈ {1, 2}. The
proof of a) shows that H1 = R = H2 and, since G = RN , it follows that M1

and M2 are isomorphic as G-modules.

c) We use induction on |G|. The case G = P is trivial and thus one can assume
that P < G. Let Q be a minimal normal subgroup of G. Since G is solvable,
the group Q is an elementary abelian q-group for a prime q. If q = p, then
Q = P and N = G and R ∩ N = Z. Hence one can assume p 6= q in the
following. Then P ∩Q = {1}. For a subgroup U ≤ G we define U = UQ/Q.

First, we show that Q ≤ R holds. Suppose that Q 6≤ R; that is, R∩Q = {1} as
Q is a minimal normal subgroup. It follows that [Q,P ] ≤ [Q,R] ≤ R∩Q = {1}
and hence Q ≤ Z. But Z ∩ Q ≤ R ∩ Q = {1} now implies that Q is trivial
which contradicts the choice of Q.
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Next, we note that N = NG(P ) holds, since the Frattini argument yields that
NQ = NG(PQ).
Further, we show that Z = CG(P ) holds. It follows from the construction
that Z ≤ CG(P ). Let cQ ∈ CG(P ). As CG(P ) ≤ NG(P ) = N , one can write
c = hn for some h ∈ Q and n ∈ N . Then for every k ∈ P it follows that
[c, k] = [hn, k] = [h, k]n[n, k] ∈ QP . On the other hand cQ ∈ CG(P ) implies
that [c, k] ∈ Q. Thus [n, k] ∈ Q∩P = {1} for every k ∈ P . This implies n ∈ Z
and thus cQ = nQ ∈ Z. In summary, this yields that Z = CG(P ).
Now R ∩ N = Z follows from the induction hypothesis and the fact that

R = Z
G

by Lemma 7.10a),b).
Finally, we show that R ∩ N = Z holds. For this purpose, note that N ∩ Q
and P are both normal in N . Thus [N ∩ Q,P ] ≤ N ∩ Q ∩ P = {1} and
N ∩Q ≤ Z ∩Q. Hence N ∩Q = Z ∩Q follows. We recall that Q ≤ R. Since
N ∩Q = Z ∩Q ≤ Z ≤ R, it follows from Lemma 7.10c) that Z/Z ∩Q ∼= Z =
R ∩N = R ∩N ∼= R ∩N/R ∩N ∩Q ∼= R ∩N/N ∩Q and thus R ∩N = Z. •

In particular, the Theorems 7.5 - 7.11 yield a proof for the following theorem.

7.12. Theorem (Main Theorem): Let F be a Frattini-free group of cube-
free order and write F = A × L where A is non-abelian simple or trivial and
L is solvable, as in Corollary 6.23. Let {p1, . . . , pr} be a set of primes such
that pi | |F | and p2

i - |F | for 1 ≤ i ≤ r and let M ∼= Cp1 × . . .× Cpr .

a) There exists a Frattini extension of F by M if and only if pi | |L| for
1 ≤ i ≤ r. In this case there exists exactly one F -module structure on M
which allows Frattini extensions and for this unique F -module structure
on M there exists exactly one Frattini extension up to isomorphism.

b) If G is a Frattini extension of F by M , then G = A × H where H is a
Frattini extension of L by M .

It follows an important corollary.

7.13. Corollary: Let n = pe11 · · · perr with distinct primes p1, . . . , pr and
e1, . . . , er ∈ {1, 2}. There is a one-to-one correspondence between the groups
of cube-free order n and the Frattini-free groups F = A × L, as in Corollary
6.23, with |F | | n and p1 · · · pr | |L|.

In particular, there is a one-to-one correspondence between the solvable groups
of cube-free order n = pe11 · · · perr and the solvable Frattini-free groups F with
|F | | n and p1 · · · pr | |F |.



Chapter 8

Square-free groups

A group G has square-free order if p2 - |G| for every prime p. As mentioned in
the introduction of this thesis, the groups of square-free order are known for
a long time; Hölder [21] has investigated them at the end of the 19th century.

Now we exhibit what follows from the approach of this thesis; that is, from
the Frattini extension method.

8.1. Lemma: A group of square-free order is Frattini-free.

Proof: This follows from Lemma 5.15. •

This implies that step two of the Frattini extension method is omitted as one
has not to construct any Frattini extension.

8.2. Lemma: If G is a square-free group, then Soc(G) ∼= Cp1 × . . .×Cpk for
distinct primes p1, . . . , pk.

Proof: This follows from Theorem 6.10. •

Since groups of square-free order are Frattini-free, one can modify Theorem
6.19 to construct them:

8.3. Theorem: Let n = p1 . . . pm for distinct primes p1, . . . , pm. Let S be the
list of all subgroups of Cp1 × . . . × Cpm and for every S ∈ S define KS to be
the list of all subgroups K of Aut(S) with |K||S| = n. Then

{K n S | S ∈ S, K ∈ KS}

is a complete and irredundant list of isomorphism type representatives of groups
of order n.

Proof: Let S be the socle of a group of order n. It follows from Lemma 8.2 that
S and Aut(S) are abelian and thus Inn(S) = {1}. Hence no two subgroups of
Aut(S) are conjugated in Aut(S). Since S is Γ-completely reducible for every
Γ ≤ Aut(S), the assertion follows from Theorem 6.19. •
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In particular, one has to construct all subgroups K of the abelian group
Aut(S). Concerning this computation it is another advantage over the cube-
free case that Aut(S) is a direct product of cyclic groups.

Moreover, one obtains that every group of square-free order is solvable with
derived length at most 2. Groups with this property are also called metabelian.

Now we present a construction algorithm and an isomorphism test for square-
free groups:

The following algorithm takes as input a square-free integer n = p1 . . . pm and
returns a list of all groups of order n up to isomorphism.

SquareFreeGroups(n)

initialize Groups as empty list

for every s | n do

write s as s = pi1 · · · pil

define S := Cpi1
× . . .× Cpi

l
and Aut(S) := Cp1−1 × . . .× Cpl−1

define G := {Γ n S | Γ ≤ Aut(S) with |Γ| = n/s}

append G to Groups

return the list Groups

By Theorem 8.3, a square-free group G with socle S has the form G ∼= Γ n S
for an unique subgroup Γ ≤ Aut(S). One can determine Γ from G and S: Let
T ≤ G be a complement to S in G; that is, G ∼= T n S. As CG(S) = S, the
group T acts faithfully on S and therefore can be identified with a subgroup
Γ̂ ≤ Aut(S). Then G ∼= Γ̂ n S and, as Γ is unique, it follows that Γ̂ = Γ.

The next algorithm decides whether two square-free groups G1 and G2 are
isomorphic.

IsomorphismTestSF(G1,G2)

if |G1| 6= |G2| then return false

compute Si := Soc(Gi) for i ∈ {1, 2}

if |S1| 6= |S2| then return false

determine Γi ≤ Aut(Si) such that Gi
∼= Γi n Si for i ∈ {1, 2}

identify S1 = S2 and Aut(S1) = Aut(S2) and hence Γ1,Γ2 ≤ Aut(S1)

if Γ1 6= Γ2 then

return false

else

return true

This completes our examination of the square-free groups.



Chapter 9

Cube-free groups

This chapter outlines the main results of this thesis.

As a first step, we have investigated the nilpotent, simple, and completely
reducible groups of cube-free order; see Theorems 2.2, 2.7, and 6.10.

(1) The group G is a nilpotent group of cube-free order if and only if
G ∼= Sp1 × . . .×Spr for distinct primes p1, . . . , pr and Sp ∈ {Cp, C

2
p , Cp2}

for every prime p.

(2) The group G is a simple group of cube-free order if and only if G ∼= Cp
for a prime p or G ∼= PSL(2, r) for a prime r > 3 with r + 1 and r − 1
cube-free.

(3) The group S is a completely reducible group of cube-free order if and
only if S ∼= A×B × C with

• A ∈ {PSL(2, r) | r > 3 prime with r+1 and r−1 cube-free}∪{{1}},

• B = Cp1 × . . .×Cpn for different primes p1, . . . , pn with p2
i - |A|, and

• C = C2
q1 × . . .× C2

qm for different primes q1, . . . , qm - |A||B|.

Since every group G is an extension of its Frattini factor G/Φ(G) by its Frat-
tini subgroup Φ(G), we have examined the structure of the possible Frattini
subgroups and Frattini-free groups; see Corollary 5.16 and Theorem 6.22.

(4) Let G be a cube-free group. Then Φ(G) ∼= Cr1 × . . . × Crk for distinct
primes r1, . . . , rk with r2

i | |G| for 1 ≤ i ≤ k.

(5) Let S = A×B ×C be a cube-free completely reducible group as in (3).
The group F is a Frattini-free group of cube-free order with socle iso-
morphic to S if and only if

F ∼= A× L with L = (K n (B × C))

for some K ≤ Aut(B × C) such that |K||S| is cube-free.
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Further, two cube-free Frattini-free groups F1 = A × (K1 n (B × C)) and
F2 = A×(K2n(B×C)) are isomorphic if and only ifK1 andK2 are conjugated
in Aut(B × C).

The required groups K ≤ Aut(B ×C) have been considered in Theorem 3.12
and it follows that K is a subdirect product of subgroups of groups of the type
Cp, N(2, p), and M(2, p). In particular, every cube-free Frattini-free group F
has the form F = A × L where A is non-abelian simple or trivial and L is
solvable.

Next, we have examined the cube-free Frattini extensions; see Theorem 7.12.
Let F = A×L be a cube-free Frattini-free group as in (5) and let r1, . . . , rk be
distinct primes with ri | |F | and r2

i - |F | for 1 ≤ i ≤ k. Let M ∼= Cr1×. . .×Crk .

(6) There exists a Frattini extension of F by M if and only if r1 . . . rk | |L|.
In this case there is exactly one F -module structure on M which allows
Frattini-extensions and for this unique F -module structure on M there
exists exactly one Frattini extension G up to isomorphism.

(7) The unique isomorphism type of the extension G in (6) is given by

G ∼= A× (G1 � . . . �Gk)

where Gi is the unique minimal Frattini extension of L by Mi
∼= Cri for

1 ≤ i ≤ k (compare Remark 7.6) and

G1 � . . . �Gk = {(g1, . . . , gk) ∈ G1 × . . . ×Gk | g1M1 = . . . = gkMk}.

In particular, G1 � . . . �Gk is solvable.

For the sake of completeness we note a consequence; see Theorem 7.8.

(8) Let G be a cube-free group with Frattini factor F ∼= A×L as in (5) and
Frattini subgroup M ∼= Cr1 × . . .× Crk as in (4). Then G has the form

G ∼= A× (G1 � . . . �Gk)

as in (7).

Therefore a cube-free group is either solvable or a direct product of a non-
abelian simple group with a solvable group.

As an important result of this thesis one obtains the the following:

(9) By (6) and (8), there is a one-to-one correspondence between the cube-
free groups of order n = re11 . . . rekk (prime-power factorization) and the
cube-free Frattini-free groups F = A × L, as in (5), with |F | | n and
r1 · · · rk | |L|; see Corollary 7.13.
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Since the Frattini-free groups are classified by Theorem 6.19, this may yield a
classification of the cube-free groups.

Furthermore, the approach of this thesis gives rise to an algorithm to construct
the groups of a given cube-free order n up to isomorphism. This algorithm is
also very efficient to compute groups of square-free order.

Further investigations may consider the explicit classification of the cube-free
groups as well as the improvement of the construction algorithm.

The approach of this thesis may also be applied to investigate the groups of
order n with p4 - n for all primes p; even though the theory to work on this
case seems to be much more difficult to handle.
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Chapter 10

Algorithms and
implementation

This chapter gives a summary of the algorithm to construct all groups of a
given cube-free order up to isomorphism. Further, a report on experiments
with an implementation is given.

10.1 The construction of cube-free groups

The function CubeFreeGroups(n) takes as input a cube-free n and returns a
list of all groups of order n up to isomorphism.

CubeFreeGroups(n)

initialize Groups and Simple as empty lists

for every prime p > 3 with p+ 1 and p− 1 cube-free do

if p(p+ 1)(p− 1)/2 | n then

add PSL(2, p) to Simple

for every A in Simple do

append {A× L | L ∈ CubeFreeSolvableGroups(n/|A|)} to Groups

return the list Groups

The function CubeFreeSolvableGroups(n) takes as input a cube-free n and
returns a list of all solvable groups of order n up to isomorphism. Let n =
pe11 · · · perr be the prime-power factorization of n.

CubeFreeSolvableGroups(n)

initialize Groups as empty list

for every m | n with p1 · · · pr | m do

for every L in CubeFreeSolvableFFGroups(m) do

add CubeFreeSolvableFExtension(L,n/m) to Groups

return the list Groups
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The function CubeFreeSolvableFFGroups(n) takes as input a cube-free n and
returns a list of all solvable Frattini-free groups of order n up to isomorphism.

CubeFreeSolvableFFGroups(n)

initialize Groups as empty list

for every m | n do

write m as m = p1 · · · pkp
2
k+1

· · · p2
l (prime-power factorization)

define B := Cp1
× . . .× Cpk

and C := Cp2
k+1

× . . .× C2
pl

define M := {K n (B × C) | K ∈ CubeFreeAutGrps(B × C,n/m)}

append M to Groups

return the list Groups

The next algorithm takes a solvable cube-free group L and a square-free
n = p1 · · · pk with pi | |L| and p2

i - |L| for 1 ≤ i ≤ k and computes the
unique cube-free Frattini extension of L by M ∼= Cp1 × . . .× Cpk .

CubeFreeSolvableFExtension(L,n)

write n = p1 · · · pk

for i in {1, . . . k} do

compute a Sylow pi-subgroup P of L

determine N := NL(P ) and R := CL(P )L

for l ∈ L choose l = n if l = rn ∈ RN .

define Mi
∼= P as an L-module via m 7→ ml = ml

compute a non-trivial γi ∈ H2(L,Mi)

compute the extension Ei of L by Mi via γi

return E := E1 � . . . �Ek

It remains to compute the subgroups of

Aut(B × C) ∼= Cp1−1 × . . .× Cpk−1 × GL(2, pk+1) × . . .× GL(2, pl)

of a given order m up to conjugacy. These subgroups can be determined from
their projections into the direct factors. Hence, by Theorem 3.12, we compute
all possible projections Zi ≤ Cpi−1 and Gj ≤ GL(2, pj), respectively, up to
conjugacy. Using a subdirect product construction, see Section 6.5 and [12],
we determine all subdirect products U of Z1 × . . . × Zk ×Gk+1 × . . . ×Gl of
order m up to conjugacy in Aut(B × C).

A list of all possible irreducible subgroups of GL(2, p) up to conjugacy can
be extracted from [15], Section 4. By Theorem 3.12, the required reducible
subgroups of GL(2, p) are determined as the cube-free subgroups of the group
of diagonal matrices of GL(2, p).

The function CubeFreeAutGrps(B×C,m) takes as input an abelian socle B×C
and a cube-free m and returns a list of all subgroups of Aut(B × C) of order
m up to conjugacy. All groups in the following algorithm are determined up
to conjugacy.
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CubeFreeAutGrps(B × C,m)

initialize Groups as empty list

for pi | |B| = p1 · · · pl and pj | |C| = p2
l+1

· · · p2
t do

compute a list Li of all cube-free U ≤ Cpi−1

compute a list Lj of all cube-free U ≤ GL(2, pj) with pj - |U |

for all groups D := D1 × . . .×Dt with Di ∈ Li do

compute a list SubDir of all subdirect products U ≤ D with |U | = m

append SubDir to Groups

return the list Groups

This completes the algorithm to construct all groups of a given cube-free order.

10.2 Implementation and performance

The algorithm described above is implemented in the computer algebra system
Gap [29]; see [10]. All runtimes are given in seconds.

10.2.1 Cube-free groups of order at most 10 000

We have constructed all isomorphism types of cube-free groups of order at most
10 000 using a modified algorithm: When computing the cube-free groups of
order n we can assume that the Frattini-free groups of cube-free order m < n
are known. This means that we have stored the cube-free Frattini-free groups
of order m during the previous computations. Nevertheless, the Frattini-free
groups of order n have to be computed. In particular, every square-free group
has a trivial Frattini subgroup by Lemma 8.1.

We note that there are 8 319 cube-free integers between 1 and 10 000 and 6 083
of them are square-free.

The following table contains a description of this computation:

• # Isomorphism types of cube-free groups: 58 312.
Runtime to compute these groups: 17 752.

• # Isomorphism types of square-free groups: 16 615.
Runtime to compute these groups: 2 009.

• # Isomorphism types of cube-free but
not square-free groups: 41 697.

Runtime to compute these groups: 15 741.

As the runtimes indicate, the algorithm is also very efficient to construct the
groups of square-free order. This is indeed not surprising in regard to the
theory presented in Chapter 8. In particular, when computing the groups of
a square-free order, the algorithm CubeFreeGroups automatically degener-
ates to the algorithm SquareFreeGroups; see page 64.
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The following table lists the top orders with respect to the number of differ-
ent isomorphism types. We use the non-modified algorithm to compute these
groups.

Order Factorized order # Groups Runtime

8 820 22 · 32 · 5 · 72 672 197

6 300 22 · 32 · 52 · 7 570 158

9 900 22 · 32 · 52 · 11 492 131

7 644 22 · 3 · 72 · 13 378 93

8 892 22 · 32 · 13 · 19 303 82

9 324 22 · 32 · 7 · 37 303 89

6 084 22 · 32 · 132 298 96

3 276 22 · 32 · 7 · 13 268 69

4 788 22 · 32 · 7 · 19 259 71

5 460 22 · 3 · 5 · 7 · 13 238 61

7 260 22 · 3 · 5 · 112 234 71

10.2.2 Some large applications

Now we consider some larger cube-free orders. The results are given in the
following table. The first part of the table contains genuine cube-free orders,
while the second part contains some larger square-free orders.

Factorized order # Groups Runtime

52 · 7 · 132 · 672 · 97 · 107 12 178

192 · 232 · 29 · 37 · 67 · 732 · 1072 24 1 720

167 · 1912 · 2332 · 241 4 17

29 · 31 · 37 · · · 83 · 89 · 97 (primes) 4 48

19 · 461 · 6 449 · 8 779 · 9 907 2 271

13 · 241 · 6 449 · 20 051 2 148

Compared to the runtimes to compute the groups of order at most 2 000, see
[5], one can observe that the Frattini extension method restricted to the cube-
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free or square-free case is a very efficient method to construct these groups. In
particular, one is able to compute groups of a much larger order when using
this algorithm in the cube-free case.

10.2.3 Bottlenecks

Since the irreducible subgroups of GL(2, p) are given explicitely in [15], the
runtime of the algorithms divides predominantly into the computation of the
subdirect products, see algorithm CubeFreeAutGrps, and into the determi-
nation of the Frattini extensions, see algorithm CubeFreeSolvableFExten-
sion.
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