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Motivation Hello! Outline Resources

Welcome!

Your teaching team

Lectures will be delivered by me . . .
Problem sessions are supported by Khánh Lê (Rice University).

In this lecture series we talk about some

computational aspects of finitely presented groups.

Assumed knowledge

Some basis group theory (free groups, group actions, cosets, . . . )
I’m happy to (try to) answer any questions . . .

Lecture material

We cover some fundamental concepts in CGT. The slides are quite dense, but I’ll
try to be slow . . . The material will be online at

users.monash.edu/~heikod/imsnus2024.
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Motivation Hello! Outline Resources

Outline

Go to Lecture 1

group presentations, Tietze transformations,

von Dyck, coset enumeration, . . .

Go to Lecture 2

polycyclic groups, quotient algorithms, . . .

Go to Lecture 3

rewriting systems, automatic groups, . . .
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Motivation Hello! Outline Resources

Main resources

Recommended reading:

Handbook of computational group theory (Holt, Eick, O’Brien)

Computation with finitely presented groups (Sims)

Presentations of groups (Johnson)

See the website for more references . . .

Special thanks to:

Alexander Hulpke: notes
http://tinyurl.com/ymmamzv7

Derek Holt: slides
http://tinyurl.com/4va9vt54

Bettina Eick, Murray Elder,
Eamonn O’Brien
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Lecture 1 presentations Tietze Von Dyck coset enumeration low index subgroups

First Lecture

Go to Overview

Go to Quotient Algorithm
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Lecture 1 presentations Tietze Von Dyck coset enumeration low index subgroups

Computing with groups
In what format is the group given?

How well we can compute with a group depends heavily on how the group is
represented. For example, the dihedral group D8 can be defined as a Sym(□),
or as a. . .

. . . permutation group
⟨(1, 2, 3, 4), (1, 3)⟩;

. . . matrix group
⟨( 0 1

2 0 ) , (
1 0
0 2 )⟩ ⩽ GL2(3);

. . . finitely presented group

⟨r,m | r4,m2, rmrm⟩.

Group presentations describe groups in a compact way. They are
the objects of interest in combinatorial/geometric group theory, and
occur naturally in areas such as topology. Von Dyck (1882) did the
first systematic study of groups given by generators and relations.
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Recall: free groups

Free group

Let X ̸= ∅ be a set that is embedded in a group F via ι : X ↪→ F .
Then F is free on X if every map φ : X → H into a group H
extends to a unique homomorphism ψ : F → H, that is, ψ ◦ ι = φ.

F

X H

∃!ψ
∀φ

ι

E.g.: (Z,+) is free on {1}; the group ⟨( 1 0
2 1 ) , (

1 2
0 1 )⟩ is free on its generating set.

Fact: Up to isomorphism, there is a unique group FX that is free on X.

Let S∗ be the set of all words over S = X ⊔X−1 (disjoint copy; symbols!)

Words w,w′ ∈ S∗ are equivalent if w′ is constructed from w by deleting or
inserting subwords xx−1 or x−1x; write [w] for the equivalence class.

Let FX = {[w] : w ∈ S∗} with [w][w′] = [ww′] and ι : X → FX , x 7→ [x].

E.g.: If X = {a, b}, then S = {a, b, a−1, b−1} (symbols!) and

S∗ = {ε, a, b, a−1, b−1, aa, ab, aa−1, ab−1, ba, bb, . . .}.
We have baa−1a ̸= ba as words, but [baa−1a] = [ba] in FX .
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Recall: group presentations
Group presentation

Let X be a non-empty set and R ⊆ FX .
The group defined by the presentation {X | R} is

⟨X | R⟩ = FX/R where R = RFX (normal closure).

The sets X and R are the generators and defining relators of the presentation.

It’s a bit clumsy: The elements of ⟨X | R⟩ with X = {x} and R = {[x]3} are

[ε]⟨[x]3⟩F{x} , [x]⟨[x]3⟩F{x} , [x]2⟨[x]3⟩F{x} .

Better: Let’s write these elements as 1, x, x2, and also G = ⟨x | x3⟩ = {1, x, x2}.

Convention: Let G = ⟨X | R⟩ = FX/R. We often identify w ∈ S(X)∗ with

w︸︷︷︸
∈S(X)∗

= [w]︸︷︷︸
∈FX

= [w]R︸︷︷︸
∈G

.

Careful: x4 ̸=S(X)∗ x
5x−1 =FX

x4 and x4 ̸=FX
x =G x4.
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Recall: group presentations

Example 1
Let X = {r,m} and R = {r4,m2,

relator︷ ︸︸ ︷
rmrm}, and

G = ⟨X | R⟩ = ⟨r,m | r4,m2, rm = mr3︸ ︷︷ ︸
relation

⟩.

What can we say about G?

As elements in G, we have r4 = 1, m2 = 1, and rmrm = 1; the latter is
equivalent to rm = m−1r−1 = mr3.

This can be used to rewrite elements, e.g., move all m’s to the left:

mrmmrr = mmr3mrr = mmmr9rr = m3r11 = mr3.

Thus, G = {mirj | i = 0, 1 and j = 0, 1, 2, 3}, and so |G| ⩽ 8.

Later: |G| = 8 and G ∼= ⟨M,R⟩ = D8 for R = (1, 2, 3, 4) and M = (1, 3).
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Some examples in GAP

GAP: Groups, Algorithms, and Programming (www.gap-system.org)

gap> F := FreeGroup(["r","m"]);;

gap> R := [F.1^2, F.2^4, F.2^F.1/F.2^-1];;

gap> G := F/R;

<fp group on the generators [ r, m ]>

gap> StructureDescription(G);

"D8"

gap> H := Group([(1,2,3,4),(1,3)]);;

gap> Hfp := Image(IsomorphismFpGroup(H));

<fp group on the generators [ F1, F2, F3 ]>

gap> RelatorsOfFpGroup(Hfp);

[ F1^2, F1^-1*F2*F1*F2^-1*F3^-1, F2^2*F3^-1,

F1^-1*F3*F1*F3^-1, F2^-1*F3*F2*F3^-1, F3^2 ]

gap> Size(Hfp);

8

gap> F := FreeGroup(["a","b"]);;

gap> W := F/ParseRelators(F,"a^3*b^4*a^5*b^7, a^2*b^3*a^7*b^8");;

gap> # Challenging -- later more!

(“Wicks’ Group”, see Havas, Havas, Kenne, Rees, Some challenging group presentations, 1999)
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Dehn problems (1911)

In the following we focus on finitely presented groups (fp groups),
that is, G = ⟨X | R⟩ with |X| and |R| finite. Dehn (1910) asked:
Given an fp group G, is there an algorithm that

decides whether a word in the generators represents 1G? (Word Problem)

decides whether two elements in G are conjugate? (Conjugacy Problem)

decides whether G is isomorphic to an fp group H? (Isomorphism Problem)

Novikov 1955, Boone 1954-57, Britton 1958

There is a finite presentation G = ⟨X | R⟩ for which there is no algorithm that,
given two words u and v over X ∪X−1, decides whether u = v in G.

See also Miller (1992) “Decision problems for groups (...)” for a survey and detailed discusssion.

Seems hopeless...? The aim of these lectures is to discuss approaches that work.

Also, maybe these presentations are rare...?
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They exist...

So now let’s see what can be done...
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Tietze transformation

Tietze transformations modify presentations G = ⟨X | R⟩ = FX/RFX without
changing the isomorphism type of the group:

Adjoint a relator: If r ∈ RFX , then G = ⟨X | R ∪ {r}⟩.
E.g.: ⟨g, h | ghg = hgh⟩ = ⟨g, h | ghg = hgh, hghghg = hghhgh⟩.

Remove a relator: If r ∈ R lies in (R \ {r})FX , then G = ⟨X | R \ {r}⟩.
E.g.: ⟨g, h | ghg = hgh, hghghg = hghhgh⟩ = ⟨g, h | hghghg = hghhgh⟩.

Adjoin a generator:
If t /∈ X ∪X−1 and w ∈ FX , then G ∼= ⟨X ∪ {t} | R ∪ {t = w}⟩.
E.g.: ⟨g, h | hg hg hg = hgh hgh⟩ ∼= ⟨g, h, s, t | t = hg, s = th, t3 = s2⟩.

Remove a generator:
If x ∈ X occurs in R only once, say in r, then G ∼= ⟨X \ {x} | R \ {r}⟩.
E.g.: ⟨g, h, s, t | t = hg, s = th, t3 = s2⟩ ∼= ⟨s, t | t3 = s2⟩.
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GAP

GAP’s command SimplifiedFpGroup applies Tietze transformations, aiming to
produce a “simpler” presentation.

gap> F := FreeGroup(["g","h","s","t"]);;

gap> G := F / ParseRelators(F, "t=h*g, s=t*h, t^3=s^2");

<fp group of size infinity on the generators [ g, h, s, t ]>

gap> Gnew := SimplifiedFpGroup(G);

<fp group of size infinity on the generators [ g, t ]>

gap> RelatorsOfFpGroup(Gnew);

[ g*t*g*t^-2 ]

# new relation is t^2=gtg

# original relation was t=hg, so t^2=gtg if and only if hgh=ghg

gap> iso := IsomorphismSimplifiedFpGroup(G);

[ g, h, s, t ] -> [ g, t*g^-1, g*t, t ]

gap>Image(iso)=Gnew;

true
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Tietze transformation

Another example:

Example 2

The group G = ⟨g, h | ghghg⟩ is isomorphic to ⟨a | ∅⟩ ∼= (Z,+).

Interesting:

Tietze transformations determine isomorphism classes

Given two finite presentations of the same group, one can be obtained from the
other by a finite sequence of Tietze transformations.

A proof can be found in Johnson §4.4.

Next: von Dyck’s Theorem!
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A crucial tool: von Dyck’s Theorem

Let G = ⟨X | R⟩ be an fp group with X = {x1, . . . , xn}, so elements in G are
represented by words xe1i1 · · ·x

ek
ik

with k ⩾ 0, each xij ∈ X and ej ∈ {±1}.
Despite undecidability issues, there is an easy criterion that helps us to answer:
When does a map from X into some group H extend to a homomorphism?
This is arguably one of the most important tools for working with fp groups.

Von Dyck’s Theorem

Let G = ⟨X | R⟩ be as above and let φ : X → H be a map into some group H.
The map φ extends to a (unique) group homomorphism G→ H if and only if
every xe1i1 · · ·x

ek
ik
∈ R satisfies φ(xi1)

e1 · · ·φ(xik)ek = 1H .

Proof. If φ extends to a hom. and r ∈ R, then r =G 1G is mapped to 1H .
Conversely, let ψ : FX → H be the unique hom. with each ψ(xi) = φ(xi).
By assumption, R ⩽ kerψ, and so also R = RFX ⩽ kerψ. Thus, ψ induces a
well-defined hom. FX/R→ H, wR 7→ ψ(w). The claim follows since G = FX/R.

So: G = ⟨X | R⟩ is the “largest” group whose generating set X satisfies R.
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Example: von Dyck’s Theorem

Example 3

Show that G = ⟨r,m | m2, r4,mrmr⟩ ∼= D8; let D8 be given as a permutation
group generated by M = (1, 3) and R = (1, 2, 3, 4).

Guess the map φ : {r,m} → D8 with φ(m) =M and φ(r) = R; check relators:

m2 : φ(m)2 =M2 = (), ✓

r4 : φ(r)4 = R4 = (), ✓

rmrm : φ(r)φ(m)φ(r)φ(m) = RMRM = (). ✓

Hence, von Dyck’s Theorem shows that φ induces a homomorphism G→ D8.
Since its image contains generators of D8, it is an epimorphism, so |G| ⩾ 8.
We knew already that |G| ⩽ 8, so |G| = 8 and φ : G→ D8 is an isomorphism.

Example 4

The Wicks group W = ⟨a, b | a3b4a5b7, a2b3a7b8⟩ has C11 as a quotient.

We’ll see von Dyck’s Theorem again later.

Next up: Coset enumeration – another fundamental method for fp groups.
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Coset actions

Recall that G acts on a set Ω if there is a homomorphism φ : G→ Sym(Ω).
If g ∈ G and ω ∈ Ω, then we usually write ωg = ωφ(g).

The stabiliser of ω in G is the subgroup Gω = {g ∈ G : ωg = ω};
the orbit of ω is ωG = {ωg : g ∈ G}. The action is transitive if Ω = ωG.

Orbit-Stabiliser Theorem (OST)

If G acts on Ω, then Gω\G→ ωG, Gωg 7→ ωg, is a bijection for every ω ∈ Ω.

Coset action. Let H ⩽ G be a subgroup of finite index n. Then G acts
transitively via right multiplication on the set of all right cosets

H\G = {Hg : g ∈ G};
specifically, k ∈ G maps Hg to H(gk).

Note: The OST defines a bijection between the conjugacy classes of index-n
subgroups of G and the equivalence classes of transitive G-actions on n points.
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Coset enumeration

Given: fp group G = ⟨X | R⟩ and subgroup U = ⟨Y ⟩ for some finite Y ⊆ G.

Want: Determine the index [G : U ], that is, the size of U\G.
Idea: Consider the G-action on cosets U\G and enumerate the orbit of U .

Wait... Testing r =G s is undecidable in general; how to test Ur = Us?

Simple observation: It feels a bit like magic – but if [G : U ] happens to be finite,
then one can attempt computing it based on the following observations:

Uu = U for every generator u ∈ Y of U

Ugr = Ug for every coset Ug and defining relator r ∈ R

Approach: Label cosets 1, 2, . . . (with U labelled “1”) and act with generators.
E.g., if X = {a, b, c, d} and Y = {cdb}, then Ucdb = U , and so

1︸︷︷︸
U

c−→ 2︸︷︷︸
Uc

d−→ 3︸︷︷︸
Ucd

b−→ 1︸︷︷︸
Ucdb=U

.

We don’t know whether 1, 2, 3 are distinct, but we know that cdb maps 1 to 1.
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Coset enumeration

We do this by attempting to complete three sets of tables.

Coset table. Here we collect how generators act on cosets.
Row labels: cosets 1, 2, . . .. Column labels: x and x−1 for x ∈ X.
Entry b in row a and column y if ay = b; i.e. if y maps coset a to coset b.

Relator tables. For each defining relator xe1i1 . . . x
ek
ik
∈ R we have one table:

Row labels: cosets 1, 2, . . .. Column labels: rj = xeii1 . . . x
ej
ij

for j = 1, . . . , k.

Entry b in row a and column rj if a
rj = b; row a and last column has entry a.

Subgroup tables. For each generator xe1i1 . . . x
ek
ik

of U we have one table:

Row labels: single row 1. Column labels: yj = xeii1 . . . xij
ej for j = 1, . . . , k.

Entry b in column yj if 1
yj = b; last column has entry 1.

Fill these tables: Put a label (not previously used) into an empty spot, draw
conclusions, and resolve collisions . . . Finish when all tables have their first m
rows filled with numbers 1, . . . ,m. Then [G : U ] = m is established.
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Coset enumeration example: G = ⟨a, b | ab−1ab, b2⟩ and U = ⟨a2⟩ ⩽ G.

C-table

name a b a−1 b−1

1 U 2 2
2 Ua 1 1

R-tables

a
b−1

↷ab−1
a↷ab−1a

b↷ab−1ab
1 2 1
2 1 2

b
b↷b2

1 1
2 2

S-table

a
a↷a2

1 2 1

Notes

1) Pick empty spot: 2

2) Consequences:

• coset 2 is Ua
• if 1a = 2, then 2a

−1

= 1
• update other tables

3) Deductions:

• S-table forces 2a = 1
• update other tables

4) All done? Go to 1)
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Coset enumeration example: G = ⟨a, b | ab−1ab, b2⟩ and U = ⟨a2⟩ ⩽ G.

C-table

name a b a−1 b−1

1 U 2 2
2 Ua 1 1 3
3 Uab−1 2

R-tables

a
b−1

↷ab−1
a↷ab−1a

b↷ab−1ab
1 2 3 1
2 1 2
3 3

b
b↷b2

1 1
2 2
3 3

S-table

a
a↷a2

1 2 1

Notes

1) Pick empty spot: 3

2) Consequences:

• coset 3 is Uab−1

• if 2b−1

= 3, then 3b = 2
• update other tables

3) All done? Go to 1)

3)

(Actually: not all done!)
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Coset enumeration example: G = ⟨a, b | ab−1ab, b2⟩ and U = ⟨a2⟩ ⩽ G.

C-table

name a b a−1 b−1

1 U 2 2
2 Ua 1 4 1 3
3 Uab−1 2
4 Uab 2

R-tables

a
b−1

↷ab−1
a↷ab−1a

b↷ab−1ab
1 2 3 1
2 1 2
3 3
4 4

b
b↷b2

1 1
2 4 2
3 3
4 4

S-table

a
a↷a2

1 2 1

Notes

1) Pick empty spot: 4

2) Consequences:

• coset 4 is Uab
• if 2b = 4, then 4b

−1

= 2
• update other tables

3) Deductions:

• R-table forces 4b = 2
• so 2b

−1

= 4, which is a

•

collision with 2b
−1

= 3
• update tables with 3 = 4
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Coset enumeration example: G = ⟨a, b | ab−1ab, b2⟩ and U = ⟨a2⟩ ⩽ G.

C-table

name a b a−1 b−1

1 U 2 2
2 Ua 1 3 1 3
3 Uab−1 2 2

R-tables

a
b−1

↷ab−1
a↷ab−1a

b↷ab−1ab
1 2 3 1
2 1 2
3 3

b
b↷b2

1 1
2 3 2
3 2 3

S-table

a
a↷a2

1 2 1

Notes

1) Pick empty spot: 4

2) Consequences:

• coset 4 is Uab
• if 2b = 4, then 4b

−1

= 2
• update other tables

3) Deductions:

• R-table forces 4b = 2
• so 2b

−1

= 4, which is a

•

collision with 2b
−1

= 3
• update tables with 3 = 4
• also update 3b = 2

4) All done? Go to 1)
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Coset enumeration example: G = ⟨a, b | ab−1ab, b2⟩ and U = ⟨a2⟩ ⩽ G.

C-table

name a b a−1 b−1

1 U 2 4 2 4
2 Ua 1 3 1 3
3 Uab−1 4 2 4 2
4 Ub 3 1 3 1

R-tables

a
b−1

↷ab−1
a↷ab−1a

b↷ab−1ab
1 2 3 4 1
2 1 4 3 2
3 4 1 2 3
4 3 2 1 4

b
b↷b2

1 4 1
2 3 2
3 2 3
4 1 4

S-table

a
a↷a2

1 2 1

Notes

1) Pick empty spot: 4

2) Consequences:

• if 1b = 4, then 4b
−1

= 1
• update other tables

3) Deductions:

• R-table forces 4b = 1
• update tables

4) Shortcut:
• We know b’s action;

•

work backwards!
• Now we see 3a = 4
• Update rest...
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Coset enumeration example: G = ⟨a, b | ab−1ab, b2⟩ and U = ⟨a2⟩ ⩽ G.

C-table

name a b a−1 b−1

1 U 2 4 2 4
2 Ua 1 3 1 3
3 Uab−1 4 2 4 2
4 Ub 3 1 3 1

Induced perms:
a 7→ α = (1, 2)(3, 4)
b 7→ β = (1, 4)(2, 3)

R-tables

a
b−1

↷ab−1
a↷ab−1a

b↷ab−1ab
1 2 3 4 1
2 1 4 3 2
3 4 1 2 3
4 3 2 1 4

b
b↷b2

1 4 1
2 3 2
3 2 3
4 1 4

S-table

a
a↷a2

1 2 1

Notes

• Tables are complete.

• C-table columns define per-
mutations of {1, 2, 3, 4} and
a−1, b−1 act as inverses.

• von Dyck and R-tables:
a, b 7→ α, β extends to group
hom φ : G → Sym4 defining
a G-action on {1, 2, 3, 4}.

• Construction and S-tables:
G acts transitively, U ⩽ G1,
and [G : U ] ⩾ [G : G1] = 4.

• Labels represent cosets and
every g ∈ G lies in one of
these, so [G : U ] ⩽ 4, and
[G : U ] = 4, as claimed.
(See Handbook Thm 5.2)
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Coset enumeration

Coset Enumeration

Let G be an fp group with U ⩽ G of finite index. Using an appropriate strategy,
the previous method will terminate and produce a permutation representation
describing the G-action on right cosets of U . In particular, [G : U ] is determined.

Comments:

Sometimes this is called the Todd-Coxeter ‘Algorithm’ (developed 1936).

Different strategies exists (Felsch, or Haselgrove, Leech, Trotter).

Tricky to implement efficiently; no strategy is optimal on all examples.

Problem: How to know a priori whether [G : U ] is finite?

Further reading: Handbook, Sims, and the following survey:
Neubüser (1982): An elementary introduction to coset table methods in
computational group theory.
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Coset enumeration: runtime

Proposition

The runtime for determining [G : U ] is not bounded by a function in [G : U ].

Proof. Suppose, for a contradiction, it is bounded by f . For a given fp group G,
set U = 1 and run the method f(1) + 1 steps. If the process has not terminated,
G ̸= 1 is proved. If it has terminated, |G| is finite. This constitutes a test for
whether G is trivial, which is algorithmically undecidable (Rabin 1958). E

Johnson (1997): ⟨x, y | xnyn+1, xn+1yn+2⟩ is trival, but requires ⩾ n cosets.

Revisiting Wicks group W :
(Havas, Holt, Kenne, Rees 1999)
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GAP

gap> F := FreeGroup(["a","b"]);;

gap> G := F/ParseRelators(F,"a*a^b,b^2");;

gap> U := Subgroup(G,[G.1^2]);; # G.1 corresponds to first generator

gap> PrintArray(TransposedMat( CosetTable(G,U) ));

[ [ 2, 2, 3, 3 ],

[ 1, 1, 4, 4 ],

[ 4, 4, 1, 1 ],

[ 3, 3, 2, 2 ] ]

# columns are sorted a, a^-1, b, b^-1

gap> List(CosetTable(G,U),PermList);

[ (1,2)(3,4), (1,2)(3,4), (1,3)(2,4), (1,3)(2,4) ]

gap> Index(G,U);

4

gap> F := FreeGroup(["a","b"]);;

gap> W := F/ParseRelators(F,"a^3*b^4*a^5*b^7, a^2*b^3*a^7*b^8");;

gap> Size(W); # it is known that W has size 11, however:

#I Coset table calculation failed -- trying with bigger table limit

#I Coset table calculation failed -- trying with bigger table limit

...

Error, reached the pre-set memory limit [~16GB]
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XGAP

skip LIS
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Low index subgroups & Reidemeister-Schreier
Let G = ⟨X | R⟩ with X = {x1, . . . , xm} be an fp group.

Coset enumeration: Every subgroup U ⩽ G of index n yields a complete coset
table (incl. relator and subgroup tables) with n rows, such that U = G1.

Conversely: A set of complete coset/relator tables with n symbols defines a
transitive permutation rep. G→ Symn, a subgroup U = G1 with [G : U ] = n,
and a prefix-closed right transversal T = {t1, . . . , tn} of U in G with t1 = 1.

Low-index subgroup algorithm: Compute subgroups U ⩽ G of small index n by
constructing complete coset/relator tables with n symbols.

Each such U is an fp group: (see the Handbook §2.5 & §5.3))

For g ∈ G let g ∈ T such that Ug = Ug. Then U is generated by the multiset
of Schreier generators S = {si,j = tixj(tixj)

−1 : xj ∈ X, ti ∈ T, si,j ̸= 1}.

U ∼= ⟨S | T ⟩ for the Reidemeister relators T = {τ(trt−1) : t ∈ T, r ∈ R};
here τ is the Reidemeister rewriting process that produces words in si,j . . .

The idea is to rewrite xixj as (t1xi(t1xi)
−1) · (t1xixj(t1xixj)−1) · t1xixj , etc.
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From table to group: Reidemeister-Schreier

One complete coset table for G = ⟨a, b | ab−1ab, b2⟩ on n = 4 points is:

C-table

a b a−1 b−1

1 1,2 α,4 β−1,2 ε−1,4
2 β,1 1,3 1,1 δ−1,3
3 1,4 δ,2 γ−1,4 1,2
4 γ,3 ε,1 1,3 α−1,1

Transversal

t1 = 1
t2 = a
t3 = ab
t4 = aba

Schreier generators

α = ba−1b−1a−1

β = a2

δ = ab2a−1

γ = aba2b−1a−1

ε = abab

Schreier generators: compute tigt
−1
ig for g ∈ {a, b} and i = 1, . . . , 4;

e.g., b maps i = 3 to 2, which yields t3bt
−1
2 = abba−1. We obtain α, . . . , ε.

Amended C-table: in row i and column g, add label tigt
−1
ig .

Reidemeister relators: scan relators acting on cosets and multiply the labels;

e.g., ab−1ab on 2 scans as 2
a−→
β

1
b−1

−−→
ε−1

4
a−→
γ

3
b−→
δ

2 and yields relator βε−1γδ.

We obtain G1
∼=⟨α, . . . , ε | αε, δ, δ−1ε, α−1, γβα, βε−1γδ⟩ ∼= ⟨β | ∅⟩ ∼= C∞.
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Getting tables

Want: Subgroups of fp group G of index at most n.

Idea: Construct complete coset tables with at most n rows.

The main idea is to start coset enumeration for G with U = {1}.
If at some stage n+ 1 cosets Uw1, . . . , Uwn+1 are constructed, then one can
enforce a coincidence, say Uwi = Uwj , and replace U by ⟨U,wiw−1

j ⟩.

A back-track search through the nodes of a suitable tree is used to create all
complete tables with at most n rows (corresponding to subgroups of index at
most n, up to conjugacy).

For details: Dietze-Schaps (1974), Sims (1974), Sims (1994), or the Handbook.
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GAP
gap> F := FreeGroup(["a","b"]);;

gap> G := F/ParseRelators(F,"a*a^b,b^2");;

gap> lis := LowIndexSubgroups(G,10);; # takes 3ms

gap> List(lis, U->Index(G,U) );

[ 1, 2, 2, 3, 4, 5, 6, 7, 8, 9, 10, 2, 4, 6, 8, 10, 4, 6, 8, 10 ]

gap> GeneratorsOfGroup(lis[17]); # our subgroup of index 4

[ a^-2 ]

gap> Index(G, Intersection(lis) );

5049

gap> F := FreeGroup(["x","y","z"]);;

gap> G := F/ParseRelators(F,"[x,[x,y]]=z,[y,[y,z]]=x,[z,[z,x]]=y");;

gap> lis := LowIndexSubgroups(G,10);; # takes 282s

gap> List(lis, U->Index(G,U) ); # intersections has index 120

[ 1, 6, 5, 10, 10 ]

Working with subgroups of fp groups in GAP:
coset tables, generators, or “quotient representations”.

Hulpke (2001): Represent subgroup U ⩽ G as (φ, V ) where φ : G→ Q is hom.
into a group we can compute with, V ⩽ Q, and U = φ−(V ) is the full preimage.

E.g., in coset enumeration, φ : G→ Q ⩽ Symn and U = φ−(Q1).
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Conclusion Lecture 1

Things we have discussed in the first lecture:

free groups, group presentations, fp groups

Dehn problems

Tietze transformations

von Dyck’s Theorem

Todd-Coxeter coset enumeration

low-index subgroups

Reidemeister-Schreier

Questions?
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Second Lecture

Go to Overview
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Recap Lecture 1

Things we have discussed in the first lecture:

Background: free groups, group presentations, fp groups

Can’t do: Dehn problems

Can do: Tietze transformations, von Dyck’s Theorem

Can do (sometimes): Todd Coxeter coset enumeration

Can do: Low-index subgroups, Reidemeister-Schreier

Today: more “can do’s”.
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Quotient algorithms

Let G = ⟨X | R⟩ be a finitely presented group. Recall that there are many
questions that are algorithmically undecidable, and computing in G might be hard.

However: We might be able to use von Dyck’s Theorem to find an epimorphism

φ : G→ H

onto a group H we can compute with: find an assignment of generator images
κ : X → H that maps the defining relators R to 1H and such that H = ⟨κ(X)⟩.

Useful: Since H ∼= G/ kerφ, the structure of H tells us something about G.

This is the idea of quotient algorithms.

Often H is given as an fp group as well, so we first discuss a class of fp groups
that we can compute with very well: polycyclic groups.

Heiko Dietrich (heiko.dietrich@monash.edu) Computing with finitely presented groups (toc) IMS NUS, 2024



Lecture 2 polycyclic abelian p-quotients other

Polycyclic groups

A group H is pc (polycyclic) if it admits a polycyclic series

H = H1 ⊵H2 ⊵ . . .⊵Hn ⊵Hn+1 = 1,

that is, each quotient Hi/Hi+1 = ⟨hiHi+1⟩ is cyclic, say of order ri ∈ N ∪ {∞}.

X = (h1, . . . , hn) is a pcgs (polycyclic generating set);

R(X) = (r1, . . . , rn) are the corresponding relative orders.

Good for induction: each Hi = ⟨hi, . . . , hn⟩ has pcgs (hi, . . . , hn).

Example: Let D16 = ⟨r,m⟩ with r = (1, 2, . . . , 8) and m = (1, 3)(4, 8)(5, 7).
Examples of pcgs:

X = [m, r] with R(X) = [2, 8]: G = ⟨m, r⟩ > ⟨r⟩ > 1;

X = [m, r, r4] with R(X) = [2, 4, 2]: G = ⟨m, r, r4⟩ > ⟨r, r4⟩ > ⟨r4⟩ > 1;

X = [m, r, r3, r2] with R(X) = [2, 1, 2, 4]; note that ⟨r, r3, r2⟩ = ⟨r3, r2⟩.
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Polycyclic groups: normal forms

Let H be polycyclic with pcgs X = (h1, . . . , hn) and R(X) = (r1, . . . , rn).

Normal forms: Every h ∈ H can uniquely be written as h = he11 . . . henn with
ei ∈ {0, . . . , ri − 1} if ri ̸=∞, and ei ∈ Z otherwise.

Proof. Induction on n: If n = 1, then H is cyclic ✓ Otherwise, there is a unique
e1 such that hH2 = he11 H2, and h

′ = h−e11 h ∈ H2. The induction hypothesis
applied to H2 implies that h′ = he22 . . . henn , hence h = he11 . . . henn as required.

Example: Let H = Alt4 and consider the pcgs

h1 = (1, 2, 3), h2 = (1, 2)(3, 4), h3 = (1, 3)(2, 4)

with series H = H1 > . . . > H4 = 1 and relative orders [3, 2, 2]. Let h = (1, 2, 4):

hH2 = h21H2, so h
′ = h−2

1 h = (1, 4)(2, 3) ∈ H2.

h′H3 = h2H3, so h
′′ = h−1

2 h′ = (1, 3)(2, 4) = h3 ∈ H3.

In conclusion, h = h21h
′ = h21h2h

′′ = h21h2h3.
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Group to presentation

Let H be polycyclic with pcgs (h1, . . . , hn) and relative orders (r1, . . . , rn). These
generators satisfy the following power and conjugate relations:

If ri ̸=∞, then hrii ∈ Hi+1 has a normal form, say hrii = wi(hi+1, . . . , hn).

If i < j then Hj ⩽ Hi+1 ⊴Hi, so h
h±
i
j ∈ Hi+1, say h

h±
i
j = w±

i,j(hi+1, . . . , hn).

Now mimick this: Use these relations to define the fp group

G = ⟨g1, . . . , gn | ∀ri ̸=∞ : grii = wi(gi+1 . . . , gn),

∀i < j : g
g±i
j = w±

i,j(gi+1, . . . , gn)⟩.

This group is polycyclic with pcgs (g1, . . . , gn); in particular G ∼= H.

Proof. The relations imply that Gi = ⟨gi, . . . , gn⟩ are the terms of a polycyclic
series; also (giGi+1)

ri = Gi+1 for ri ̸=∞. As before, every g ∈ G can be written
as ge11 . . . genn with 0 ⩽ ei < ri if ri ̸=∞ – but is this unique? Yes!

Von Dyck’s Theorem shows that g1, . . . , gn 7→ h1, . . . , hn defines an epimorphism
φ : G→ H. Since H has unique normal forms (wrt r1, . . . , rn), φ is injective.
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Example
Polycyclic group: H = ⟨(2, 4, 3), (1, 3)(2, 4)⟩ ∼= Alt4 has polycyclic series

H = H1 > H2 > H3 > H4 = 1

where H2 = ⟨(1, 3)(2, 4), (1, 2)(3, 4)⟩ and H3 = ⟨(1, 2)(3, 4)⟩.

Pcgs: Each Hi/Hi+1 is cyclic, so there is hi ∈ Hi with Hi/Hi+1 = ⟨hiHi+1⟩; eg

h1 = (2, 4, 3), h2 = (1, 3)(2, 4), h3 = (1, 2)(3, 4),

and so (h1, h2, h3) is a pcgs for H.

Presentation: These generators satisfy the following power/conjugate relations

h31 = 1, h22 = 1, h23 = 1,

hh1
2 = (1, 2)(3, 4) = h3, hh1

3 = (1, 4)(2, 3) = h2h3, hh2
3 = h3,

so

H ∼= ⟨g1, g2, g2 | g31 , g22 , g23 , gg12 = g3, gg13 = g2g3, gg23 = g3⟩.
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Polycyclic presentations

A polycyclic presentation (pcp) is a group presentation of the form

G = ⟨g1, . . . , gn | ∀i ∈ I : gsii = wi(gi+1 . . . , gn),

∀i < j : g
g±i
j = w±

i,j(gi+1, . . . , gn)⟩.
where s1, . . . , sn ∈ N ∪ {∞} with si ̸=∞ if and only if i ∈ I ⊆ {1, . . . , n}.

Observations:

The group G is polycyclic with pcgs (g1, . . . , gn) and terms Gi = ⟨gi, . . . , gn⟩.
Every g ∈ G can be written as g = ge11 . . . genn with 0 ⩽ ei < si if si ̸=∞.

The presentation is consistent if the latter form is unique.

Note: Consistency holds if and only if the power exponents si equal the relative

orders ri, that is, if and only if each si = ri
def
= |Gi/Gi+1| = |giGi+1|.

Good news: If a pcp comes from a group with pcgs, then it is consistent.
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Polycyclic presentations: notation

The pcp of the elementary abelian group G = C4
p is

G = ⟨a, b, c, d | ap, bp, cp, dp, ba = b, ca = c, da = d, cb = c, db = d, dc = d⟩.

Convention

In a pcp, one usually doesn’t want to list trivial conjugate relations such as ba = b;
we write Pc⟨S | R⟩ to indicate that a presentation should be considered as a pcp,
with the convention that missing conjugate relations are assumed to be trivial.

Much better: with this convention, G = Pc⟨a, b, c, d | ap, bp, cp, dp⟩ ∼= C4
p .

Comments:

Polycyclic presentations are useful to encode large (pc-)groups.1

Elements are multiplied by concatenation and normalising (collection).

Consistency of a presentation can be checked by evaluating a finite set of test
words (consistency checks).

1A group is polycyclic if and only if it is solvable and every subgroup is finitely generated.
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Collection algorithm
Let G = Pc⟨x1, . . . , xn | R⟩ with power exponents S = [s1, . . . , sn].

w = xe1i1 · · ·x
er
ir

is collected (wrt S) if i1 < . . . < ir and 0 ⩽ ei < si for si ̸=∞;
if w is not collected, then ij > ij+1 for some j, or ej /∈ [0, sj) for some sj <∞.

A collection algorithm follows specific rules to bring w into collected form (by
using the relations of G), e.g.:

Collection to the left: move all occurrences of x1 to the beginning of the
word; next, move all occurrences of x2 left until adjacent to the x1’s, etc.

Collection from the right: the minimal non-normal subword nearest to the
end of a word is selected.

Collection from the left: the minimal non-normal subword nearest to the
beginning of a word is selected.

Leedham-Green & Soicher (1990, 1998): experiments with collection strategies for p-groups

“collection from the left is a very good strategy”; symbolic collection (“deep thought”);

Newman & Niemeyer 2015: complexity in finite solvable groups. Open: Is poly-time possible?
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Example: collection

Consider the pc-group

D16
∼= Pc⟨x1, x2, x3, x4 | x21 = 1, x22 = x3x4, x23 = x4, x24 = 1,

xx1
2 = x2x3, xx1

3 = x3x4⟩.

Aim: collect the word x3x2x1.
Since power exponents are all “2”, we only use generator indices:

”to the left” “from the right” ”from the left”

321 = 3123

= 13423

= 13243

= 12343

= 12334

= 1244

= 12

321 = 3123

= 13423

= 13243

= 13234

= 12334

= 1244

= 12

321 = 231

= 2134

= 12334

= 1244

= 12
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GAP

Here’s one way to define polycyclic groups (via pcp) in GAP:

Consider the pc group G with generators a, b, c, d, e, f and relators/relations

a2, b2, c3, d3, e5, f5, ca = c2, da = d2, ec = ef3, fa = e4f4, f c = e4f3.

gap> coll:=FromTheLeftCollector(6);;

gap> ord:=[2,2,3,3,5,5];;

gap> for i in [1..6] do SetRelativeOrder(coll,i,ord[i]); od;;

gap> SetConjugate(coll,3,1,[3,2]);

gap> SetConjugate(coll,4,1,[4,2]);

gap> SetConjugate(coll,5,3,[5,1,6,3]);

gap> SetConjugate(coll,6,1,[5,4,6,4]);

gap> SetConjugate(coll,6,3,[5,4,6,3]);

gap> G:=PcpGroupByCollector(coll);

Pcp-group with orders [ 2, 2, 3, 3, 5, 5 ]

gap> AssignGeneratorVariables(G);;

#I Assigned the global variables [ g1, g2, g3, g4, g5, g6 ]

gap> g6*g5*g4*g3*g2*g1;

g1*g2*g3^2*g4^2*g5^4*g6^4

gap> Exponents(last);

[ 1, 1, 2, 2, 4, 4 ]
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Consistent pc presentations

Recall: A pcp with power exponents S is consistent if and only if every group
element has a unique normal form with respect to S.

Example 5

The group G = Pc⟨a, b, c | a3 = c, b2 = c, c5 = 1, ba = bc⟩ has pcgs X = [a, b, c]
and power exponents S = [3, 2, 5]. We show R(X) = [3, 2, 1], so |G| = 6:

First, note that b10 = c5 = 1, so |b| | 10.
Second, ba = bc = b3 so b27 = b(a

3)= bc= b(b
2) = b, and thus |b| | 26.

This implies that 5 ∤ |b|, and forces c = 1 in G.

Thus, a0b0c0 = 1 = a0b0c1 are two distinct normal forms wrt power exponents.

How to check consistency? ⇝ use collection and consistency checks!
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Consistency checks
Pc⟨x1, . . . , xn | R⟩ with power exps [s1, . . . , sn], each si <∞, is consistent if and
only if the normal forms of the following pairs of words coincide

xk(xjxi) and (xkxj)xi for 1 ⩽ i < j < k ⩽ n,

(x
sj
j )xi and x

sj−1
j (xjxi) for 1 ⩽ i < j ⩽ n,

xj(x
si
i ) and (xjxi)x

si−1
i for 1 ⩽ i < j ⩽ n,

xj(x
sj
j ) and (x

sj
j )xj for 1 ⩽ j ⩽ n,

where the subwords in brackets are to be collected first; see Prop. 8.3 in Sims.
(If si =∞ or sj =∞, also consider xjx

−1
i xi, x

−1
j xjxi, x

−1
j xjx

−1
i for i < j.)

Example 6

If G = Pc⟨a, b, c | a3 = c, b2 = c, c5 = 1, ba = bc⟩, then

(b2)a = ca = ac and b(ba) = babc = ab2c2 = ac3.

Since ac and ac3 are both normal forms, the presentation is not consistent.
Indeed, we deduce from ac = ac3 that c = 1 in G.
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Now let’s consider quotient algorithms . . .
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Computing the largest abelian quotient
It can be difficult to compute with an fp group G, but it’s easy to compute with
abelian groups! So let’s find abelian quotients of G to work with.

Task: For an fp group G, compute its largest abelian quotient2 G/G′.

Abelianisation

If G = ⟨X | R⟩, then G/G′ is isomorphic to A = ⟨X | R ∪ {[x, y] : x, y ∈ X}⟩.

Proof. 2× von Dyck: first, x 7→ x defines an epi. G→ A with G′ in its kernel, so
G/G′ → A with xG′ 7→ x. Second, x 7→ xG′ extends to an epi. A→ G/G′.

Fundemental Theorem of finitely generated abelian groups

If G is finitely generated, there exist unique integers n, s and 2 ⩽ d1, . . . , dn with

G/G′ ∼= Cd1 × . . .× Cdn × Cs∞

and d1 | . . . | dn; the abelian invariants of G are (d1, . . . , dn; s).

2Commutator subgroup: G′ = ⟨[x, y] : x, y ∈ G⟩ where each [x, y] = x−1y−1xy.
Heiko Dietrich (heiko.dietrich@monash.edu) Computing with finitely presented groups (toc) IMS NUS, 2024



Lecture 2 polycyclic abelian p-quotients other

Computing the largest abelian quotient

To compute G/G′G/G′G/G′ for G = ⟨x1, . . . , xn | r1, . . . , rm⟩, do the following:

1 abelianise each relator rj = xf1i1 . . . x
fℓ
iℓ
: i.e. write rj = x

ej,1
1 . . . x

ej,n
n in G/G′

2 write these exponents in an m× n matrix M with rows (ej,1, . . . , ej,n),

3 observe that G/G′ ∼=⟨X | R ∪ {[x, y] : x, y ∈ X}⟩ ∼= Zn/Row(M),

4 compute3 SNF(M) = diag(d1, . . . , dk, 0, . . . , 0) with each 1 ⩽ di | di+1,

5 now G/G′ ∼= Zn/Row(M) ∼= Zn/Row(SNF(M)) ∼= Cd1 × . . .× Cdk × Cn−k∞ .

Example

Let G = ⟨a, b, c, d | a2b2ca2d8, (a−2b)2cd−6cd−2b2, b−1a4d2cd, ab2ac3dab3cda⟩.
Compute the abelianised exponent matrix and its SNF:

M =

(
4 2 1 8
−4 4 2 −8
4 −1 1 2
4 5 4 2

)
⇝

(
1 0 0 0
0 3 0 0
0 0 12 0
0 0 0 0

)
= SNF(M).

Thus, G/G′ ∼= Z4/Row(SNF(M)) ∼= C3 × C12 × C∞; in particular, |G| =∞.

3Smith-Normal-Form: SNF(M) = RMC for invertible integral mats R,C; arrange m ⩾ n.
See also Havas & Sterling’79: Integer matrices and abelian groups.
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Computing the largest abelian quotient

Example

Consider the Wicks group W = ⟨a, b | a3b4a5b7, a2b3a7b8⟩.
The abelianised exponent matrix is

M = ( 8 11
9 11 )⇝ SNF(M) = ( 1 0

0 11 )

and therefore W/W ′ ∼= C11.

An immediate consequence of this method is the following:

If G = ⟨X | R⟩ satisfies |X| > |R|, then the SNF of the abelianised exponent
matrix has a 0 on its diagonal, and then |G| =∞.

E.g., the group G = ⟨a, b, c | ab2c−2a, b3c−3ac9a⟩ is infinite.
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p-quotients

One can also compute well with finite p-groups (via their pcp!); this leads to . . .

Task: For an fp group G, compute its largest finite p-group quotient.

But, wait . . . is there a largest finite p-group quotient? Not nesessarily, e.g.,

D∞ = ⟨a, b | a2, ba = b−1⟩

has every dihedral group D2n+1
∼= D∞/⟨b(2

n)⟩ as a quotient.

Finite p-groups are nilpotent, so the following seems useful:

Lower Central Series

A group P is nilpotent if and only if its lower central series

P = γ1(P ) ⩾ γ2(P ) ⩾ . . .

with γi+1(P ) = [P, γi(P )] terminates in the trivial subgroup.

Thus, if G/N is a finite p-group quotient of G, then γj(G) ⩽ N for some j.
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Special central series are useful

Lower exponent-p series

The lower exponent-p series of a group G is

G = P0(G) > P1(G) > . . .

where each Pi+1(G) = [G,Pi(G)]Pi(G)
[p]; here we define H [p] = ⟨hp : h ∈ H⟩.

The p-class of G is c if Pc−1(G) > Pc(G) = 1.

Useful properties:

each Pi(G) is characteristic in G

each Pi(G)/Pi+1(G) is G-central elementary abelian

if θ is a homomorphism from G, then θ(Pi(G)) = Pi(θ(G))

G/N has p-class c if and only if c is minimal with Pc(G) ⩽ N

for a p-group G: P1(G) = Φ(G) is the Frattini subgroup, and

G/P1(G) ∼= Cdp where d = rank(G).
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Example: lower exponent-p series

Example 7

Consider

G = D16 = Pc⟨a1, a2, a3, a4 | a21 = 1, a22 = a3a4, a
2
3 = a4, a

2
4 = 1,

[a2, a1] = a3, [a3, a1] = a4⟩.

Note: [a2, a1] = a3 is equivalent to aa12 = a2a3, etc.

Here we can read off:

P0(G) = G

P1(G) = [G,G]G[2] = ⟨a3, a4⟩
P2(G) = [G,P1(G)]P1(G)

[2] = ⟨a4⟩
P3(G) = [G,P2(G)]P2(G)

[2] = 1

So G has 2-class 3.
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Special pcps are useful

A weighted pcp (wpcp) of a d-generator group of order pn is Pc⟨x1, . . . , xn | R⟩
such that {x1, . . . , xd} is a minimal generating set G and the relations are

xpj = x
αj,j+1

j+1 . . . xαj,n
n and [xj , xi] = x

βi,j,j+1

j+1 . . . xβi,j,n
n (i < j),

such that each 0 ⩽ αu,v, βu,v,w < p. For each k > d there is one relation with
right side xk: the definition of xk. The associated weight function is

ω(xk) =


1 (1 ⩽ k ⩽ d)

ω(xi) + 1 (xk = xpi def.)

ω(xj) + ω(xi) (xk = [xj , xi] def.)

E.g.: {x1, x2} is a minimal generating set and x3, x4, x5 have weight 2, 2, 3 in

G = Pc⟨ x1, . . . , x5 | x21 = x4, x
2
2 = x3, x

2
3 = x5, x

2
4 = x5, x

2
5 = 1

[x2, x1] = x3, [x3, x1] = x5 ⟩.
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ANUPQ: Computing the quotient G/Pc(G)

The following is mainly due to MacDonald’74, Newman’76, Havas-Newman’80;
Newman-O’Brien’96; Newman-Nickel-Niemeyer’98; known as ANUPQ.

p-quotient algorithm

Input: an fp group G = F/R = ⟨x1, . . . , xn | R⟩, prime p, p-class c
Output: epimorphism G→ G/Pc(G) and wpcp of G/Pc(G).

Top-level outline:

compute wpcp of G/P1(G) and epimorphism G→ G/P1(G), then iterate:

given wpcp of G/Pk(G) and epimorphism G→ G/Pk(G),
compute wpcp of G/Pk+1(G) and epimorphism G→ G/Pk+1(G);

stop when G/Pc(G) and epimorphism G→ G/Pc(G) are computed.

Heiko Dietrich (heiko.dietrich@monash.edu) Computing with finitely presented groups (toc) IMS NUS, 2024



Lecture 2 polycyclic abelian p-quotients other

First: get wpcp for G/P1(G)

Input: an fp-group G = ⟨x1, . . . , xn | R⟩, prime p
Output: a wpcp of G/P1(G) and epimorphism θ : G→ G/P1(G)

Example: For ⟨x1, . . . , x6 | x106 , x1x2x3, x2x3x4, . . . , x4x5x6, x5x6x1, x1x6x2⟩
and p = 2, write coefficients of abelianised and mod-2 reduced relators as rows of
matrix, use row-echelonisation, and determine that solution space has dimension 2: 1 1 1 0 0 0

0 1 1 1 0 0
0 0 1 1 1 0
0 0 0 1 1 1
1 0 0 0 1 1
1 1 0 0 0 1

 ⇝
 1 0 0 0 1 1

0 1 0 0 1 0
0 0 1 0 0 1
0 0 0 1 1 1
0 0 0 0 0 0
0 0 0 0 0 0

 ;

Modulo P1(G), we have x1 = x5x6, x2 = x5, x3 = x6, x4 = x5x6, so x5, x6 map
to a generating set of G/P1(G). A wpcp for G/P1(G) is

G/P1(G) = Pc⟨a1, a2 | a21 = a22 = 1⟩ ∼= C2
2 ,

and we define θ : G→ G/P1(G) via x5 7→ a1 and x6 7→ a2.
This determines θ(x1) = a1a2, θ(x2) = a1, θ(x3) = a2, and θ(x4) = a1a2.
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Second: lift wpcp from G/Pk(G) to G/Pk+1(G)

Given: epimorphism θ : G→ G/Pk(G) onto d-generator p-group with wpcp

Want: wpcp of G/Pk+1(G) and epimorphism G→ G/Pk+1(G)

In the following:
H = G/Pk(G) and K = G/Pk+1(G) and Z = Pk(G)/Pk+1(G)
note that Z is elementary abelian, K-central, and K/Z ∼= H

Approach: Construct a covering H∗ of H such that every d-generator p-group L
with L/M ∼= H and M ⩽ L central elementary abelian, is a quotient of H∗.

Thus, the next steps are:

define p-cover H∗ and determine a pcp of H∗;

make this presentation consistent;

construct K as quotient of H∗ by enforcing defining
relations of G.

H∗

G

H
θ

H∗

G K

H

θ̃

θ
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p-covering group: definition

Theorem 8: p-covering group

Let H be a d-generator p-group; there is a d-generator p-group H∗ with:

H∗/M ∼= H for some central elementary abelian M ⊴H∗;

if L is a d-generator p-group with L/Y ∼= H for some central elementary
abelian Y ⩽ L, then L is a quotient of H∗.

The group H∗ is unique up to isomorphism.

Proof. Let H = F/S with F free of rank d; let θ : F → H with kernel S.

Set H∗ = F/S∗ with S∗ = [S, F ]S[p].

Then S/S∗ is elementary abelian and H∗ is a finite d-generator p-group.

Let L be as in the theorem, and let ψ : L→ H with central el.-ab. kernel Y .

Since F is free, θ factors through L, say θ : F
φ→ L

ψ→ H with φ(S) ⩽ kerψ = Y .

This implies φ(S∗) = 1, and φ induces epimorphism H∗ = F/S∗ → L.

If H∗ and H̃∗ are both covers, then each is an image of the other, so H∗ ∼= H̃∗.
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p-covering group: presentation

Given: a wpcp Pc⟨a1, . . . , am | S⟩ for H = G/Pk(G) ∼= F/S

Given:

and epimorphism θ : G→ H with θ(xi) = ai for i = 1, . . . , d

Want: a wpcp for H∗ ∼= F/S∗ where S∗ = [S, F ]Sp

Recall: each of ad+1, . . . , am occurs as right hand side of one relation in S;
write S = Sdef ∪ Snondef with Snondef = {s1, . . . , sq}.

Theorem 9: presentation of cover

Using the previous notation, H∗ = Pc⟨a1, . . . , am, b1, . . . , bq | S∗⟩, where

S∗ = Sdef ∪ {s1b1, . . . , sqbq} ∪ {bp1, . . . , bpq}.

Note: H∗/M ∼= H where M = ⟨b1, . . . , bq⟩⊴H∗ is central elementary abelian.

(see Newman, Nickel, Niemeyer: “Descriptions of groups of prime-power order”, 1998)

In practice: fewer new generators are introduced.
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p-covering group: example

Example: If H = Pc⟨a1, a2 | a21 = a22 = 1⟩ ∼= C2 × C2, then

H∗ = Pc⟨a1, a2, b1, b2, b3 | a21 = b1, a
2
2 = b2, [a2, a1] = b3, b

2
1 = b22 = b23 = 1⟩;

indeed, H∗ ∼= C4 ⋉ (C4 × C2), thus we have found a consistent wpcp!

Example: If H = Pc⟨a1, a2, a3 | a21 = a23 = 1, a22 = a3, [a2, a1] = a3⟩ ∼= D8, then

H∗ = Pc⟨a1, a2, a3, b1, . . . , b5 | T ∪ {b21, . . . , b25} ⟩ with

T = {a21 = b1, a
2
2 = a3b2, a

2
3 = b3, [a2, a1] = a3, [a3, a1] = b4, [a3, a2] = b5};

this pcp has power exponents [2, 2, 2, 2, 2, 2, 2, 2].

However, H∗ ∼= C4 ⋉ (C8 × C2), so this presentation is not consistent!

Next step: make the presentation of H∗ consistent (not here!).
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Construct K from cover H∗ of H

So what have we got so far...

fp-group G = F/R = ⟨x1, . . . , xn | R⟩ and a fixed prime p

consistent wpcp of H = G/Pk(G) = Pc⟨a1, . . . , am | S⟩
epimorphism θ : G→ H with θ(xi) = ai for i = 1, . . . , d

consistent wpcp of cover H∗ = Pc⟨a1, . . . , am, b1, . . . , bq | S∗⟩;
note that H∗/M ∼= H where M = ⟨b1, . . . , bq⟩

Want:

consistent wpcp of K = G/Pk+1(G) and epimorphism G→ G/Pk+1(G)

Know:

K/Z ∼= H where Z = Pk(G)/Pk+1(G) is elementary abelian, central

K is quotient of H∗

Idea:

construct K as quotient of H∗: add relations enforced by G to S∗
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Construct K from cover H∗ of H

Recall:

G = F/R = ⟨x1, . . . , xn | R⟩ and H = G/Pk(G).

The epimorphism θ : G→ H maps x1, . . . , xd to a1, . . . , ad.

Cover H∗ maps onto H ∼= H∗/M and K = G/Pk+1(G).

F H∗

G K

H

θ̂

θ

Enforcing relations of G:

lift θ to θ̂ : F → H∗ with θ̂(xi) = ai for i = 1, . . . , d

(Subtlety: for j > d, add new temporary generators cj of M such

that θ̂(xj) = θ(xj)cj ; see Handbook p. 361, Havas & Newman’80)

if r ∈ R, then θ̂(r) ∈M ; let L = ⟨θ̂(r) : r ∈ R⟩ ⩽M

by von Dyck, the assignment xi 7→ ai yields epimorphisms
G→ H∗/L and H∗/L→ K.

In fact, K = H∗/L since K is largest p-class k+ 1 quotient of G.
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Big example: p-quotient algorithm in action
Let G = ⟨x, y | [[y, x], x] = x2, (xyx)4, x4, y4, (yx)3y = x⟩ and p = 2. no!

First round:

compute G/P1(G) using abelianisation and row-echelonisation:

obtain H = G/P1(G) ∼= Pc⟨a1, a2 | a21 = a22 = 1⟩
and epimorphism θ : G→ H, which is defined by (x, y)→ (a1, a2).

construct covering of H by adding new generators and tails:

H∗ = Pc⟨a1, . . . , a5 | a21 = a3, a
2
2 = a4, [a2, a1] = a5, a

2
3 = a24 = a25 = 1⟩

the consistency algorithm shows that this presentation is consistent

evaluate relations of G in H∗:
1 = [[a2, a1], a1] = θ̂([[y, x], x]) = θ̂(x2) = a21 = a3 forces a3 = 1

(xyx)4, x4, y4 impose no conditions

a1a3 = (a2a1)
3a2 = θ̂((yx)3y) = θ̂(x) = a1 also forces a3 = 1

construct G/P2(G) as H
∗/⟨a3⟩; after renaming a5:

G/P2(G) ∼= Pc⟨a1, . . . , a4 | a21 = 1, a22 = a4, [a2, a1] = a3, a
2
3 = a24 = 1⟩

and epimorphism G→ G/P2(G) defined by (x, y)→ (a1, a2).
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Big example: p-quotient algorithm in action
G/P2(G) = Pc⟨a1, . . . , a4 | a21 = 1, a22 = a4, [a2, a1] = a3, a

2
3 = a24 = 1⟩

Second round:
construct covering of H = G/P2(G) by adding new generators and tails:

H∗ = Pc⟨a1, . . . , a12 | a21 = a12, a
2
2 = a4, a

2
3 = a11, a

2
4 = a10,

[a2, a1] = a3, [a3, a1] = a5, [a3, a2] = a6, [a4, a1] = a7,

[a4, a2] = a8, [a4, a3] = a9, a
2
5 = . . . = a212 = 1⟩

the consistency algorithm shows only the following inconsistencies:

a2(a2a2) = a2a4 and (a2a2)a2 = a4a2 = a2a4a8 =⇒ a8 = 1

a2(a1a1) = a2a12 and (a2a1)a1 = a1a2a3a1 = . . . = a2a5a11a12 =⇒ a5a11 = 1

a2(a2a1) = a1a
2
2a

2
3a6 = a1a4a6a11 and (a2a2)a1 = a1a4a7 =⇒ a6a7a11 = 1

a3(a2a2) = a3a4 and (a3a2)a2 = a2a3a6a2 = a22a3a
2
6 = a3a4a9 =⇒ a9 = 1

removing redundant gens (and renaming), we obtain the consistent wpcp

H∗ = Pc⟨a1, . . . , a8 | a21 = a8, a
2
2 = a4, a

2
3 = a7, a

2
4 = a6, a

2
5 = . . . = a28 = 1

[a2, a1] = a3, [a3, a1] = a7, [a3, a2] = a5a7, [a4, a1] = a5⟩
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Big example: p-quotient algorithm in action

Still second round:

G = ⟨x, y | [[y, x], x] = x2, (xyx)4, x4, y4, (yx)3y = x⟩ and p = 2;

epimorphism θ : G→ H onto H = G/P2(H) defined by (x, y)→ (a1, a2)

H∗ = Pc⟨a1, . . . , a8 | a21 = a8, a
2
2 = a4, a

2
3 = a7, a

2
4 = a6, a

2
5 = . . . = a28 = 1

[a2, a1] = a3, [a3, a1] = a7, [a3, a2] = a5a7, [a4, a1] = a5⟩
Evaluate relations of G in H∗:

a7 = [[a2, a1], a1] = θ̂([[y, x], x]) = θ̂(x2) = a21 = a8 forces a7 = a8

(xyx)4 forces a6 = 1; x4 and y4 impose no condition

θ̂((yx)3y) = θ̂(x) forces a7a8 = 1

Now construct G/P3(G) as H
∗/⟨a7a8, a6⟩; after renaming:

G/P3(G) = Pc⟨a1, . . . , a6 | a21 = a6, a
2
2 = a4, a

2
3 = a6, a

2
4 = 1, a25 = a26 = 1,

[a2, a1] = a3, [a3, a1] = a6, [a3, a2] = a5a6, [a4, a1] = a5⟩

and the epimorphism G→ G/P3(G) is defined by (x, y)→ (a1, a2).
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Big example: p-quotient algorithm in action

In conclusion:

We started with

G = ⟨x, y | [[y, x], x] = x2, (xyx)4, x4, y4, (yx)3y = x⟩

and computed G/P3(G) as

Pc⟨a1, . . . , a6 | a21 = a6, a
2
2 = a4, a

2
3 = a6, a

2
4 = a25 = a26 = 1,

[a2, a1] = a3, [a3, a1] = a6, [a3, a2] = a5a6, [a4, a1] = a5⟩

with epimorphism G→ G/P3(G) defined by (x, y)→ (a1, a2).

One can check that |G| = |G/P3(G)| = 26, hence G ∼= G/P3(G).

In particular, we have found a consistent wpcp for G.
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Big example: GAP

gap> F := FreeGroup("x","y");;

gap> G := F/ParseRelators(F,"[[y,x],x]=x^2,(x*y*x)^4,x^4,y^4,(y*x)^3*y=x");;

gap> epi1 := EpimorphismPGroup(G,2,1);; #2-class 1 quotient

gap> StructureDescription(Image(epi1));

"C2 x C2"

gap> epi2 := EpimorphismPGroup(G,2,2);; #2-class 2 quotient

gap> StructureDescription(Image(epi2));

"(C4 x C2) : C2"

gap> epi3 := EpimorphismPGroup(G,2,3);; #2-class 3 quotient

gap> StructureDescription(Image(epi3));

"(C2 x Q8) : C4"

gap> Size(Image(epi3))=Size(G);

true

gap> #now compute the 2-cover of G/P_1(G)

gap> LoadPackage("anupq");

true

gap> H := Image(epi1);;

gap> Hs := PqPCover(H);;

gap> StructureDescription(Hs);

"(C4 x C2) : C4"
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Application: Burnside groups
Burnside Problems

Generalised Burnside Problem (GBP), 1902:
Is every finitely generated torsion group finite?

Burnside Problem (BP), 1902:
Let B(d, n) be the largest d-generator group with gn = 1 for all g ∈ G.
Is this group finite? If so, what is its order?

Restricted Burnside Problem (RBP), ∼1940:
What is order of largest finite quotient R(d, n) of B(d, n), if it exists?

Golod-Šafarevič (1964): answer to GBP is “no”;
(cf. Ol’shanskii’s Tarski monster)

Various authors: B(d, n) is finite for n = 2, 3, 4, 6, but in no other cases
with d > 1 is it known to be finite; are B(2, 5) and B(2, 8) finite?

Adian (2015): |B(d, n)| =∞ for odd n > 100 and d ⩾ 2.

Higman-Hall (1956): reduced (RBP) to prime-power n.

Zel’manov (1990-91): R(d, n) always exists!
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Application: Burnside groups

Burnside groups:

B(d, n) = ⟨x1, . . . , xd | gn = 1 for all words g in x±1 , . . . , x
±
n ⟩

R(d, n) largest finite quotient of B(d, n); exists by Zel’manov

Implementations of the p-quotient algorithm have been used to determine the
order and to compute pcps for some of these groups.

Group Order Authors

B(3, 4) 269 Bayes, Kautsky & Wamsley (1974)

R(2, 5) 534 Havas, Wall & Wamsley (1974)

B(4, 4) 2422 Alford, Havas & Newman (1975)

R(3, 5) 52282 Vaughan-Lee (1988); Newman & O’Brien (1996)

B(5, 4) 22728 Newman & O’Brien (1996)

R(2, 7) 720416 O’Brien & Vaughan-Lee (2002)

Next: What other quotient algorithms exist?
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Nilpotent quotients

Task: For an fp group G, compute its nilpotent quotients.

Recall:

G is nilpotent of class c if G > γ2(G) > . . . > γc+1(G) = 1.

Each γi(G)/γi+1(G) is finitely generated and central in G/γi+1(G).

If G/N is nilpotent of class d, then γd+1(G) ⩽ N .

Analogous to the ANUPQ program:
Nickel’94 has developed a nilpotent quotient algorithm: for an fp group G,
iteratively compute epimorphisms from G onto G/γi(G) (given via pcps).

Approach

Compute G/γ2(G) = G/G′; suppose this is d-generated.

Iteration: assuming an epimorphism G→ G/γi(G), compute epimorphism
G→ G/γi+1(G) by working with a nilpotent cover C of G/γi(G).

As in ANUPQ, find a consistent pcp of C and enforce relations of G.
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Solvable quotients

A group G is solvable if the derived series G = G(0) ⩾ G(1) ⩾ . . . terminates at 1,
where each G(i+1) = [G(i), G(i)].

Task: For an fp group G, compute its solvable (polycyclic) quotients.

Problems:

The sections G(i)/G(i+1) might not be finitely generated!

Consider submodules: choices are involved . . .

Significant work: Wamsley’77, Baumslag-Cannonito-Miller’81,
Leedham-Green’84, Plesken’87, Sims’90, Niemeyer’94+’18, Lo’98, and others . . .

B-C-M: described algorithm that tests if an fp-group G has polycyclic quotient
G/G(k), and if so, determines pcp. Sims considered implementation aspects:
“The algorithm is closely related to various attempts to develop constructive
versions of the Hilbert basis theorem.” Lo extended it (15000 lines of C-code).

Plesken, Wegner, Niemeyer: Compute finite solvable quotients involving a
given set of primes, by constructing iterated extensions.
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Quotient algorithms

Brief survey

abelian: Smith (1861) / Poincaré (1900) (?)

p-quotient: MacDonald, Newman, Havas, O’Brien, Nickel, Niemeyer, . . .

nilpotent: Nickel’94, Sims’94

solvable/polycyclic: Wamsley’77, Baumslag-Cannonito-Miller’81,
Leedham-Green’84, Plesken’87, Sims’90, Niemeyer’94, Lo’98

simple: Plesken-Fabiańska’09, Jambor’12-15, Bridson-Evans-Liebeck’19

Plesken, Fabiańska, Jambor developed so-called L2-algorithms, that attempt
finding quotients of an fp group that are isomorphic to PSL2(q) or to PGL2(q)
for some prime power q.

Bridson-Evans-Liebeck considered the question: for which collections of finite
simple groups is there an algorithm that determines the members of the collection
that are quotients of an arbitrary fp group?
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GAP

In GAP: Various functions are available to compute quotients of fp groups, e.g.:

gap> GQuotients;; MaximalAbelianQuotient;; EpimorphismPGroup;;

gap> NqEpimorphismNilpotentQuotient;; EpimorphismSolvableQuotient;;

gap> PqEpimorphism;; LargerQuotientBySubgroupAbelianization;;

GQuotients(F,G) attempts to compute all epimorphisms from an fp group F
onto G up to automorphisms of G; maybe use with SimpleGroupsIterator().

EpimorphismSolvableQuotient(F,n) attempts to compute an epimorphism
from an fp group F onto a solvable group of size at most n.

gap> F := FreeGroup( "a", "b", "c", "d" );;

gap> Fp := F/ParseRelators(F,"a^2, b^2, c^2, d^2, (a*b)^3,

(b*c)^4, (c*d)^3, c^a=c, d^a=d");

gap> hom := EpimorphismSolvableQuotient(Fp,300);;

gap> Q := Image(hom);;

gap> StructureDescription(Q);

"D12"

gap> F := FreeGroup(["a","b"]);;

gap> G := F/ParseRelators(F,"a^4,b^4");;

gap> Q := Pq(G : Prime := 2, ClassBound:=5);

<pc group of size 524288 with 19 generators>
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Conclusion Lecture 2

Things we have discussed in the second lecture:

polycyclic presentations, collection, consistency

abelian quotients

ANUPQ: p-quotients, p-cover, . . .

briefly: nilpotent and solvable quotients

Questions?
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Third lecture

Go to Overview
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Recap Lecture 2

Things we have discussed in the second lecture:

polycyclic groups and presentations

working in pc groups: collection, consistency

abelian quotients, abelian invariants

ANUPQ: p-quotients, p-cover, . . .

briefly: nilpotent, solvable, and simple quotients

Today: rewriting systems, a bit about automatic groups, and maybe a
non-solvable quotient algorithm
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Rewriting systems
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Rewriting systems
The relations of a consistent pcp

⟨g1, . . . , gn | ∀i : gsii = wi(gi+1 . . . , gn), ∀i < j : g
g±i
j = w±

i,j(gi+1, . . . , gn)⟩

describe rewriting rules

gsii 7→ wi(gi+1 . . . , gn) and gjg
±
i 7→ g±i w

±
i,j(gi+1, . . . , gn) for i < j.

Applying these rules iteratively determines the unique normal form of an element.

Example:

The pcp ⟨a, b, c, d | a2 = b, b2, c3 = d2, d3, ca = c2d, da = d2⟩ yields rules

a2 7→ b, b2 7→ 1, c3 7→ d2, d3 → 1, ca 7→ ac2d, da 7→ ad2,

and we can rewrite (collect)

cad2ca 7→ ac2dd2ca 7→ ac3a 7→ adda 7→ adad2 7→ a2d3d 7→ a2d 7→ bd.

Indeed, bd is the normal form of cad2ca.
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Rewriting systems
More generally, a rewriting system (Thue 1914) allows working with products from
a set of allowable symbols using a set of simplifying rules.
A good ref. for the next slides: Book and Otto, “String Rewriting Systems”, 1993.

A rewriting system S = (X,R) has an alphabet set X and rewriting rules

R ⊆ X∗ ×X∗;

for u, v ∈ X∗ write u→ v if u = aℓb and v = arb for some (ℓ, r) ∈ R.

The reflexive and transitive (and symmetric) closure is denoted
∗→ (and

∗↔);

note that “
∗↔ ” is not the same as “

∗→ and
∗← ”.

Concatenation of words is a well-defined operation on
∗↔-equivalence classes,

and defines the quotient monoid M =M(X,R). It is a group when the class

of every a ∈ X has an inverse A ∈ X∗ (so aA
∗→ 1, empty word).

For example: Consider X = {g,G} and R = {(gG, 1), (Gg, 1)}. Then
ggGgggG→ ggGgg → ggg = g3 (reduced).

In particular, M(X,R) ∼= C∞ is a group with class reps 1, gn, and Gn for n ∈ N.
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Rewriting systems: properties
Let S = (X,R) be a rewriting system and x, y, z ∈ X∗.

If there is no w ∈ X∗ with x→ w, then x is reduced.

If x
∗↔ y and y is reduced, then y is a normal form for x.

S is confluent: if x
∗→ y and x

∗→ z, then there is w ∈ X∗

with y
∗→ w and z

∗→ w.

S is locally confluent: if x→ y and x→ z, then there is
w ∈ X∗ with y

∗→ w and z
∗→ w.

S has the Church-Rosser property: if x
∗↔ y, then there is

w ∈ X∗ with x
∗→ w and y

∗→ w.

Confluent:
x

y z

w

∗ ∗

∗ ∗

Locally confluent:
x

y z

w
∗ ∗

Church-Rosser:

x y

w

∗

∗ ∗

Theorem. S has Church-Rosser property ⇐⇒ S is confluent.

Proof. “⇒”: ✓ For “⇐” use induction on n where x
n↔ y. For n = 0 let

x = y = w. Now let x
n+1↔ y. Let x1 with x↔ x1

n↔ y. By the ind. hypothesis,
there is w′ with x1

∗→ w′ and y
∗→ w′. If x→ x1, then x

∗→ w′ and y
∗→ w′. ✓

If w′ ∗← x1 → x, then confluence show there is w with x
∗→ w

∗← w′ ∗← y. ✓
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Rewriting systems: properties

Let S = (X,R) be a rewriting system.

Corollary. If S is confluent, then x ∈ X∗ has at most one normal form.

The relation → is noetherian if there is no infinite chain x0 → x1 → . . . in X∗;
it is complete (or convergent) if it is noetherian and confluent. This is desirable!

Theorem. If S is complete, then every x ∈ X∗ has a unique normal form.

In general, it is undecidable whether S is confluent; however, Thm 1.1.13:

Lemma. Let S be noetherian. Then: S confluent ⇐⇒ S locally confluent.

If S is notherian, then x
+→ y defines a special strict partial order “x > y”

(irreflexive, asymmetric, transitive) on X∗. The converse is also true (Thm 2.2.4):

Lemma. S is noetherian ⇐⇒ there is a strict partial order “>” on X∗ with

compatible with the rules: ℓ > r for each (ℓ, r) ∈ R,
well-founded: there is no infinite chain x0 > x1 > . . . in X∗,

admissible: for all g, h, x, y ∈ X∗, if g > h, then xgy > xhy.
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Undecidable problems

Unfortunately, but expected, many problems are undecidable.

Theorem. The question whether a finite rewriting system is noetherian is
undecidable in general.

See Thm 2.5.13 for a reduction to the Halteproblem.

It is also shown that:

Theorem. The question whether a finite rewriting system is (locally) confluent is
undecidable in general.

However, if we know that a rewriting system is noetherian, then the previous slide
shows that “confluence = local confluence”.

Moreover, with these assumptions, there is an algorithm to verify that!
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Checking for local confluence

Let S = (X,R) be noetherian, so “S confluent ⇐⇒ S locally confluent”.

The following is from Section 2.3. If S is not locally confluent, then in X∗ there
exist c← w → d, but c and d have no common reduction.

To check local confluence, it suffices to consider certain minimal w coming from
overlaps in the rules R: for each pair (ℓ1, r1), (ℓ2, r2) ∈ R one considers overlaps
of ℓ1 and ℓ2 and then applies the first or second rule:

w = xℓ1 = ℓ2y with |x| < |ℓ2|, yielding the critical pair (xr1, r2y);

w = ℓ1 = xℓ2y, yielding the critical pair (r1, xr2y).

Theorem. S is confluent if and only if the elements of each critical pair can be
rewritten (via so-called left-most reductions) to the same reduced word.

Thus, one can decide whether a finite noetherian rewriting system is confluent.
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Knuth-Bendix

Now also assume “well-ordering”: x > y or x = y or y > x for all x, y ∈ X∗.

If a critical pair (c, d) leads to reduced ĉ ̸= d̂, then S = (X,R) is not confluent.

Idea: if ĉ > d̂, add rule ĉ→ d̂ to R to resolve this conflict; otherwise add d̂→ ĉ.
However, this new rule might lead to new critical pairs.

Knuth-Bendix Completion Procedure (KB)

Iterate this process! This produces a sequence R0 = R, R1, R2, . . . of rules. If
the critical pairs for Ri do not produce new rules, then return S′ = (X,Ri).

Comments:

If KB terminates, it returns a confluent S′ = (X,R′) with
∗S↔ =

∗S′↔ .

If KB doesn’t terminate, then it enumerates an infinite confluent rewriting
system. Partial results (the systems Ri) can still be useful in practice!

KB terminates if and only if there is a finite confluent S′ = (X,R′) with
∗S↔ =

∗S′↔ and ℓ > r for each (ℓ, r) ∈ R′.
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KB: example

Let X = {a, b, c} and R = {(a2, 1), (b2, 1), (ab, c)}. Let “<” be the shortlex
ordering induced by a < b < c; this is compatible with R0 = R.
Critical pairs: consider b← aab→ ac and cb← abb→ a, so define

R1 = R0 ∪ {(ac, b), (cb, a)}.
No new critical pairs since all additional overlaps are resolved:

c← aac→ ab→ c

1← bb← acb→ aa→ 1

c← cbb→ ab→ c

Thus, KB produces the confluent rewriting system (X,R1).

The ordering can influence whether or not KB terminates (see next slides).

Common orderings are shortlex (wrt some total ordering on X) or the wreath
product ordering (see problem sheet).
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KB: GAP

Holt’s software KBMAG (Knuth-Bendix on Monoids and Automatic Groups)
can be used in GAP.

Here is our first example in GAP:

gap> LoadPackage("kbmag");

true

gap> FM := FreeMonoid(3);;

gap> a := FM.1;; b:=FM.2;; c:=FM.3;; id := Identity(FM);;

gap> M := FM/[ [a^2,id], [b^2,id], [a*b,c] ];;

gap> R := KBMAGRewritingSystem(M);

rec(isRWS:=true, silent:=true, generatorOrder:=[_m1,_m2,_m3], inverses:=[,,],

ordering:="shortlex", equations:=[[_m1^2,IdWord],[_m2^2,IdWord],[_m1*_m2,_m3]])

# m1, m2, m3 correspond to a, b, c

gap> MakeConfluent(R);;

gap> R;

rec(isRWS:=true, isConfluent:=true, silent:=true, inverses := [,,],

generatorOrder:=[_m1,_m2,_m3], ordering:="shortlex",

equations := [[_m1^2,IdWord],[_m2^2,IdWord],[_m1*_m2,_m3],

[_m1*_m3,_m2],[_m3*_m2,_m1]]) # these are our new rules ac->b, cb->a

gap> ReducedWord(R,a*b*a*b^2);

m3*m1 # this is c*a
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KB: GAP

The second example is the free abelian group of rank 2, given as (X,R), where
X = {a, b, ā, b̄}. With a < ā < b < b̄, the rules are (ba, ab) and (aā, 1), (āa, 1),
(bb̄, 1), (b̄b, 1), (bā, āb), (b̄a, ab̄), (b̄ā, āb̄), and we quickly get:

gap> F := FreeGroup(2);; a:=F.1;; b:=F.2;; G := F/[b*a/(a*b)];;

gap> R := KBMAGRewritingSystem(G);;

gap> MakeConfluent(R);;

gap> R;

rec((...), generatorOrder:=[_g1,_g2,_g3,_g4], isConfluent:=true,

equations:=[[_g1*_g2,IdWord],[_g2*_g1,IdWord],[_g3*_g4,IdWord],[_g4*_g3,IdWord],

[_g3*_g1,_g1*_g3],[_g4*_g1,_g1*_g4],[_g3*_g2,_g2*_g3],[_g4*_g2,_g2*_g4]])

For b̄ < a < ā < b and adjusted R, we get a← b̄ba→ b̄ab and ā← b̄bā→ b̄āb.

gap> F := FreeGroup(2);; a:=F.1;; b:=F.2;; G := F/[b*a/(a*b)];;

gap> R := KBMAGRewritingSystem(G);;

gap> ReorderAlphabetOfKBMAGRewritingSystem(R, (1,2,3,4));;

gap> R;

rec((...), generatorOrder:=[_g4,_g1,_g2,_g3],equations := [[_g3*_g1,_g1*_g3]])

gap> MakeConfluent(R);; # does not terminate

KB enumerates R0,R1, . . . where Ri = R∪ {(b̄ajb, aj), (b̄ājb, āj) : j = 1, . . . , i}.
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KB application: verifying polycyclic

It is undecidable whether an fp group G = ⟨X | R⟩ is pc. However, if G is pc,
then KB can assist to verify it. I’ll skip the details here (see Sims §11.8 for more
information); below is a sketch.

If G is polycyclic with derived length k, then with the pc quotient algorithm, one
can determine a consistent pcps for Qi = G/G(i) for i = 1, 2, . . . until
Qk = Qk+1; thus, k can be determined.

Let X = {x1, . . . , xr}. Use the epimorphism G→ Qk to introduce additional
generators xr+1, . . . , xt that map to a pcgs of Qk. Let R′ be the relations in R
together with relations defining xr+1, . . . , xt in terms of X.

Note: If G is pc, then Qk = G and (x1, . . . , xt) is a pcgs of G.

Now start KB on G with input x1, . . . , xt and R′ and wreath-product ordering
defined by x−1

1 > x1 > x−1
2 > x2 > . . . > x−1

t > xt.

If run long enough, KB will terminate and output a pcp for G.
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KB application: verifying isomorphism

Let G = ⟨x1, . . . , xn | R⟩ and H = ⟨y1, . . . , ym | S⟩ be fp groups. It is
undecidable whether G ∼= H. However, if G ∼= H, then KB can assist to prove it.
I’ll skip the details here (see Holt-Rees (1992)); below is a sketch.

Let θ be the map that assigns each xi to a word wi in {y1, . . . , ym}.

By von Dyck, θ extends to a homomorphism G→ H if and only if each relator
r = xe1i1 . . . x

eℓ
iℓ

in R satisfies

θ(r) = we1i1 . . . w
eℓ
iℓ

= 1H .

Idea: Running KB on H might be able to establish that each θ(r) = 1 in H;
for this it might not be necessary that KB terminates.

If θ is a homomorphism, use KB to generate all reduced words in G up to a
certain length, map them to H, and check if their reductions cover all the
generators of H; then θ is an epimorphism.
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Dehn’s rewriting system
Let G = ⟨X | R⟩ be an fp group with R cyclically reduced.
Denote the set of all r ∈ R and their cyclic shifts and inverses by R̂.
If r ∈ R̂ is factorised as r = ab, then a = b−1 in G, which yields a rule a 7→ b−1.
This is the idea for the Dehn rewriting system:

Dehn RWS Write each r ∈ R̂ as r = ab with |a| > |b| and define rules a→ b−1.
The Dehn rewriting system for ⟨X | R⟩ is S = (X,D) where D is the set of these
rules together with xx−1 → 1 for x ∈ X ∪X−1.

Definition: The group G has a Dehn presentation if the Dehn RWS solves the
word problem (Dehn’s algorithm), that is, if every w ∈ FX (reduced in FX) with
w =G 1 has a subword that is more than half of some defining relator.

Greendlinger’s lemma (Lyndon-Schupp (1977), p. 247)
If G = ⟨X | R⟩ is an fp group with R cyclically reduced, then Dehn’s algorithm
solves the word problem if G is C ′(1/6), or C ′(1/4) and T (4), or . . .

Small cancellation: A subword w is a piece if there are u ̸= v with wu,wv ∈ R̂,
and ⟨X | R⟩ is C ′(λ) if whenever w is a piece in r ∈ R̂, then |w| < λ|r|.
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Dehn’s algorithm: example

Let G = ⟨X | R⟩ where X = {a, b, c, d} and

R = {a7, b7, d7, ab−1abc−1d−1cd}.

Pieces are a±1, b±1, c±1, d±1, so G is C ′(1/6).

Consider w = a4b6abc−1d−1cd−6a4w = a4b6abc−1d−1cd−6a4 and apply Dehn’s
algorithm.

We have abc−1d−1cdab−1 ∈ R̂, so there is a rule abc−1d−1c→ ba−1d−1:

w = a4b6abc−1d−1cd−6a4 → a4b6ba−1d−1d−6a4 = a4b7a−1d−7a4.

Since a7, b7, d7 =G 1, we see that w =G 1; however, Dehn’s algorithm continues
as follows: b7, d−7, a7 ∈ R̂ yield rules b4 → b−3, d−4 → d3, a4 → a−3, and so

w
∗→ a4b7a−1d−7a4 = a4b4b3a−1d−4d−3a4 → a7 = a4a3 → 1.
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Dehn’s algorithm

Groups with C ′(1/6) are hyperbolic, as defined by Gromov 1987: geodesic
triangles in the Cayley graph are thin. “Most fp groups are hyperbolic”.

Hyperbolic groups are exactly those that have a finite Dehn presentation.
Deciding whether an fp group is hyperbolic is undecidable in general, but if the
group is hyperbolic, then one can in principle verify it.

(See Epstein-Holt (2001) and Alonso-Brady-Cooper-et al. (1991) for details and references.)

Computational tools:

Pfeiffer’s GAP package ’walrus’ provides an implementation that attempts to
prove that a given fp group is hyperbolic, and if so, to calculate a rewriting
system for a Dehn algorithm.

Hyperbolic groups are automatic groups (see later), and KBMAG can
compute with these and attempt to verify hyperbolicity. According to Holt,
it’s slower than the above method, but it succeeds on more examples.

Heiko Dietrich (heiko.dietrich@monash.edu) Computing with finitely presented groups (toc) IMS NUS, 2024



Lecture 3 rewriting systems automatic groups non-solvable

Dehn’s algorithm: GAP

Here is our example in KBMAG.

Currently, KBMAG cannot apply Dehn’s algorithm directly, but it can reduce
words to normal forms in automatic groups, and C ′(1/6) groups are automatic:

gap> LoadPackage("kbmag");;

gap> F:=FreeGroup(["a","b","c","d"]);

<free group on the generators [ a, b, c, d ]>

gap> G:=F/ParseRelators(F,"a^7,b^7,d^7, a*b^-1*a*b*c^-1*d^-1*c*d ");;

gap> R:=KBMAGRewritingSystem(G);;

gap> AutomaticStructure(R); # find automatic structure, see next slide

true

gap> AssignGeneratorVariables(F);

#I Assigned the global variables [ a, b, c, d ]

gap> w:=a^4*b^6*a*b*c^-1*d^-1*c*d^-6*a^4;;

gap> ReducedWord(R,w);

<identity ...>
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Dehn’s algorithm: Magma

We haven’t really talked about Magma (magma.maths.usyd.edu.au/magma),
but this system also provides functions to deal with hyperbolic/automatic groups.

> F<a,b,c,d> := FreeGroup(4);

> rels := [a^7,b^7,d^7, a*b^-1*a*b*c^-1*d^-1*c*d];

> ishyp, isdehn, Dehn := IsHyperbolic(F,[],rels);

> ishyp, isdehn;

true true /* group is hyperbolic, Dehn algorithm has been computed */

> w := a^4*b^6*a*b*c^-1*d^-1*c*d^-6*a^4;

> IsIdentity(w,Dehn);

true Id(F)

Based on Holt, Linton, Neunhöffer, Parker, Pfeiffer, Roney-Dougal (2021).

Next: A quick look at automatic groups.
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finite state automaton

A finite state automaton (fsa) is M = (S,A, τ, F, s0) where

A alphabet, S set of states with F ⊆ S accept states and s0 ∈ S initial state,

τ : S ×A→ S is a transition function.

A word a0 . . . an ∈ A∗ is accepted by M if τ(· · · τ(τ(s0, a0), a1), . . . , an) ∈ F .
Accepted language: L(M) = {w ∈ A∗ : w accepted by M} (regular languages).

Example. M = (S,A, τ, F, s0) where

S = {f, q0, . . . , q3} and A = {r, r−1,m,m−1},
τ as in diagram, and “→ f ” (fail) if not listed,

F = {q0, . . . , q3} and s0 = q0.

L(M) = {marb : a ∈ {0, 1}, b ∈ Z} maps onto the
normal words in D∞ = Pc⟨r,m | r2, rm = r−1⟩.

q0start

q1

q2

q3

f

m
r
−1 rr−1 r

rr−1

Another example: A complete coset table with s0 = 1 and F = {i}; the
accepted language is the set of words representing elements in coset i.
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fsa: applications in KB
In KB, a fsa can detect if a word is reduced in a rewriting system S = (X,R).
(See Handbook §13.1.3 or Sims §3.5 for details and references.)

Suppose that if (ℓ, r) ∈ R, then r and proper substrings of ℓ are reduced.
Now let MS be the following (partial) fsa with

states P are all prefixes of ℓ for all (ℓ, r) ∈ R;
alphabet is X; initial state is ε;

accept states are all proper prefixes of ℓ for all (ℓ, r) ∈ R;
non-accept states are ℓ for all (ℓ, r) ∈ R; they are dead;

if s ∈ P is not dead, the transition τ(s, x) is the longest suffix of sx in P .

If w = w1ℓw2 ∈ X∗ and ℓ is the first occurrence of a left-hand side in R, then
after reading w1ℓ the fsa MS is in dead state ℓ ∈ P .

Thus: The accepted language L(MS) is the set of reduced words.

Also: If S is confluent and defines a group G, then MS is a word-acceptor for G:
for each g ∈ G, the fsa MS accepts at least one (reduced) word representing g.
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automatic groups

Informally, an automatic group is a finitely generated group for which finite state
automata accept a language representing group elements (normal forms) and
decide whether two such normal forms represent group elements that differ by
right multiplication by a single generator. This is called an automatic structure.

The theory of automatic groups evolved in the mid-1980’s due to work of Cannon,
Thurston, Epstein, Holt, Paterson, Levy (Word processing in groups, 1992).
With an automatic structure one can:

produce unique “normal forms” (quadratic algorithm),

enumerate group elements (the first n can be listed in time O(n log n)).

Automatic groups include: hyperbolic, virtually abelian, Coxeter, and Braid
groups; direct and free products of automatic groups, subgroups and supergroups
of finite index in automatic groups, . . .

However: automatic nilpotent groups are virtually abelian.
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automatic groups: definition

Skipping some details, the formal definition is . . .

A group G with (monoid) generators X is automatic if there are

a fsa W (word acceptor), that is, L(W ) maps onto G, and

a 2-variable fsa Mx (multiplier automaton) for each x ∈ X ∪ {ε} such that
for all u, v ∈ L(W ) we have

(u, v)+ ∈ L(Mx) ⇐⇒ u =G vx,

that is, Mx recognises multiplication on the right by x in L(W ).

Algorithms often require the following: The group is shortlex automatic if W
accepts precisely the minimal words under some shortlex ordering “⩽” of X∗.

You’ll see examples on the problem sheet; here we focus on example computations.

Note: Being automatic is a property of G, not of X; it is unknown whether every
automatic group is shortlex automatic for some ordering.

How to get an automatic structure? Not here . . . (see Epstein et al., 35 pages).
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automatic groups: examples

Let’s look at the Heineken group

G = ⟨a, b, c | [a, [a, b]] = c, [b, [b, c]] = a, [c, [c, a]] = b⟩.

It was proposed by Heineken as a possible example of a finite group with a
balanced symmetrical presentation. This was motivated by the fact that
⟨x, y, z | [x, y] = z, [y, z] = x, [z, x] = y⟩ ∼= 1, and G has a quotient of size 60 ·224.

gap> LoadPackage("kbmag");

gap> F := FreeGroup( "a", "b", "c" );;

gap> G := F/ParseRelators(F,"[a,[a,b]]*c^-1, [b,[b,c]]*a^-1, [c,[c,a]]*b^-1");;

gap> R := KBMAGRewritingSystem(G);

gap> SetInfoLevel( InfoRWS, 1 );

gap> MakeConfluent(R);

#I Calling external Knuth-Bendix program.

#Maximum number of equations exceeded.

#Halting with 32767 equations.

#I External Knuth-Bendix program complete.

#I System computed is NOT confluent.

false
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automatic groups: examples

Let’s look at the group

G = ⟨a, b, c | [a, [a, b]] = c, [b, [b, c]] = a, [c, [c, a]] = b⟩.

Now let’s try to compute an automatic structure.

gap> ResetRWS(R); # reset rws because we ran KB already

gap> AutomaticStructure(R);

#I Calling external automatic groups program.

#Running Knuth-Bendix Program: (...)

#Maximum number of states exceeded.

#Halting with 165 equations.

(...)

#Knuth-Bendix program failed or was inconclusive. Giving up.

#I Computation was not successful.

false
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automatic groups: examples

We look at G = ⟨a, b, c | [a, [a, b]] = c, [b, [b, c]] = a, [c, [c, a]] = b⟩.
gap> AutomaticStructure(R,true); # set "large" to true

#I Calling external automatic groups program.

(...)

#Word-acceptor with 1167 states computed.

#General multiplier with 2973 states computed.

#Validity test on general multiplier succeeded.

#Running program to verify axioms on the automatic structure

#General length-2 multiplier with 3251 states computed.

#Checking inverse and short relations.

(...)

#Axiom checking succeeded.

#I Computation was successful - automatic structure computed.

#Minimal reducible word acceptor with 1428 states computed.

#Minimal Knuth-Bendix equation fsa with 2743 states computed.

#Correct diff1 fsa with 407 states computed.

#Correct diff2 fsa with 407 states computed.

true

gap> Size(R);

infinity # infinitely many normal forms, so G is infinite

gap> List(GeneratorsOfGroup(F),x -> Order(R,x));

[ infinity, infinity, infinity ]
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automatic groups: examples

We still look at G = ⟨a, b, c | [a, [a, b]] = c, [b, [b, c]] = a, [c, [c, a]] = b⟩.

gap> AssignGeneratorVariables(F); # need to work with gens of free group

gap> w := b*a^2*b^-1*a*b^5*c^-1*a^-2;

gap> wr := ReducedWord(R,w);

a*b*(a*c)^2*b^4*c^-1*a^-2

gap> ReducedWord(R,w*wr^-1);

<identity ...>

gap> EnumerateReducedWords(R, 1, 2);

[ a, a^2, a*b, a*b^-1, a*c, a*c^-1, a^-1, a^-2, a^-1*b, a^-1*b^-1, a^-1*c,

a^-1*c^-1, b, b*a, b*a^-1, b^2, b*c, b*c^-1, b^-1, b^-1*a, b^-1*a^-1, b^-2,

b^-1*c, b^-1*c^-1, c, c*a, c*a^-1, c*b, c*b^-1, c^2, c^-1, c^-1*a, c^-1*a^-1,

c^-1*b, c^-1*b^-1, c^-2 ]

gap> Size( EnumerateReducedWords(R, 1, 7));

112914
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automatic groups: cosets

Let G be an fp group with subgroup H ⩽ G given by generators. KBMAG can
also perform its operations with the cosets of H (rather than the elements of G):
the words in reduced form then correspond to minimal representatives under the
ordering of the system of the right cosets of H in G.

If run successfully: the index [G : H], a confluent rewriting system, and a
presentation for H can be computed.

The following example (also from the KBMAG manual) considers the Fibonacci
group G = F (8, 2) and a subgroup U ⩽ G defined as follows:

G = ⟨a, b, c, d, e, f, g, h | abc−1, bcd−1, cde−1, def−1, efg−1, fgh−1, gh−1a, hab−1⟩

with subgroup
U = ⟨a, e⟩ ⩽ G.
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automatic groups: cosets
From the last slide: Consider the subgroup U = ⟨a, e⟩ ⩽ G of

G = ⟨a, b, c, d, e, f, g, h | abc−1, bcd−1, cde−1, def−1, efg−1, fgh−1, gh−1a, hab−1⟩.

gap> F := FreeGroup(["a","b","c","d","e","f","g","h"]);;

gap> G := F/ParseRelators(F,"a*b=c,b*c=d,c*d=e,d*e=f,e*f=g,f*g=h,g*h=a,h*a=b");;

gap> R := KBMAGRewritingSystem(G);;

gap> AssignGeneratorVariables(F);;

gap> U := SubgroupOfKBMAGRewritingSystem(R, [a,e]);;

gap> AutomaticStructureOnCosetsWithSubgroupPresentation(R,U,true);; # true

gap> P := PresentationOfSubgroupOfKBMAGRewritingSystem(R,U); # U as fp grp

<fp group of size infinity on the generators [ f1, f3 ]>

gap> RelatorsOfFpGroup(P);

[ ]

gap> Index(R,U);

infinity # so U is a free group of rank 2, with [G:U] = infinity

gap> w := a^-2*f^-1*h^2*d^2*e^-1*a^-2;

gap> IsReducedCosetRepresentative(R,U,w);

false

gap> wred := ReducedCosetRepresentative(R,U,w);

g^-1

gap> List([a,b,c,d,e,f,g,h],x -> ReducedCosetRepresentative(R,U,x));

[ <identity ...>, b, b, d, <identity ...>, b^-1, b^-1, h ]
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Non-solvable quotients
end
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Non-solvable quotients
This part is joint work with Alexander Hulpke (2022).

Given set-up:

Epimorphism φ : G→ H from an fp group G onto finite group H.

G and H are e-generated; images of a free group F of rank e.

H is not assumed to be solvable.

Aim:

Lift φ to a larger quotient φ̃ : G→ H̃.

We will assume that kerπ is ZpH-module.4

Idea: Use suitable cover Ĥp,e, then evaluate relators of G.

F Ĥp,e

G H̃

H

φ̃

φ
π

results

example

end
4In the solvable radical paradigm, non-solvable bits show up “on top”:

A ⩾ PKer(A) ⩾ Soc∗(A) ⩾ O∞(A) ⩾ 1; see Seress’s book, Section 6.1 + references therein.
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The cover Ĥp,e

Theorem (based on Gaschütz: p-cover of rank e)

For finite, e-generated H = F/M let Ĥp,e = F/Mp where Mp = [M,M ]M [p].

Ĥp,e is a finite e-gen. extension of H by ZpH-moduleMH,p,e =M/Mp.

Ĥp,e maps onto every finite e-gen. extension E of H by a ZpH-module.

The isomorphism types of Ĥp,e andMH,p,e depend only on H, e, p.

Our proof depends on results of
Gaschütz’54, who also investigated the
p-representation module M/Mp . . .

Ĥp,e

∀E

H

∃

OK in theory, but in practice...?
results
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Construction via homomorphisms
Problem: For e-gen. H = F/M , get Ĥp,e = F/Mp andMH,p,e =M/Mp.

We found an explicit construction as images under a homomorphism.

“Fox construction”

Let |H| = m and let ψ : F → H with kerψ =M , where F is free of rank e. Then

Ĥp,e
∼= Ψ(F ) and MH,e,p

∼= Ψ(M)

where Ψ = ψ1 × . . .× ψe : F → (H ⋉ Zmp )e is a specific homomorphism.

Don’t read now: let F be free on {x1, . . . , xe}; let Zm
p be the regular ZpH-module.

Then each

ψi : F → H ⋉ Zm
p , ψi(xj) =

{
(ψ(xj), (0, 0, . . . , 0)) if i ̸= j

(ψ(xi), (1, 0, . . . , 0)) if i = j.

Let ∂i : F → ZF be defined by xi 7→ 1 and 1F → 0 and ∂i(uv) = (∂iu)v + ∂i(v); these
maps are called Fox derivatives, see Fox (1953). Our proof uses that

∂ = (ψ ◦ ∂1)× . . .× (ψ ◦ ∂e) : F → (ZH)e.

maps v ∈ F to 0 iff v ∈ [M,M ], see Johnson (1997).
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Make it practical

Problem: Ĥp,e/M∼= H whereM =MH,p,e, butM has size p1+(e−1)|H|.

V -homogeneous cover

For a simple ZpH-module V , letM/V (M) be the largest V -homogeneous
quotient (direct sum of copies of V ). The group

ĤV,e = Ĥp,e/V (M)

maps onto every e-generated extension of H by a V -homogeneous ZpH-module.

Nice:

If H is finite p-group, then Ĥ1,rank(H) = H∗ is the p-cover.

Can get ĤV,e via a homomorphism ΨV , avoiding the large moduleM.

Don’t read now: In our “Fox construction”, replace each ψi : F → H ⋉ Zm
p by

ψ′
i : F → H ⋉ V r where V r ∼= Zm

p /V (Zm
p )

is a cyclic ZpH-module; now use ΨV = ψ′
1 × . . .× ψ′

e, F → (H ⋉ V r)e instead of Ψ.
One can determine r and a cyclic generator z ∈ V r directly, and use these to define ψ′

i.
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Make it practical

We don’t have ĤV,e = ΨV (F ), but almost . . .We also need the following:

Second Cohomology

Let γ1, . . . , γk be 2-cocycles that induce a basis of H2(H,V ); define extensions

E(γi) = {(h, v) : h ∈ H, v ∈ V } with (h, v)(g, w) = (hg, vgwγi(h, g)),

and (surjective) homomorphisms ϱi : F → E(γi) via xj 7→ (ψ(xj), 1).

Now define the homomorphism ϱ = ΨV × ϱ1 × . . . ϱk, so

ϱϱϱ :F → ΨV (F )× E(γ1)× . . .× E(γk)

Main result

The largest quotient of Ĥp,e that maps to H with V -homogeneous kernel can be
constructed as

ϱ(F ) ∼= ĤV,e.
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Results

We need to compute with H, but H is not (necessarily) solvable.

A reasonable assumption is that we have confluent rewriting system for H.

New(ish): Hybrid representation5 of finite polycyclic-by-finite extensions V.H:
store rewriting system for H, pcp for V , tails in V , and normal form routine.

New(ish): Algorithm to compute H2(H,V ) for such hybrid groups H, using
ideas of Holt (1985), Schmidt (2008-10); analogous to the approach for pc groups.

New: A new quotient algorithm that lifts G→ H (with G and H as before) to
larger quotients of G.

5For related work, see also:

Baumslag-Cannonito-Robinson-Segal (1991): polycyclic-by-finite (theoretical algorithms)

Sinanan-Holt (2017): polycyclic-by-finite represented via perm rep and pcp (practical);
“Polycyclic-by-finite groups form the largest known section-closed class of fp groups.”
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GAP example

Let’s reconsider the Heineken Group

G = ⟨x, y, z | [x, [x, y]] = z, [y, [y, z]] = x, [z, [z, x]] = y⟩

with φ : G→ H = Alt5 defined by φ(x) = (1, 2, 4, 5, 3) and φ(y) = (1, 2, 3, 4, 5).

The function LiftQuotientHybrid(φ, 2) returns τ : G→ K such that kerφ/ ker τ is
the largest 2-semisimple module quotient of kerφ.

gap> F := FreeGroup("x","y","z");;

gap> G := F/ParseRelators(F,"[x,[x,y]]=z,[y,[y,z]]=x,[z,[z,x]]=y");;

gap> G := SimplifiedFpGroup(G);;

gap> H := AlternatingGroup(5);;

gap> phi := GroupHomomorphismByImages(G,H,[G.1,G.2],[(1,2,4,5,3),(1,2,3,4,5)]);;

gap> tau := LiftQuotientHybrid(phi,2);;

gap> K := Image(tau);;

gap> # now compute kernel of projection K -> H

gap> psi := GroupHomomorphismByImages(K,H,[K.1,K.2],[(1,2,4,5,3),(1,2,3,4,5)]);;

gap> StructureDescription(Kernel(psi));

"C2 x C2 x C2 x C2 x C2" # so K is an extension of H=Alt5 by 2^5
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GAP example

Recall
G = ⟨x, y, z | [x, [x, y]] = z, [y, [y, z]] = x, [z, [z, x]] = y⟩ ,

and we started with an epimorphism φ : G→ Alt5.

An iteration yields the following quotients of G that extend φ:

extension seconds

25.Alt5 < 1

2.25.Alt5 2

24.2.25.Alt5 2

24.24.2.25.Alt5 6

22.24.24.2.25.Alt5 18

24.22.24.24.2.25.Alt5 51

24.24.22.24.24.2.25.Alt5 118

This is the quotient of G of size 60 · 224 mentioned before.
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The end!

This completes our classes on computing with fp groups!

Looking back . . .

group presentations (fp, polycyclic, Dehn problems)

Tietze transformations

von Dyck, coset enumeration

low index subgroups, Reidemeister-Schreier

quotient algorithms (abelian, p-group, (solvable, non-solvable))

rewriting systems, Knuth-Bendix, Dehn algorithm

fsa in KB; automatic groups

Thank you for your attention!
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. . . and special thanks to Derek Holt for all his contributions!
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