Question 1.1

Use Tietze transformations to show that $G=\langle g, h \mid g h g h g\rangle \cong\langle a \mid \emptyset\rangle \cong(\mathbb{Z},+)$.

Question 1.2

Use Tietze transformations to show that $G=\left\langle x, y, z \mid x=y z y^{-1}, y=z x z^{-1}, z=x y x^{-1}\right\rangle$ is isomorphic to $H=\langle x, y \mid x y x=y x y\rangle$, and to $K=\left\langle a, b \mid a^{3}=b^{2}\right\rangle$.

Question 1.3

Use von Dyck's Theorem to show that the Wicks group $W=\left\langle a, b \mid a^{3} b^{4} a^{5} b^{7}, a^{2} b^{3} a^{7} b^{8}\right\rangle$ has C_{11} as a quotient.

Question 1.4

Do the following please; no coset enumeration is required.
a) Show that the group $A=\left\langle a, b \mid b^{2}=a^{-1} b a, a^{2}=b^{-1} a b\right\rangle$ has size 1 .
b) Show that $B=\left\langle a, b \mid a^{2}, b^{2} a=a b^{2}, b^{3}\right\rangle$ is cyclic of order 6 .
c) Show that the group $C=\left\langle a, b, c \mid a^{2}, b^{2}, c^{2}, b a=a c, c a=a b, c b=a c\right\rangle$ is isomorphic to Sym_{3}.

Question 1.5

Let $G=\langle X \mid \mathcal{R}\rangle$ be a finitely presented group with $X=\left\{x_{1}, \ldots, x_{m}\right\}$. Let $U \leqslant G$ be a group of finite index n, and let $\left\{t_{1}, \ldots, t_{n}\right\} \subseteq G$ with $t_{1}=1$ be a right transversal of U in G. Assume we have the coset table corresponding to $[G: U]=n$, and the corresponding permutation action of G on T, such that $U t_{i} g=U t_{i^{g}}$ for $t_{i} \in T$ and $g \in G$. For $g \in G$ let $\bar{g} \in T$ be the unique element such that $U g=U \bar{g}$. Recall that the Schreier generators are defined as

$$
S=\left\{s_{i, j}=t_{i} x_{j}\left(\overline{t_{i} x_{j}}\right)^{-1}: t_{i} \in T, x_{j} \in X, s_{i, j} \neq 1\right\}
$$

a) Show that $S \subseteq U$.
b) Show that if $t \in T$ and $x \in X$, then $t x^{-1}\left(\overline{t x^{-1}}\right)^{-1}$ is an inverse of a Schreier generator in S.
c) Show that $U=\langle S\rangle$: take a general word in the generators X and their inverses, and then try to rewrite it as a product of Schreier generators, their inverses, and elements in T; look at the lectures for a hint.
d) Let $r \in \mathcal{R}$ be a defining relator and $t_{\ell} \in T$. Explain why $t_{\ell} r t_{\ell}^{-1}$ (as an element in F_{X}) can be written as that in the Schreier generators that we obtain when parsing the relator r in the amended coset table starting in the row with label t_{ℓ}.

Question 1.6

Let F be a free group of rank r and let $U \leqslant F$ be a subgroup of index n. Deduce from our discussion of the Reidemeister-Schreier method that U is a free group of rank $1+n(r-1)$; this is the Nielsen-Schreier Theorem.

Question 1.7

Apply Todd-Coxeter coset enumeration to determine the size of $G=\left\langle a, b \mid a b a b^{-1}, b a b a^{-1}\right\rangle$.
Tip: Maybe start with the following definitions: $1^{b}=2,2^{a}=3,3^{b}=4,4^{b}=5,2^{b}=6,3^{a}=7,6^{a}=8$.
Can you also determine the isomorphism type of the group?

Question 1.8

Let $n \geqslant 1$ be an integer. Show that $\left\langle x, y \mid x^{n} y^{n+1}, x^{n+1} y^{n+2}\right\rangle$ is the trivial group, and discuss why Todd-Coxeter coset enumeration requires the construction of at least n cosets.

Question 1.9

Consider the group $G=\left\langle a, b \mid a^{2}, b^{3},(a b)^{5}\right\rangle$ with subgroup $U=\left\langle a, a^{b}\right\rangle$. Coset enumeration yields the following coset table, where boldface entries specify the definitions:

nr	a	a^{-1}	b	b^{-1}
1	1	1	$\underline{\mathbf{2}}$	$\underline{\mathbf{3}}$
2	$\underline{\mathbf{4}}$	4	3	1
3	3	3	1	2
4	2	2	$\underline{\mathbf{5}}$	$\underline{\mathbf{6}}$
5	6	6	6	4
6	5	5	4	5

Find a finite presentation for U, by doing the following:
a) Write down transversal elements for each coset.
b) Write down Schreier generators and the amended coset table.
c) Write down Reidemeister relators.
d) Write down the resulting presentation for U; can you simplify it?

Question 1.10

Similar to the previous questions, consider $G=\left\langle a, b \mid a^{2}, b^{3}\right\rangle$ with subgroup $U=\left\langle b a b^{-1} a^{-1}, b^{-1} a b a^{-1}\right\rangle$. Coset enumeration yields the following coset table, where boldface entries specify the definitions:

nr	a	a^{-1}	b	b^{-1}
1	$\underline{\mathbf{2}}$	2	$\underline{\mathbf{3}}$	$\underline{\mathbf{4}}$
2	1	1	$\underline{\mathbf{5}}$	$\underline{\mathbf{6}}$
3	5	5	4	1
4	6	6	1	3
5	3	3	6	2
6	4	4	2	5

Deduce that U is normal, and determine the isomorphism type of G / U; find a presentation for U.

Question 1.11

Do the following to show that the free group of rank 2 has a subgroup that is not finitely generated.
a) Let $A=\bigoplus_{z \in \mathbb{Z}}\left(\mathbb{Z}_{2},+\right)$ be the group of all binary sequences $\left(a_{z}\right)_{z \in \mathbb{Z}}$ with only finitely many $a_{i} \neq 0$, with component-wise addition. Let σ be the automorphism of A that maps $a=\left(a_{z}\right)_{z \in \mathbb{Z}} \in A$ to $a^{\sigma}=\left(a_{z-1}\right)_{z \in \mathbb{Z}}$, that is, σ is a "right-shift". Let $K=\langle\sigma\rangle \ltimes A$ be semidirect product where σ acts naturally on A. Do the following:

1. Show that K can be generated by two elements.
2. Show that the derived subgroup $K^{\prime}=[K, K]$ consists exactly of all sequence b that have an even number of 1 s .
3. Deduce from 2) that K^{\prime} is not finitely generated.
b) Let F be a free group of rank 2 . Deduce from a) that F^{\prime} is not finitely generated.

Question 1.12

Let $G=\left\langle a, b, c \mid a b c b a, b^{a} c b\right\rangle$. Construct an epimorphism $G \rightarrow A$ where A is the largest abelian quotient of G.

Question 1.13

Please discuss the following.
a) Let \mathcal{P} be a property of groups that is preserved by direct products and subgroups (e.g. "abelian" or "nilpotent" ...). Let G be a group and let \mathcal{N} be a finite collection of normal subgroups of G such that G / U has property \mathcal{P} for every $U \in \mathcal{N}$. Let $I=\bigcap_{U \in \mathcal{N}} U$, and show that G / I has property \mathcal{P}.
b) Let G be an fp group, and assume you can use the p-group quotient algorithm to construct finite p-group quotients of G. Discuss how a construction as in a) can be used to construct finite nilpotent quotients of G.

Question 1.14

Let $G=$ Sym $_{4}$.
a) Determine a polycyclic series and a polycyclic generating set for G.
b) Construct the polycyclic presentation for G which corresponds to the polycyclic generating set you have determined in a); is your presentation consistent?

Question 1.15

Consider the following polycyclic presentations: apply consistency checks to show that they are not consistent; then determine a consistent presentation for the groups.
a) $G=\operatorname{Pc}\left\langle a, b, c \mid a^{4}=b^{2} c, b^{4}, c^{4}, b^{a}=b^{3}, c^{b}=c^{3}\right\rangle$.
b) $H=\operatorname{Pc}\left\langle u, v, w \mid u^{4}=w, v^{4}=w, w^{4}=1, w^{u}=w^{2},\right\rangle$.

Question 1.16

Consider the group

$$
G=\operatorname{Pc}\left\langle a, b, c, d, e, f \mid a^{2}, b^{2}, c^{3}, d^{3}, e^{5}, f^{5}, c^{a}=c^{2}, d^{a}=d^{2}, e^{c}=e f^{3}, f^{a}=e^{4} f^{4}, f^{c}=e^{4} f^{3}\right\rangle
$$

Use collection to find the normal form of the element $g=f e c a$; maybe also collect some other random words in the generators.

Question 1.17

For an integer $n>2$ consider the dihedral group $G=\left\langle r, m \mid r^{2^{n-1}}, m^{2}, r^{m}=r^{2^{n-1}-1}\right\rangle$.
a) Find the normal form of the element $w=r m r^{2} m^{2} r^{3} m^{3}$.
b) Find a polycyclic series of G whose associated pcgs has relative orders $[2, \ldots, 2]$.
c) Find a polycyclic presentation of G, associated to the pcgs you have found in b).

Question 1.18

Compute a wpcp of the group

$$
G=\left\langle a, b, c \mid a^{9}, b^{9}, c^{9},[[b, a], a]=a^{3},(a b a)^{9},(b a)^{5} a=b,[a, c]\right\rangle ;
$$

you can use that G has order 3^{3}.

Question 1.19

Let $X=\{a, b, c\}$. What are the first 20 words in X^{*} in the shortlex ordering defined by $b<c<a$?

Question 1.20

Consider the rewriting system $S=(X, \mathcal{R})$ where $X=\{c, d, y, z\}$ and $\mathcal{R}=\{(y z, c z),(y c, d y),(d c, c y)\}$.
a) Show that S is confluent with respect to the shortlex ordering on X^{*} defined by $c<d<y<z$.
b) For $n \geqslant 0$, show that $y^{n} z \xrightarrow{*} c^{n} z$.

Question 1.21

Let $X=\{a, A, b, B\}$ and consider the wreath product ordering on X^{*} where a, A, b, B have levels $1,2,3,4$, respectively; this is defined as follows. Let $u, v \in X^{*}$. If the highest level of the letters in v is larger than the highest level of the letters in u, then $u<v$. Now suppose u and v both have letters of the same highest level r; remove all letters of level $<r$ in u and v to obtain words u^{\prime} and v^{\prime} (only containing letters of level r). If $u^{\prime}<v^{\prime}$ in shortlex ordering, then we say $u<v$. Lastly, suppose u^{\prime} and v^{\prime} are equal, say $u^{\prime}=v^{\prime}=z_{1} \cdots z_{t}$ where each z_{j} has level r. Then we can write $u=x_{1} z_{1} x_{2} z_{2} \ldots z_{t} x_{t+1}$ and $v=y_{1} z_{1} y_{2} z_{2} \ldots z_{t} y_{t+1}$ where each x_{i}, y_{i} only involves letters of level $<r$. We define $u<v$ if there exists $k \leqslant t$ such that $x_{i}=y_{i}$ for $i=1, \ldots, k$ and $x_{k+1}<y_{k+1}$ in shortlex ordering.
a) Sort the following words using the wreath product ordering defined above:

$$
\begin{array}{ll}
u_{1}=a^{2} b a^{2} A B^{3} a b a B A, & u_{2}=b^{2} a b A^{2}, \\
u_{4}=A^{3} b a B A^{10} B a b a B A, & u_{5}=A^{3} b a B a B a b a B A .
\end{array} \quad u_{3}=A^{100} b a,
$$

b) Consider the Baumslag-Solitar group

$$
B(m, n)=\left\langle a, b \mid b^{-1} a^{m} b=a^{n}\right\rangle
$$

Identify $A=a^{-1}$ and $B=b^{-1}$. Show that $B(m, n)$ has a complete rewriting system where the rules are the inverse rules $(A a, \varepsilon),(a A, \varepsilon),(B b, \varepsilon),(b B, \varepsilon)$, and four additional rules

$$
\left(a^{n} B, B a^{m}\right), \quad\left(a^{m} b, b a^{n}\right), \quad\left(A b, a^{m-1} b A^{n}\right), \quad\left(A B, a^{n-1} B A^{m}\right)
$$

You can assume that the ordering is a strict well-founded ordering (see Sims, Proposition 1.7 for a proof).

Question 1.22

Show that the group

$$
G=\left\langle a, b, c, d \mid a b a^{-1} b^{-1} c d c^{-1} d^{-1}\right\rangle
$$

has a $C^{\prime}(1 / 6)$ presentation; then use Dehn's algorithm to reduce the word $w=d^{-1} a c d c^{-1} d^{-1} a b a^{-2} b^{-1} c d c^{-1}$.

Question 1.23

Let $G=\langle X \mid \mathcal{R}\rangle$ be a finitely presented group and shortlex automatic structure (W, M), that is, W is a word acceptor (that accepts for each $g \in G$ a unique word in $\left(X \cup X^{-1}\right)^{*}$ that represents g) and for each $x \in X \cup X^{-1}$ we have a multiplier automaton M_{x}. Assume that for every $w \in L(W)$ and $x \in X \cup X^{-1}$, we can compute $w^{\prime} \in L(W)$ such that $\left(w^{\prime}, w\right) \in L\left(M_{x}\right)$. Discuss how this can be used to solve the word problem in G.

Question 1.24

Consider the group $G=\langle z \mid \emptyset\rangle \cong(\mathbb{Z},+)$, with monoid generating set $X=\left\{z, z^{-1}\right\}$. A word acceptor W is given by the finite state automaton in Figure 1 (left), where unspecified transitions lead to a fail state. Note that the accepted language is exactly $L(W)=\left\{z^{i}: i \in \mathbb{Z}\right\}$, the set of all reduced words in G. We need two multiplier automaton, called M_{z} and $M_{z^{-1}}$. These are represented by the same finite state automaton in Figure 1 (right), but with different accept states: the accept state for M_{z} is z, and the one for $M_{z^{-1}}$ is z^{-1}. The transition (x, x) stands for (z, z) and $\left(z^{-1}, z^{-1}\right)$. As before, unspecified transitions lead to a fail state.

Convince yourself that this provides an automatic structure for G; e.g., if $u, v \in L(W)$, then $(u, v)^{+} \in$ $L\left(M_{z}\right)$ if and only if $u={ }_{G} v z .{ }^{1}$ Motivated by this, please get an automatic structure for the group $(\mathbb{Z},+)^{2}$.

Figure 1: Word acceptor (left) and multipliers (right) for $\langle z \mid \emptyset\rangle$.

[^0]
[^0]: ${ }^{1}$ The notation $(u, v)^{+}$denotes padding: if $u=u_{1} \ldots u_{n}$ and $v=v_{1} \ldots v_{m}$, then $(u, v)^{+}=\left(u_{1}, v_{1}\right) \ldots\left(u_{\ell}, v_{\ell}\right)$ where $\ell=\max \{m, n\}$ and one defines $u_{i}=1$ and $v_{j}=1$ for all $i>n$ and $j>m$; here 1 represents the empty word in X^{*}

