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Problem Sheet Heiko Dietrich

Question 1.1
Use Tietze transformations to show that G = (g, h | ghghg) = (a | 0) = (Z,+).

Question 1.2
Use Tietze transformations to show that G = (z,y,z | * = yzy~ !, y = zaz7!, 2z = ayz~!)is
isomorphic to H = (x,y | zyx = yzy), and to K = (a,b | a® = b?).

Question 1.3
Use von Dyck’s Theorem to show that the Wicks group W = (a,b | a®b*a®b7, a?b3a7b®) has C1; as a
quotient.

Question 1.4
Do the following please; no coset enumeration is required.

a) Show that the group A = (a,b | b*> = a~'ba,a® = b~'ab) has size 1.
b) Show that B = (a,b | a?, b*a = ab?, b3) is cyclic of order 6.
c) Show that the group C' = (a, b, ¢ | a%,b?, ¢?,ba = ac, ca = ab, cb = ac) is isomorphic to Syms.

Question 1.5

Let G = (X | R) be a finitely presented group with X = {x1,...,z,,}. Let U < G be a group of finite
index n, and let {t1,...,t,} C G with t; = 1 be a right transversal of U in G. Assume we have the
coset table corresponding to [G : U] = n, and the corresponding permutation action of G on 7, such
that Ut;g = Ut fort; € T and g € G. For g € G let g € T be the unique element such that Ug = U7g.
Recall that the Schreier generators are defined as

S = {Si,j = til'j(tiil‘j)_l i€l xy € X, 85 # 1}

a) Show that S C U.

b) Show thatift € T'and x € X, then tx~!(tx~1)~1 is an inverse of a Schreier generator in S.

c¢) Show that U = (S): take a general word in the generators X and their inverses, and then try to
rewrite it as a product of Schreier generators, their inverses, and elements in 7'; look at the lectures
for a hint.

d) Letr € R be a defining relator and ¢, € T'. Explain why te?”tzl (as an element in F'x) can be written
as that in the Schreier generators that we obtain when parsing the relator r in the amended coset table
starting in the row with label ¢,.

Question 1.6

Let F' be a free group of rank r and let U < F' be a subgroup of index n. Deduce from our discussion of
the Reidemeister-Schreier method that U is a free group of rank 1+ n(r — 1); this is the Nielsen-Schreier
Theorem.

Question 1.7

Apply Todd-Coxeter coset enumeration to determine the size of G = (a, b | abab™!, baba™1).

Tip: Maybe start with the following definitions: 10=92920=3 30 =4 4b=5 20 =6,3° =7 6% =8,
Can you also determine the isomorphism type of the group?



Question 1.8
Let n > 1 be an integer. Show that (z,y | z7y" "1 2"*+1y"*+2) is the trivial group, and discuss why
Todd-Coxeter coset enumeration requires the construction of at least n cosets.

Question 1.9
Consider the group G = (a, b | a2,b?, (ab)®) with subgroup U = (a, a®). Coset enumeration yields the
following coset table, where boldface entries specify the definitions:

nrla o' b b7t
171 1 2 3
214 4 3 1
313 3 1 2
412 2 5 6
5|16 6 6 4
6|5 5 4 5

Find a finite presentation for U, by doing the following:

a) Write down transversal elements for each coset.
b) Write down Schreier generators and the amended coset table.
¢) Write down Reidemeister relators.

d) Write down the resulting presentation for U; can you simplify it?

Question 1.10
Similar to the previous questions, consider G' = (a, b | a2, b%) with subgroup U = (bab~ta~t,b~taba™1).
Coset enumeration yields the following coset table, where boldface entries specify the definitions:

nr a~ ! p—1

O U W N
B W ool N
INGNJCIN NI B
RN NS IV RS
TGN WO

Deduce that U is normal, and determine the isomorphism type of G /U, find a presentation for U.

Question 1.11
Do the following to show that the free group of rank 2 has a subgroup that is not finitely generated.

a) Let A = @, ., (Zo, +) be the group of all binary sequences (a.).cz with only finitely many a; # 0,
with component-wise addition. Let o be the automorphism of A that maps a = (a;),ez € A to
a’ = (ay—1).ez, thatis, o is a “right-shift”. Let K = (o) x A be semidirect product where o acts
naturally on A. Do the following:

1. Show that K can be generated by two elements.

2. Show that the derived subgroup K’ = [K, K] consists exactly of all sequence b that have an
even number of 1s.

3. Deduce from 2) that K’ is not finitely generated.

b) Let F be a free group of rank 2. Deduce from a) that F’ is not finitely generated.



Question 1.12
Let G = (a,b,c | abcba,b®ch). Construct an epimorphism G — A where A is the largest abelian
quotient of G.

Question 1.13
Please discuss the following.

a) Let P be a property of groups that is preserved by direct products and subgroups (e.g. “abelian” or
“nilpotent” ...). Let G be a group and let A/ be a finite collection of normal subgroups of G' such
that G /U has property P for every U € N. Let I = [\, U, and show that G'/I has property P.

b) Let G be an fp group, and assume you can use the p-group quotient algorithm to construct finite
p-group quotients of GG. Discuss how a construction as in a) can be used to construct finite nilpotent
quotients of G.

Question 1.14
Let G = Sym4
a) Determine a polycyclic series and a polycyclic generating set for G.

b) Construct the polycyclic presentation for G which corresponds to the polycyclic generating set you
have determined in a); is your presentation consistent?

Question 1.15

Consider the following polycyclic presentations: apply consistency checks to show that they are not
consistent; then determine a consistent presentation for the groups.

a) G =Pcla,b,c|a* =b%c, b*, c*, b* =13, P =c3).

b) H = Pclu,v,w | u* = w, v* =w, w* =1, w* = w?,).

Question 1.16
Consider the group

G =Pcla,b,c,d,e, f | a,b?, 3, d%, €°, f7,c* = *,d* = d e = ef3, [ =l f4, fC = e f3).

Use collection to find the normal form of the element g = feca; maybe also collect some other random
words in the generators.

Question 1.17
For an integer n > 2 consider the dihedral group G = (r,m | 2" ', m2, r™ = 2" 1),

a) Find the normal form of the element w = rmr2m?2r3m3.

b) Find a polycyclic series of G whose associated pcgs has relative orders [2,. .., 2].

¢) Find a polycyclic presentation of GG, associated to the pcgs you have found in b).

Question 1.18
Compute a wpcp of the group

G= <a7bac ‘ agv bga Cgv [[bv a]aa] = CLS, (aba)97 (ba)5a =b, [a7 C]>;

you can use that G has order 33.



Question 1.19
Let X = {a, b, c}. What are the first 20 words in X* in the shortlex ordering defined by b < ¢ < a?

Question 1.20

Consider the rewriting system S = (X, R) where X = {c,d,y,z} and R = {(yz, c2), (yc, dy), (dec, cy) }.

a) Show that S is confluent with respect to the shortlex ordering on X* definedbyc < d < y < z.
b) For n > 0, show that y"z X eng,

Question 1.21

Let X = {a,A,b, B} and consider the wreath product ordering on X* where a, A, b, B have levels
1,2, 3, 4, respectively; this is defined as follows. Let u, v € X*. If the highest level of the letters in v is
larger than the highest level of the letters in u, then u < v. Now suppose « and v both have letters of the
same highest level r; remove all letters of level < 7 in v and v to obtain words " and v’ (only containing
letters of level r). If &' < ¢’ in shortlex ordering, then we say v < v. Lastly, suppose v’ and v’ are
equal, say v’ = v/ = z; - - - z; where each z; has level 7. Then we can write u = 1212222 . . . 2¢Z¢41 and
v = Y121Y222 . . . ZtYr+1 Where each x;, y; only involves letters of level < r. We define u < wv if there
exists k < tsuchthatx; = y; fore =1,...,k and ;41 < yi+1 in shortlex ordering.

a) Sort the following words using the wreath product ordering defined above:

u = a’ba?AB3abaBA, ug = b2abA?, uz = A0%q,
ug = A*baBA BabaBA, us = A*baBaBabaBA.

b) Consider the Baumslag-Solitar group
B(m,n) = (a,b | b"*a™b = a™).

Identify A = a~! and B = b~!. Show that B(m,n) has a complete rewriting system where the
rules are the inverse rules (Aa,€), (aA,¢), (Bb,¢), (bB,¢), and four additional rules

(a"B,Ba™), (a™b,ba"), (Ab,a™ 'bA™), (AB,a" 'BA™).
You can assume that the ordering is a strict well-founded ordering (see Sims, Proposition 1.7 for a

proof).

Question 1.22
Show that the group
G = (a,b,c,d | aba™ b ede d™)

has a C’(1/6) presentation; then use Dehn’s algorithm to reduce the word w = d~tacdc™'d~taba=2btede

Question 1.23

Let G = (X | R) be a finitely presented group and shortlex automatic structure (W, M), that is, W is a
word acceptor (that accepts for each g € G a unique word in (X U X ~!)* that represents ¢) and for each
x € XUX ! we have a multiplier automaton M,.. Assume that for every w € L(W)andx € XUX 1,
we can compute w’ € L(W) such that (w’,w) € L(M,). Discuss how this can be used to solve the
word problem in G.
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Question 1.24

Consider the group G = (z | §) = (Z, +), with monoid generating set X = {z, 27 '}. A word acceptor
W is given by the finite state automaton in Figure 1 (left), where unspecified transitions lead to a fail
state. Note that the accepted language is exactly L(W) = {z% : i € Z}, the set of all reduced words in
G. We need two multiplier automaton, called M, and M,-:. These are represented by the same finite
state automaton in Figure 1 (right), but with different accept states: the accept state for M, is z, and
the one for M,-1 is z~'. The transition (z, z) stands for (z, z) and (z~', 271). As before, unspecified
transitions lead to a fail state.

Convince yourself that this provides an automatic structure for G; e.g., if u,v € L(W), then (u,v)* €
L(M.,) if and only if u =g vz.! Motivated by this, please get an automatic structure for the group
(Z,+)%.

start —

Figure 1: Word acceptor (left) and multipliers (right) for (z | 7).

'The notation (u,v)" denotes padding: if u = u1 ...u, and v = v1 ...V, then (u,v)™ = (u1,v1)... (u¢,ve) where

¢ = max{m, n} and one defines u; = 1 and v; = 1 for all 4 > n and j > m; here 1 represents the empty word in X~



