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Question 1.1
Use Tietze transformations to show that G = 〈g, h | ghghg〉 ∼= 〈a | ∅〉 ∼= (Z,+).

Question 1.2
Use Tietze transformations to show that G = 〈x, y, z | x = yzy−1, y = zxz−1, z = xyx−1〉 is
isomorphic to H = 〈x, y | xyx = yxy〉, and to K = 〈a, b | a3 = b2〉.

Question 1.3
Use von Dyck’s Theorem to show that the Wicks group W = 〈a, b | a3b4a5b7, a2b3a7b8〉 has C11 as a
quotient.

Question 1.4
Do the following please; no coset enumeration is required.

a) Show that the group A = 〈a, b | b2 = a−1ba, a2 = b−1ab〉 has size 1.

b) Show that B = 〈a, b | a2, b2a = ab2, b3〉 is cyclic of order 6.

c) Show that the group C = 〈a, b, c | a2, b2, c2, ba = ac, ca = ab, cb = ac〉 is isomorphic to Sym3.

Question 1.5
Let G = 〈X | R〉 be a finitely presented group with X = {x1, . . . , xm}. Let U 6 G be a group of finite
index n, and let {t1, . . . , tn} ⊆ G with t1 = 1 be a right transversal of U in G. Assume we have the
coset table corresponding to [G : U ] = n, and the corresponding permutation action of G on T , such
that Utig = Utig for ti ∈ T and g ∈ G. For g ∈ G let g ∈ T be the unique element such that Ug = Ug.
Recall that the Schreier generators are defined as

S = {si,j = tixj(tixj)
−1 : ti ∈ T, xj ∈ X, si,j 6= 1}.

a) Show that S ⊆ U .

b) Show that if t ∈ T and x ∈ X , then tx−1(tx−1)−1 is an inverse of a Schreier generator in S.

c) Show that U = 〈S〉: take a general word in the generators X and their inverses, and then try to
rewrite it as a product of Schreier generators, their inverses, and elements in T ; look at the lectures
for a hint.

d) Let r ∈ R be a defining relator and t` ∈ T . Explain why t`rt−1` (as an element in FX ) can be written
as that in the Schreier generators that we obtain when parsing the relator r in the amended coset table
starting in the row with label t`.

Question 1.6
Let F be a free group of rank r and let U 6 F be a subgroup of index n. Deduce from our discussion of
the Reidemeister-Schreier method that U is a free group of rank 1+n(r−1); this is the Nielsen-Schreier
Theorem.

Question 1.7
Apply Todd-Coxeter coset enumeration to determine the size of G = 〈a, b | abab−1, baba−1〉.
Tip: Maybe start with the following definitions: 1b = 2, 2a = 3, 3b = 4, 4b = 5, 2b = 6, 3a = 7, 6a = 8.
Can you also determine the isomorphism type of the group?



Question 1.8
Let n > 1 be an integer. Show that 〈x, y | xnyn+1, xn+1yn+2〉 is the trivial group, and discuss why
Todd-Coxeter coset enumeration requires the construction of at least n cosets.

Question 1.9
Consider the group G = 〈a, b | a2, b3, (ab)5〉 with subgroup U = 〈a, ab〉. Coset enumeration yields the
following coset table, where boldface entries specify the definitions:

nr a a−1 b b−1

1 1 1 2 3
2 4 4 3 1
3 3 3 1 2
4 2 2 5 6
5 6 6 6 4
6 5 5 4 5

Find a finite presentation for U , by doing the following:

a) Write down transversal elements for each coset.

b) Write down Schreier generators and the amended coset table.

c) Write down Reidemeister relators.

d) Write down the resulting presentation for U ; can you simplify it?

Question 1.10
Similar to the previous questions, considerG = 〈a, b | a2, b3〉with subgroupU = 〈bab−1a−1, b−1aba−1〉.
Coset enumeration yields the following coset table, where boldface entries specify the definitions:

nr a a−1 b b−1

1 2 2 3 4
2 1 1 5 6
3 5 5 4 1
4 6 6 1 3
5 3 3 6 2
6 4 4 2 5

Deduce that U is normal, and determine the isomorphism type of G/U ; find a presentation for U .

Question 1.11
Do the following to show that the free group of rank 2 has a subgroup that is not finitely generated.

a) Let A =
⊕

z∈Z(Z2,+) be the group of all binary sequences (az)z∈Z with only finitely many ai 6= 0,
with component-wise addition. Let σ be the automorphism of A that maps a = (az)z∈Z ∈ A to
aσ = (az−1)z∈Z, that is, σ is a “right-shift”. Let K = 〈σ〉 n A be semidirect product where σ acts
naturally on A. Do the following:

1. Show that K can be generated by two elements.

2. Show that the derived subgroup K ′ = [K,K] consists exactly of all sequence b that have an
even number of 1s.

3. Deduce from 2) that K ′ is not finitely generated.

b) Let F be a free group of rank 2. Deduce from a) that F ′ is not finitely generated.



The following questions can be considered from Lecture 2 onwards.

Question 1.12
Let G = 〈a, b, c | abcba, bacb〉. Construct an epimorphism G → A where A is the largest abelian
quotient of G.

Question 1.13
Please discuss the following.

a) Let P be a property of groups that is preserved by direct products and subgroups (e.g. “abelian” or
“nilpotent” . . . ). Let G be a group and let N be a finite collection of normal subgroups of G such
that G/U has property P for every U ∈ N . Let I =

⋂
U∈N U , and show that G/I has property P .

b) Let G be an fp group, and assume you can use the p-group quotient algorithm to construct finite
p-group quotients of G. Discuss how a construction as in a) can be used to construct finite nilpotent
quotients of G.

Question 1.14
Let G = Sym4.

a) Determine a polycyclic series and a polycyclic generating set for G.

b) Construct the polycyclic presentation for G which corresponds to the polycyclic generating set you
have determined in a); is your presentation consistent?

Question 1.15
Consider the following polycyclic presentations: apply consistency checks to show that they are not
consistent; then determine a consistent presentation for the groups.

a) G = Pc〈a, b, c | a4 = b2c, b4, c4, ba = b3, cb = c3〉.
b) H = Pc〈u, v, w | u4 = w, v4 = w, w4 = 1, wu = w2, 〉.

Question 1.16
Consider the group

G = Pc〈a, b, c, d, e, f | a2, b2, c3, d3, e5, f5, ca = c2, da = d2, ec = ef3, fa = e4f4, f c = e4f3〉.

Use collection to find the normal form of the element g = feca; maybe also collect some other random
words in the generators.

Question 1.17
For an integer n > 2 consider the dihedral group G = 〈r,m | r2n−1

, m2, rm = r2
n−1−1〉.

a) Find the normal form of the element w = rmr2m2r3m3.

b) Find a polycyclic series of G whose associated pcgs has relative orders [2, . . . , 2].

c) Find a polycyclic presentation of G, associated to the pcgs you have found in b).

Question 1.18
Compute a wpcp of the group

G = 〈a, b, c | a9, b9, c9, [[b, a], a] = a3, (aba)9, (ba)5a = b, [a, c]〉;

you can use that G has order 33.



The following questions can be considered from Lecture 3 onwards.

Question 1.19
Let X = {a, b, c}. What are the first 20 words in X∗ in the shortlex ordering defined by b < c < a?

Question 1.20
Consider the rewriting system S = (X,R) whereX = {c, d, y, z} andR = {(yz, cz), (yc, dy), (dc, cy)}.

a) Show that S is confluent with respect to the shortlex ordering on X∗ defined by c < d < y < z.

b) For n > 0, show that ynz ∗→ cnz.

Question 1.21
Let X = {a,A, b, B} and consider the wreath product ordering on X∗ where a,A, b, B have levels
1, 2, 3, 4, respectively; this is defined as follows. Let u, v ∈ X∗. If the highest level of the letters in v is
larger than the highest level of the letters in u, then u < v. Now suppose u and v both have letters of the
same highest level r; remove all letters of level < r in u and v to obtain words u′ and v′ (only containing
letters of level r). If u′ < v′ in shortlex ordering, then we say u < v. Lastly, suppose u′ and v′ are
equal, say u′ = v′ = z1 · · · zt where each zj has level r. Then we can write u = x1z1x2z2 . . . ztxt+1 and
v = y1z1y2z2 . . . ztyt+1 where each xi, yi only involves letters of level < r. We define u < v if there
exists k 6 t such that xi = yi for i = 1, . . . , k and xk+1 < yk+1 in shortlex ordering.

a) Sort the following words using the wreath product ordering defined above:

u1 = a2ba2AB3abaBA, u2 = b2abA2, u3 = A100ba,

u4 = A3baBA10BabaBA, u5 = A3baBaBabaBA.

b) Consider the Baumslag-Solitar group

B(m,n) = 〈a, b | b−1amb = an〉.

Identify A = a−1 and B = b−1. Show that B(m,n) has a complete rewriting system where the
rules are the inverse rules (Aa, ε), (aA, ε), (Bb, ε), (bB, ε), and four additional rules

(anB,Bam), (amb, ban), (Ab, am−1bAn), (AB, an−1BAm).

You can assume that the ordering is a strict well-founded ordering (see Sims, Proposition 1.7 for a
proof).

Question 1.22
Show that the group

G = 〈a, b, c, d | aba−1b−1cdc−1d−1〉

has aC ′(1/6) presentation; then use Dehn’s algorithm to reduce the wordw = d−1acdc−1d−1aba−2b−1cdc−1.

Question 1.23
Let G = 〈X | R〉 be a finitely presented group and shortlex automatic structure (W,M), that is, W is a
word acceptor (that accepts for each g ∈ G a unique word in (X ∪X−1)∗ that represents g) and for each
x ∈ X∪X−1 we have a multiplier automatonMx. Assume that for every w ∈ L(W ) and x ∈ X∪X−1,
we can compute w′ ∈ L(W ) such that (w′, w) ∈ L(Mx). Discuss how this can be used to solve the
word problem in G.



Question 1.24
Consider the group G = 〈z | ∅〉 ∼= (Z,+), with monoid generating set X = {z, z−1}. A word acceptor
W is given by the finite state automaton in Figure 1 (left), where unspecified transitions lead to a fail
state. Note that the accepted language is exactly L(W ) = {zi : i ∈ Z}, the set of all reduced words in
G. We need two multiplier automaton, called Mz and Mz−1 . These are represented by the same finite
state automaton in Figure 1 (right), but with different accept states: the accept state for Mz is z, and
the one for Mz−1 is z−1. The transition (x, x) stands for (z, z) and (z−1, z−1). As before, unspecified
transitions lead to a fail state.

Convince yourself that this provides an automatic structure forG; e.g., if u, v ∈ L(W ), then (u, v)+ ∈
L(Mz) if and only if u =G vz.1 Motivated by this, please get an automatic structure for the group
(Z,+)2.
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Figure 1: Word acceptor (left) and multipliers (right) for 〈z | ∅〉.

1The notation (u, v)+ denotes padding: if u = u1 . . . un and v = v1 . . . vm, then (u, v)+ = (u1, v1) . . . (u`, v`) where
` = max{m,n} and one defines ui = 1 and vj = 1 for all i > n and j > m; here 1 represents the empty word in X∗


