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Complex reflection groups

Definition

A complex reflection group is a finite subgroup of GLn(C), which is generated by
pseudo-reflections

i.e. elements of finite order whose vector space of fixed points
is a hyperplane (dimCker(s − 1) = n − 1).

Examples

Real reflection groups (also known as finite Coxeter groups)

C = ⟨s1, ..., sn | s2i = 1, si sjsi . . .︸ ︷︷ ︸
mij−factors

= sjsi sj . . .︸ ︷︷ ︸
mij−factors

⟩

⋆ S3 = ⟨s1, s2 | s21 = s22 = 1, s1s2s1 = s2s1s2⟩ ∈ Weyl groups

⋆ D8 = ⟨s1, s2 | s21 = s22 = 1, s1s2s1s2 = s2s1s2s1⟩

G4 = ⟨s1, s2 | s31 = s32 = 1, s1s2s1 = s2s1s2⟩

G11 = ⟨s1, s2, s3 | s21 = s32 = s43 = 1, s1s2s3 = s2s3s1 = s3s1s2⟩

Coxeter-like presentation

⟨s1, . . . , sn | so(si )i = 1, homogeneous positive relations ⟩
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Irreducible complex reflection groups

Let W ≤ GLn(C) a complex reflexion group.

W is a direct product of irreducible complex reflection groups (they act
irreducibly on Cn).

Shephard-Todd classification (1954)

The irreducible complex reflection groups are:

the symmetric group Sn+1.

the groups of the infinite series G (de, e, n), with d , e, n positive integers and
(de, e, n) ̸= (2, 2, 2).

the 34 exceptional groups G4, . . . ,G37.

Remark

G (1, 1, n) ∼= An−1, G (2, 1, n) ∼= Bn, G (2, 2, n) ∼= Dn, G (m,m, 2) ∼= I2(m),

G23
∼= H3, G28

∼= F4, G30
∼= H4, G35

∼= E6, G36
∼= E7, G37

∼= E8.
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Braid groups

Symmetric group Sn

Braid group
on n strands



Braid groups

Real reflection group

Generalized braid group



Braid groups

Let W ≤ GLn(C) be a complex reflection group and let X be the set of all the
points of Cn that are not fixed by a pseudo-reflection.

By Steinberg’s theorem we have that the action of W on X is free.

Therefore, it defines a Galois covering X → X/W , which gives rise to the
following exact sequence, for every x ∈ X .

1→ π1(X , x)→ π1(X/W , x)→W → 1

Definition (Broué-Malle-Rouquier 1998)

The braid group B(W ) associated to W is the fundamental group π1(X/W , x).
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Braid groups

Let s be a distinguished pseudo-reflection of order m and H =ker(s − 1).

We get elements inside B(W ) = π1(X/W , x), called distinguished braided
reflections, as follows:

x

H

�

�

0
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We get elements inside B(W ) = π1(X/W , x), called distinguished braided
reflections, as follows:

s · x

x

H

�

�

H⊥

�

�

x0

s · x0�

0



Braid groups

Let s be a distinguished pseudo-reflection of order m and H =ker(s − 1).
We get elements inside B(W ) = π1(X/W , x), called distinguished braided
reflections, as follows:

s · x

x

H

�

�

H⊥

�

�

x0

s · x0�

0



Braid groups

Let s be a distinguished pseudo-reflection of order m and H =ker(s − 1).
We get elements inside B(W ) = π1(X/W , x), called distinguished braided
reflections, as follows:

s · x

x

H

�

�

H⊥

�

�

x0

s · x0�

0



Braid groups

Theorem [Bessis 1999]

The complex braid group B(W ) is generated by distinguished braided reflections,
whose image inside W are the distinguished pseudo-reflections that generate W .

Examples

G7 = ⟨s1, s2, s3 | s21 = s32 = s33 = 1, s1s2s3 = s2s3s1 = s3s1s2⟩

B(G7) = ⟨σ1, σ2, σ3 | σ1σ2σ3 = σ2σ3σ1 = σ3σ1σ2⟩

G11 = ⟨s1, s2, s3 | s21 = s32 = s43 = 1, s1s2s3 = s2s3s1 = s3s1s2⟩

B(G11) = ⟨σ1, σ2, σ3 | σ1σ2σ3 = σ2σ3σ1 = σ3σ1σ2⟩
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Hecke algebras

finite reductive group ⇝ Weyl group ⇝ Iwahori-Hecke algebra
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Hecke algebras

Let R(W ) := Z[u±1
s,1 , ..., u

±1
s,o(s)], where

s runs along the distinguished pseudo-reflections of W (if s ∼ s ′, us, j = us′, j).

o(s) denotes the order of s.

Definition

The generic Hecke algebra H(W ) associated to W is the algebra

R(W )[B(W )] / (σ − us,1) . . . (σ − us,o(s)),

where σ runs among the distinguished braided pseudo-reflections associated to s.

Examples

G4 = ⟨s1, s2 : s31 = s32 = 1, s1s2s1 = s2s1s2⟩

H(G4) = ⟨σ1, σ2 : σ1σ2σ1 = σ2σ1σ2,
3∏

j=1

(σi − uj) = 0⟩

G10 = ⟨s1, s2 : s31 = s42 = 1, s1s2s1s2 = s2s1s2s1⟩

H(G10) = ⟨σ1, σ2 : σ1σ2σ1σ2 = σ2σ1σ2σ1,
3∏

j=1

(σ1 − uj) =
4∏

j=1

(σ2 − vj) = 0⟩
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The BMR freeness conjecture
Let W be a complex reflection group and let H(W ) the associated Hecke algebra
defined over R(W ).

Conjecture [Broué-Malle-Rouquier 1998]

H(W ) admits an R(W )-basis with |W | elements.

This conjecture is now a theorem (since 2017).

Proof (state of the art)

Real case ⇝ w = si1 . . . sir reduced expression (i.e. r is minimal), then
{Tw := σi1 . . . σir , w ∈W } is a basis.

Non-real case

⋆ G (de, e, n) [Ariki-Koike, Broué-Malle, Ariki]
Alternative basis for G (e, e, n), G (d , 1, n) [Neaime]

⋆ G4 [Broué-Malle, Berceanu-Funar, C., Marin]

⋆ G5, . . . ,G16 [C.], G12 also by [Marin-Pfeiffer]

⋆ G17, G18, G19 [Tsuchioka]

⋆ G20, . . . ,G34 [Marin, Marin-Pfeiffer]
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The BMR freeness conjecture

Theorem [C. 2016]

The conjecture is true for G4, . . . ,G16.

Guess a basis B.

Prove that B is a basis.

We end up with a nice basis: 1 ∈ B, its elements are braid group elements and it
has an inductive form.
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The BMM trace conjecture
Let B an R(W )-basis of H(W ).

Conjecture [Broué-Malle-Michel 1999]

(1) There is a linear map t : H(W )→ R(W ), such that the matrix
A := (t(bb′))b,b′∈B is symmetric and invertible over R(W ).

(2) t(w) = δ1,w when us,j 7→ exp(2πij/o(s)).

(3) an extra condition.

Proof (state of the art)

Real case ⇝ t(Tw ) = δ1,w .

Non-real case

⋆ G (de, e, n) [Bremke-Malle, Malle-Mathas]

⋆ G4 [Malle-Michel, Marin-Wagner, Boura-C.-Chlouveraki-Karvounis]

⋆ G5, . . . ,G8 [Boura-C.-Chlouveraki-Karvounis]

⋆ G12, G22, G24 [Malle-Michel]

⋆ G13 [Boura-C.-Chlouveraki]
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Conjecture [Broué-Malle-Michel 1999]

(1) There is a linear map t : H(W )→ R(W ), such that the matrix
A := (t(bb′))b,b′∈B is symmetric and invertible over R(W ).

(2) t(w) = δ1,w when us,j 7→ exp(2πij/o(s)).

(3) an extra condition.

Proof (state of the art)

Real case ⇝ t(Tw ) = δ1,w .

Non-real case

⋆ G (de, e, n) [Bremke-Malle, Malle-Mathas]

⋆ G4 [Malle-Michel, Marin-Wagner, Boura-C.-Chlouveraki-Karvounis]

⋆ G5, . . . ,G8 [Boura-C.-Chlouveraki-Karvounis]

⋆ G12, G22, G24 [Malle-Michel]

⋆ G13 [Boura-C.-Chlouveraki]



The BMM trace conjecture
Let B an R(W )-basis of H(W ).
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The BMM trace conjecture

THE PROOF

Step 1. We start with a basis B. We have 1 ∈ B. The two algebra generators g1
and g2 of H(W ) are always in B.

Step 2. Define t(b) = δ1,b, for each b ∈ B.
Step 3. Write bb′ as a linear combination of elements in B and find matrix

A = (t(bb′))b,b′∈B. Check if it is symmetric and find its determinant.

⇝ Programming (C++ and SAGE).

Step 4. Check condition (3).

About Step 3

Use C++ to write gib, i = 1, 2 and z |Z(W )| as linear combination of elements in B.

Use SAGE to determine A row by row. If B = {1 = b1, b2, . . . , b|W |}, then:

t(bkbℓ)
m<k
= t(bmgibℓ)

C++
= t(bm

∑
λjbj) =

∑
λj t(bmbj).
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Step 4. Check condition (3).

About Step 3

Use C++ to write gib, i = 1, 2 and z |Z(W )| as linear combination of elements in B.

Use SAGE to determine A row by row. If B = {1 = b1, b2, . . . , b|W |}, then:

t(bkbℓ)
m<k
= t(bmgibℓ)

C++
= t(bm

∑
λjbj) =

∑
λj t(bmbj).
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The dual basis

Let B an R(W )-basis of H(W ).

We assume the validity of the BMM trace
conjecture.

Definition

The dual basis Bv := {bv}b∈B of B with respect to t is the basis of H(W ),
uniquely determined by the condition t(b1b

v
2 ) = δb1,b2 for b1, b2 ∈ B.

Example

Let W = ⟨s1, ..., sn | s2i = 1, si sjsi . . .︸ ︷︷ ︸
mij−factors

= sjsi sj . . .︸ ︷︷ ︸
mij−factors

⟩ a real reflection group. Then:

H(W ) = ⟨σ1, . . . , σn | σiσjσi . . .︸ ︷︷ ︸
mij−factors

= σjσiσj . . .︸ ︷︷ ︸
mij−factors

, (σi − usi )(σi − vsi ) = 0 ⟩

= ⟨σ1, . . . , σn | σiσjσi . . .︸ ︷︷ ︸
mij−factors

= σjσiσj . . .︸ ︷︷ ︸
mij−factors

, σ2
i = asi︸︷︷︸

−usi vsi

+ bsi︸︷︷︸
usi+vsi

σi ⟩.

For w = si1 . . . sir reduced expression we define aw := asi1 . . . asir .

Then, T v
w = a−1

w Tw−1 .
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Representation theory

Let W be a complex reflection group and let H(W ) the associated Hecke algebra,
defined over R(W ) = Z[u,u−1], which admits a basis B = {bw , w ∈W }.

Theorem [Malle 1999]

The algebra C(u)H(W ) := C(u)⊗R(W ) H(W ) is split semisimple.

By Tits’ deformation theorem there is a bijection

Irr (C(u)H(W ))←→ Irr(W )

Let θ : R → C a ring homomorphism, called specialization.

Goal: Parametrize the irreducible representations of CH(W ) := H(W )⊗θ C.

The algebra CH(W ) is split.

If CH is semisimple, we can use Tits’ deformation theorem again.

Irr (CH(W ))←→ Irr (C(u)H(W ))←→ Irr(W )
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Representation theory

What happens if CH(W ) is not semisimple?

An optimal basic set Bθ is a subset of Irr(W ) such that

Irr (CH(W ))←→ Bθ

Theorem [C. 2017]

There is an optimal basic set for G4,G8,G16 with respect to any θ.



Representation theory

What happens if CH(W ) is not semisimple?

An optimal basic set Bθ is a subset of Irr(W ) such that

Irr (CH(W ))←→ Bθ

Theorem [C. 2017]

There is an optimal basic set for G4,G8,G16 with respect to any θ.



Representation theory

What happens if CH(W ) is not semisimple?

An optimal basic set Bθ is a subset of Irr(W ) such that

Irr (CH(W ))←→ Bθ

Theorem [C. 2017]

There is an optimal basic set for G4,G8,G16 with respect to any θ.



The center of the generic Hecke algebra

New goal: Find optimal basic sets for every complex reflection group.

Obstacle: There is no precise description of Z (H(W )).

Let B = {bw , w ∈W } be a basis of H(W ).

We denote by Cl(W ) the set of conjugacy classes of elements of W .

For each class C ∈ Cl(W ), we choose a representative wC ∈ C .

We define coefficients fw ,C ∈ C(u) by the condition

χ(bw ) =
∑

C∈Cl(W )

fw ,C χ(bwC
), for all χ ∈ Irr(C(u)H(W )).

These coefficients depend on the choice of wC and of the basis B.

For each C ∈ Cl(W ) we set yC :=
∑

w∈W fw ,C b∨w .
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These coefficients depend on the choice of wC and of the basis B.

For each C ∈ Cl(W ) we set yC :=
∑

w∈W fw ,C b∨w .
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The center of the generic Hecke algebra

Let W be the exceptional group Gn, where n ∈ {4, . . . , 8, 12, 13, 22}.

Creating a program in GAP, the miracle happened!

Theorem [C.-Pfeiffer 2021]

There is a particular choice of a basis B and of class representatives wC , such
that the coefficients gw ,C belong to R(W ).

Conjecture [C.-Pfeiffer 2021]

For each complex reflextion group W , one can find a particular choice of a basis B
and of class representatives wC , such that the coefficients gw ,C belong to R(W ).
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Last slide

Thank you!


