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Complex reflection groups

Definition

A complex reflection group is a finite subgroup of GL,(C), which is generated by
pseudo-reflections i.e. elements of finite order whose vector space of fixed points
is a hyperplane (dimcker(s —1) = n— 1).

Examples
@ Real reflection groups (also known as finite Coxeter groups)
2
C={(s1,...,5n |57 =1, sisjsj... = sjsi5j... )
—— N——
mj;—factors mj;—factors
*S3=(s1,5 | 2 =55 =1,5195 = $515) € Weyl groups
_ 2 _ 2 _ _
* Dg = (s1,5 | s =55 = 1,519515 = $2515251)
_ 3_ 3 _ _
@ Gy=(s1,% | st =5 =1,51595 = H515)

_ 2 3 _ 4 _ _ _
® Gi1 =(51,%,53| st =55 =55 = 1,555 = 55351 = 535152)

Coxeter-like presentation
o(si)
(S1,-.-,8n s

i

=1, homogeneous positive relations )
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Irreducible complex reflection groups

Let W < GL,(C) a complex reflexion group.

W is a direct product of irreducible complex reflection groups (they act
irreducibly on C").

Shephard-Todd classification (1954)

The irreducible complex reflection groups are:

@ the symmetric group Spy1.

@ the groups of the infinite series G(de, e, n), with d, e, n positive integers and
(de, e, n) # (2,2,2).

@ the 34 exceptional groups Gy, ..., Gs7.

Remark
G(1,1,n) = A,_1, G(2,1,n) = B, G(2,2,n) = D,, G(m, m,2) = L(m),
Goz = H3, Gpg = Fy, Gag =2 Hy, G35 = Eg, G3g = E7, G37 = Eg.
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Braid groups

Let W < GL,(C) be a complex reflection group and let X be the set of all the
points of C” that are not fixed by a pseudo-reflection.

By Steinberg’s theorem we have that the action of W on X is free.

Therefore, it defines a Galois covering X — X /W, which gives rise to the
following exact sequence, for every x € X.

1= m(X,x) > m(X/W,x) > W1

Definition (Broué-Malle-Rouquier 1998)
The braid group B(W) associated to W is the fundamental group 1 (X/W, x).
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Braid groups

Theorem [Bessis 1999]

The complex braid group B(W) is generated by distinguished braided reflections,
whose image inside W are the distinguished pseudo-reflections that generate W.

Examples
° G = { |=s3=si=1 = 55351 = 535152)
7 = (51,52,83|S] =5, =53 = 1, 51553 = 525351 = S3515
B(Gy) = (01,02,03| 010203 = 020301 = 030102)
° Gu = { |2=si=si=1 = 525351 = 535150)
11 = (51,52,53|S] =5, =53 = 1, 51553 = 525351 = 53515

B(G11) = (01,02,03 | 010203 = 020301 = 030102)
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finite reductive group ~» Weyl group ~»  lwahori-Hecke algebra

Slep ‘pnoig
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Spets ~» complex reflection group  ~»  generic Hecke algebra
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@ s runs along the distinguished pseudo-reflections of W (if s ~ s’, us j = uy ;).

@ o(s) denotes the order of s.

Definition

The generic Hecke algebra H(W) associated to W is the algebra
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Examples
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3
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Hecke algebras
Let R(W) = Z[usl,... so(s)] where

@ s runs along the distinguished pseudo-reflections of W (if s ~s', us j = uy )

@ o(s) denotes the order of s.

Definition

The generic Hecke algebra H(W) associated to W is the algebra

RW)IB(W)] / (0 = us1) - (0 = Us o(s));

where o runs among the distinguished braided pseudo-reflections associated to s.

Examples
o G, = (s1,%:5 =53 =1,55% = $55)
3
H(G4) <O’170'2 010201 = 020102, H(U,'—Uj):0>
j=1
o Gy = (s1,%:5 =53 =1,51555 = $51551)
3 4
H(Glo) = <0'1,0'2 01020102 = 020102071, H(O’l - Uj) = H(O’Q - VJ) = O>

j=1 j=1
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The BMR freeness conjecture

Let W be a complex reflection group and let H(W) the associated Hecke algebra
defined over R(W).

Conjecture [Broué-Malle-Rouquier 1998]
H(W) admits an R(W)-basis with |W| elements.

This conjecture is now a theorem (since 2017).
Proof (state of the art)

@ Real case ~» w = 51 ...s;, reduced expression (i.e. r is minimal), then
{Tw:=0j...0i, w€ W}is a basis.
@ Non-real case
* G(de, e, n) [Ariki-Koike, Broué-Malle, Ariki]
Alternative basis for G(e, e, n), G(d, 1, n) [Neaime]

*

Gy [Broué-Malle, Berceanu-Funar, C., Marin]
Gs,..., Gy [C], Gio also by [Marin-Pfeiffer]
Gi7, Gig, Gig [Tsuchioka]

Gy, - - -, Gz [Marin, Marin-Pfeiffer]

*

*

*
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The BMR freeness conjecture

Theorem [C. 2016]

The conjecture is true for Gy, ..., Gis.

@ Guess a basis B.

@ Prove that B is a basis.

We end up with a nice basis: 1 € B, its elements are braid group elements and it
has an inductive form.
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The BMM trace conjecture
Let B an R(W)-basis of H(W).

Conjecture [Broué-Malle-Michel 1999]

(1) Thereis a linear map t : H(W) — R(W), such that the matrix
A= (t(bb"))}, pres is symmetric and invertible over R(W).

(2) t(w) = d1,w when ugj — exp(2mij/o(s)).

(3) an extra condition.

Proof (state of the art)
@ Real case ~ t(Ty) = d1,w-

@ Non-real case
* G(de, e, n) [Bremke-Malle, Malle-Mathas]

* Gy [Malle-Michel, Marin-Wagner, Boura-C.-Chlouveraki-Karvounis]
* Gs, ..., Gg [Boura-C.-Chlouveraki-Karvounis]
* Glg, 622, G24 [I\/Ialle—MicheI]

*

Gi3 [Boura-C.-Chlouveraki]
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The BMM trace conjecture

THE PROOF

Step 1. We start with a basis B. We have 1 € B. The two algebra generators gy
and g, of H(W) are always in B.

Step 2. Define t(b) = d1,p, for each b € B.

Step 3. Write bb’ as a linear combination of elements in B and find matrix
A= (t(bb')) yep- Check if it is symmetric and find its determinant.

~» Programming (C++ and SAGE).
Step 4. Check condition (3).
About Step 3
Use C++ to write gjb, i = 1,2 and zI?")I as linear combination of elements in B.
Use SAGE to determine A row by row. If B = {1 = by, b,,..., by}, then:

m<k C++

t(bkbe) "=" t(bmgibe) = t(bm Y Aibj) = - Nit(bmby).
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Let B an R(W)-basis of H(W). We assume the validity of the BMM trace
conjecture.

Definition

The dual basis BY := {b"},ep of B with respect to t is the basis of H(W),
uniquely determined by the condition t(b1by) = 0p, 5, for b1, by € B.

Example
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Representation theory

Let W be a complex reflection group and let H(W) the associated Hecke algebra,
defined over R(W) = Z[u,u™1], which admits a basis B = {b,,, w € W}.

Theorem [Malle 1999]

The algebra C(u)H(W) := C(u) @pw) H(W) is split semisimple.

By Tits' deformation theorem there is a bijection
Irr (C(u)H(W)) «— lrr(W)
Let § : R — C a ring homomorphism, called specialization.
Goal: Parametrize the irreducible representations of CH(W) := H(W) ®¢ C.
The algebra CH(W) is split.
If CH is semisimple, we can use Tits' deformation theorem again.

lrr (CH(W)) — lrr (C(u)H(W)) «— lrr(W)
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Representation theory

What happens if CH(W) is not semisimple?
An optimal basic set By is a subset of Irr(W) such that

lrr (CH(W)) «— By

Theorem [C. 2017]

There is an optimal basic set for G, Gg, Gi with respect to any 6.
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New goal: Find optimal basic sets for every complex reflection group.

Obstacle: There is no precise description of Z(H(W)).

Let B = {by, w € W} be a basis of H(W).
@ We denote by C/(W) the set of conjugacy classes of elements of W.
@ For each class C € CI(W), we choose a representative w¢ € C.
@ We define coefficients f,, ¢ € C(u) by the condition

X(bw) =Y fu.cx(buc), forall x € Ire(C(u)H(W)).
cecl(w)

These coefficients depend on the choice of w¢ and of the basis B.

@ For each C € CI(W) we set yc := 3", cw fw,c by,
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Let W be a complex reflection group and let H(W) the associated Hecke algebra,
which admits a basis B = {b,,, w € W}.

For each class C € CI(W), we choose again a representative wc € C and we
define coefficients g,,c € C(u) by the condition

Z gw,c x(by,.), forall x € lrr(C(u)H(W)).
ceci(w)

For each C € CI(W) we set zc := >,y 8w,C bw.

Theorem [C.-Pfeiffer 2021]
The set {z¢, C € CI(W)} is a a basis of the center Z(C(u)H(W)).
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The center of the generic Hecke algebra

Let W be the exceptional group G,, where n € {4,...,8,12,13,22}.
Creating a program in GAP, the miracle happened!

Theorem [C.-Pfeiffer 2021]

There is a particular choice of a basis B and of class representatives w¢, such
that the coefficients g.c belong to R(W).

Conjecture [C.-Pfeiffer 2021]

For each complex reflextion group W, one can find a particular choice of a basis B
and of class representatives wc, such that the coefficients g, ¢ belong to R(W).




Last slide

Thank you!



