

A formula for tangent plane dimension at T -fixed points
in flat linear degenerations of the flag variety.

Sabino Di Trani (Sapienza, Università di Roma)

January 12 - Lie Theory in Prato 2023

Plan of the Talk

- (Flat) Linear Degenerations of Flag Variety
- GKM Structures
- Linear Degenerations as Quiver Representations
- An (Effective) formula for dimension of Tangent Plane
- Smoothness Criteria

Classical Flag Varieties

Definition (Complete Flag Variety)

$$\mathfrak{Fl}(\mathbb{C}^{n+1}) = \{(V_1, \dots, V_n), V_i \subset \mathbb{C}^{n+1} \mid \dim V_i = i, V_i \subset V_{i+1}\}$$

Properties:

- Projective smooth algebraic variety
- Its dimension is equal to $\binom{n+1}{2}$
- Homogeneous Variety $SL_{n+1}\mathbb{C}/B$

Classical Flag Varieties

Definition (Complete Flag Variety)

$$\mathfrak{Fl}(\mathbb{C}^{n+1}) = \{(V_1, \dots, V_n), V_i \subset \mathbb{C}^{n+1} \mid \dim V_i = i, V_i \subset V_{i+1}\}$$

Properties:

- Projective smooth algebraic variety
- Its dimension is equal to $\binom{n+1}{2}$
- Homogeneous Variety $SL_{n+1}\mathbb{C}/B$

A different point of view:

$$V_i \subset W_i = \mathbb{C}^{n+1}$$

$$\text{id}_i : W_i \rightarrow W_{i+1} \quad \text{id}_i V_i \subset V_{i+1}$$

Linear Degenerations

Consider $\mathbf{f} = (f_1, \dots, f_{n-1}) \in \text{End}_{\mathbb{C}}(\mathbb{C}^{n+1})^{n-1}$

Definition (\mathbf{f} Degeneration of Flag Variety)

$$\mathfrak{Fl}^{\mathbf{f}}(\mathbb{C}^{n+1}) = \{(V_1, \dots, V_n), V_i \subset \mathbb{C}^{n+1} \mid \dim V_i = i, f_i(V_i) \subset V_{i+1}\}$$

Linear Degenerations

Consider $\mathbf{f} = (f_1, \dots, f_{n-1}) \in \text{End}_{\mathbb{C}}(\mathbb{C}^{n+1})^{n-1}$

Definition (\mathbf{f} Degeneration of Flag Variety)

$$\mathfrak{Fl}^{\mathbf{f}}(\mathbb{C}^{n+1}) = \{(V_1, \dots, V_n), V_i \subset \mathbb{C}^{n+1} \mid \dim V_i = i, f_i(V_i) \subset V_{i+1}\}$$

Fix a basis $\{e_1, \dots, e_{n+1}\}$ of \mathbb{C}^{n+1} . Consider $I \subset [n+1]$

$$\pi_I(e_i) = \begin{cases} 0 & \text{if } i \in I, \\ e_j & \text{for } j \notin I \end{cases}$$

Example

For $I = (I_1, \dots, I_{n-1})$, $I_j \subset [n+1]$

$$\mathfrak{Fl}^I(\mathbb{C}^{n+1}) = \{(V_1, \dots, V_n), V_j \subset \mathbb{C}^{n+1} \mid \dim V_j = j, \pi_{I_j}(V_j) \subset V_{j+1}\}$$

Flat Degenerations

Definition (Flat Degenerations)

$\mathfrak{Fl}^f(\mathbb{C}^{n+1})$ is *flat* if it is an equidimensional variety of dimension $\binom{n+1}{2}$

Flat Degenerations

Definition (Flat Degenerations)

$\mathfrak{Fl}^f(\mathbb{C}^{n+1})$ is *flat* if it is an equidimensional variety of dimension $\binom{n+1}{2}$

$$(GL_{n+1}\mathbb{C})^n \curvearrowright \text{End}_{\mathbb{C}}(\mathbb{C}^{n+1})^{n-1}$$

$$(g_1, \dots, g_n) \cdot (f_1, \dots, f_{n-1}) := (g_2 f_1 g_1^{-1}, \dots, g_n f_{n-1} g_{n-1}^{-1})$$

For every $X = \mathfrak{Fl}^f(\mathbb{C}^{n+1})$ there exists $\mathfrak{Fl}^l(\mathbb{C}^{n+1}) \in G \cdot X$

Flat Degenerations

Definition (Flat Degenerations)

$\mathfrak{Fl}^f(\mathbb{C}^{n+1})$ is *flat* if it is an equidimensional variety of dimension $\binom{n+1}{2}$

$$(GL_{n+1}\mathbb{C})^n \curvearrowright \text{End}_{\mathbb{C}}(\mathbb{C}^{n+1})^{n-1}$$

$$(g_1, \dots, g_n) \cdot (f_1, \dots, f_{n-1}) := (g_2 f_1 g_1^{-1}, \dots, g_n f_{n-1} g_{n-1}^{-1})$$

For every $X = \mathfrak{Fl}^f(\mathbb{C}^{n+1})$ there exists $\mathfrak{Fl}^I(\mathbb{C}^{n+1}) \in G \cdot X$

Theorem (Cerulli Irelli - Fang - Feigin - Fourier - Reineke, '17)

- ① $\mathfrak{Fl}^I(\mathbb{C}^{n+1})$ is flat if and only if $|I_j| \leq 2$ and $|I_j \cup I_{j+1}| \leq 3$
- ② If $|I_j| \leq 1$, the variety $\mathfrak{Fl}^I(\mathbb{C}^{n+1})$ is irreducible.

X is a projective complex algebraic variety endowed with the action of a torus T

Definition (GKM Variety)

A T variety X is a GKM variety if:

- ① The number of T fixed points and of 1 dimensional T orbits in X is finite
- ② $H^{2i+1}(X) = 0$ for all $i \geq 0$.

Theorem (M.Lanini, A. Pütz, '20)

For every f exists a suitable torus T acting on $X = \mathfrak{Fl}^f(\mathbb{C}^{n+1})$ such that X has a structure of GKM variety.

The Moment Graph $G(X, T)$

Definition

- The vertices of $G(X, T)$ are indexed by the set of fixed points X^T ,
- There is an edge from x to y if x and y are in the same 1 dimensional orbit.

Warning! This is an **unoriented** version of classical moment graph.

Theorem

The cohomology of X can be completely recovered by (the oriented version of) $G(X, T)$.

A Remarkable Example: Feigin Degeneration

Definition (Feigin Degeneration)

$X = \mathfrak{Fl}^f(\mathbb{C}^{n+1})$ such that $\text{rk } f_i = n$ for all i and $\text{Ker } f_1, \dots, \text{Ker } f_{n-1}$ are linearly independent.

Remark

Up to basechange we can choose $f_i = \pi_{\{i+1\}}$

A Remarkable Example: Feigin Degeneration

Definition (Feigin Degeneration)

$X = \mathfrak{Fl}^f(\mathbb{C}^{n+1})$ such that $\text{rk } f_i = n$ for all i and $\text{Ker } f_1, \dots, \text{Ker } f_{n-1}$ are linearly independent.

Remark

Up to basechange we can choose $f_i = \pi_{\{i+1\}}$

Theorem (Cerulli Irelli - Feigin - Reineke)

Let X be the Feigin degeneration. There exists an algebraic group A acting on X and a torus $T \subset A$ such that:

- $X = \sqcup X_p$ where p runs between elements of X^T
- The cell X_p concides with the orbit $A \cdot p$

Quiver Representations

Consider a quiver $Q = (Q_0, Q_1)$ (a finite directed graph).

Definition (Representation M of $Q = (Q_0, Q_1)$ (over \mathbb{C}))

- a family of \mathbb{C} vector spaces $(M_i)_{i \in Q_0}$,
- a sequence of maps $(\varphi_\alpha)_{\alpha \in Q_1}$ such that $\varphi_\alpha \in \text{Hom}_{\mathbb{C}}(M_{s(\alpha)}, M_{t(\alpha)})$.

Definition (Subrepresentation)

A subrepresentation $N \subset M$ is defined by a collection of subspaces $N_i \subset M_i$; compatible with the maps φ_α .

Linear Degenerations and Quiver Representations

The (equioriented) quiver of type A_n

$$1 \longrightarrow 2 \longrightarrow \cdots \longrightarrow n-1 \longrightarrow n$$

Consider $\mathbf{f} = (f_1, \dots, f_{n-1}) \in \text{End}(\mathbb{C}^{n+1})$ and set $M_i = \mathbb{C}^{n+1}$

$$M^{\mathbf{f}} : \quad \mathbb{C}^{n+1} \xrightarrow{f_1} \mathbb{C}^{n+1} \xrightarrow{f_2} \cdots \xrightarrow{f_{n-2}} \mathbb{C}^{n+1} \xrightarrow{f_{n-1}} \mathbb{C}^{n+1},$$

Linear Degenerations and Quiver Representations

The (equioriented) quiver of type A_n

$$1 \longrightarrow 2 \longrightarrow \cdots \longrightarrow n-1 \longrightarrow n$$

Consider $\mathbf{f} = (f_1, \dots, f_{n-1}) \in \text{End}(\mathbb{C}^{n+1})$ and set $M_i = \mathbb{C}^{n+1}$

$$M^{\mathbf{f}} : \quad \mathbb{C}^{n+1} \xrightarrow{f_1} \mathbb{C}^{n+1} \xrightarrow{f_2} \cdots \xrightarrow{f_{n-2}} \mathbb{C}^{n+1} \xrightarrow{f_{n-1}} \mathbb{C}^{n+1},$$

Remark

$$p \in \mathfrak{F}^{\mathbf{f}}(\mathbb{C}^{n+1}) \quad \longleftrightarrow \quad N_p \subset M^{\mathbf{f}}, \dim(N_p)_i = i$$

Euler Formula

Problem: Determining the dimension of the tangent plane at a fixed point p

Theorem (Euler Formula)

$$\dim T_p \mathfrak{F}^l(\mathbb{C}^{n+1}) = \frac{n(n+1)}{2} + \sum \dim \text{Ext}_{Rep(Q)}^1(U_i, U_j)$$

where U_i runs between indecomposables of p and U_j between indecomposables of M/p

Problem 1): classify fixed points

Problem 2): determining the indecomposables of p and M/p

Problem 3): compute $\text{Ext}_{Rep(Q)}^1(p, M/p)$

Coefficient Quivers

Consider M representation of Q and set $B = \sqcup B_i$ where B_i is a basis of M_i .

Definition (Coefficient quiver $Q(M, B)$)

- it has $|B|$ vertices labelled by the elements of B ,
- $v_k^i \rightarrow v_h^j$ iff there exists $\alpha : i \rightarrow j$ and the coefficient of v_h^j in $f_\alpha(v_k^i)$ in a B_j -expansion is non zero.

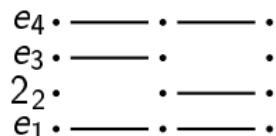


Figure: The Coefficient Quiver of Feigin Degeneration of $\mathfrak{FI}(\mathbb{C}^4)$

Coefficient Quivers

Consider M representation of Q and set $B = \sqcup B_i$ where B_i is a basis of M_i .

Definition (Coefficient quiver $Q(M, B)$)

- it has $|B|$ vertices labelled by the elements of B ,
- $v_k^i \rightarrow v_h^j$ iff there exists $\alpha : i \rightarrow j$ and the coefficient of v_h^j in $f_\alpha(v_k^i)$ in a B_j -expansion is non zero.

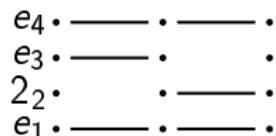


Figure: The Coefficient Quiver of Feigin Degeneration of $\mathfrak{sl}(\mathbb{C}^4)$

Remark

For $X = \mathfrak{sl}(\mathbb{C}^{n+1})$ the connected components of $Q(M^I, B)$ corresponds to indecomposables of M^I .

Recovering the Moment Graph: Fixed Points

Consider $X = \mathfrak{Fr}^I(\mathbb{C}^{n+1})$ and M^I the associated quiver representation

Definition (Successor closed subquiver (for short S.C.S))

Full subquiver Q' of Q such that $v = s(\alpha) \in Q'_0 \Rightarrow t(\alpha) \in Q'_0$.

Recovering the Moment Graph: Fixed Points

Consider $X = \mathfrak{Fr}^I(\mathbb{C}^{n+1})$ and M^I the associated quiver representation

Definition (Successor closed subquiver (for short S.C.S))

Full subquiver Q' of Q such that $v = s(\alpha) \in Q'_0 \Rightarrow t(\alpha) \in Q'_0$.

Theorem

X^T is in bijection with S.C.S. of M^I such that $|Q'_0 \cap B_j| = j$ for all $j \leq n$.

Recovering the Moment Graph: Fixed Points

Consider $X = \mathfrak{Fr}^I(\mathbb{C}^{n+1})$ and M^I the associated quiver representation

Definition (Successor closed subquiver (for short S.C.S))

Full subquiver Q' of Q such that $v = s(\alpha) \in Q'_0 \Rightarrow t(\alpha) \in Q'_0$.

Theorem

X^T is in bijection with S.C.S. of M^I such that $|Q'_0 \cap B_j| = j$ for all $j \leq n$.

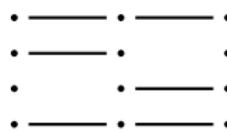
Successor closed subquivers are encoded by sequences of integers.

Definition (Admissible Sequence for $\mathfrak{Fr}^I(\mathbb{C}^{n+1})$)

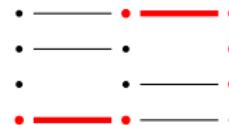
$S = (S_1, \dots, S_n)$, $S_j \subset [n+1]$ such that $|S_j| = j$ and $S_j \subset S_{j+1} \cup I_j$.

Feigin Degeneration Revised

For Feigin Degeneration we have $I_j = \{j + 1\}$.



A fixed point p_S is associated to an admissible family $S = (S_1, \dots, S_n)$ such that $S_j \subset S_{j+1} \cup \{j + 1\}$.



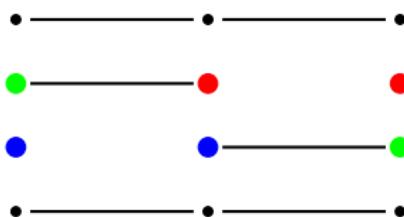
$$S = (\{4\}, \{4, 3\}, \{4, 2, 1\}) \quad S' = (\{1\}, \{1, 4\}, \{4, 3, 2\})$$

Smoothness for Feigin Degeneration

Definition (CIFR Condition)

$S = (S_1, \dots, S_n)$ has the CIFR Condition if for all for $1 \leq h < k \leq n$

$$k \in S_h \Rightarrow h + 1 \in S_k$$

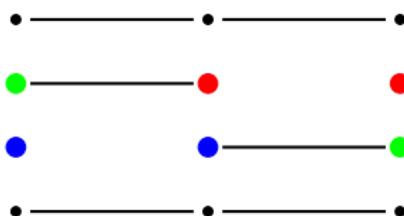


Smoothness for Feigin Degeneration

Definition (CIFR Condition)

$S = (S_1, \dots, S_n)$ has the CIFR Condition if for all for $1 \leq h < k \leq n$

$$k \in S_h \Rightarrow h + 1 \in S_k$$



Theorem

The point ps is smooth if and only if S has the CIFR Condition.

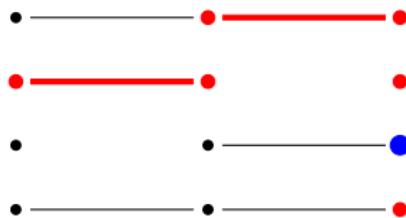
Singularity Sets

$$\text{pos}(t) = \{j \in [n+1] \mid t \in I_j\}$$

Definition

$\text{Sing}_i(Q_S)$ is the set of pairs $(j, h+1)$, $h \in \text{pos}(i)$, $j \notin S_{h+1}$, such that there exists $k \leq h$, $k \in \text{pos}(j)$ satisfying

- ① $i \in S_t \ \forall t$ such that $k \leq t \leq h$
- ② the segment spanned by the vertices $\{v_i^k, \dots, v_i^h\}$ is connected in Q_S .



A Formula for Dimension of Tangent Plane

$$\text{Sing}(Q_S) = \bigsqcup \text{Sing}_i(Q_S)$$

Theorem

$$\dim T_{p_S} \mathfrak{Fl}^I(\mathbb{C}^{n+1}) = \frac{n(n+1)}{2} + |\text{Sing}(Q_S)|.$$

A Formula for Dimension of Tangent Plane

$$\text{Sing}(Q_S) = \bigsqcup \text{Sing}_i(Q_S)$$

Theorem

$$\dim T_{p_S} \mathfrak{Fl}^I(\mathbb{C}^{n+1}) = \frac{n(n+1)}{2} + |\text{Sing}(Q_S)|.$$

- ① Determine $\text{pos}(i)$ for every i
- ② For each $h \in \text{pos}(i)$ determine the set $D(i)$ of $j \notin S_{h+1}$
- ③ For each $j \in D(i)$ determine $D(i)^{\leq h} = \text{pos}(j) \cap \{x \leq h\}$
- ④ Check the two conditions for elements of $D(i)^{\leq h}$

A Complicated Example

$$I = \{\{5\}, \{6\}, \emptyset, \{3, 6\}, \emptyset\}$$

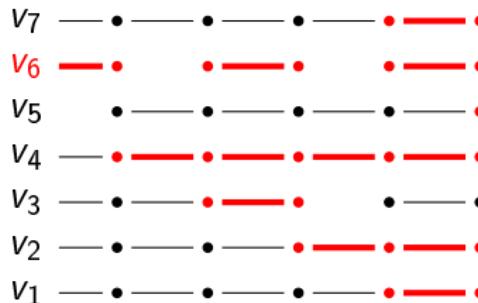


Figure: The quiver Q_S .

$$S = \{\{6\}, \{4, 6\}, \{3, 4, 6\}, \{2, 3, 4, 6\}, \{1, 2, 4, 6, 7\}, \{1, 2, 4, 5, 6, 7\}\}$$

A Complicated Example

$$I = \{\{5\}, \{6\}, \emptyset, \{3, 6\}, \emptyset\}$$

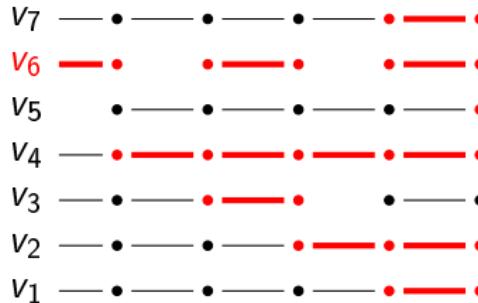


Figure: The quiver Q_S .

$$S = \{\{6\}, \{4, 6\}, \{3, 4, 6\}, \{2, 3, 4, 6\}, \{1, 2, 4, 6, 7\}, \{1, 2, 4, 5, 6, 7\}\}$$

$$|\text{Sing}(Q_S)| = |\text{Sing}_6(Q_S)| + |\text{Sing}_3(Q_S)| = 2 + 1 \Rightarrow \dim T_{p_S} \mathfrak{Fl}(\mathbb{C}^{n+1}) = 24$$

Recovering the Moment Graph: Mutations

Definition (Movable part of Q_S)

A movable part of a linear segment $L \subset Q_S$ is a connected subquiver $L' \subset L$ such that L' has the same starting point of L .

Definition (Mutation)

Consider $Q_S, Q_{S'}$ S.C.S of $Q(M)$, we say that there is a mutation from $Q_{S'}$ to Q_S if Q_S is obtained from $Q_{S'}$ moving exactly one movable part.

Figure: A Mutation from the 4-th line to the 3-rd

Mutations Graphs

Theorem

Consider $p_S \in X^T$. The dimension of tangent plane at p_S is equal to the valence of p_S in $G(X, T)$.

$\text{Mut}_S(i, j)$ is the set of mutations from i -th row of p_S to its j -th row.

Definition (Oriented Mutation (Multi)Graph $\tilde{G}_S = (V(\tilde{G}_S), E(\tilde{G}_S))$)

- ① $V(\tilde{G}_S)$ is the set $\{1, \dots, n+1\}$,
- ② there are exactly $|\text{Mut}_S(i, j)|$ edges oriented from i to j .

We denote by G_S the unoriented underlying graph.

Mutation Graphs: An Example

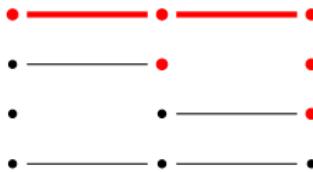


Figure: A Fixed point p_s

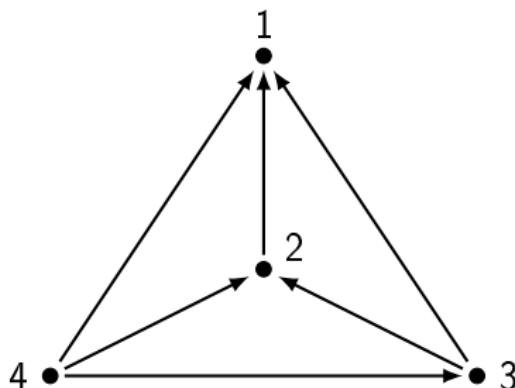
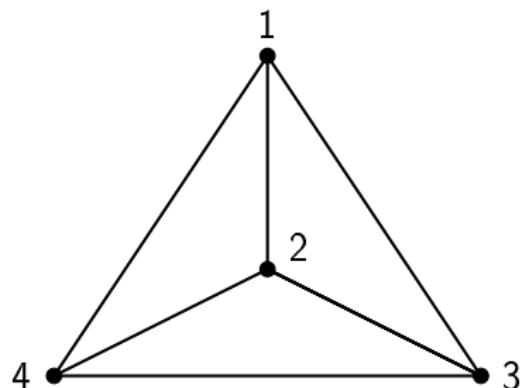


Figure: The oriented and unoriented of mutation graphs of p_s .

Definition (Generalized CIFR Condition)

S has the Generalized CIFR Condition if, for every $i \in [n + 1]$,

$$i \in S_k, k \in \text{pos}(j) \Rightarrow j \in S_{h+1}, \forall h \in \text{pos}(i), h \geq k.$$

Definition (Generalized CIFR Condition)

S has the Generalized CIFR Condition if, for every $i \in [n + 1]$,

$$i \in S_k, k \in \text{pos}(j) \Rightarrow j \in S_{h+1}, \forall h \in \text{pos}(i), h \geq k.$$

Theorem (Smoothness Criteria)

Let $\mathfrak{F}^I(\mathbb{C}^{n+1})$ be a flat degeneration. The following conditions are equivalent:

- ① The point p_S is smooth;
- ② The admissible sequence S has the Generalized CIFR Condition;
- ③ The Mutation graph G_S is the complete graph over $n + 1$ vertices;
- ④ The oriented Mutation graph \tilde{G}_S is a transitive tournament over $n + 1$ vertices;

Thank you for the attention!