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Some classical local-global problems

Burnside Problem (1902): is every finitely generated periodic
group finite?

Kurosh Problem (1940): is every finitely generated algebraic
associative algebra finite-dimensional?
Particular case: is every finitely generated associative nil algebra
finite-dimensional?
The Golod–Shafarevich examples (1964) answer all these questions
in the negative.
It is important to emphasize that their solution of the
group-theoretic problem goes through associative algebras.
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Main objects

We will discuss the Tate–Shafarevich set X(G ) of a group G
and its analogues for Lie algebras and associative algebras.



Tate–Shafarevich set X(G )

Let a group G act on itself by conjugation. The Tate–Shafarevich
set is defined with the help of (nonabelian) group cohomology
corresponding to this action, by the formula

X(G ) := ker[H1(G ,G ) →
∏

C<G cyclic

H1(C ,G )].

The definition and the name are due to Takashi Ono. The
local-global flavour justifies the allusion to the object bearing the
same name which appeared in the arithmetic-geometric context
(related to the action of the absolute Galois group of a number
field K on the group A(K ) of K -points of an abelian K -variety A).
The usage of the Cyrillic letter X (“Sha”) in this notation was
initiated by John Cassels because of its appearance as the first
letter in the surname of Igor Shafarevich.
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Reinterpretation of X(G )

Soon after Ono’s paper appeared in the 1990’s, Marcin Mazur
noticed that X(G ) admits the following interpretation (implicitly,
it is contained in an earlier paper by Chih-han Sah (1968)).

Recall that 1-cocycles Z 1(G ,G ) are none other than crossed
homomorphisms, i.e., maps ψ : G → G with the property

ψ(st) = ψ(s)sψ(t) = ψ(s)sψ(t)s−1.

Then the correspondence ψ(s) 7→ f (s) = ψ(s) · s gives a bijection
between Z 1(G ,G ) and End(G ). Under this correspondence,
1-coboundaries correspond to inner automorphisms. Further, a
1-cocycle whose cohomology class becomes trivial after restriction
to every cyclic subgroup corresponds to a locally inner (=pointwise
inner=class preserving) endomorphism, i.e., f ∈ End(G ) with the
property f (g) = a−1ga (where a depends on g).
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Reinterpretation of X(G )

Note that any class preserving endomorphism is injective. Hence, if
G is finite, it is surjective, and we arrive at the object introduced
by Burnside more than 100 years ago:

X(G ) ∼= Autc(G )/Inn(G ),

where Autc(G ) stands for the group of class-preserving
automorphisms of G .

William Burnside (1852–1927)
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In my survey “Local-global invariants of finite and infinite groups:
Around Burnside from another side”, Expo. Math., 2013 (see also
an earlier survey by Manoi Yadav), one can find many classes of
groups G with trivial X(G ) (they are called there X-rigid) as
well as some interesting examples with nontrivial X(G ) (they
often give rise to counter-examples to some difficult problems, such
as Higman’s problem on isomorphism of integral group rings).



Lie-algebraic analogue

Let g be a (finite-dimensional) Lie algebra over a field k of
characteristic 0.

Ono’s cohomological definition of X(G ) paves a
natural way to a similar definition for Lie algebras. It is known that
the Chevalley–Eilenberg adjoint cohomology H1(g, g) can be
interpreted as the algebra of outer derivations Der(g)/Inn(g). So
define

X(g) := AID(g)/Inn(g),

where

AID(g) := {D ∈ Der(g) | (∀X ∈ g) (∃Z ∈ g) D(X ) = [Z ,X ]}

(with Z depending on X ) stands for the algebra of “almost inner
derivations”.
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Lie-algebraic analogue

The notion of almost inner derivation was introduced by Carolyn
Gordon and Edward Wilson in 1984 in the differential-geometric
context, allowing them to produce a continuous family of
isospectral non-isometric compact Riemann manifolds.

Recently,
the interest to these Lie-algebraic structures was revived in the
series of papers by Farshid Saeedi and his collaborators
(2015–2017), and also in the series of papers by Dietrich Burde,
Karel Dekimpe and Bert Verbecke (2018–2020).
Many properties of X(G ) and X(g) are known to be quite
similar.
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Some parallels

Say, the smallest group G with nontrivial X(G ) is of order
32 = 25 (G. E. Wall, 1947), and the smallest dimension of g with
nontrivial X(g) is 5.

X(G ) = 0 for all finite simple groups G (Walter Feit and Gary
Seitz, 1989, uses classification).
X(g) = 0 for any finite-dimensional simple Lie algebra over a field
of characteristic zero (because such an algebra does not have outer
derivations at all according to first Whitehead’s lemma).
It would be interesting to transfer other properties of X(G ) to
X(g). Say, it is conjectured that X(G ) is always solvable; what
about X(g)? It is known that X(G ) may be nonabelian, the
smallest example is of order 215 (Sah, 1968); what about X(g)?
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Some more parallels

Fact. For any group G the group Autc(G ) is a normal subgroup of
Aut(G ).

Question. (Burde–Dekimpe–Verbecke, 2018)
Given a finite-dimensional Lie algebra L, is AID(g) an ideal of
Der(g)?
If this question is answered in the affirmative, we conclude that
X(g) is an ideal of OutDer(g).
So far, this question is wide open. The next result can be viewed
as a first step.
Theorem. Let g be a finite-dimensional nilpotent Lie algebra over
k = C. Then AID(g) is an ideal of Der(g), and hence X(g) is an
ideal of OutDer(g).
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Sketch of proof

Step 1. Note that since g is nilpotent, it is algebraic, i.e. there
exists an affine algebraic k-group G such that g = Lie(G ).

Step 2. Denote N := Aut(G ), the group of automorphisms of G .
It has a structure of an algebraic group, and we have an
isomorphism of Lie algebras Lie(N) ∼= Der(g).
Step 3. H := Autc(G ) is a closed normal subgroup of N.
Step 4. By Step 3, H is an affine algebraic group. Then Lie(H) is
an ideal of Der(g).
Step 5. We have an isomorphism Lie(H) ∼= AID(g). By Step 4,
this finishes the proof.
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Associative algebras: derivations

Recall that a derivation D : A → M is a k-linear map such that

D(ab) = D(a)b + aD(b)

for all a, b ∈ A. For a given m ∈ M, the map

Dm : A → M, m 7→ am −ma,

is a derivation. Such derivations are called inner. We denote by
Der(A,M) the set of all derivations and by ad(A,M) the set of all
inner derivations. Clearly, they are both vector k-spaces, and
ad(A,M) is a k-subspace of Der(A,M). Let
OutDer(A,M) = Der(A,M)/ ad(A,M) denote the quotient space.
It is well known that OutDer(A,M) is isomorphic to the first
Hochschild cohomology HH1(A,M).



Associative algebras: derivations

In the special case M = A we abbreviate the notation Der(A,A),
ad(A,A) and OutDer(A,A) to Der(A), ad(A) and OutDer(A),
respectively. The first two spaces acquire a natural Lie algebra
structure defined by the Lie bracket [D,D ′] = DD ′ −D ′D, ad(A) is
a Lie ideal of Der(A), hence OutDer(A) also carries a Lie algebra
structure. This Lie algebra is isomorphic to the Hochschild
cohomology HH1(A).



Associative algebras: additive X(A)

Set

AID(A,M) := {D ∈ Der(A,M) | (∀a ∈ A) (∃m ∈ M)D(a) = am−ma}.

(Here m may depend on a.) We call elements of AID(A,M) almost
inner derivations of A with coefficients in M.

Clearly, AID(A,M) is a subspace of Der(A,M), ad(A,M) is a
subspace of AID(A,M), and we define

Xadd(A,M) := AID(A,M)/ ad(A,M).

It is a subspace of OutDer(A,M).
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Associative algebras: additive X(A)

As above, in the particular case M = A we shorten AID(A,M) and
Xadd(A,M) to AID(A) and Xadd(A), respectively. One can show
that AID(A) inherits the Lie algebra structure from Der(A).

Clearly, ad(A) is a Lie ideal in AID(A), and hence Xadd(A) also
carries a natural Lie algebra structure.
We call Xadd(A) the additive Tate–Shafarevich algebra of A.
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Associative algebras: additive X(A)

Once a new object is introduced, the first question to ask is
whether it can be nontrivial. It is not hard to construct an
associative algebra A with nonzero Xadd(A). Here is a ‘generic’
construction suggested by Leonid Makar-Limanov (a similar
construction was communicated by Alexei Kanel-Belov).

Take a non-commutative algebra A with an infinite set S of
generators and finitary multiplication table, i.e. such that only a
finite number of generators do not commute with any given
generator. Let m denote a formal infinite sum of elements of A
such that every generator appears only in a finite number of
summands of m. Then the map Dm : A → A, a 7→ am −ma, is
well-defined and is a derivation of A. Clearly, this derivation is
almost inner but not inner, so that Xadd(A) ̸= 0.
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Associative algebras: additive X(A)

Our further goal is to exhibit a finitely generated algebra A with
Xadd(A) ̸= 0. Towards this end, consider A = U(g) where g is a
Lie algebra, and U(g) is its universal enveloping algebra. Any
g-bimodule M has a unique structure of a U(g)-bimodule.

Lemma.

(i) For any g-bimodule M the vector k-spaces Xadd(U(g),M)
and X(g,M) are isomorphic.

(ii) The Lie algebras Xadd(U(g)) and X(g,U(g)) are
isomorphic.

Corollary. There exist finitely generated associative algebras A
with Xadd(A) ̸= 0.
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Associative algebras: additive X(A)

The algebra U(g) is infinite-dimensional, so the next step is to look
for finite-dimensional associative algebras A with Xadd(A) ̸= 0.

Somewhat degenerate examples arise from the following
observation: a Lie algebra g is associative if and only if it is
two-step nilpotent. As examples of two-step nilpotent Lie algebras
g with X(g) ̸= 0 can be produced in abundance, we obtained the
needed associative algebras A for free. Note, however, that the
obtained associative algebras are obviously not unital. To repair
this, one can use a standard procedure of adjoining the unit to get
a unital algebra Ã := k ⊕ A for which we have
Xadd(Ã) = Xadd(A) ̸= 0.
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Associative algebras: additive X(A)

It is tempting to use the same examples of finite-dimensional
nilpotent Lie algebras g with nonzero X(g) to construct ‘genuine’
examples of finite-dimensional associative algebras A with nonzero
Xadd(A).

Genuine examples we are looking for cannot be too small: if
dim(A) ≤ 4, then Xadd(A) = 0.



Associative algebras: additive X(A)

It is tempting to use the same examples of finite-dimensional
nilpotent Lie algebras g with nonzero X(g) to construct ‘genuine’
examples of finite-dimensional associative algebras A with nonzero
Xadd(A).
Genuine examples we are looking for cannot be too small: if
dim(A) ≤ 4, then Xadd(A) = 0.



Multiplicative X(A)

Let G = Autk(A) be the group of all k-algebra automorphisms of
A. In the sequel, we shorten Autk(A) to Aut(A). Let A× denote
the group of invertible elements of A. Denote by Inn(A) the group
of inner automorphisms of A. Recall that φ ∈ Inn(A) if there exists
a ∈ A× such that φ(x) = axa−1. Inn(A) is a normal subgroup of
Aut(A).

Define

AIAut(A) := {φ ∈ Aut(A) | (∀x ∈ A) (∃a ∈ A×)φ(x) = axa−1}.

(Here a may depend on x .) We call elements of AIAut(A) almost
inner automorphisms of A.
Clearly, Inn(A) is a normal subgroup of AIAut(A).
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Multiplicative X(A)

The group
Xmult(A) := AIAut(A)/Inn(A)

is called the multiplicative Tate–Shafarevich group of A.
As in the additive set-up, we first make sure that there exist A
with Xmult(A) ̸= 0 by providing an example (the following version
is due to Be’eri Greenfeld).

Let A be the algebra of (countably) infinite matrices S over k
which are eventually scalar (namely, for i + j ≫ 1,S(i , j) = λδi ,j
for some λ ∈ k). Consider the automorphism of A induced by
conjugation by an infinite diagonal matrix diag(λ1, λ2, . . . ) with
distinct nonzero λi ’s. This is an almost inner automorphism of A
which is not inner. Hence Xmult(A) ̸= 0.
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Multiplicative X(A)

Both additive and multiplicative examples are reminiscent of a
similar well-known construction arising in the group-theoretic
set-up. Namely, let G = FSym(Ω) be a finitary symmetric group
(the group of all permutations of an infinite set Ω fixing all but
finitely many elements of Ω). Viewing G as a subgroup of the
symmetric group Sym(Ω), consider an automorphism φ : G → G
induced by conjugation by some a ∈ Sym(Ω) \ FSym(Ω). Clearly,
φ is almost inner but not inner. Actually, in this case
AIAut(G )/Inn(G ) is isomorphic to the infinite simple group
FSym(Ω)/Sym(Ω) (this observation is attributed to Passman), and
X(G ) is even larger because there are non-surjective almost inner
endomorphisms.



Multiplicative X(A)

As in the additive set-up, we are interested in exhibiting examples
of finitely generated (or even finite-dimensional) algebras A with
nontrivial Xmult(A).
In the case A = U(g), we did not succeed in presenting an example
of g with Xmult(U(g)) ̸= 0.



Multiplicative X(A)

Consider finite-dimensional algebras A. In this case, G can be
equipped with a structure of an affine algebraic k-group (not
necessarily connected). Let GA denote its identity component, it is
a closed, connected, normal subgroup of finite index in G .

Since
the field k is of characteristic zero, the Lie algebra Der(A) is
isomorphic to Lie(G ) = Lie(GA). The group of inner
automorphisms Inn(A) is a closed, connected, normal subgroup of
G , so that the group of outer automorphisms Out(A) = G/Inn(A)
is well defined and also acquires the structure of an affine algebraic
k-group, and we have an isomorphism of Lie algebras
Lie(Out(A)) ∼= OutDer(A).
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Multiplicative X(A)

Recently, this structure attracted considerable attention, being an
invariant of the derived equivalence class of A and being related to
representation theory, in particular, to the representation type of A.
It would be interesting to understand whether one can use the
multiplicative and additive X(A) in this circle of problems. First,
one has to answer some basic questions. Recall that we assume A
to be a finite-dimensional associative unital algebra over an
algebraically field k of characteristic zero.



Multiplicative X(A)

Lemma. AIAut(A) is a normal subgroup of GA.

Question. Is AIAut(A) a closed subgroup of GA?
We see no reason to have an affirmative answer for an arbitrary
algebra A.
Clearly, Inn(A) is a closed, connected, normal subgroup of Aut(A),
so that if for a certain algebra A the above question is answered in
the affirmative, then Xmult(A) becomes a closed subgroup of
Out(A), thus acquiring the structure of an affine algebraic k-group.
This gives rise to the following observation.
Lemma. Suppose that AIAut(A) a closed subgroup of Aut(A).
Then the Lie algebras Lie(Xmult(A)) and Xadd(A) are
isomorphic.
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Multiplicative X(A)

Thus, under the assumptions of the lemma, any eventual example
of an algebra A with nonzero X(A), either additive or
multiplicative, would immediately yield a required example for the
other structure.
Here is an important special case.

Theorem. Assume in addition that the algebraic k-group GA is
nilpotent. Then

(i) AIAut(A) is a closed normal subgroup of GA with Lie algebra
AID(A);

(ii) the Lie algebras Lie(Xmult(A)) and Xadd(A) are isomorphic.
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Concluding parallels

Main vague parallels arise from looking at X(G ) of finite groups
G . Throughout we assume that g is a finite-dimensional Lie
algebra and A is a finite-dimensional associative unital algebra.

Question.

(i) Does there exist g such that the algebra X(g) is non-abelian?

(ii) Does there exist A such that the algebra Xadd(A) is
non-abelian?

(iii) Does there exist A such that the group Xmult(A) is
non-abelian?

Recall that Sah disproved Burnside’s statement and exhibited
examples of p-groups G with non-abelian X(G ), the smallest
among them is a group of order 215.
Our working hypothesis is that all these questions are answered in
the affirmative.
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Concluding parallels

Question.

(i) Does there exist g such that the algebra X(g) is
non-solvable?

(ii) Does there exist A such that the algebra Xadd(A) is
non-solvable?

(iii) Does there exist A such that the group Xmult(A) is
non-solvable?

Here we would rather expect that all Tate–Shafarevich algebras
and groups appearing in these questions are solvable. Note that
even in the case of finite groups G only a conditional statement is
available. Sah’s proof of the solvability contains a gap noticed by
Murai who showed that the validity of this assertion depends on
the Alperin–McKay conjecture.
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Eventual generalizations

It is tempting to extend the above notions to other algebraic
structures for which there exists a developed cohomology theory,
with a goal to define, explore and apply analogues of
Tate–Shafarevich sets to relevant problems of the corresponding
research area.

One has to try to equip these sets, if possible, with
an additional structure (group or algebra). Also, it is very desirable
to include the structure under consideration in a relevant triad, if
such exists, similarly to the classical triad consisting of Lie
algebras, associative algebras and groups. Here are possible
instances of such an approach.
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Eventual generalizations

• Malcev algebras
Malcev algebras arise from Lie algebras when one relaxes the
Jacobi identity replacing it with a weaker condition, and keeps the
anti-commutativity. One can start with derivations of such an
algebra M and introduce almost inner derivations.

The arising set
X(M) carries a structure of vector space but not necessarily a
structure of Lie algebra. The relevant triad to be considered should
include alternative algebras (as a substitute for associative
algebras) and Moufang loops (as a substitute for groups). Note
that analogues of Lie theorems in this set-up are available
(Kuz’min, Grishkov, Kerdman). As in the classical case, the Lie
correspondence works particularly well in the nilpotent case
(Grishkov–Rasskazova–Sabinina–Salim, 2021).
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Eventual generalizations

• Leibniz algebras
Leibniz algebras arise from Lie algebras in an opposite way, when
one keeps the Jacobi identity and drops the anti-commutativity
condition. Here there is a well-developed (co)homology theory
(Loday, Pirashvili), and the Leibniz adjoint cohomology HL1(L, L)
of a Leibniz algebra L is isomorphic to the space of outer
derivations of L. One then can introduce almost inner derivations
and X(L) as in the case of Lie algebras. Adashev and Kurbanbaev
(2020) provided examples of L with nonzero X(L).

The eventual
triad should include dialgebras (Loday) as a substitute for
associative algebras and so-called ‘coquecigrues’ (Loday,
Jibladze–Pirashvili), whose existence is known for several classes of
Leibniz algebras and an analogue of Lie theory is established.
Hopefully, X(L) may reveal some related geometric phenomena.
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Eventual generalizations

• Poisson algebras
Recall that a Poisson algebra A is equipped with structures of
associative algebra and Lie algebra which are related by the Leibniz
identity. The Poisson adjoint cohomology H1

π(A) is isomorphic to
the quotient Derπ(A)/Ham(A), where Derπ(A) is the Lie algebra
of Poisson derivations (i.e. derivations of both associative and Lie
structures) and Ham(A) is the ideal of Hamiltonian derivations. As
in the preceding cases, we can introduce almost inner derivations
and define X(A). Here one can hope to use the Duflo
isomorphism (Pevzner–Torossian) for establishing connections and
analogies with other versions of X. We hope that this object
admits a conceptual interpretation within the frame of Poisson
geometry.

But this is another story...
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