

The «Magic Star» projection

Exceptional Structures and Vinberg Algebras

Alessio Marrani

*“Maria Zambrano” Distinguished Research Fellow
Universidad de Murcia, Spain*

Lie Theory in Prato, Monash University Center, Prato, Italy, January 10 2023

The «Magic Star» projection

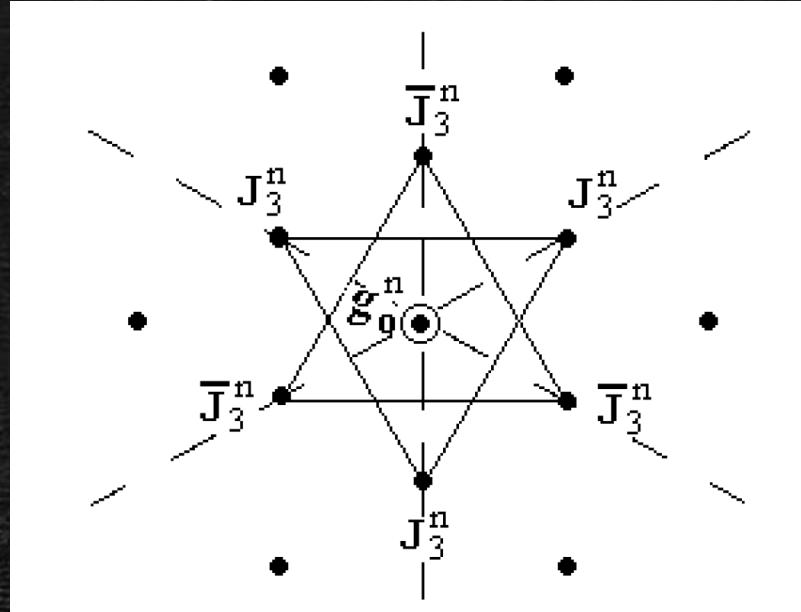
- the unifying **Magic Star (MS)** projection/embedding for exceptional Lie algebras
- the spin-factor embedding for exceptional Lie algebras
- **Exceptional Periodicity (EP)** and the **MS** projection : beyond e8
- (rank 3) Vinberg's **HT-algebras** and their invariant structure
- EP algebras are **not** Lie algebras, but then *what are they?*
- *Further developments (work in progress...)*

Refs : Truini '12, AM, Truini '14, Truini, AM, Rios '17-'19, Truini, de Graaf, AM, '23 *to appear...*

main Ref : Truini, Rios, AM, *Contemporary Mathematics* **721**, AMS (2019)

the Magic Star (MS) projection/embedding for exceptional Lie algebras

Mukai '96,
Truini '12



8D \rightarrow 2D MS projection in root lattice
(not unique)

$$L^n = \mathbf{a}_2 \oplus \text{str}_0(J_3^n) \oplus 3 \times J_3^n \oplus \overline{3} \times \overline{J_3^n},$$

for the (compact, real form of the) exceptional sequence

n	8	4	2	1	0	-2/3	-1
L^n	$e_{8(-248)}$	$e_{7(-133)}$	$e_{6(-78)}$	$f_{4(-52)}$	$so(8)$	$g_{2(-14)}$	$su(3)$
$\text{str}_{0,c}$	$e_{6(-78)}$	$su(6)$	$su(3) \oplus su(3)$	$su(3)$	$u(1) \oplus u(1)$	-	-

The relevant (non-compact) real form for application to (super)gravity reads

$$L^n = \text{sl}(3, \mathbb{R}) \oplus \text{str}_0(J_3^n) \oplus 3 \times J_3^n \oplus 3' \times J_3^{n'}$$

$$L^n = \text{qconf}(J_3^n) \quad \text{AM, Truini '14} \quad D=(4+1)_M \text{ U-duality}$$

D=(2+1)_M electric-magnetic (U-)duality symmetry

[a particular case of the so-called **super-Ehlers embedding** :
Ferrara, AM, Zumino '12, Ferrara, AM, Trigiante '12]

$$J = \sum_{I=1}^n q^I e_I = \begin{pmatrix} r_1 & A_1 & \overline{A}_2 \\ \overline{A}_1 & r_2 & A_3 \\ A_2 & \overline{A}_3 & r_3 \end{pmatrix} \quad r_i \in \mathbb{R}, A_i \in \mathbb{A}$$

Jordan, Von Neumann, Wigner '34

J_3 is a simple, rank-3, Euclidean Jordan algebra,
realized as the set of 3x3 Hermitian matrices over
a division (or split) normed (Hurwitz) algebra.
[for g_2 , this is simply \mathbb{R} ; for $su(3)$, it is trivially the empty set]

1902-1980

From the symmetry of the **Freudenthal-Rosenfeld-Tits Magic Square**, e_6 is both the str_o of $J_3(O)$ and the qconf of $J_3(C)$, one can apply the MS embedding **twice**, and get the simple characterization of e_8 : **Truini '12**

$$\begin{aligned}
 e_8 &= a_2^c + (3, J_3^8) + (\bar{3}, \bar{J}_3^8) + \text{Der}_o(J_3^8, \bar{J}_3^8) \\
 &= a_2^c + (3, J_3^8) + (\bar{3}, \bar{J}_3^8) + a_2^f + (3, J_3^2) + (\bar{3}, \bar{J}_3^2) + \text{Der}_o(J_3^2, \bar{J}_3^2) \\
 &= a_2^c + (3, J_3^8) + (\bar{3}, \bar{J}_3^8) + a_2^f + (3, J_3^2) + (\bar{3}, \bar{J}_3^2) + a_2^{(1)} + a_2^{(2)}
 \end{aligned}$$

In fact (relevant nc, real forms)

$$\text{qconf}(\mathfrak{J}_3^{\mathbb{O}}) = \mathfrak{e}_{8(-24)}; \text{str}_0(\mathfrak{J}_3^{\mathbb{O}}) = \mathfrak{e}_{6(-26)} \sim \mathfrak{sl}(3, \mathbb{O})$$

$$\mathfrak{e}_{8(-24)} = \mathfrak{sl}(3, \mathbb{R}) \oplus \mathfrak{e}_{6(-26)} \oplus \mathbf{3} \times \mathbf{27} \oplus \mathbf{3}' \times \mathbf{27}'$$

$$\text{qconf}(\mathfrak{J}_3^{\mathbb{O}_s}) = \mathfrak{e}_{8(8)}; \text{str}_0(\mathfrak{J}_3^{\mathbb{O}_s}) = \mathfrak{e}_{6(6)} \sim \mathfrak{sl}(3, \mathbb{O}_s)$$

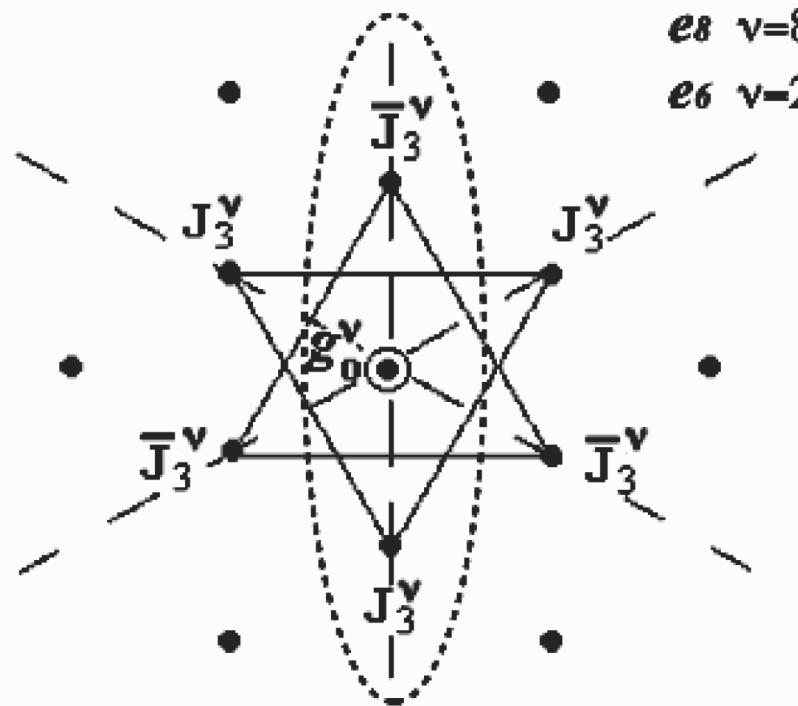
$$\mathfrak{e}_{8(8)} = \mathfrak{sl}(3, \mathbb{R}) \oplus \mathfrak{e}_{6(6)} \oplus \mathbf{3} \times \mathbf{27} \oplus \mathbf{3}' \times \mathbf{27}'$$

$$\text{qconf}(\mathfrak{J}_3^{\mathbb{C}}) = \mathfrak{e}_{6(2)}; \text{str}_0(\mathfrak{J}_3^{\mathbb{C}}) = \mathfrak{sl}(3, \mathbb{C})$$

$$\mathfrak{e}_{6(2)} = \mathfrak{sl}(3, \mathbb{R}) \oplus \mathfrak{sl}(3, \mathbb{C}) \oplus \mathbf{3} \times (\mathbf{3}, \bar{\mathbf{3}}) \oplus \mathbf{3}' \times (\bar{\mathbf{3}}, \mathbf{3})$$

$$\text{qconf}(\mathfrak{J}_3^{\mathbb{C}_s}) = \mathfrak{e}_{6(6)} = \text{str}_0(\mathfrak{J}_3^{\mathbb{O}_s}); \text{str}_0(\mathfrak{J}_3^{\mathbb{C}_s}) = \mathfrak{sl}(3, \mathbb{R}) \oplus \mathfrak{sl}(3, \mathbb{R}) \sim \mathfrak{sl}(3, \mathbb{C}_s)$$

$$\mathfrak{e}_{6(6)} = \mathfrak{sl}(3, \mathbb{R}) \oplus \mathfrak{sl}(3, \mathbb{R})_I \oplus \mathfrak{sl}(3, \mathbb{R})_{II} \oplus \mathbf{3} \times (\mathbf{3}, \mathbf{3}') \oplus \mathbf{3}' \times (\mathbf{3}', \mathbf{3})$$



FTS (left) and KP (right) within e_8

FTS = Freudenthal triple system

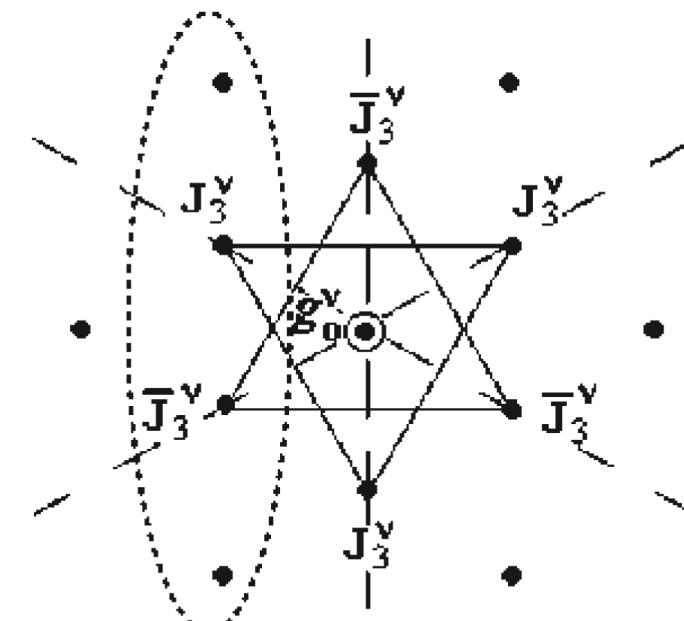
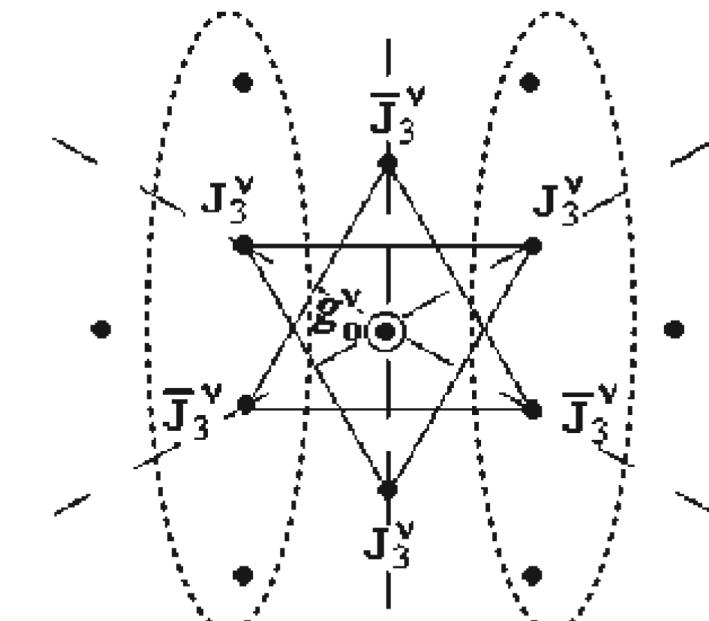
Freudenthal '59

KP = Kantor pair

Allison, Faulkner, Smirnov '17

e_7 (resp. a_5) as 3-graded inside e_8 (resp. e_6)

1905-1990



the spin-factor embedding for exceptional Lie algebras

maximal Jordan algebraic
embedding

$$\mathbf{J}_3^n \supset \mathbb{R} \oplus \mathbf{J}_2^n \quad \begin{array}{l} n = \dim_{\mathbb{R}} \mathbb{A} = 1, 2, 4, 8 \text{ for } \mathbb{A} = \mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O} \\ \mathbf{J}_2^n \approx \Gamma_{1,n+1} \end{array}$$

$\Gamma_{m,n}$ is a Jordan algebra with a quadratic form of signature (m, n) ,
i.e. the Clifford algebra of $O(m, n)$

$$\mathbf{J}_3^n \ni J = \begin{pmatrix} r_1 & A_1 & \bar{A}_2 \\ \bar{A}_1 & r_2 & A_3 \\ A_2 & \bar{A}_3 & r_3 \end{pmatrix} \mapsto J' = \begin{pmatrix} r_1 & A_1 & 0 \\ \bar{A}_1 & r_2 & 0 \\ 0 & 0 & r_3 \end{pmatrix} \in \mathbb{R} \oplus \mathbf{J}_2^n \quad \begin{array}{l} r_1 := x_+ + x_-, \quad r_2 := x_+ - x_- \\ \text{2D lightcone coords.} \end{array}$$

In the case $n=8$ (octonions \mathbb{O}), this implies various embeddings for the relevant symmetry algebras :

$$\mathfrak{der} : f_{4(-52)} = so(9) \oplus \mathbf{16}$$

[analogous treatment can be given for $n=1(\mathbb{R})$, $n=2(\mathbb{C})$ and $n=4(\mathbb{H})$,
but it yields exceptional Lie algebras only in some cases]

$$\mathfrak{str}_0 : e_{6(-26)} = \begin{cases} \mathbf{16}'_{-\alpha} \oplus (so(1, 9) \oplus so(1, 1))_0 \oplus \mathbf{16}_\alpha \\ \quad \text{or} \\ \mathbf{16}_{-\alpha} \oplus (so(1, 9) \oplus so(1, 1))_0 \oplus \mathbf{16}'_\alpha \end{cases} \quad \begin{array}{l} \text{3-grading} \\ \text{[with spinor polarization (s.p.)]} \end{array} \quad \text{Minchenko '06}$$

$$\mathfrak{conf} : e_{7(-25)} = \begin{cases} (so(2, 10) \oplus sl(2, \mathbb{R})) \oplus (\mathbf{32}^{(\prime)}, 2) = \\ \mathbf{1}_{-2\alpha} \oplus \mathbf{32}_{-\alpha}^{(\prime)} \oplus (so(2, 10) \oplus so(1, 1))_0 \oplus \mathbf{32}_\alpha^{(\prime)} \oplus \mathbf{1}_{2\alpha} \end{cases} \quad \begin{array}{l} \text{5-grading} \\ \text{(contact type)} \\ \text{[with s.p.]} \end{array}$$

$$\mathfrak{qconf} : e_{8(-24)} = so(4, 12) \oplus \mathbf{128}^{(\prime)} = \begin{cases} \mathbf{14}_{-2\alpha} \oplus \mathbf{64}'_{-\alpha} \oplus (so(3, 11) \oplus so(1, 1))_0 \oplus \mathbf{64}_\alpha \oplus \mathbf{14}_{2\alpha} \\ \quad \text{or} \\ \mathbf{14}_{-2\alpha} \oplus \mathbf{64}_{-\alpha} \oplus (so(3, 11) \oplus so(1, 1))_0 \oplus \mathbf{64}'_\alpha \oplus \mathbf{14}_{2\alpha} \end{cases}$$

Exceptional Periodicity (EP) and the Magic Star (MS) projection : beyond e8

Truini, Rios, Marrani '17

By exploiting **Bott periodicity** for spinor bundles, the following definitions of (exceptional) **EP algebras** can be put forward :

$$f_{4(-52)}^{(N)} : = so(9 + 8N) \oplus \psi_{\mathfrak{b}_{4+4N}}$$

$$\psi_{\mathfrak{b}_{4+4N}} \equiv 2^{4+4N} \text{ real spinor of } so(9 + 8N) \equiv \mathfrak{b}_{4+4N}$$

$N \in \mathbb{N}$ (EP level)

3-grading [with s.p.]

$$e_{6(-26)}^{(N)} : = \begin{cases} \psi'_{\mathfrak{d}_{5+4N}, -\alpha} \oplus (so(1, 9 + 8N) \oplus so(1, 1))_0 \oplus \psi_{\mathfrak{d}_{5+4N}, \alpha} \\ \text{or} \\ \psi_{\mathfrak{d}_{5+4N}, -\alpha} \oplus (so(1, 9) \oplus so(1, 1))_0 \oplus \psi'_{\mathfrak{d}_{5+4N}, \alpha} \end{cases}$$

$$\psi_{\mathfrak{d}_{5+4N}} \equiv 2^{4+4N} \text{ Majorana Weyl (MW) real chiral (semi)spinor of } so(1, 9 + 8N) \equiv (nc, \text{real form of}) \mathfrak{d}_{5+4N}$$

$$e_{7(-25)}^{(N)} : = \begin{cases} (so(2, 10 + 8N) \oplus sl(2, \mathbb{R})) \oplus \left(\psi_{\mathfrak{d}_{6+4N}}^{(')}, \mathbf{2} \right) = \\ \mathbf{1}_{-2\alpha} \oplus \psi_{\mathfrak{d}_{6+4N}, -\alpha}^{(')} \oplus (so(2, 10 + 8N) \oplus so(1, 1))_0 \oplus \psi_{\mathfrak{d}_{6+4N}, \alpha}^{(')} \oplus \mathbf{1}_{2\alpha} \end{cases}$$

$$\psi_{\mathfrak{d}_{6+4N}} \equiv 2^{5+4N} \text{ real chiral (semi)spinor of } so(2, 10 + 8N) \equiv (nc, \text{real form of}) \mathfrak{d}_{6+4N}$$

[g_2 does **not** enjoy an analogous EP-generalization; we will **not** be considering it henceforth] 5-grading (contact type) [with s.p.]

[**Nota Bene** : analogous EP-generalizations can be considered for *all other nc, real forms*]

in particular, $e8(-24)$ is EP-generalized as follows :

$$\begin{aligned}
 e_{8(-24)}^{(N)} &= so(4, 12 + 8N) \oplus \psi_{\mathfrak{d}_{8+4N}}^{(\prime)} \\
 &= \begin{cases} (\mathbf{14} + 8\mathbf{N})_{-2\alpha} \oplus \psi'_{\mathfrak{d}_{7+4N}, -\alpha} \oplus (so(3, 11 + 8N) \oplus so(1, 1))_0 \oplus \psi_{\mathfrak{d}_{7+4N}, \alpha} \oplus (\mathbf{14} + 8\mathbf{N})_{2\alpha} \\ \text{or} \\ (\mathbf{14} + 8\mathbf{N})_{-2\alpha} \oplus \psi_{\mathfrak{d}_{7+4N}, -\alpha} \oplus (so(3, 11 + 8N) \oplus so(1, 1))_0 \oplus \psi'_{\mathfrak{d}_{7+4N}, \alpha} \oplus (\mathbf{14} + 8\mathbf{N})_{2\alpha} \end{cases} \\
 \psi_{\mathfrak{d}_{8+4N}} &\equiv 2^{7+4N} \text{ real chiral (semi)spinor of } so(4, 12 + 8N) \equiv (nc, \text{real form of}) \ \mathfrak{d}_{8+4N} \\
 \psi_{\mathfrak{d}_{7+4N}} &\equiv 2^{6+4N} \text{ real chiral (semi)spinor of } so(3, 11 + 8N) \equiv (nc, \text{real form of}) \ \mathfrak{d}_{7+4N}
 \end{aligned}$$

5-grading (extended Poincaré type) [with **s.p.**]

So far, this is just a bunch of definitions, exploiting Bott periodicity.

However, we anticipate that **EP algebras are not non-reductive Lie algebras!** (see further below)

[explicit construction in terms of roots and lattices can be found in **Truini, Marrani, Rios '17, '18, using Kac's asymmetry function**]

Consistently, for **N=0** EP algebras yield finite-dimensional **exceptional Lie algebras**.

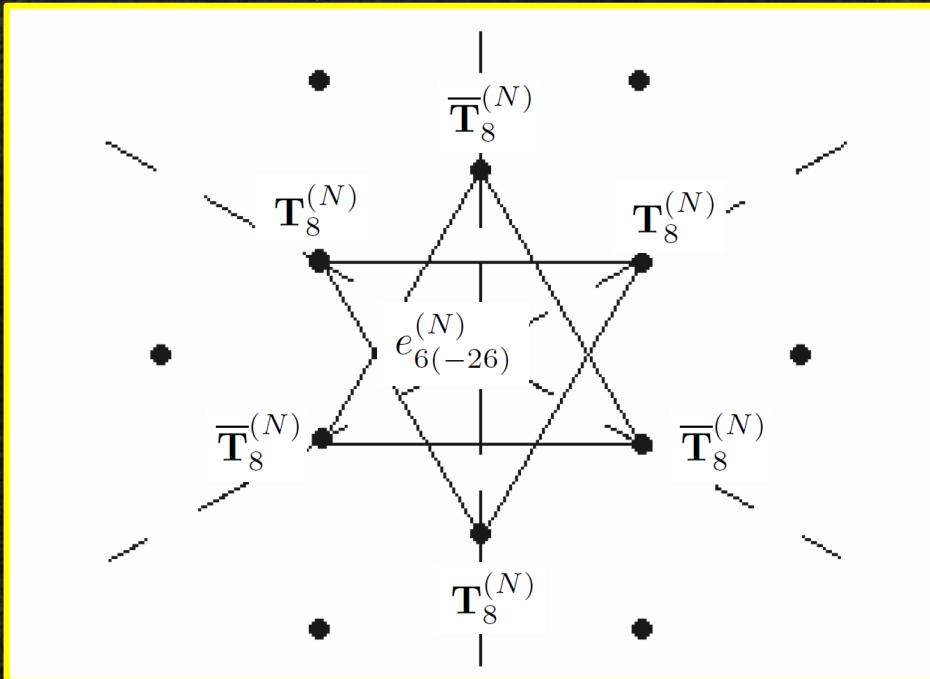
key result :

Truini, AM, Rios '17

There exists a (*non-unique*) a2 – projection/embedding of EP algebras, such that the **MS structure persists**, with **generalizations of rank-3 simple Jordan algebras** appearing on the six tips of the MS!

For simplicity's sake, let us consider the EP-generalization $e8(-24)^{(N)}$ of $e8(-24)$:

Essentially due to the **symmetry** between the fourth row and the fourth column of the **FRT Magic Square**, the cases of (the EP-generalization of) $f_4, e6, e7, e8$ correspond to $n=1(\mathbf{R}), 2(\mathbf{C}), 4(\mathbf{H})$ and $8(\mathbf{O})$, resp.

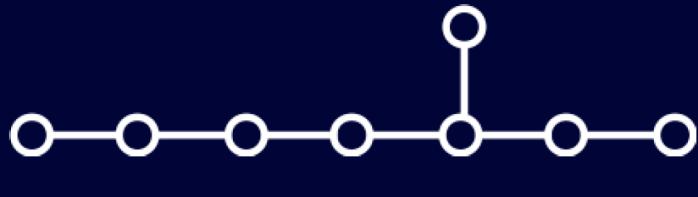


$(8+4N)D \rightarrow 2D$ MS projection of EP algebra $e8(-24)^{(N)}$
in «generalized» root lattice (Truini, AM, Rios '17)

At the level of **Dynkin diagrams** and **Cartan matrices** (and their generalization) :

$$C_{e_8} = \begin{pmatrix} 2 & -1 & & & & & & \\ -1 & 2 & -1 & & & & & \\ & -1 & 2 & -1 & & & & \\ & & -1 & 2 & -1 & & & -1 \\ & & & -1 & 2 & -1 & & \\ & & & & -1 & 2 & -1 & \\ & & & & & -1 & 2 & -1 \\ & & & & & & -1 & 2 \\ -1 & & & & & & & 2 \end{pmatrix}$$

e8



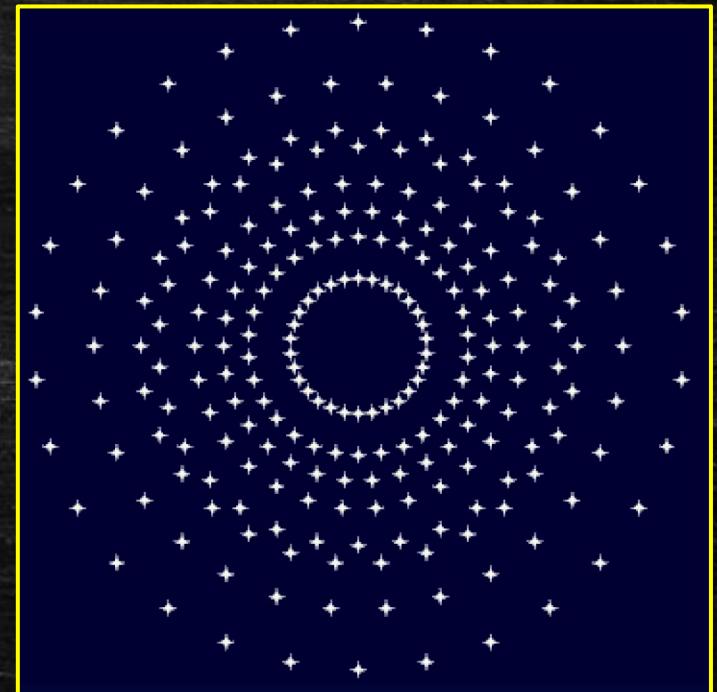
e8 = Dynkin diagram of d7 + Weyl spinor of d8
= roots of d8 + MW spinor of d8

e8 240 roots:

$$\pm k_i \pm k_j$$

$$\frac{1}{2}(\pm k_1 \pm k_2 \pm k_3 \pm k_4 \pm k_5 \pm k_6 \pm k_7 \pm k_8) \quad 1 \leq i < j \leq 8 \quad 112 \text{ roots}$$

$$\text{even } \# \text{ of } + \quad 128 \text{ roots}$$



Let's compare the **Cartan matrix** of $e_{12} = e8^{++++}$ with the **Gram matrix** of $e8^{(1)}$

$$C_{e_8^{++++}} = \begin{pmatrix} 2 & -1 & & & & & & & \\ -1 & 2 & -1 & & & & & & \\ & -1 & 2 & -1 & & & & & \\ & & -1 & 2 & -1 & & & & \\ & & & -1 & 2 & -1 & & & \\ & & & & -1 & 2 & -1 & & \\ & & & & & -1 & 2 & -1 & \\ & & & & & & -1 & 2 & -1 \\ & & & & & & & -1 & 2 \\ & & & & & & & & 2 \end{pmatrix}$$

the corresponding lattice is a **root lattice**, invariant under Weyl reflections. The corresponding algebra is **Lie**, but **infinite-dimensional** (generalized Kac-Moody (**GKM**) algebra)

$$C_{e_8^{(1)}} = \begin{pmatrix} 3 & -1 & & & & & & & \\ -1 & 2 & -1 & & & & & & \\ & -1 & 2 & -1 & & & & & \\ & & -1 & 2 & -1 & & & & \\ & & & -1 & 2 & -1 & & & \\ & & & & -1 & 2 & -1 & & \\ & & & & & -1 & 2 & -1 & \\ & & & & & & -1 & 2 & -1 \\ & & & & & & & -1 & 2 \\ & & & & & & & & 2 \end{pmatrix}$$

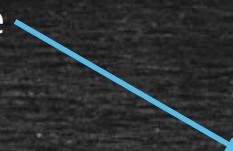
the corresponding lattice is not a **root lattice**, it is not inv. under Weyl reflections. The corresponding algebra is not **Lie**, but **finite-dimensional** (called **EP algebra**)

the difference is in the **norm** of the MW spinor of d_{12}

Vinberg's HT-algebras

What does appear on the tips of such an **EP-generalized MS** ?

A 3×3 Hermitian generalized matrix, with structure



$$\mathbf{T}_8^{(N)} := \begin{pmatrix} r_1 & \mathbf{V}_{\mathfrak{d}_{4+4N}} & \psi_{\mathfrak{d}_{4+4N}} \\ \overline{\mathbf{V}}_{\mathfrak{d}_{4+4N}} & r_2 & \psi'_{\mathfrak{d}_{4+4N}} \\ \overline{\psi}_{\mathfrak{d}_{4+4N}} & \overline{\psi'}_{\mathfrak{d}_{4+4N}} & r_3 \end{pmatrix}$$

$$\mathbf{V}_{\mathfrak{d}_{4+4N}} \equiv 8 + 8N \text{ vector of } so(8 + 8N) \equiv (\text{real form of}) \ \mathfrak{d}_{4+4N}$$

$$\psi_{\mathfrak{d}_{4+4N}} \equiv 2^{3+4N} \text{ real chiral (MW) spinor of } so(8 + 8N) \equiv (\text{real form of}) \ \mathfrak{d}_{4+4N}$$

$T8^N$ belongs to the Hermitian part of the class of the so-called **special rank-3 T-algebras**, introduced by Vinberg as a **generalization** of rank-3 Jordan algebras in the study of homogeneous convex cones [Vinberg '60]. Thus, we will refer to $T8^N$ as to a **rank-3 Hermitian T- (HT) algebra**

EP algebras are not Lie algebras

EP algebras, as presented in previous slides, **are not Lie algebras**.

In fact, e.g. for $e8(-24)^{(N)}$, one can show that the spinor non-reductive part does **not** satisfy the Jacobi identity
[Truini, AM, Rios, '18-'19, and forthcoming papers...]

This is strictly related to the **non-Abelian** nature of the spinor part, which thus **cannot** be regarded as a translational extension of the reductive, simple, pseudo-orthogonal part of the algebra **[see next two slides]**

Concerning physical applications :

- 1] the **failure of Jacobi in the spinor sector** might be related to **dark matter/dark energy** degrees of freedom;
- 2] the non-Abelian nature of the spinor part is crucial in order to have **non-trivial interactions among bosons and fermions** in an algebra which is not a superalgebra (or a Z_2 -graded algebra) **[AM, Truini '15]**

Thus, in general EP algebras are not simply spinor-translational extensions of simple, pseudo-orthogonal Lie algebras.

At each level of the EP, i.e. for each fixed N , **the dimension of the algebra is finite**, and it enjoys a MS projection/embedding, which relates it to a certain **rank-3 Vinberg's HT-algebra of special type** **[Vinberg '60]**

The approach of EP-generalization of finite-dimensional exceptional Lie algebras is therefore very different from the usual infinite-dimensional extension through affine, extended, very extended (Kac-Moody) Lie algebras (possibly, with further Borcherds generalizations) :

In fact, **at each level of EP the algebra is finite-dimensional**.

*The «price» to pay is the **failure of Jacobi** (non-Lie nature).*

As of today, the determination of the real nature of EP algebras is still **under study** :
maybe, a «weaker Jacobi» identity holds for such algebras?

Some Further Developments (work in progress....)

- symmetry algebras of **(H)T-algebras** and related rings of invariants, with related physical meaning;
- ring of invariants of spinor irreps. (some of them are examples of Vinberg's theta groups; for instance, d_6 on $32(')$ is «of type e_7 » [Brown '69], d_7 on $64(')$ has inv. rank-8, found in charting of Vogel's plane [Vogel '95, '99; Mkrtchyan '12]);
- EP and higher Rosenberg planes/Tits' buildings
(higher projective planes on formal tensor products of division algebras)
[**metasymplectic geometry?** cfr. e.g. Landsberg, Manivel '99]
- Kantor-Koecher-Tits procedure applied to (H)T-algebras, and comparison of the outcome to **EP algebras...**
- **HT-algebra pairs**, reduced Freudenthal triple systems over (H)T-algebras,
(reduced) Kantor pairs over (H)T-algebras [Faulkner *et al.* '14], and their symmetries;
- EP and higher-dimensional (global and local) **supersymmetry** (Rios, AM, Chester, '18, '19);
- How to take advantage of the failure of Jacobi?
Model of emergence of space and time **purely from interactions**
[AM, Truini '15; Truini, Rios, AM '17]

Thank
You!