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The «Magic Star» projection
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* the unifying Magic Star (MS) projection/fembedding for exceptional Lie
algebras

» the spin-factor embedding for exceptional Lie algebras

» Exceptional Periodicity (EP) and the MS projection : beyond e8
* (rank 3)Vinberg's HT-algebras and their invariant structure

» EP algebras are not Lie algebras, but then what are they?

* Further developments (work in progress...)

Refs : Truini ‘12, AM,Truini ‘14, Truini, AM, Rios '17-'19, Truini, de Graaf, AM, '23 to appear..
-‘main Ref : Truini, Rios, AM, Contemporary Mathematics 7212, AMS (2019)



the Magic Star (MS) projection/embedding for exceptional Lie algebras Mukai‘gs,

Truini ‘22

L" = a, ®stry(J§) ©3 x I @3 x JT,
for the (compact, real form of the) exceptional sequence

_-
__

8D > 2D MS projection in root lattice
(not unique)
D=(2+1)m electric-magnetic (U-)duality symmetry

[a particular case of the so-called super-Ehlers embedding :
Ferrara, AM, Zumino 12, Ferrara, AM, Trigiante '12]

J3is a simple, rank-3, Euclidean Jordan algebra,
realized as the set of 3x3 Hermitian matrices over
a division (or split) normed (Hurwitz) algebra.

Jordan, Von Neumann, Wigner ‘34 [ for g2, this is simply R; for su(3), it is trivially the empty set ]

1902-1950



From the symmetry of the Freudenthal-Rosenfeld-Tits Magic Square, e6 is both the str_o of J3(O) and the qconf of J3(C), one
can apply the MS embedding twice, and get the simple characterization of €8 : Truini ‘12

es =a§+ (3,J5) + (3,75) + Der,(J5,T5)
—aS+ (3,I8) + (3,73 +al + (3,32) + (3,

3,J2) + Der,(J2,J2)
=a$+ (3,J5) + (3,J3) +ab + (3,32) + (3,73

)+a(2)+a(2)

J
J

In fact (relevant nc, real forms)

es(s); Stro ({}38) = ¢g(6) ~ 51(3,0s)
R) @ egg) & 3 x 27 &3 x 27

. steg ( ) — 51(3, R) & 5(3,R) ~ sl(3,C,)
sI(3,R);r 3% (3,3) 3 x(3,3)




Truini, Rios, AM ‘17

ey (resp. ag) as 3-graded inside eg (resp. eg)

FTS (left) and KP (right) within eg

Freudenthal ‘59

Allison, Faulknér, Smirnov ‘17




the spin-factor embedding for exceptional Lie algebras

n=dmpA=1,2,48 for A=R,C H, O
JTL D R @ J’I’L N~ I, - is a Jordan algebra with a quadratic form of signature (m, n),
3 2 | |
Ay

i.e. the Clifford algebra of O(m,n)
1 Al 0

As — J = Zl T2 0 cRaJ
0 0 T3

maximal Jordan algebraic
. embedding

T =Ty T, o=l — T

™ 2D lightcone coords.
2

In the case n=8 (octonions O), this implies various embeddings for the relevant symmetry algebras :

[ analogous treatment can be given for n=1(R), n=2 (C) and n=4 (H),
but it yields exceptional Lie algebras only in some cases ] -

/ 3-grading
16, @ (80(17 9) 5% 80(17 1))0 © 16, [with spinor polarization (s.p.)] Minchenko ‘06
or

o ® (so(1,9) & so(1,1)), & 16,

5-grading
(50(2,10) @ sl(2,R)) & (32<’>, 2) - (contact type)

[with s.p.]
1_5, @ 32" @ (50(2,10) @ s0(1,1)), ® 329 & 15,

5-grading (ext. Poincaré type) [with s.p.]

14_5, & 64, & (so(3,11) & so(1,1)), & 64, & 144,

qeonf : eg(_24) = s0(4, 12)9128") = or
14_9, & 64_, & (s0(3,11) & so(1,1)), & 64, & 144,

Cantarini, Ricciardo, Santi ‘17




Exceptional Periodicity (EP) and the Magic Star (MS) projection : beyond e8

Truini, Rios, Marrani ‘17

(EP level)

By exploiting Bott periodicity for spinor bundles, the following definitions of
(exceptional) EP algebras can be put forward :

— 30(9 + 8N) 8% 7»bbéhuéu\/‘

244N real spinor of so0(9 4+ 8N) = byiyn

3-grading [with s.p.]

wé5+4N,—a D (80(17 9+ SN) D 80(17 1))0 D ¢05—|—4N70¢
or
w7)+4N —a D (30(17 9) S¥ 30(17 1)) S5 wgr+4z\/‘,

Majorana Wey] (MW
Q4H4N 1 il chira 6semz spinor of so(1,9+ 8N) = (nc,real form of) 544N

N _{ (s0(2,10 + 8N) @ sl(2,R)) & (1), 2) =

&
"(-25) Looa @ L), @ (50(2,10+8N) @ s0(1,1))y & 4L, @ 12

0614N, — 061L4N,a

Vogaan 254N oal chiral (sl\e/lnvyz)spmor of so(2,10+4+8N) = (nc,real form of) dgran

[g2 does not enjoy an analogous EP-generalization; we will not be considering it henceforth] 5-grading (contact type) [with s.p.]

[ Nota Bene : analogous EP-generalizations can be considered for all other nc, real forms]



in particular, e8(-24) is EP-generalized as follows :

so(4,124+8N) & ne

084N

(14 +8N)_,, @y, . D (503,11 +8N) @ s0(1,1)) D to,,,y.. O (14+ 8N),,
or

(144 8N)_o, @ Yor4n, o D (50(3,11 +8N) @ s0(1,1)), © U5, © (14 +8N),,
MW
274N real chiral (semi)spinor of so(4,12 4 8N) = (nc,real form of) Vgyan

20T real chiral (semi)spinor of so(3,11 +8N) = (nc,real form of) Vrian
5-grading (extended Poincaré type) [with s.p.]

So far, this is just a bunch of definitions, exploiting Bott periodicity.

However, we anticipate that EP algebras are not non-reductive Lie algebras! (see further below)
[ explicit construction in terms of roots and lattices can be found in Truini, Marrani, Rios ‘17, ‘18, using Kac's asymmetry function ]

Consistently, for N=o EP algebras yield finite-dimensional exceptional Lie algebras.



key result : Truini, AM, Rios ‘17

There exists a (non-unique) a2 — projection/embedding of EP algebras, such that
the MS structure persists, with generalizations of rank-3 simple Jordan algebras
appearing on the six tips of the MS!

For simplicity’s sake, let us consider the EP-generalization e8(-24)(N) of e8(-24) :

Essentially due to the symmetry between the
fourth row and the fourth column of the FRT
Magic Square, the cases of (the
EP-generalization of) f4,e6,e7,e8 correspond
to n=1(R), 2 (C), 4(H) and 8(0), resp.

(8+4N)D > 2D MS projection of EP algebra e8(-24)(N)
in «generalized» root lattice (Truini, AM, Rios ‘17)



At the level of Dynkin diagrams-and Cartan matrices (and their generalization) :

e8

e8= Dy-nkin diagram of d7 + Weyl spinor of d8
= roots of d8 + MW spinor of d8

+

+ + *t4

eg 240 roots: | +

+
+
.
b
+

4+, o+
++++

+
o+

+k; + k; 1<i<j<8 112 roots £
%(iklj:kgikgik4ik5ik6j:k7ik8) even # of + 128 roots +t




Let’s compare the Cartan matrix of e12 = €87 ++++ with the Gram matrix of e8(1)

the corresponding lattice isaroot
lattice, invariant under Weyl reflections.
The corresponding algebra is Lie, but
infinite-dimensional

(generalized Kac-Moody (GKM) algebra)

the corresponding lattice is not a root
lattice, it is not inv.under Weyl reflections
The correspondmg algebra is not Lie, but
finite-dimensional

(called EP algebra)

the difference is in the norm of the MW spinor of d12




Vinberg's HT-algebras

What does appear on the tips of such-an EP-generalized MS ?
A 3x3 Hermitian generalized matrix, with structure

L 1 V04+4N w04—|—4N
/
YD4+4N T2 w04+4N

¢D4+4N 17M04+4N T3

TéN) =

8 + 8N wvector of so(8 4+ 8N) = (real form of) d4ran

3TN real chiral (MME)spinor of so(8 +8N) = (real form of) dssan

T8A(N) belongs to the Hermitian part of the class of the so-called special rank-3 T-algebras,
introduced by Vinberg as a generalization of rank-3 Jordan algebras in the study of homogeneous convex cones [Vinberg ‘60].
Thus, we will refer to T8A(N) as to a rank-3 Hermitian T- (HT) algebra



EP algebras are not Lie algebras

EP algebras as presented in previous slides, are not Lie algebras.

In fact, e.g. for e8(-24)~(N), one can show that the spinor non-reductive part does not satlsfy the Jacobi identity
[Truini, AM, Rios, '18-19, and forthcoming papers...]

This is strictly related to the non-Abelian nature of the spinor part, which thus cannot be regarded as a translational extension of
the reductive, simple, pseudo-othogonal part of the algebra [see next two slides]

Concerning physical applications :
1] the failure of Jacobi in the spinor sector might be related to dark matter/dark energy degrees of freedom;

2] the non-Abelian nature of the spinor part is crucial in order to have non-trivial interactions among bosons and fermions in an aIgebra
which is not a superalgebra (or a Z_2-graded algebra) [AM, Truini ‘15]

Thus, in general EP algebras are not simply spinor-translational extensions of simple, pseudo-orthogonal Lie algebras.
At each level of the EP, i.e. foreach fixed N, the dimension of the algebra is finite, and it enjoys a MS projection/embedding, which relates
it to a certain rank-3 Vinberg's HT- algebra of special type [Vinberg '60]

The approach of EP-generalization of finite-dimensional exceptional Lie algebras is therefore very different form the usual infinite-dimen-

sional extension through affine, extended, very extended (Kac-Moody) Lie algebras (possibly, with further Borcherds generalizations) :
In fact, at each level of EP the algebra is flnlte dimensional.

As of today, the determination of the real nature of EP algebras is still under study :
maybe, a «weaker Jacobi» identity holds for such algebras?



Some Further Developments (work in pfogress.... )

V&

symmetry algebras of (H)T-algebraé and related rings of invariants, with related physical meaning; [ QSIELLEED

ring of invariants of spinor irreprs. (some of them are examples of Vinberg's theta groups;
for instance, d6 on 32(") is «of type e7» [Brown '69], d7 on 64(*) has inv. rank-8, found in charting of Vogel’s plane
_ — [Vogel ‘95,’99; Mkrtchyan '12]);

EP and higher Rosenberg planes/Tits’ buildings
(higher ptojective planes on formal tensor products of division algebras)
[metasymplectic geometry? cfr. e.g. Landsberg, Manivel ‘g9]

Kantor-Koecher-Tits procedure applied to (H)T-algebras, and comparison of the outcome to EP algebras...

HT-algebra pairs, reduced Freudenthal triple systems over (H)T-algebras,
(reduced) Kantor pairs over (H)T-algebras [Faulkner et al. ‘14], and their symmetries;

EP and higher-dimensional (global and local) supersymmetry (Rios, AM, Chester, ‘18, '19);

How to take advantage of the failure of Jacobi?
Model of emergence of space and time purely from interactions
[AM, Truini ‘15; Truini, Rios, AM '17]
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