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The «Magic Star» projection

▪ the unifying Magic Star (MS) projection/embedding for exceptional Lie
algebras

▪ the spin-factor embedding for exceptional Lie algebras

▪ Exceptional Periodicity (EP) and the MS projection : beyond e8

▪ (rank 3) Vinberg’s HT-algebras and their invariant structure

▪ EP algebras are not Lie algebras, but then what are they?

▪ Further developments (work in progress…)

Refs : Truini ‘12,  AM,Truini ‘14,  Truini, AM, Rios ‘17-’19, Truini, de Graaf, AM, ‘23 to appear…
main Ref :  Truini, Rios, AM, Contemporary Mathematics 721, AMS (2019)



the Magic Star (MS) projection/embedding for exceptional Lie algebras

for the (compact, real form of the) exceptional sequence

The relevant (non-compact) real form for application to (super)gravity reads

D=(2+1)M electric-magnetic (U-)duality symmetry

D=(4+1)M U-duality

J3 is a simple, rank-3, Euclidean Jordan algebra, 
realized as the set of 3x3 Hermitian matrices over 
a division (or split) normed (Hurwitz) algebra.
[ for g2, this is simply R; for su(3), it is trivially the empty set ] 

Mukai ‘96,
Truini ‘12

AM, Truini ‘14

Jordan, Von Neumann, Wigner ‘34

[a particular case of the so-called super-Ehlers embedding :
Ferrara, AM, Zumino ’12, Ferrara, AM, Trigiante ‘12]

(not unique)
8D  2D MS projection in root lattice

1902-1980



From the symmetry of the Freudenthal-Rosenfeld-Tits Magic Square, e6 is both the str_0 of J3(O) and the qconf of J3(C), one 
can apply the MS embedding twice, and get the simple characterization of e8 : Truini ‘12

In fact (relevant nc, real forms)



Truini, Rios, AM ‘17

FTS = Freudenthal triple system
Freudenthal ‘59
KP = Kantor pair
Allison, Faulkner, Smirnov ‘17

1905-1990



the spin-factor embedding for exceptional Lie algebras
maximal Jordan algebraic
embedding

In the case n=8 (octonions O) , this implies various embeddings for the relevant symmetry algebras :

3-grading
[with spinor polarization (s.p.)]

5-grading
(contact type)
[with s.p.]

5-grading (ext. Poincaré type)  [with s.p.]

Minchenko ‘06

Cantarini, Ricciardo, Santi ‘17

[ analogous treatment can be given for n=1(R), n=2 (C) and n=4 (H),
but it yields exceptional Lie algebras only in some cases ]

2D lightcone coords.

Γm,n is a Jordan algebra with a quadratic form of signature (m, n),
i.e. the Clifford algebra of O(m,n)

O (m, n)



Exceptional Periodicity (EP) and the Magic Star (MS) projection : beyond e8
By exploiting Bott periodicity for spinor bundles, the following definitions of 

(exceptional) EP algebras can be put forward :

[g2 does not enjoy an analogous EP-generalization; we will not be considering it henceforth]

[ Nota Bene : analogous EP-generalizations can be considered for all other nc, real forms]

3-grading [with s.p.]

5-grading (contact type) [with s.p.]

Truini, Rios, Marrani ‘17

(EP level)

Majorana Weyl (MW)

MW



in particular, e8(-24) is EP-generalized as follows :

5-grading (extended Poincaré type)  [with s.p.]

So far, this is just a bunch of definitions, exploiting Bott periodicity.

However, we anticipate that EP algebras are not non-reductive Lie algebras! (see further below) 

[ explicit construction in terms of roots and lattices can be found in Truini, Marrani, Rios ’17, ’18, using Kac’s asymmetry function ]

Consistently, for N=0 EP algebras yield finite-dimensional exceptional Lie algebras.

MW

MW



key result :

There exists a (non-unique) a2 – projection/embedding of EP algebras, such that
the MS structure persists, with generalizations of rank-3 simple Jordan algebras
appearing on the six tips of the MS!

Truini, AM, Rios ‘17

For simplicity’s sake, let us consider the EP-generalization e8(-24)^(N) of e8(-24) :

(8+4N)D  2D MS projection of EP algebra e8(-24)^(N) 
in «generalized» root lattice (Truini, AM, Rios ‘17)

Essentially due to the symmetry between the 
fourth row and the fourth column of the FRT
Magic Square, the cases of (the
EP-generalization of) f4,e6,e7,e8 correspond
to n=1(R), 2 (C), 4(H) and 8(O), resp.



At the level of Dynkin diagrams and Cartan matrices (and their generalization) :

e8

e8 = Dynkin diagram of d7 + Weyl spinor of d8
= roots of d8 + MW spinor of d8  



Let’s compare the Cartan matrix of e12 = e8^++++ with the Gram matrix of e8^(1)

the corresponding lattice is a root
lattice, invariant under Weyl reflections.
The corresponding algebra is Lie, but
infinite-dimensional
(generalized Kac-Moody (GKM) algebra)

the corresponding lattice is not a root
lattice, it is not inv.under Weyl reflections.
The corresponding algebra is not Lie, but
finite-dimensional
(called EP algebra)

the difference is in the norm of the MW spinor of d12



What does appear on the tips of such an EP-generalized MS ?
A 3x3 Hermitian generalized matrix, with structure

T8^(N) belongs to the Hermitian part of the class of the so-called special rank-3 T-algebras,
introduced by Vinberg as a generalization of rank-3 Jordan algebras in the study of homogeneous convex cones [Vinberg ‘60].
Thus, we will refer to T8^(N) as to a rank-3 Hermitian T- (HT) algebra 

Vinberg’s HT-algebras

MW1937-2020



EP algebras are not Lie algebras

EP algebras, as presented in previous slides, are not Lie algebras.
In fact, e.g. for e8(-24)^(N), one can show that the spinor non-reductive part does not satisfy the Jacobi identity
[Truini, AM, Rios, ’18-’19, and forthcoming papers…]

This is strictly related to the non-Abelian nature of the spinor part, which thus cannot be regarded as a translational extension of
the reductive, simple, pseudo-othogonal part of the algebra [see next two slides]

Concerning physical applications :
1] the failure of Jacobi in the spinor sector might be related to dark matter/dark energy degrees of freedom;
2] the non-Abelian nature of the spinor part is crucial in order to have non-trivial interactions among bosons and fermions in an algebra

which is not a superalgebra (or a Z_2-graded algebra) [AM, Truini ‘15]

Thus, in general EP algebras are not simply spinor-translational extensions of simple, pseudo-orthogonal Lie algebras.
At each level of the EP, i.e. for each fixed N, the dimension of the algebra is finite, and it enjoys a MS projection/embedding, which relates
it to a certain rank-3 Vinberg’s HT-algebra of special type [Vinberg ‘60]

The approach of EP-generalization of finite-dimensional exceptional Lie algebras is therefore very different form the usual infinite-dimen-
sional extension through affine, extended, very extended (Kac-Moody) Lie algebras (possibly, with further Borcherds generalizations) :
In fact, at each level of EP the algebra is finite-dimensional.
The «price» to pay is the failure of Jacobi (non-Lie nature).

As of today, the determination of the real nature of EP algebras is still under study :
maybe, a «weaker Jacobi» identity holds for such algebras?



Some Further Developments (work in progress….)

• symmetry algebras of (H)T-algebras and related rings of invariants, with related physical meaning;

• ring of invariants of spinor irreprs. (some of them are examples of Vinberg’s theta groups;
for instance, d6 on 32(‘) is «of type e7» [Brown ‘69], d7 on 64(‘) has inv. rank-8, found in charting of Vogel’s plane

[Vogel ‘95,’99; Mkrtchyan ’12]); 

• EP and higher Rosenberg planes/Tits’ buildings
(higher ptojective planes on formal tensor products of division algebras)
[metasymplectic geometry? cfr. e.g. Landsberg, Manivel ‘99]

• Kantor-Koecher-Tits procedure applied to (H)T-algebras, and comparison of the outcome to EP algebras…

• HT-algebra pairs, reduced Freudenthal triple systems over (H)T-algebras,
(reduced) Kantor pairs over (H)T-algebras [Faulkner et al. ‘14] , and their symmetries;

• EP and higher-dimensional (global and local) supersymmetry (Rios, AM, Chester, ‘18, ‘19);

• How to take advantage of the failure of Jacobi?
Model of emergence of space and time purely from interactions
[AM, Truini ‘15; Truini, Rios, AM ’17]
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