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Plan

of the talk:

Prelude on Lie superalgebras and supermanifolds

Prolongations and symmetry bounds

Realizations of G2 as symmetry algebra

The Lie superalgebra G(3): parabolic subalgebras & Spencer cohomology
Realizations of G(3) as supersymmetry of geometric structures

Latest developments: the mixed contact and the odd-contact F'(4) results



Prelude: Lie superalgebras
Def. A Lie superalgebra is a complex vector space of the form
g=gDor
with a bilinear map [,-] : g X g — g such that

- [95, 93] © 95, [95, 91] < o7, [97, 7] © o5
— for any homogeneous X, Y (i.e. with X € g7, Y € gy)

[X,Y] = — (=) ™My, X] ( |X| = parity of X = {(1) )

— for any homogeneous X, Y, Z

(DI Y 21+ () 2z X YT+ (<) (2, X = 0



Simple Lie superalgebras
Finite-dimensional simple complex Lie superalgebras g = g5 ® g7 were classified
by V. Kac in 1977 and split into two families:
— classical, for which the adjoint action of gz on g7 is completely reducible;
— Cartan Lie superalgebras, analogs to simple Lie algebras of vector fields.

Classical LSA include in turn the LSA with a non-degenerate “Killing form”:

] g \ 9 \ or |
sl
(m|n) 5[(m) (—Ds[(n) oC (Cm ® (Cn)*) ® ((Cm)* ® @n)
m,n =1
2
Usp(m| n) 50(m) @5{3(271) cm ® C2n
m,n =1
s5p(4)2;
osp(4]2; ) sl(2) ®sl(2) @ sl(2) C?®Cc?2®cC?
a+#0,+1,00
F(4) 50(7) @ sl(2) S®C?
G(3) G2 ®sl(2) C"®C?

Rem. The smallest representation of exceptional LSA is the adjoint representation.



Prelude: Supermanifolds
Def. A supermnfd of dimension (m|n) is a pair M = (M,, Anr), where

— M, is an m-dimensional mnfd,

— Aar is a sheaf of superalgebras on M, such that its sections admit a local

analytic expansion in the “odd anticommuting coordinates”:
f=fo(@) + for ()0 + -+ far 0, ()07 Ao A0

Def. A superdistribution on M = (M,, A is a graded A r-subsheaf D of the
tangent sheaf TM = Der(Aar) that is locally a direct factor.

Example. M = C°? with even coordinates z, u, p, ¢, z and odd coordinates 6, v.

The subsheaf generated by the supervector fields

Dy = 0y + pdu + q0p +¢°0., 0y,
Do = 0 + q0, + 00, +2v0.. ,

is a superdistribution of rank (2|1).



Geometric structures

Filtered geometric structures, in particular G-structures, are defined through

reductions of frame bundles. Tensors, connections, PDEs are such structures.

Example I. The supermetric

e Z o} + Zd@"‘ do>*m

T+ kH 12)
on M = R™?" is an OSp(m|2n)-structure and it has symmetry superalgebra
osp(m + 1|2n) ifk>0,
aut(M, g) = < osp(m|2n) x R™>" ifk =0,
osp(m, 1|2n) ifk<0.

Example Il. The supersymplectic form
w—de Adz't 4 2 do> A do™
i=1 =
on M = R*™ is an SpO(2n|m)-structure and it has an infinite-dimensional

symmetry superalgebra aut(M,w), unless M is purely odd.



Filtered geometric structures

The weak derived flag of a superdistribution D < TM is defined as the filtration
Dl'=DcD2c...cDF=DF1 L [D,DF ..., and then setting
gr(TM)_, = D% /D= 1 for all k > 0, we arrive at a sheaf
gr(TM) = @ gr(TM),
k<0
of Apr-modules and LSA over M,. The distribution is called strongly regular if
3 LSA m = @_ u<k<omy such that gr(TM) = Ay @ m locally.

Def. The Tanaka—Weisfeiler prolongation g = pr(m) of m is maximal graded LSA
s.t.:

(i) preg(m) = m;

(i) [X,m_1] =0 for X € pry,(m) implies X = 0.

There is a version pr(m, go) of the prolongation if go < dety,(m) is also assigned,
and similarly for higher-order reductions.



Tanaka—Weisfeiler prolongation and Spencer cohomology

Rem |. Although pr(m, go) can be obtained via an iterative process, one can test

a candidate g that extends m @ go via the criteria:
m g = pr(m) if and only if Hiq(m,g) = 0;
m g = pr(m,go) if and only if H} (m,g) = 0.

Rem Il. Kostant's version of BBW Thm efficiently computes these groups in the

classical setting but in super-setting his “harmonic cohomology” is usually bigger.



Geometric prolongations

Thm([B. Kruglikov, A.S., D. The, 2022 Transform. Groups]

Let (M, D) be strongly regular superdistribution, with symmetry superalgebra
aut(M, D), and assume that the prolongation g = pr(m) is finite-dimensional.
Then:

1 3 fiber bundle 7 : P — M of dim P = dim g with absolute parallelism ®
s.t. any equivalence of (M, D) lifts to an equivalence of ®,

2 dimaut(M, D) < dim(g) in the strong sense (inequality applies to both
even and odd dimensions), and Aut(M, D) is a Lie supergroup,

3 If dim(aut(M, D)) = dim(g) then

(M,D) = (G/Gz0,8>-1) ,

locally,

up to deform.

where G'>o C G is the closed Lie subsupergroup with Lie(G0) = gso0.



Geometric prolongations

Thm([B. Kruglikov, A.S., D. The, 2022 Transform. Groups]

Let (M, D) be strongly regular superdistribution, with symmetry superalgebra
aut(M, D), and assume that the prolongation g = pr(m) is finite-dimensional.
Then:

1 3 fiber bundle 7 : P — M of dim P = dim g with absolute parallelism ®
s.t. any equivalence of (M, D) lifts to an equivalence of ®,

2 dimaut(M, D) < dim(g) in the strong sense (inequality applies to both
even and odd dimensions), and Aut(M, D) is a Lie supergroup,

3 If dim(aut(M, D)) = dim(g) then

(M,D) = (G/Gz0,8>-1) ,

locally,

up to deform.

where G'>o C G is the closed Lie subsupergroup with Lie(G0) = gso0.

Idea: we construct a tower of bundles M «— Py «— P, «— --- consisting of

partial frames (modification of Cartan—Tanaka method).



Some geometric realizations of G4

=0

This is an abstract description via Dynkin diagrams. What about realizations

as symmetries?

— GL7(C) acts with open orbit on 3-forms on C” and G2 = Stabg.,(c)(#) for
generic ¢ € A\*(CT)* (Engel, 1900);

— Compact form G2 = Aut(0) (Cartan, 1914);

— Configuration space M of a 2-sphere rolling on another w/o
twisting or slipping is 5-dimensional, with the constraints given
by a rank 2 distribution D < TM of filtered growth (2, 3,5). If
the ratio of the radii of spheres is 3, then split G2 = Aut(M, D)
(Bryant, Zelenko, Bor—-Montgomery, Baez—Huerta).



(2,3,5)-geometry from the G5 root diagram
Ga/Py

]

Fundamental invariant of (2,3, 5)-distributions: binary quartic field (Cartan 1910).
Modern perspective: the quartic arises from H*?(m, g) = S*(C?), where g = G
has |3|-grading g = g_s @ - - - @ g3 with negative part

m=g_1@®g-2®g-3 = {e1,e2) D{es) D{ea, e5)

[e1,e2] = es, [e1,e3] = es, [e2,e3] =es5,

and 0O-degree component go = detgr(m) = gl(2).



Some geometric realizations of G5

— Engel (1893): G2 as symmetry of contact distribution € on 5-dim. mnfd

with field of twisted cubics V < P(C);

— Cartan (1893, 1910): G2 as symmetry of

’ Dim ‘ Geometric structure ‘ Model
du — v'dex,
. ODE with flat du’ — u"dzx,

(2, 3, 5)-distribution

dz — (u")?dz,

Hilbert—Cartan equation z' = (u”)

2

Pair of PDE
(with flat contact distribution)

1

Uz = 3

(uyy)ge Uzy = %(uyy)z

Today: realizations of the Lie superalgebra G(3) = (G2 @sp(2)) ® (C” ® C?).




Simple root systems of g = G(3)
Fix Cartan subalgebra b c g5 = G2 @ sp(2) ~ root system A = Ag u Az. The

Killing form of G(3) is non-degenerate and induces non-degenerate {(—, —) on h*.
If o € Ag then {a, &) # 0 and the even reflection So.(8) = § — if’f;a preserves

Ag and Ag. The Weyl group W = (S, | @ € Ag) is generated by even reflections.
Up to W-equivalence, there are four inequivalent simple systems IT = {a1, a2, as}.
They are related by odd reflections along isotropic « € Il as indicated below:
B+a, {(apB)#0;
Sa(/B): ﬂ7 <aaﬂ>:056¢a7

—a, B = a.
I I 117 v
3
2 4 2 3 4 2 2 3 3
e: @) Q @)
Oct\t:” o, 2 asﬂyﬁ (;5:\. Qas 2 o1 Qo Qas
""""""" DL TR, X 1 az'--..---"‘

Roots: even O, odd isotropic © or odd nonisotropic @.



Map of G(3)-supergeometries

ot =203 g =g = a0 = g~
G (3)-contact SHC

We considered two Z-gradings of g = G(3) with (graded) growths:

marked Dynkin diagram dim(g_;) dim(g_) dim(g_3)

G(3)-contact O=———0 == ) 4|4 110
X
SHC === == | 24 12 2]0

X



Geometric structures associated to M{" and M{V

G(3)-contact super-PDE:

Uwzé(uyy)s + 2uyy Uy liyr,  Uzy = %( yy)2 + Uy Uyr,
Ugy = UyyUypy, Ugr = UyyUyr, Upr = —Uyy.
where v = u(x,y, v, 7) : CH12 - C11°.
Super Hilbert-Cartan equation (SHC):
(UM)2
Zy = 9 + UgpUgr, 2y = Ugglgy, 2Zr = Ugglgr, Uyr = —Ugg,

where (u,2) = (u(z,v, 1), 2(z,v,7)) : C'1? = C21°,

Thm[Kruglikov, S., The, 2021 Adv. Math.] These super-PDE have symmetry
superalgebra G(3). Unlike HC eqn, whose general solution depends on one

function of one variable, solutions of SHC depend only on five constants.



Spencer cohomology of SHC grading

Thm[Kruglikov, S., The] Let g = g_3@® -+ - @ gs be the SHC grading of g = G(3).
Then H%'(m, g) = 0 for all d > 0, so that g = pr(m). Moreover H%?(m, g); =0
for all d > 0 while

4.2 0 foralld > 0,d # 2,
H™ (m7 g)() = o e 50 .
SPCPAC?ifd = 2,
Rem . As a (go)s-module, the space C*%(m, g) has a unique submodule S*C? x| C,
which is the space of Cartan's classical binary quartic invariants. lts elements are

not closed in the complex C*(m, g).



Spencer cohomology of SHC grading

Thm[Kruglikov, S., The] Let g = g_3@® -+ - @ gs be the SHC grading of g = G(3).
Then H%'(m, g) = 0 for all d > 0, so that g = pr(m). Moreover H%?(m, g); =0
for all d > 0 while

a2 0 foralld > 0,d # 2,

H™ (m7 g)() = o e P
SPCPAC?ifd = 2,

Rem Il. This suggests the Cartan quartic of underlying generic rank 2 distribution

on 5-dim. mnfd should admit a square root, hence it must be of Petrov type D

(pair of double roots), N (quadruple root) or O (identically zero).



Finding models with desired symmetry

Two steps:

1 Find an explicit description of an invariant geometric structure. E.g. start
with the (2, 3,5) symbol algebra and integrate structure eqns or use BCH
to arrive at a local model (equivalent to the Hilbert—Cartan eqn).

Rem. We obtained SHC eqn also in this way but it is too involved.

2 Prove that this homogeneous model has the expected symmetry dimension.
Tanaka—Weisfeiler prolongation, via results on H'(m, g), gives upper bound.
Rem. In classical setting we have harmonic curvature as a test for flatness
but this is unavailable in the super-setting.



G(3)-double fibration

We investigated the G(3)-twistor correspondence

/XX\
<>3$0:<:o (Eg:@.

G(3)-contact SHC

Strategy: flag supermnfd G(3)/P: is contact supermnfd (M, €) with the additional
reduction of structure group COSp(3|2) = C'SpO(4]4), which we realize as (1|2)-
twisted cubic V < P(€). Osculate V to get PDE & = (G(3)/P12. Cartan superdistrib.
of & has “Cauchy characteristic”, we quotient by it to get SHC eqn & = G/(3)/P-.



G(3)-contact case

Idea: contact supermnfd + additional geometric structure.

| k] (9%)o | (o)1 | dim |
0 | Csl(2)@sp(2) | S’C*xIC? | 7|6
-1 S3C?xC C’EC? | 4)4
-2 CxC 10

Prop. go = C@® 0sp(3|2) = C @ spo(4]4) is a maximal subalgebra.

The basis of V := g_1 given by {z* 2%y, zy°, y®|ze, o f, ye, yf} allows to make
explicit the invariant C'SpO-structure on V. The topological point [2*] € P(Vj)
has stabilizer q = § := 0sp(3

2) that is a parabolic subalgebra:

g Bl (e | G
f:f—l@fo@fl 1 Xl A17A2
o—e 0 | Hi,H2, X2,Ys | A3, Ay

X

—1 Vi As, A



The (1]2)-twisted cubic V
Def. The COSp(3|2)-orbit V = P(V) through [2°] is called (1|2)-twisted cubic.

We describe V locally by exponentiating the action of f_; = span{Y'|A, B} = ct?
through [z°]:

1 1 1

1
o Y Y Y
3 3 3
0 -4 - =% + 02
o |exp(\Y) A2 exp(0A) A2 exp(¢B) 22
0 X -2 { -2 ] -2 4 0
0 0 0
0 0 0 ¢
0 0 0 HA
0 0 —ox —ox

with A even parameter and 0, ¢ odd. By maximality, this supervariety V < P(V)
characterizes the reduction of the structure group COSp(3|2) € C'SpO(4/4).



Osculations of V
Repeatedly applying f_1 to [2°] yields the so-called osculating sequence
OcVlcVvicVicVviz=v

of higher order affine tangent spaces of V at [z*].

Important fact I: The affine tangent space V! c V = C** is Lagrangian w.r.t.
CSpO-structure on V (in particular dim V! = (2]2)).

Important fact Il: The associated graded v.s. gr(V) = No@® ---@® N3 has natural
0sp(1]2)-equivariant Z-graded superalgebra structure and N1 ® N; — N2 = N;¥ is
a supersymmetric cubic form € € S N¥ on Ny = C?. (It dualizes to the product
of simple Jordan superalgebra structure on N called the Kaplansky superalgebra.)

Explicitly € = 2A° + 2)0¢.



General framework for 2nd order super-PDE

Global \ Local

Contact supermfld (2" u,u), 0 = du— i, ugde’

(M°1 ) = JH(C??,C10) € ={(0 =0)={0,i +uidu,Ou,)
! 1
© has frames of conformal do] ! 1
o =
symplectic-orthogonal ¢ -t .
supervector fields 1

1

0yi + Ui Oy, Oy, is adapted frame

Lagrangian subspace
(Opi + iOu + ij0u;)

of Catme M
Lagrange—Grassmann bundle (x%, u,ui, uiy = Fugi)
(MO8, 6) =~ J*(C??, 1) € ={0yi + uidu + Uijdu,;, Ousy)

A 2nd order super-PDE is a submanifold of Lagrange—Grassmann bundle M and

an external symmetry is a symmetry of (]\7, @) that preserves the submanifold.



Key steps of the proof

— Lagrangian lift. At any “point” of (M, €) we have (1|2)-parametric family
of Lagrangian subspaces of C: the affine tangent spaces along V. It gives
(6]6)-dimensional submanifold & — M, ie., the G(3)-contact super-PDE;

— Cubic form. The G(3)-contact super-PDE can be parametrically written

<UOO u0a> = <3€(T3)2 gQa(TZ)) (a,b=1,2,3) .
Ua0  Uab iea(T ) 3Q:ab(T)

as

This extends to G(3) a formula giving explicit realizations of all exceptional
Lie algebras — for different cubic forms — obtained by D. The in 2018.

— Symmetries. External symmetries of G(3)-contact super-PDE are derived
explicitly by a hand computation using expression of generating functions
on (M, C) via the cubic form on the Kaplanski superalgebra;



Key steps of the proof

— Spencer cohomology. The previous computation tells that supersymmetry
dimension is (17|14), i.e., the upper bound coming from Tanaka—Weisfeiler
prolongation is attained. Moreover, 3 grading element = the symmetry
superalgebra is exactly G(3).

— Cauchy characteristic reduction. On & = G(3)/P12 we have the Cartan
superdistribution H < TE€ of rank (3]4). The Cauchy characteristic space

Ch(H) = {X e T(H) | LxH = H}

is a module for the space of superfunctions of € and it is generated by a
nowhere-vanishing even supervector field. The quotient & = £/ Ch(H) is
then (5]6)-dimensional and is endowed with superdistribution of rank (2]4).

— SHC-equation. We have € =~ G/(3)/P» with the Cartan superdistribution
associated to SHC-eqn.



Geometric realizations of F'(4)
F(4) mixed-contact super-PDE:
U0 UQq @(Tg)
Uii) = =
( ]) (uaO uab) <

3¢ (T?
3 2 QQ: ( ) (a’7b=1727374)
3%a(T7)  3Ca(T)
F(4) odd-contact super-PDE:

where u : C312 — CU° Here T = (X, pl6, ¢) and €(T%) = A\ + 2u0.

UQab = UabU123,

1<a<b<3
where v : C1* — CY°. This is quite a different story!

Thm[A.S., D. The, 2022 arXiv] These super-PDE have symmetry superalgebra F(4).




Thanks!

=] F = = E DA



