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1 Main question in this talk
In this talk, we will consider Lie algebras g over different fields F . As the fields
may vary, we emphasize the field we are working on by writing gF . Feel free to
only think about the easy example R ⊂ C if that makes you more comfortable.

It is
obvious that we can always enlarge the field F over which we are working:

Construction (Field extension)

Given a field extension F ⊂ E, we have the Lie algebra gE = gF ⊗F E by
extending the scalars.

Example

It is a well-known fact that the complexification of the real Lie algebras gl(n,R)
and u(n) are both equal to gl(n,C).

The main problem for this talk is how to go back to the smaller field.

Question

How can we construct from a given Lie algebra gE new examples of Lie algebras
over subfields F ⊂ E?

We will recall two different methods for making Lie algebras over the smaller
field, which are very distinct in nature.

2 Lie algebras over subfields.
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1 First method: forms of Lie algebras

Definition

Let gE be a Lie algebra over the field E containing the subfield F ⊂ E. A Lie
algebra hF over F is called an F -form of gE if gE ∼= gF ⊗F E.

1 Every free Lie algebra over E contains a unique F -form up to isomorphism.
The same holds for free nilpotent Lie algebras.

2 The Lie algebra gl(n,C) has both gl(n,R) and u(n) as real forms, which are
non-isomorphic in general.

3 Consider the Lie algebra gλ for λ ∈ C with basis X1, X2, X3 and relations

[X1, X2] = X2 [X1, X3] = λX3.

It is easy to see that this Lie algebra has a real form if and only if there exists

µ ∈ C such that adµX1 =
(
µ 0
0 µλ

)
is conjugate to a real matrix. This is the

case if and only if
µ = λµ

or hence if and only if |λ| = 1.
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1 Second method: underlying Lie algebras

Definition

Let gE be a Lie algebra over the field E containing the subfield F ⊂ E. By
restricting the scalar multiplication on gE to F we find a new Lie algebra gF ,
which is called the underlying Lie algebra.

Note that dimF (gF ) = dimE(gE)[E : F ], which we assume to be finite.

Consider the Heisenberg Lie algebra h3(F ) over any field F , so with basis
X,Y, Z and [X,Y ] = Z. For example, from h3(C) we find the real underlying Lie
algebra (h3(C))R with basis

X1 = X X2 = iX

X3 = Y X4 = iY

X5 = Z X6 = iZ

and relations

[X1, X3] = X5 [X2, X3] = X6

[X1, X4] = X6 [X2, X4] = −X6.
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Why do we care about F = Q?
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2 Arnold’s cat map

Consider the matrix A =
(

2 1
1 1

)
, then A induces a diffeomorphism ϕ on

T2 = R2
�Z2:

ϕ→

The map ϕ is called Arnold’s cat map.

6 Lie algebras over subfields.



2 Arnold’s cat map

Observation

This map has interesting dynamical properties. You can experiment here .
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2 What is an Anosov diffeomorphism?

Definition

Let M be a closed Riemannian manifold with diffeomorphism f : M →M , then
we call f an Anosov diffeomorphism if:

(i) there exists a continuous splitting of the tangent bundle

TM = Es ⊕ Eu;

(ii) the subbundles Es and Eu are preserved under the map Df : TM → TM ,
i.e.

Df(Es) = Es and Df(Eu) = Eu;

(iii) there exist real constants 0 < λ < 1 and c > 0 such that

∀v ∈ Es, ∀k > 0 : ‖Dfk(v)‖ ≤ cλk‖v‖,

∀v ∈ Eu, ∀k > 0 : ‖Dfk(v)‖ ≥ 1
cλk
‖v‖.

8 Lie algebras over subfields.



2 Lattices in nilpotent Lie groups

Note that Z2 is a lattice in the Lie group R2. In a similar fashion, you can build
examples on other (nilpotent) Lie groups.

Conjecture (Smale)

The only manifolds admitting an Anosov diffeomorphism are finitely covered by a
nilmanifold G/N , where N is a lattice in a simply connected and connected
nilpotent Lie group G.

In this case, the exponential map is a bijection:

G
log
�
exp

g.

Although log(N) is in general not closed under addition or the Lie bracket, the
rational span nQ = Q log(N) always is and thus forms a rational Lie algebra. The
corresponding group NQ = exp(nQ) is a subgroup of G called the rational
Mal’cev completion of N .

9 Lie algebras over subfields.
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2 Examples

1 In the abelian case Rn, every lattice is conjugate to Zn, and we have

(Zn)Q = Qn.

2 Denote by H3(F ) the group corresponding to the Lie algebra h3(F ) under
the exponential map. For every k ∈ Z, k 6= 0, the groups

Nk =

{(1 x z
k

0 1 y
0 0 1

)
| x, y, z ∈ Z

}
are lattices in H3(R). It holds that

(Nk)Q = H3(Q).

Indeed, the diffeomorphism log is given by

log

(1 x z
0 1 y
0 0 1

)
=

(1 x z − xy
2

0 1 y
0 0 1

)
.
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2 Properties of NQ

Theorem (Mal’cev, 1951)

Every rational nilpotent Lie algebra nQ is induced by a lattice N . The group N is
unique up to commensurability.

Theorem (Dekimpe - Verheyen, 2011)

The existence of an Anosov diffeomorphism on G/N only depends on the
rational Lie algebra nQ and is equivalent to the existence of an integer-like,
hyperbolic automorphism.

Recall that a matrix is called hyperbolic if its eigenvalues have absolute value
6= 1 and is integer-like if its characteristic polynomial has integer coefficients and
constant term ±1. In particular, the eigenvalues will be algebraic units.

Corollary

In order to study the existence of Anosov diffeomorphisms, we have to
understand rational nilpotent Lie algebras and their automorphisms.

11 Lie algebras over subfields.
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2 Examples

Although the Lie algebra h3(Q) does not have hyperbolic integer-like
automorphisms, by extending the field to h3(Q(

√
2)) we find an interesting

automorphism ϕ defined as

ϕ(X) = λX

ϕ(Y ) = λY

ϕ(Z) = λ2Z,

where λ = 1 +
√

2 is an algebraic unit, with conjugate 1−
√

2 = −λ−1 .

1 In h3(Q(
√

2))⊕ h3(Q(
√

2)) one can construct a rational form with an
automorphism induced by (ϕ,−ϕ−1).

2 The induced map on the underlying Lie algebra h3(Q(
√

2))Q is hyperbolic
and integer-like.

In fact, both examples are the same, but realised in two distinct ways. This works
for any

√
d with d > 0 and d not a square.

12 Lie algebras over subfields.
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2 Applications in geometry

There are also several other applications, of which we name two more:

1 Every compact quasi-Kähler Chern-flat manifolds is constructed from nR
where n is a complex 2-step nilpotent Lie algebra by the work of Di Scala,
Lauret and Vezzoni.

2 The study of nilmanifolds which are isospectral but not isometric is related to
the study of almost inner derivations on nilpotent Lie algebras. It is possible
to construct such derivations on underlying Lie algebras by the work of
Burde, Dekimpe and Verbeke.

13 Lie algebras over subfields.
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3 Nilpotent Lie algebras associated to graphs

Let G = (V,E) be a simple, undirected graph with vertices V and edges E.
Associated to G is a 2-step nilpotent Lie algebra nRG over the real numbers,
defined as follows.

I A basis for nRG is given by the vertices v1, . . . , vn ∈ V and the edges
eij = {vi, vj} ∈ E.

I The subspace 〈eij | eij ∈ E〉 spanned by the edges is central.
I For every edge eij we have

[vi, vj ] = eij

for i < j.

Example

1 If G is the empty graph on n vertices, then nRG is the abelian Lie algebra Rn.

2 If G is the full graph on n vertices, then nRG is the free 2-step nilpotent Lie
algebra on n generators.

14 Lie algebras over subfields.
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3 Some notation

Note that for every map d : V → R0 we have an automorphism ϕ ∈ Aut(nRG) such
that ϕ(v) = d(v)v. This uniquely characterizes the 2-step nilpotent Lie algebras
associated to graphs and allows us to describe the automorphism group.

Let G = (S,E) be a simple undirected graph.
I For any vertex α ∈ V , we define the open and closed neighbourhoods of α

by
Ω′(α) = {β ∈ V | {α, β} ∈ E} and Ω(α) = Ω′(α) ∪ {α}, (1)

respectively.
I Define a relation ≺ on the vertices V by α ≺ β ⇔ Ω′(α) ⊂ Ω(β).
I Define an equivalence relation ∼ on V by α ∼ β ⇔ α ≺ β ∧ α � β. Note

that α ∼ β if and only if the transposition of α with β defines an
automorphism of G.

I The equivalence classes of ∼ are called the coherent components of G and
are denoted by λ ∈ Λ := V/ ∼.

I Write G for the induced graph on Λ, where we remember the number of
elements in each λ ∈ Λ.

15 Lie algebras over subfields.



3 Examples

G

1 23

G

β1 β2

α1 α2

G

2
λ1

2
λ2

G

The Lie algebra h3(R)⊕ h3(R) is a Lie algebra associated to a graph, of which
we already know several rational forms. Can we describe them all?

16 Lie algebras over subfields.
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3 Automorphisms of nRG

It is not hard to show that every coherent component has either no or all edges,
so they generate either an abelian or a free nilpotent Lie algebra. For every
automorphism π ∈ Aut(G), one can define an automorphism P (π) by permuting
the vertices V accordingly.

Theorem (D.- Mainkar, 2020)

For every Lie algebra nRG associated to a graph G, we have that

Aut(nRG) = U

(∏
λ∈Λ

GL(Vλ)

)
P (Aut(G))

where U is equal to the unipotent radical of G.

Note that there is a way to embed Aut(G) into Aut(G), and thus we can replace
P (Aut(G)) by P (Aut(G)) in the theorem as well.
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3 Rational forms

Let ρ : Gal(E,Q)→ Aut(nQG) be a morphism, then the subalgebra

nQρ = {v ∈ nEG | ∀σ ∈ Gal(E,Q) : ρσ(σv) = v}

is a rational form of nRG .

Theorem (D. - Witdouck, 2022)

Let G be a simple undirected graph and nRG the associated 2-step nilpotent Lie
algebra.
I Any rational form of nRG is Q-isomorphic to nQρ for some finite degree real

Galois extension L/Q and an injective group morphism
ρ : Gal(L/Q)→ Aut(G).

I If K/Q is another finite degree Galois extension with an injective group
morphism η : Gal(K/Q)→ Aut(G), then nQρ and nQη are Q-isomorphic if and
only if L = K and there exists a ϕ ∈ Aut(G) such that ϕρ(σ)ϕ−1 = η(σ) for
all σ ∈ Gal(L/Q).
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3 How to compute the rational forms?

Corollary

Every Lie algebra associated to a graph has either 1 or infinitely many rational
forms, depending on whether Aut(G) is trivial or not.

For R ⊂ C on the other hand, there are at most finitely many real forms in each
complex Lie algebra.

For h3(R)⊕ h3(R), we have found all rational forms. However, it is not so easy to
give an explicit description in general.

Question (Inverse Galois problem)

Given a finite group H, does there exist a field extension Q ⊂ E with
Gal(E,Q) ≈ H?

For Z2, this problem is easy, and all extensions are of the form Q(
√
d).

Theorem (D., Witdouck - 2023)

We can characterize the actions ρ leading to a rational form that is Anosov.
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4 Overview

1 Introduction

2 Motivation

3 Lie algebras associated to graphs.

4 Structure of underlying Lie algebras.
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4 Isomorphic underlying Lie algebras

This last part is motivated by a question from Di Scala, Lauret and Vezzoni:

Question

Do there exist two non-isomorphic complex 2-step nilpotent Lie algebras g and h
such that gR ≈ hR?

This question came up while studying compact quasi-Kähler Chern-flat
manifolds.

Example (D., 2019)

Consider the Lie algebra gλ of dimension 10 with basis X1, . . . , X8, Z1, Z2:

[X1, X5] = Z1 [X2, X6] = Z1 [X3, X7] = Z1

[X4, X8] = Z1 [X2, X5] = Z2 [X3, X6] = Z2

[X4, X7] = Z2 [X1, X8] = −Z2 [X2, X7] = −λZ2.

Why does this example work?
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4 Conjugate Lie algebras

Let g be a Lie algebra over the field E with basis X1, . . . , Xn. The Lie bracket is
completely determined by the structural constants ckij ∈ E:

[Xi, Xj ] =
n∑
k=1

ckijXk.

For any σ ∈ Aut(E,F ) an automorphism that fixes F , one can define the
σ-conjugate Lie algebra gσ with structural constants σ(ckij).

Observation

1 This does not depend on the choice of basis X1, . . . , Xn.

2 The underlying Lie algebra (gσ)F is isomorphic to gF .

3 If g has an F -form, then gσ ≈ g.

Corollary

For gλ, it holds that gλ = g
λ
. By showing that gλ 6≈ g

λ
, the conclusion follows.
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4 When are underlying Lie algebras isomorphic?

Theorem (D., 2019)

Let F ⊆ E be a Galois extension and g and h be Lie algebras over E such that
gF ≈ hF . If we decompose

g ≈
k⊕
i=1

gi

into indecomposable ideals, then there exists σi ∈ Gal(E,F ) such that

h ≈
k⊕
i=1

gσi
i .

Theorem (D., 2019)

If both g and h have an F -form, then gF ≈ hF implies g ≈ h.
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4 Sketch of the proof

Theorem (D., 2019)

Let F ⊆ E be a Galois extension and let g be a Lie algebra over the field E. Let
gF be the underlying Lie algebra over F , then there is an isomorphism

gF ⊗F E ≈
⊕

σ∈Gal(E,F )

gσ

where gσ is the σ-conjugate of the Lie algebra g.

The isomorphism is induced by the natural maps gF → gσ.

23 Lie algebras over subfields.



4 Open question

So far, the easiest strategy to show that g has no F -form is to show that gσ is not
isomorphic to g for some σ ∈ Aut(E,F ).

I don’t know any example where g ≈ gσ for all σ ∈ Gal(E,F ) but such that g
does not have an F -form. (Even not for R ⊂ C.)

Question

Does there exist a complex Lie algebra with no real forms, but still g ≈ g?
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Questions?

25 Lie algebras over subfields.
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