

# Parabolic Normalizers as Subdirect Products

Götz Pfeiffer

School of Mathematical and Statistical Sciences  
University of Galway, Ireland

Lie Theory in Prato  
January 10-13, 2023

# A Motivating Example.

- Let  $P \leq W = W(D_{12})$  be a parabolic of type  $A_{2211}$ :

$$\begin{matrix} 1 \\ 2 \end{matrix} \geq \begin{matrix} 3 \\ 4 \end{matrix} = \begin{matrix} 5 \\ 6 \end{matrix} = \begin{matrix} 7 \\ 8 \end{matrix} \geq \begin{matrix} 9 \\ X \end{matrix} \geq \begin{matrix} 0 \\ Y \end{matrix} \geq A \geq \begin{matrix} B \\ Z \end{matrix}$$

- Then  $N = N_W(P) = (P \times Q) : D$ , where  $Q$  is a parabolic of type  $D_{211}$ , and  $D$  of size 16 is generated by 4 matrices:

|                                                                                                                                                                                                                         |                                                                                                                                                                                    |                                                                                                                                                                                                                     |                                                                                                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{matrix} \cdot & 1 & \cdot & \cdot & \cdot \\ \cdot & \cdot & 1 & \cdot & \cdot \\ \cdot & \cdot & \cdot & 1 & \cdot \\ \cdot & \cdot & \cdot & \cdot & 1 \\ \cdot & \cdot & \cdot & \cdot & \cdot \end{matrix}$ | $\begin{matrix} \cdot & \cdot & 1 & \cdot & \cdot \\ \cdot & \cdot & \cdot & 1 & \cdot \\ \cdot & \cdot & \cdot & \cdot & 1 \\ \cdot & \cdot & \cdot & \cdot & \cdot \end{matrix}$ | $\begin{matrix} 1 & \cdot & \cdot & \cdot & \cdot \\ \cdot & 1 & \cdot & \cdot & \cdot \\ \cdot & \cdot & 1 & \cdot & \cdot \\ \cdot & \cdot & \cdot & 1 & \cdot \\ \cdot & \cdot & \cdot & \cdot & 1 \end{matrix}$ | $\begin{matrix} \cdot & 1 & \cdot & \cdot & \cdot \\ \cdot & \cdot & 1 & \cdot & \cdot \\ \cdot & \cdot & \cdot & 1 & \cdot \\ \cdot & \cdot & \cdot & \cdot & 1 \\ \cdot & \cdot & \cdot & \cdot & \cdot \end{matrix}$ |
| $\begin{matrix} 1 & \cdot \\ \cdot & -1 \end{matrix}$                                                                                                                                                                   | $\begin{matrix} -1 & \cdot \\ \cdot & 1 \end{matrix}$                                                                                                                              | $\begin{matrix} 1 & \cdot \\ \cdot & 1 \end{matrix}$                                                                                                                                                                | $\begin{matrix} 1 & \cdot \\ \cdot & 1 \end{matrix}$                                                                                                                                                                    |
| $\begin{matrix} \cdot & 1 & \cdot & \cdot \\ \cdot & \cdot & 1 & \cdot \\ \cdot & \cdot & \cdot & 1 \\ \cdot & \cdot & \cdot & \cdot \end{matrix}$                                                                      | $\begin{matrix} 1 & \cdot & \cdot & \cdot \\ \cdot & 1 & \cdot & \cdot \\ \cdot & \cdot & 1 & \cdot \\ \cdot & \cdot & \cdot & 1 \end{matrix}$                                     | $\begin{matrix} \cdot & 1 & \cdot & \cdot \\ \cdot & \cdot & 1 & \cdot \\ \cdot & \cdot & \cdot & 1 \\ \cdot & \cdot & \cdot & \cdot \end{matrix}$                                                                  | $\begin{matrix} \cdot & 1 & \cdot & \cdot \\ \cdot & \cdot & 1 & \cdot \\ \cdot & \cdot & \cdot & 1 \\ \cdot & \cdot & \cdot & \cdot \end{matrix}$                                                                      |

- It turns out that  $D = (A \times B) : C$ .
- Why?

# Overview.

- The normalizer  $N := N_W(P)$  of a parabolic subgroup  $P$  of a finite Coxeter group  $W$  has the form

$$N = (P \times Q) : D, \quad D = (A \times B) : C.$$

- P. Parabolic Subgroups and Howlett Complements.
- Q. Orthogonal Complements and a Galois Connection.
- D. Direct Products and Goursat Isomorphisms.
- A. Orthogonal Closure.
- B. Parabolic Closure.
- C. Closure.
- N. Concluding Remarks.

## P. Parabolic Subgroups.

- Let  $(W, S)$  be a finite Coxeter system, acting as reflection group on Euclidean space  $V = \mathbb{R}^n$ .
- A **parabolic subgroup** of  $W$  is a subgroup of the form  $W_J = \langle J \rangle$ ,  $J \subseteq S$ , or any of its  $W$ -conjugates.
- If  $U \leq V$  then  $Z_W(U)$  is a parabolic subgroup of  $W$ .
- We may assume that  $W$  is **irreducible**, i.e., of type  $A_n$ ,  $B_n$ ,  $D_n$ , or of exceptional type  $E_n$ ,  $F_4$ ,  $G_2$ ,  $H_n$ ,  $I_2(m)$ .
- Conjugacy classes of parabolics correspond to **shapes**:
  - $A_n$ :  $2^S / \sim \longleftrightarrow \{\lambda \vdash n+1\}$ .       $\bullet$   $B_n$ :  $\{\lambda \vdash m \mid 0 \leq m \leq n\}$ .
  - $D_n$ :  $\{\lambda \vdash m \mid m \neq n-1\}$ , with 2 classes  $\lambda_{\pm}$  if  $\lambda \vdash n$  is even.
  - Exceptional types: explicit lists (of up to 41 classes).

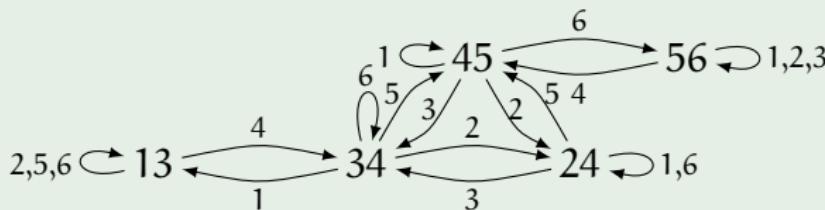
## P. Howlett Complements.

- **Howlett's Lemma.** Let  $W$  be a reflection group on  $V = \mathbb{R}^n$  with  $W \trianglelefteq G \leq O(V)$ . Then  $W$  has a complement  $H$  in  $G$ .
- More precisely, if  $\Phi = \Phi^+ \cup \Phi^-$  is a **root system** for  $W$  then  $H = \{a \in G \mid \Phi^+.a \subseteq \Phi^+\}$  is a complement of  $W$ .
- In particular, a **parabolic subgroup**  $P$  of a finite Coxeter group  $W$  has a complement  $H$  in its normalizer  $N_W(P)$ .
- Usually,  $H$  is itself a reflection group on  $X = \text{Fix}_V(P) \dots$
- Howlett (1980):  $H = H' : H''$ , where  $H' = Q : U$  is a reflection group with parabolic  $U$ , and  $Q = P^\dagger$  (see below).
- For  $P = W_J$ , denote the normalizer complement  $H$  by  $N_J$ .

## P. A Groupoid with Objects $J \subseteq S$ .

- For  $J \subseteq S$ , denote by  $w_J$  the **longest element** of  $W_J$ .
- Consider the **labelled directed graph** with vertices  $J \subseteq S$ , and edges  $J \xrightarrow{s} K$  if  $s \in S \setminus J$  and  $K = J^{w_J w_L}$ ,  $L = J \cup \{s\}$ .
- $J \sim K$  iff  $J$  and  $K$  are in the same connected component.

- Example.**  $J = \{1, 3\}$  in  $E_6$  with diagram



- $\rightsquigarrow$  a **presentation** of  $N_J$  as the automorphism group of  $J$ .
- In particular,  $N_J$  is generated by **involutions**  $\sim w_K w_L \dots$

## Q. A Galois Connection.

- Let  $T := S^W$  be the set of **all reflections** in  $W$ .
- Define the **orthogonal complement**  $P^\dagger$  of a parabolic  $P$  as

$$P^\dagger := \langle r \in T \mid [r, s] = 1 \text{ for all } s \in P \cap T \rangle.$$

- Proposition.**  $P^\dagger = Z_W(\text{Fix}_V(P)^\perp)$  is a parabolic subgroup.

- Set  $Q := P^\dagger$ . Then  $P \times Q \leq N := N_W(P)$ .

- Theorem.** The map  $P \mapsto P^\dagger$  is an **antitone Galois connection** on the set of parabolic subgroups of  $W$ .

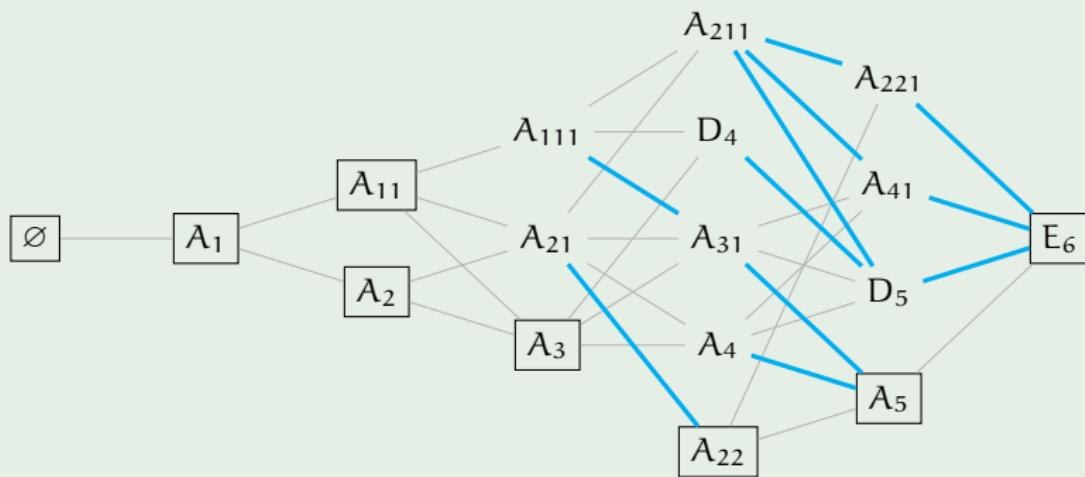
- Proof.**  $P \leq P^{\dagger\dagger}$  and  $P_1 \leq P_2 \implies P_2^\dagger \leq P_1^\dagger$ . □

- Thus  $P^{\dagger\dagger\dagger} = P^\dagger$ . And  $P^{\dagger\dagger\dagger\dagger} = P^{\dagger\dagger}$ .

- Denote  $\hat{P} = P^{\dagger\dagger}$  the **orthogonal closure** of the parabolic  $P$ .

## Q. Galois Shapes.

- $(P^x)^\dagger = (P^\dagger)^x \implies \dagger$  is a Galois connection on  $2^S / \sim$ .
- And  $P \mapsto \hat{P}$  is a closure operator on the shapes  $2^S / \sim$ .
- **Example:** Closed Parabolics in  $E_6$ .



## Q. Orthogonal Pairs.

**Theorem.** Orthogonal pairs of shapes of closed parabolics.

- $A_n: \frac{A_n}{\emptyset}$  and  $\frac{A_{n-m}}{A_{m-1}}$ ,  $m \geq 2$ .     •  $B_n: \frac{B_m A_1^k}{B_l A_1^k}$ ,  $n = m + l + 2k$ .
- $D_n: \frac{D_m A_1^k}{D_l A_1^k}$ ,  $n = m + l + 2k$ , and  $A_1^k$ ,  $n = 2k + 1$ ,  
or  $(A_1^{2k})_+$ ,  $(A_1^{2k})_-$ ,  $n = 4k$ , or  $\frac{(A_1^{2k+1})_+}{(A_1^{2k+1})_-}$ ,  $n = 4k + 2$ .
- $E_6: \frac{E_6}{\emptyset}, \frac{A_5}{A_1}, \frac{A_{22}}{A_2}, \frac{A_3}{A_{11}}$ .      $E_7: \frac{E_7}{\emptyset}, \frac{D_6}{A_1}, \frac{A'_5}{A_2}, \frac{D_{41}}{A_{11}}, \frac{A'_{31}}{A_3}, \frac{D_4}{A'_{111}}, \frac{A_{1111}}{A''_{111}}$ .  
 $E_8: \frac{E_8}{\emptyset}, \frac{E_7}{A_1}, \frac{E_6}{A_2}, \frac{D_6}{A_{11}}, \frac{D_5}{A_3}, \frac{A_5}{A_{21}}, \frac{D_{41}}{A_{111}}, D_4, A_4, A_{31}, A_{22}, A_{1111}$ .  
 $F_4: \frac{F_4}{\emptyset}, \frac{B_3}{A_1}, \frac{\tilde{B}_3}{A_1}, \frac{A_2}{\tilde{A}_2}, A_{11}, B_2$ .  
 $H_3: \frac{H_3}{\emptyset}, \frac{A_{11}}{A_1}$ .      $H_4: \frac{H_4}{\emptyset}, \frac{H_3}{A_1}, A_{11}, A_2, I_2(5)$ .
- $\hat{P}$  is the smallest closed parabolic that contains  $P \dots$

## D. Goursat Isomorphisms.

- Let  $G_2 \trianglelefteq G_1 \leq G$ ,  $H_2 \trianglelefteq H_1 \leq H$  be **sections** of groups  $G, H$ .
- The **graph** of a section isomorphism  $\theta: G_1/G_2 \xrightarrow{\sim} H_1/H_2$  is
$$\{gh \in G_1 \times H_1 \mid (G_2g)^{\theta} = H_2h\} \subseteq G \times H$$

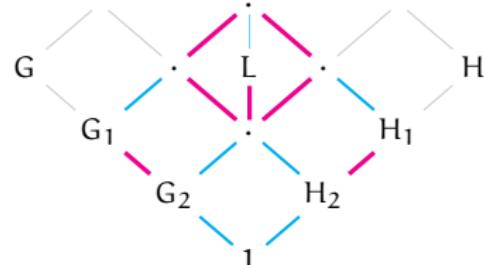
- Goursat's Lemma.** A subset  $L$  of  $G \times H$  is a **subgroup** if and only if it is the graph of an **isomorphism**  $\theta$  of sections.

- Proof.** The graph of  $\theta: G_1/G_2 \xrightarrow{\sim} H_1/H_2$  is a subgroup  $L$ .

Conversely,  $L \leq G \times H$  is the graph of such a  $\theta$ , where

$G_1 = \{g \mid gh \in L\}$ ,  $H_1 = \dots$  are **projections** with  **KERNELS**

$H_2 = L \cap H$ ,  $G_2 = \dots$ , and  
 $\theta: G_2g \mapsto H_2h$  for  $gh \in L$ .



## D. Parabolic Normalizers as Subdirect Products.

- $X := \text{Fix}_V(P)$ . Then  $V = X \oplus X^\perp$  and  $N \leq \text{GL}(X) \times \text{GL}(X^\perp)$ .
- **Kernels:**  $P = N \cap \text{GL}(X^\perp)$  and  $Q = N \cap \text{GL}(X)$ .
- **Projections:**  $Q : D$  and  $P : D$  are (isomorphic to) the Howlett complements of  $P$  and  $Q$  in  $N$ . (Note that  $Q \trianglelefteq N$ .)

- **Proposition.**  $N = (P \times Q) : D$

- **Proof.**  $D$  is the Howlett complement of  $P \times Q$  in  $N$ . □

- **Example.** In  $E_6$ , a parabolic  $P$  of type  $A_{111}$  has  $Q$  of type  $A_1$  and  $D$  isomorphic to a Coxeter group of type  $A_2$ .

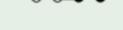
It turns out that  $P : D$  acts as a reflection group of type  $B_3$  on  $X^\perp$ , and  $Q : D$  as a reflection group of type  $A_{21}$  on  $X$ .

| P   | $P : D$   | D     | $Q : D$ | Q                             |
|-----|-----------|-------|---------|-------------------------------|
| ••• | $A_{111}$ | $B_3$ | $A_2$   | $A_{21}$ $A_1$ $\circ\circ$ • |

## D. Special Case: Involution Centralizers [Serre 2021].

- If  $u \in W$  with  $u^2 = 1$  then  $C_W(u)$  normalizes a parabolic.
- Richardson 1982:  $N_W(W_J) = C_W(u) \iff "u = -1 \in W_J"$ .

- **Example.** Involution Centralizers  $N_W(P) = C_W(u)$  in  $E_7$ .

| P           | P : D       | D     | Q : D | Q          |                                                                                    |
|-------------|-------------|-------|-------|------------|------------------------------------------------------------------------------------|
| 1           | 1           | 1     | $E_7$ | $E_7$      |  |
| $A_1$       | $A_1$       | $A_1$ | 1     | $D_6$      | $D_6$                                                                              |
| $A_{11}$    | $A_{11}$    | $B_2$ | $A_1$ | $B_{41}$   |  |
| $A'_{111}$  | $A'_{111}$  | $B_3$ | $A_2$ | $F_4$      |  |
| $A''_{111}$ | $A''_{111}$ | $B_3$ | $A_2$ | $D_4$      |  |
| $A_{1111}$  | $B_{31}$    | ...   |       | $A_{1111}$ |  |

- Nice. But: Is D always a reflection group? On  $X$ ? On  $X^\perp$ ?
- And is  $PQ$  always a maximal rank reflection subgroup?

## A. Orthogonal Closure.

- Set  $Y := \text{Fix}_V(Q)$ . Then  $V = Y \oplus Y^\perp$ , where  $Y^\perp \leq X$ .
- Thus  $X = (X \cap Y) \oplus Y^\perp$  and  $D \leq \text{GL}(X \cap Y) \times \text{GL}(Y^\perp)$ .
- **Goursat:**  $D = (A \times B).C$ , where  $A = Z_D(Y^\perp) \leq \text{GL}(X \cap Y)$  and  $B = Z_D(X \cap Y) \leq \text{GL}(Y^\perp)$ .

- **Proposition.**  $A$  is the Howlett complement of  $P$  in  $\hat{P} \cap N$ .

- Hence  $A = 1$  if  $P = \hat{P}$ .

- **Example.** In  $A_n$ ,  $P$  of type  $A_1^{l_2} A_2^{l_3} \cdots A_n^{l_n}$  has  $N = P : A \times Q$  with  $A \cong \mathfrak{S}_{l_2} \times \cdots \times \mathfrak{S}_{l_n}$  and  $Q \cong \mathfrak{S}_{l_1}$ .

Moreover,  $A$  acts as a reflection group on  $X \cap Y$ .

- In general,  $A$  acts faithfully on  $X^\perp$  (permuting the simple roots of  $P$ ) and on  $X \cap Y$ , not always as a reflection group.

## B. Parabolic Closure.

- For  $U \leq W$  let  $\bar{U} := Z_W(\text{Fix}_V(U))$  be its **parabolic closure**.

- Proposition.**  $B = Z_D(X \cap Y) \leq \text{GL}(Y^\perp)$  is the Howlett complement of  $PQ$  in  $N \cap \overline{PQ}$ .

- Hence  $B = 1$  if the reflection subgroup  $PQ$  is parabolic.

- Example.** In  $B_n$ ,  $P$  with label  $[1^{l_1} 2^{l_2} \dots m^{l_m}] \vdash m \leq n$  has  $N = (P \times Q) : (A \times B)$ , where  $A$  has type  $B_{l_3} \cdots B_{l_m}$ ,  $B \cong \mathfrak{S}_{l_2}$  and  $Q$  has type  $B_{l_1} A_1^{l_2}$ . Note that  $B : Q \cong B_{l_1} B_{l_2}$ .

- In general,  $B$  acts faithfully on  $X^\perp$  (permuting the simple roots of  $P$ ), and on  $Y^\perp$  (permuting the simple roots of  $Q$ ).
- Usually,  $B$  is a reflection group on  $X^\perp$ ,  $Y^\perp$ , so that  $P : B$ ,  $Q : B$  are reflection groups with parabolic subgroup  $B \dots$

## C. Closure.

- $C \neq 1$  occurs only in type  $E_7, E_8, D_n, n \geq 5$ .
- If  $C \neq 1$  then  $C = \langle c \rangle \leq N$ , where  $c$  comes from a **graph automorphism**  $w_J w_L$  in a situation like  $J = \{3, 4, 5, 6\}$  (of type  $A_k$ ,  $k$  even) and  $L = \{1, 2, \dots, 6\}$  (of type  $D_{k+2}$ ):



provided that  $c \notin \hat{P}$ .

- The involution  $c$  acts as a reflection on both  $X \cap Y$  and  $Y^\perp$ , but not on  $X = (X \cap Y) \oplus Y^\perp$  (and in general not on  $X^\perp$ ) ...
- **Example.**  $A_2$  in  $D_5$ .
- The smallest example with all of  $A, B, C \neq 1$  is  $A_{2211}$  in  $D_{12}$ .

## N. Example $A_{2211}$ in $D_{12}$ Revisited.

- $P$  of type  $A_{2211}$  in  $D_{12}$ :

$$\begin{matrix} 1 \\ 2 \end{matrix} \geq 3 - 4 - 5 - 6 - 7 \dots \begin{matrix} 8 \\ X \end{matrix} \geq 9 \geq \begin{matrix} 0 \\ Y \end{matrix} \geq A \geq \begin{matrix} B \\ Z \end{matrix}$$

- $Q = P^\dagger$  has type  $D_{211}$ ;  $\hat{P}$  has type  $D_{611}$ ;  $\overline{PQ}$  has type  $D_{622}$ .
- $D = (A \times B) : C$  is generated by matrices  $a_1, a_2, b, c$ :

|                                                                                             |                                                                                             |                                                                                             |                                                                                             |
|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| $\begin{matrix} 1 \\ \vdots \\ 1 \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ 1 \end{matrix}$ | $\begin{matrix} 1 \\ \vdots \\ 1 \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ 1 \end{matrix}$ | $\begin{matrix} 1 \\ \vdots \\ 1 \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ 1 \end{matrix}$ | $\begin{matrix} 1 \\ \vdots \\ 1 \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ 1 \end{matrix}$ |
| $\begin{matrix} 1 \\ -1 \end{matrix}$                                                       | $\begin{matrix} -1 \\ 1 \end{matrix}$                                                       | $\begin{matrix} 1 \\ i \end{matrix}$                                                        | $\begin{matrix} 1 \\ -i \end{matrix}$                                                       |
| $\begin{matrix} 1 \\ \vdots \\ 1 \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ i \end{matrix}$ | $\begin{matrix} 1 \\ \vdots \\ 1 \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ i \end{matrix}$ | $\begin{matrix} 1 \\ \vdots \\ 1 \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ i \end{matrix}$ | $\begin{matrix} 1 \\ \vdots \\ 1 \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ i \end{matrix}$ |

- $A = \langle a_1, a_2 \rangle$ , both  $a_1, a_2 \sim w_K w_L$  of type  $A_{2211}$  in  $A_{511}$  in  $\hat{P}$ .
- $B = \langle b \rangle$ , where  $b \sim w_K w_L$  of type  $A_{2211}$  in  $A_{322}$  in  $\overline{PQ}$ .
- $C = \langle c \rangle$ , where  $c \sim w_K w_L$  of type  $A_{2211}$  in  $D_{4211}$  not in  $\hat{P}$ .

## N. More About Involution Centralizers.

- Suppose  $N = N_W(P) = C_W(u)$  for  $u \in W$  with  $u^2 = 1$ .
- Then  $X = \text{Fix}_V(P) = \ker(u - 1)$  and  $X^\perp = \ker(u + 1)$ .
- Serre [2021] observes, case by case, that  $C_W(u)$  is generated by involutions of degree  $\leq 2$ .

• **Corollary.**  $C_W(u)$  acts as a reflection group on  $X$  and  $X^\perp$ .

- **Proof.**  $C_W(u) = N = (P \times Q) : D$ , where  $D$  is generated by involutions of degree 2. Thus
  - $D = A \times B$ ,
  - $P : (A \times B)$  is a reflection group on  $X^\perp$ ,
  - and  $Q : B$  is a reflection group on  $X$ .



Introduction  
ooP  
oooQ  
oooD  
oooA  
oB  
oC  
oN  
ooo●N. Example  $E_6$ .

|     | P           | Q           | $ D $ | $\overline{PQ}$ | A     | B | C | $X^\perp$ | $X \cap Y$ | $Y^\perp$ |
|-----|-------------|-------------|-------|-----------------|-------|---|---|-----------|------------|-----------|
| 7   | $A_3$       | 3           | 2     | 16              | $A_1$ |   |   |           |            |           |
| *3  | $A_{11}$    | 7           | 2     | 16              | $A_1$ |   |   |           |            |           |
| 6   | $A_{21}$    | 4           | 1     | (PQ)            |       |   |   |           |            |           |
| 9   | $A_{22}$    | 4           | 2     | (W)             | $A_1$ |   |   |           |            |           |
| 4   | $A_2$       | 9           | 2     | (W)             | $A_1$ |   |   |           |            |           |
| *5  | $A_{111}$   | 2           | 6     | 12              | $A_2$ |   |   |           |            |           |
| 10  | $A_{31}$    | 2           | 1     | 16              |       |   |   |           |            |           |
| 11  | $A_4$       | 2           | 1     | (PQ)            |       |   |   |           |            |           |
| 15  | $A_5$       | 2           | 1     | (W)             |       |   |   |           |            |           |
| *2  | $A_1$       | 15          | 1     | (W)             |       |   |   |           |            |           |
| 8   | $A_{211}$   | $\emptyset$ | 2     | (PQ)            | $A_1$ |   |   |           |            |           |
| *12 | $D_4$       | $\emptyset$ | 6     | (PQ)            | $A_2$ |   |   |           |            |           |
| 13  | $A_{221}$   | $\emptyset$ | 2     | (PQ)            | $A_1$ |   |   |           |            |           |
| 14  | $A_{41}$    | $\emptyset$ | 1     | (PQ)            |       |   |   |           |            |           |
| 16  | $D_5$       | $\emptyset$ | 1     | (PQ)            |       |   |   |           |            |           |
| 17  | $E_6$       | $\emptyset$ | 1     | (W)             |       |   |   |           |            |           |
| *1  | $\emptyset$ | 17          | 1     | (W)             |       |   |   |           |            |           |

## N. More on Orthogonally Closed Parabolics.

- If  $P = \hat{P}$  then  $N = N_W(P) = N_W(Q) = (P \times Q) : B$ .
- **Proof.**  $\overline{PQ} = W$ ; or  $\frac{A_3}{A_{11}}$  in  $E_6$ ;  $A_1^k$  in  $D_{2k+1}$ ;  $\frac{A_{n-m}}{A_{m-1}}$  in  $A_n$ .  $\square$
- In fact, if  $w_0 = -1$  then  $P = \hat{P} \implies \overline{PQ} = W$ . Moreover:  
If  $w_0 = -1$  then  $N_W(P) = C_W(u)$ ,  $u^2 = 1$ , implies  $P = \hat{P}$ .
- In type  $B_n$ , the converse also holds: normalizers of orthogonally closed parabolics are involution centralizers.

- **Theorem.** Apart from some known exceptions,

$$N = (P : A \times Q) : B,$$

where

A is the Howlett complement of P in  $\hat{P}$ , and  
B is the Howlett complement of  $\overline{PQ}$  (in  $W$ ).