Constructive and algorithmic aspects of Hesselink-type stratifications

Valdemar Tsanov (Bulgarian Academy of Sciences)

Conference
Lie theory: frontiers, algorithms and applications Monash Prato Center, 11. January 2023
$U \subset U(V)$, compact connected Lie group, acts on $X \subset \mathbb{P}(V)$, projective U^{c}-variety, with momentum

$$
\mu: X \rightarrow i \mathfrak{u}^{*} \quad, \quad \mu_{\xi}[v]=\frac{\langle\xi v, v\rangle}{\langle v, v\rangle} .
$$

$U \subset U(V)$, compact connected Lie group, acts on $X \subset \mathbb{P}(V)$, projective U^{c}-variety, with momentum

$$
\mu: X \rightarrow i u^{*} \quad, \quad \mu_{\xi}[v]=\frac{\langle\xi v, v\rangle}{\langle v, v\rangle}
$$

Kempf-Ness set $\mathcal{M}=\mathcal{M}_{U}(X):=\mu^{-1}(0)$,
$U \subset U(V)$, compact connected Lie group, acts on $X \subset \mathbb{P}(V)$, projective U^{c}-variety, with momentum

$$
\mu: X \rightarrow i \mathfrak{u}^{*} \quad, \quad \mu_{\xi}[v]=\frac{\langle\xi v, v\rangle}{\langle v, v\rangle} .
$$

Kempf-Ness set $\mathcal{M}=\mathcal{M}_{U}(X):=\mu^{-1}(0)$, semistable locus $X_{U}^{s s}=\left\{x \in X: \overline{U^{c} X} \cap \mathcal{M} \neq 0\right\}$.
$U \subset U(V)$, compact connected Lie group, acts on $X \subset \mathbb{P}(V)$, projective U^{c}-variety, with momentum

$$
\mu: X \rightarrow i \mathfrak{u}^{*} \quad, \quad \mu_{\xi}[v]=\frac{\langle\xi v, v\rangle}{\langle v, v\rangle} .
$$

Kempf-Ness set $\mathcal{M}=\mathcal{M}_{U}(X):=\mu^{-1}(0)$, semistable locus $X_{U}^{s s}=\left\{x \in X: \overline{U^{c} X} \cap \mathcal{M} \neq 0\right\}$.

$$
\mathcal{M} / U \cong X_{U}^{s s} / / U^{c} \cong \operatorname{Proj}\left(\mathbb{C}[X]^{U}\right)
$$

$U \subset U(V)$, compact connected Lie group, acts on $X \subset \mathbb{P}(V)$, projective U^{c}-variety, with momentum

$$
\mu: X \rightarrow i u^{*} \quad, \quad \mu_{\xi}[v]=\frac{\langle\xi v, v\rangle}{\langle v, v\rangle}
$$

Kempf-Ness set $\mathcal{M}=\mathcal{M}_{U}(X):=\mu^{-1}(0)$, semistable locus $X_{U}^{s s}=\left\{x \in X: \overline{U^{c} X} \cap \mathcal{M} \neq 0\right\}$.

$$
\mathcal{M} / U \cong X_{U}^{s s} / / U^{c} \cong \operatorname{Proj}\left(\mathbb{C}[X]^{U}\right)
$$

Nullcone $\mathcal{N}=\mathcal{N}_{U}(X)=X \backslash X_{U}^{s s}=Z\left(\mathbb{C}[X]_{+}^{U}\right)$.
$U \subset U(V)$, compact connected Lie group, acts on $X \subset \mathbb{P}(V)$, projective U^{c}-variety, with momentum

$$
\mu: X \rightarrow i u^{*} \quad, \quad \mu_{\xi}[v]=\frac{\langle\xi v, v\rangle}{\langle v, v\rangle} .
$$

Kempf-Ness set $\mathcal{M}=\mathcal{M}_{U}(X):=\mu^{-1}(0)$, semistable locus $X_{U}^{s s}=\left\{x \in X: \overline{U^{c} X} \cap \mathcal{M} \neq 0\right\}$.

$$
\mathcal{M} / U \cong X_{U}^{s s} / / U^{c} \cong \operatorname{Proj}\left(\mathbb{C}[X]^{U}\right)
$$

Nullcone $\mathcal{N}=\mathcal{N}_{U}(X)=X \backslash X_{U}^{\text {SS }}=Z\left(\mathbb{C}[X]_{+}^{U}\right)$.

$$
\bigcap_{\xi \in i u} \mathcal{M}_{\xi}=\mathcal{M} \quad \subset \quad X \quad \supset \quad \mathcal{N}=\bigcup_{\xi \in \mathfrak{i u}} \mathcal{N}_{\xi}
$$

where $\mathcal{M}_{\xi}=\mu_{\xi}^{-1}(0)$ and $\mathcal{N}_{\xi}:=\left\{x \in X: \mu_{\xi}\left(\lim _{t \rightarrow-\infty} e^{t \xi} x\right)>0\right\}$.
$U \subset U(V)$, compact connected Lie group, acts on $X \subset \mathbb{P}(V)$, projective U^{c}-variety, with momentum

$$
\mu: X \rightarrow i u^{*} \quad, \quad \mu_{\xi}[v]=\frac{\langle\xi v, v\rangle}{\langle v, v\rangle} .
$$

Kempf-Ness set $\mathcal{M}=\mathcal{M}_{U}(X):=\mu^{-1}(0)$, semistable locus $X_{U}^{s s}=\left\{x \in X: \overline{U^{c} X} \cap \mathcal{M} \neq 0\right\}$.

$$
\mathcal{M} / U \cong X_{U}^{s s} / / U^{c} \cong \operatorname{Proj}\left(\mathbb{C}[X]^{U}\right)
$$

Nullcone $\mathcal{N}=\mathcal{N} U(X)=X \backslash X_{U}^{s s}=Z\left(\mathbb{C}[X]_{+}^{U}\right)$.

$$
\bigcap_{\xi \in i u} \mathcal{M}_{\xi}=\mathcal{M} \quad \subset \quad X \quad \supset \quad \mathcal{N}=\bigcup_{\xi \in \mathfrak{i u}} \mathcal{N}_{\xi}
$$

where $\mathcal{M}_{\xi}=\mu_{\xi}^{-1}(0)$ and $\mathcal{N}_{\xi}:=\left\{x \in X: \mu_{\xi}\left(\lim _{t \rightarrow-\infty} e^{t \xi} x\right)>0\right\}$.

$$
\mathcal{M}=\emptyset \Longleftrightarrow \mathbb{C}[X]^{U}=\mathbb{C} \Longleftrightarrow \mathcal{N}=X
$$

$\iota: G \subseteq U^{\mathfrak{c}}$ real reductive, $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{q}, \mathfrak{k}=\mathfrak{g} \cap \mathfrak{u}, \mathfrak{q}=\mathfrak{g} \cap \mathfrak{i u}$.
$\iota: G \subseteq U^{\mathcal{C}}$ real reductive, $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{q}, \mathfrak{k}=\mathfrak{g} \cap \mathfrak{u}, \mathfrak{q}=\mathfrak{g} \cap \mathfrak{i u}$.
Gradient map, K-equivariant,

$$
\mu_{\mathfrak{q}}=\iota^{*} \circ \mu_{U}: X \rightarrow i \mathfrak{u}^{*} \rightarrow \mathfrak{q}^{*}
$$

$\iota: G \subseteq U^{\mathcal{C}}$ real reductive, $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{q}, \mathfrak{k}=\mathfrak{g} \cap \mathfrak{u}, \mathfrak{q}=\mathfrak{g} \cap \mathfrak{i u}$.
Gradient map, K-equivariant,

$$
\begin{aligned}
& \mu_{\mathfrak{q}}=\iota^{*} \circ \mu_{U}: X \rightarrow i u^{*} \rightarrow \mathfrak{q}^{*} . \\
& \mathcal{M}_{\mathfrak{q}}=\mu_{\mathfrak{q}}^{-1}(0), X_{G}^{s s}=\left\{x \in X: \overline{G x} \cap \mathcal{M}_{\mathfrak{q}} \neq \emptyset\right\} \\
& \mathcal{N}_{\mathfrak{q}}=X \backslash X_{G}^{s s}=\bigcup_{\xi \in \mathfrak{q}} \mathcal{N}_{\xi} .
\end{aligned}
$$

Example: $X=\mathbb{P}(V), \mathfrak{g}=\mathbb{R} \xi \subset i u(V)$.
$V=\bigoplus_{m \in \mathbb{R}} V^{\xi, m} \quad, \quad V^{\xi, m}=\{v \in V: \xi v=m v\}$.

Example: $X=\mathbb{P}(V), \mathfrak{g}=\mathbb{R} \xi \subset i u(V)$.
$V=\bigoplus_{m \in \mathbb{R}} V^{\xi, m} \quad, \quad V^{\xi, m}=\{v \in V: \xi v=m v\}$.
$\mathbb{P}(V)^{\xi}=\bigcup_{m \in \mathbb{R}} \mathbb{P}\left(V^{\xi, m}\right)$.

Example: $X=\mathbb{P}(V), \mathfrak{g}=\mathbb{R} \xi \subset i \mathfrak{u}(V)$.
$V=\bigoplus_{m \in \mathbb{R}} V^{\xi, m} \quad, \quad V^{\xi, m}=\{v \in V: \xi v=m v\}$.
$\mathbb{P}(V)^{\xi}=\bigcup_{m \in \mathbb{R}} \mathbb{P}\left(V^{\xi, m}\right)$.
$\mathcal{N}_{\xi}=\left\{[v] \in \mathbb{P}(V): \lim _{t \rightarrow-\infty} e^{t \xi} v=0\right\}=\mathbb{P}\left(V^{\xi>0}\right)$

Example: $X=\mathbb{P}(V), \mathfrak{g}=\mathbb{R} \xi \subset i \mathfrak{u}(V)$.
$V=\bigoplus_{m \in \mathbb{R}} V^{\xi, m} \quad, \quad V^{\xi, m}=\{v \in V: \xi v=m v\}$.
$\mathbb{P}(V)^{\xi}=\bigcup_{m \in \mathbb{R}} \mathbb{P}\left(V^{\xi, m}\right)$.
$\mathcal{N}_{\xi}=\left\{[v] \in \mathbb{P}(V): \lim _{t \rightarrow-\infty} e^{t \xi} v=0\right\}=\mathbb{P}\left(V^{\xi>0}\right)$
$\mathbb{P}(V)_{\xi, m}=\left\{[v] \in \mathbb{P}(V): \lim _{t \rightarrow-\infty} e^{t \xi}[v] \in \mathbb{P}\left(V^{\xi, m}\right)\right\}$

Example: $X=\mathbb{P}(V), \mathfrak{g}=\mathbb{R} \xi \subset i \mathfrak{u}(V)$.

$$
V=\bigoplus_{m \in \mathbb{R}} V^{\xi, m} \quad, \quad V^{\xi, m}=\{v \in V: \xi v=m v\}
$$

$$
\mathbb{P}(V)^{\xi}=\bigcup_{m \in \mathbb{R}} \mathbb{P}\left(V^{\xi, m}\right)
$$

$$
\mathcal{N}_{\xi}=\left\{[v] \in \mathbb{P}(V): \lim _{t \rightarrow-\infty} e^{t \xi} v=0\right\}=\mathbb{P}\left(V^{\xi>0}\right)
$$

$$
\mathbb{P}(V)_{\xi, m}=\left\{[v] \in \mathbb{P}(V): \lim _{t \rightarrow-\infty} e^{t \xi}[v] \in \mathbb{P}\left(V^{\xi, m}\right)\right\}
$$

$$
=\mathbb{P}\left(V^{\xi \geq m}\right) \backslash \mathbb{P}\left(V^{\xi>m}\right)
$$

Example: $X=\mathbb{P}(V), \mathfrak{g}=\mathbb{R} \xi \subset i \mathfrak{u}(V)$.
$V=\bigoplus_{m \in \mathbb{R}} V^{\xi, m} \quad, \quad V^{\xi, m}=\{v \in V: \xi v=m v\}$.
$\mathbb{P}(V)^{\xi}=\bigcup_{m \in \mathbb{R}} \mathbb{P}\left(V^{\xi, m}\right)$.
$\mathcal{N}_{\xi}=\left\{[v] \in \mathbb{P}(V): \lim _{t \rightarrow-\infty} e^{t \xi} v=0\right\}=\mathbb{P}\left(V^{\xi>0}\right)$
$\mathbb{P}(V)_{\xi, m}=\left\{[v] \in \mathbb{P}(V): \lim _{t \rightarrow-\infty} e^{t \xi}[v] \in \mathbb{P}\left(V^{\xi, m}\right)\right\}$

$$
=\mathbb{P}\left(V^{\xi \geq m}\right) \backslash \mathbb{P}\left(V^{\xi>m}\right) .
$$

$\mathbb{P}(V)_{\xi, m} \rightarrow \mathbb{P}\left(V^{\xi, m}\right), x \rightarrow \lim _{t \rightarrow-\infty} e^{t \xi} x$.

Example: $X=\mathbb{P}(V), \mathfrak{g}=\mathbb{R} \xi \subset i \mathfrak{u}(V)$.
$V=\bigoplus_{m \in \mathbb{R}} V^{\xi, m} \quad, \quad V^{\xi, m}=\{v \in V: \xi v=m v\}$.
$\mathbb{P}(V)^{\xi}=\bigcup_{m \in \mathbb{R}} \mathbb{P}\left(V^{\xi, m}\right)$.
$\mathcal{N}_{\xi}=\left\{[v] \in \mathbb{P}(V): \lim _{t \rightarrow-\infty} e^{t \xi} v=0\right\}=\mathbb{P}\left(V^{\xi>0}\right)$
$\mathbb{P}(V)_{\xi, m}=\left\{[v] \in \mathbb{P}(V): \lim _{t \rightarrow-\infty} e^{t \xi}[v] \in \mathbb{P}\left(V^{\xi, m}\right)\right\}$

$$
=\mathbb{P}\left(V^{\xi \geq m}\right) \backslash \mathbb{P}\left(V^{\xi>m}\right) .
$$

$\mathbb{P}(V)_{\xi, m} \rightarrow \mathbb{P}\left(V^{\xi, m}\right), x \rightarrow \lim _{t \rightarrow-\infty} e^{t \xi} x$.
For a G-stable $X \subset \mathbb{P}(V)$, set $X^{\xi, m}=X \cap \mathbb{P}\left(V^{\xi, m}\right)$ and $X_{\xi, m}=X \cap \mathbb{P}(V)_{\xi, m}=: S_{\xi}\left(X^{\xi, m}\right)$.

Example: $X=\mathbb{P}(V), \mathfrak{g}=\mathbb{R} \xi \subset i \mathfrak{u}(V)$.
$V=\bigoplus_{m \in \mathbb{R}} V^{\xi, m} \quad, \quad V^{\xi, m}=\{v \in V: \xi v=m v\}$.
$\mathbb{P}(V)^{\xi}=\bigcup_{m \in \mathbb{R}} \mathbb{P}\left(V^{\xi, m}\right)$.
$\mathcal{N}_{\xi}=\left\{[v] \in \mathbb{P}(V): \lim _{t \rightarrow-\infty} e^{t \xi} v=0\right\}=\mathbb{P}\left(V^{\xi>0}\right)$
$\mathbb{P}(V)_{\xi, m}=\left\{[v] \in \mathbb{P}(V): \lim _{t \rightarrow-\infty} e^{t \xi}[v] \in \mathbb{P}\left(V^{\xi, m}\right)\right\}$

$$
=\mathbb{P}\left(V^{\xi \geq m}\right) \backslash \mathbb{P}\left(V^{\xi>m}\right) .
$$

$\mathbb{P}(V)_{\xi, m} \rightarrow \mathbb{P}\left(V^{\xi, m}\right), x \rightarrow \lim _{t \rightarrow-\infty} e^{t \xi} x$.
For a G-stable $X \subset \mathbb{P}(V)$, set $X^{\xi, m}=X \cap \mathbb{P}\left(V^{\xi, m}\right)$ and
$X_{\xi, m}=X \cap \mathbb{P}(V)_{\xi, m}=: S_{\xi}\left(X^{\xi, m}\right)$.
$\mathcal{N}_{\xi}=\bigsqcup_{m>0} S_{\xi}\left(X^{\xi, m}\right)$.

$$
\begin{array}{rlrl}
\mathcal{N}_{\mathfrak{q}} & =\bigcup_{\xi \in \mathfrak{q}} \mathcal{N}_{\xi} & & \\
& =G \bigcup_{\xi \in \mathfrak{a}} \mathcal{N}_{\xi}=G \mathcal{N}_{\mathfrak{a}} & & \mathcal{Z}_{X}=\{Z \subset X: \text { conn.comp.of some } X \\
& =\bigcup_{\xi \in \mathfrak{a}^{+}} G \mathcal{N}_{\xi} & & \mathcal{B}_{X}=\left\{\beta_{Z} \in \mathfrak{a}: Z \in \mathcal{Z}_{X}, \text { addapted }\right\} \\
& =\bigcup_{\beta \in \mathcal{B}_{X}} G \mathcal{N}_{\beta} & , \mathcal{B} \mathcal{Z}_{X}=\left\{\left(\beta_{Z}, Z\right): Z \in \mathcal{Z}_{X}, \beta_{Z} \in \mathfrak{a}^{+}\right\} \\
& =\bigcup_{(\beta, Z) \in \mathcal{B} \mathcal{Z}_{X}} G \mathcal{S}_{\beta}(Z) & \bigcup_{(\beta, Z) \in \mathcal{S}_{X}} G \mathcal{S}_{\beta}\left(Z_{G_{\beta} / \beta}^{s s}\right) & , \mathcal{S}_{X}=\left\{\left(\beta_{Z}, Z\right) \in \mathcal{B} \mathcal{Z}_{X}: Z_{G_{\beta} / \beta}^{s s} \neq \emptyset\right\} .
\end{array}
$$

$$
\begin{aligned}
\mathcal{N}_{\mathfrak{q}} & =\bigcup_{\xi \in \mathfrak{q}} \mathcal{N}_{\xi} & & \\
& =G \bigcup_{\xi \in \mathfrak{a}} \mathcal{N}_{\xi}=G \mathcal{N}_{\mathfrak{a}} & & \mathcal{Z}_{X}=\{Z \subset X: \text { conn.comp.of some } X \\
& =\bigcup_{\xi \in \mathfrak{a}^{+}} G \mathcal{N}_{\xi} & & \mathcal{B}_{X}=\left\{\beta_{Z} \in \mathfrak{a}: Z \in \mathcal{Z}_{X}, \text { addapted }\right\} \\
& =\bigcup_{\beta \in \mathcal{B}_{X}} G \mathcal{N}_{\beta} & & , \mathcal{B} \mathcal{Z}_{X}=\left\{\left(\beta_{Z}, Z\right): Z \in \mathcal{Z}_{X}, \beta_{Z} \in \mathfrak{a}^{+}\right\} \\
& =\bigcup_{(\beta, Z) \in \mathcal{B} \mathcal{Z}_{X}} G \mathcal{S}_{\beta}(Z) & & \bigsqcup_{(\beta, Z) \in \mathcal{S}_{X}} G \mathcal{S}_{\beta}\left(Z_{G_{\beta} / \beta}^{s s}\right)
\end{aligned}, \mathcal{S}_{X}=\left\{\left(\beta_{Z}, Z\right) \in \mathcal{B} \mathcal{Z}_{X}: Z_{G_{\beta} / \beta}^{s s} \neq \emptyset\right\} .
$$

$$
\begin{array}{rlrl}
\mathcal{N}_{\mathfrak{q}} & =\bigcup_{\xi \in \mathfrak{q}} \mathcal{N}_{\xi} & \\
& =G \bigcup_{\xi \in \mathfrak{a}} \mathcal{N}_{\xi}=G \mathcal{N}_{\mathfrak{a}} & & \\
& =\bigcup_{\xi \in \mathfrak{a}^{+}} G \mathcal{N}_{\xi} & & \mathcal{Z}_{X}=\left\{Z \subset X: \text { conn.comp.of some } X^{\xi}\right. \\
& =\bigcup_{\beta \in \mathcal{B}_{X}} G \mathcal{N}_{\beta} & , \mathcal{B}_{X}=\left\{\beta_{Z} \in \mathfrak{a}: Z \in \mathcal{Z}_{X}, \text { addapted }\right\} \\
& =\bigcup_{(\beta, Z) \in \mathcal{B Z} \mathcal{Z}_{X}} G \mathcal{S}_{\beta}(Z) & , \mathcal{B} \mathcal{Z}_{X}=\left\{\left(\beta_{Z}, Z\right): Z \in \mathcal{Z}_{X}, \beta_{Z} \in \mathfrak{a}^{+}\right\} \\
& =\bigcup_{(\beta, Z) \in \mathcal{S}_{X}} G \mathcal{S}_{\beta}\left(Z_{G_{\beta} / \beta}^{s s}\right) & , \mathcal{S}_{X}=\left\{\left(\beta_{Z}, Z\right) \in \mathcal{B} \mathcal{Z}_{X}: Z_{G_{\beta} / \beta}^{s s} \neq \emptyset\right\} \\
G \times P_{\beta} & \mathcal{S}_{\beta}(Z) \rightarrow G \mathcal{S}_{\beta}(Z) & \\
\operatorname{dim} G \mathcal{S}_{\beta}(Z) \leq \operatorname{dim} G / P_{\beta}+\operatorname{dim} \mathcal{S}_{\beta}(Z) .
\end{array}
$$

$$
\begin{array}{rlrl}
\mathcal{N}_{\mathfrak{q}} & =\bigcup_{\xi \in \mathfrak{q}} \mathcal{N}_{\xi} & & \\
& =G \bigcup_{\xi \in \mathfrak{a}} \mathcal{N}_{\xi}=G \mathcal{N}_{\mathfrak{a}} & & \\
& =\bigcup_{\xi \in \mathfrak{a}^{+}} G \mathcal{N}_{\xi} & & \mathcal{Z}_{X}=\left\{Z \subset X: \text { conn.comp.of some } X^{\xi}\right. \\
& =\bigcup_{\beta \in \mathcal{B}_{X}} G \mathcal{N}_{\beta} & , \mathcal{B}_{X}=\left\{\beta_{Z} \in \mathfrak{a}: Z \in \mathcal{Z}_{X}, \text { addapted }\right\} \\
& =\bigcup_{(\beta, Z) \in \mathcal{B} \mathcal{Z}_{X}} G \mathcal{S}_{\beta}(Z) & , \mathcal{B} \mathcal{Z}_{X}=\left\{\left(\beta_{Z}, Z\right): Z \in \mathcal{Z}_{X}, \beta_{Z} \in \mathfrak{a}^{+}\right\} \\
& =\bigcup_{(\beta, Z) \in \mathcal{S}_{X}} \mathcal{S}_{\beta}\left(Z_{G_{\beta} / \beta}^{s s}\right) & , \mathcal{S}_{X}=\left\{\left(\beta_{Z}, Z\right) \in \mathcal{B Z}_{X}: Z_{G_{\beta} / \beta}^{s s} \neq \emptyset\right\}
\end{array}
$$

$G \times{ }_{P_{\beta}} \mathcal{S}_{\beta}(Z) \rightarrow G \mathcal{S}_{\beta}(Z)$
$\operatorname{dim} G \mathcal{S}_{\beta}(Z) \leq \operatorname{dim} G / P_{\beta}+\operatorname{dim} \mathcal{S}_{\beta}(Z)$.
$Z_{G_{\beta} / \beta}^{\text {ss }} \neq \emptyset \Longrightarrow \operatorname{dim} G \mathcal{S}_{\beta}(Z)=\operatorname{dim} G / P_{\beta}+\operatorname{dim} \mathcal{S}_{\beta}(Z)$.

A pair $(\beta, Z) \in \mathcal{B} \mathcal{Z}_{X}$ is called

- fit, if $\operatorname{dim} G \mathcal{S}_{\beta}(Z)=\operatorname{dim} G / P_{\beta}+\operatorname{dim} \mathcal{S}_{\beta}(Z)$.

A pair $(\beta, Z) \in \mathcal{B} \mathcal{Z}_{X}$ is called

- fit, if $\operatorname{dim} G \mathcal{S}_{\beta}(Z)=\operatorname{dim} G / P_{\beta}+\operatorname{dim} \mathcal{S}_{\beta}(Z)$.
- a candidate, if $\operatorname{dim} X=\operatorname{dim} G / P_{\beta}+\operatorname{dim} \mathcal{S}_{\beta}(Z)$.

A pair $(\beta, Z) \in \mathcal{B Z} \mathcal{Z}_{X}$ is called

- fit, if $\operatorname{dim} G \mathcal{S}_{\beta}(Z)=\operatorname{dim} G / P_{\beta}+\operatorname{dim} \mathcal{S}_{\beta}(Z)$.
- a candidate, if $\operatorname{dim} X=\operatorname{dim} G / P_{\beta}+\operatorname{dim} \mathcal{S}_{\beta}(Z)$.

Rem: If $\mathcal{N}_{\mathfrak{q}}=X$, then there is a stratifying fit candidate.

A pair $(\beta, Z) \in \mathcal{B} \mathcal{Z}_{X}$ is called

- fit, if $\operatorname{dim} G \mathcal{S}_{\beta}(Z)=\operatorname{dim} G / P_{\beta}+\operatorname{dim} \mathcal{S}_{\beta}(Z)$.
- a candidate, if $\operatorname{dim} X=\operatorname{dim} G / P_{\beta}+\operatorname{dim} \mathcal{S}_{\beta}(Z)$.

Rem: If $\mathcal{N}_{\mathfrak{q}}=X$, then there is a stratifying fit candidate.
Popov's tree \mathcal{T}_{X} with signature: Vertices in $\mathcal{B Z} \mathcal{Z}_{X}$, with

A pair $(\beta, Z) \in \mathcal{B} \mathcal{Z}_{X}$ is called

- fit, if $\operatorname{dim} G \mathcal{S}_{\beta}(Z)=\operatorname{dim} G / P_{\beta}+\operatorname{dim} \mathcal{S}_{\beta}(Z)$.
- a candidate, if $\operatorname{dim} X=\operatorname{dim} G / P_{\beta}+\operatorname{dim} \mathcal{S}_{\beta}(Z)$.

Rem: If $\mathcal{N}_{\mathfrak{q}}=X$, then there is a stratifying fit candidate.
Popov's tree \mathcal{T}_{X} with signature: Vertices in $\mathcal{B Z} \mathcal{Z}_{X}$, with

- Root: $(0, X)$.

A pair $(\beta, Z) \in \mathcal{B} \mathcal{Z}_{X}$ is called

- fit, if $\operatorname{dim} G \mathcal{S}_{\beta}(Z)=\operatorname{dim} G / P_{\beta}+\operatorname{dim} \mathcal{S}_{\beta}(Z)$.
- a candidate, if $\operatorname{dim} X=\operatorname{dim} G / P_{\beta}+\operatorname{dim} \mathcal{S}_{\beta}(Z)$.

Rem: If $\mathcal{N}_{\mathfrak{q}}=X$, then there is a stratifying fit candidate.
Popov's tree \mathcal{T}_{X} with signature: Vertices in $\mathcal{B} \mathcal{Z}_{X}$, with

- Root: $(0, X)$.
- Arrows from the root to the candidates.

A pair $(\beta, Z) \in \mathcal{B} \mathcal{Z}_{X}$ is called

- fit, if $\operatorname{dim} G \mathcal{S}_{\beta}(Z)=\operatorname{dim} G / P_{\beta}+\operatorname{dim} \mathcal{S}_{\beta}(Z)$.
- a candidate, if $\operatorname{dim} X=\operatorname{dim} G / P_{\beta}+\operatorname{dim} \mathcal{S}_{\beta}(Z)$.

Rem: If $\mathcal{N}_{\mathfrak{q}}=X$, then there is a stratifying fit candidate.
Popov's tree \mathcal{T}_{X} with signature: Vertices in $\mathcal{B} \mathcal{Z}_{X}$, with

- Root: $(0, X)$.
- Arrows from the root to the candidates.
- Iterate.

A pair $(\beta, Z) \in \mathcal{B Z} \mathcal{Z}_{X}$ is called

- fit, if $\operatorname{dim} G \mathcal{S}_{\beta}(Z)=\operatorname{dim} G / P_{\beta}+\operatorname{dim} \mathcal{S}_{\beta}(Z)$.
- a candidate, if $\operatorname{dim} X=\operatorname{dim} G / P_{\beta}+\operatorname{dim} \mathcal{S}_{\beta}(Z)$.

Rem: If $\mathcal{N}_{\mathfrak{q}}=X$, then there is a stratifying fit candidate.
Popov's tree \mathcal{T}_{X} with signature: Vertices in $\mathcal{B Z} \mathcal{Z}_{X}$, with

- Root: $(0, X)$.
- Arrows from the root to the candidates.
- Iterate.

Signature: $\operatorname{sign}($ leaf $)=+$ and for a vertex a

$$
\operatorname{sign}(a)=-\stackrel{\text { def }}{\Longleftrightarrow} \exists a \rightarrow b \quad \text { with } \quad \operatorname{sign}(b)=+
$$

A pair $(\beta, Z) \in \mathcal{B Z} \mathcal{Z}_{X}$ is called

- fit, if $\operatorname{dim} G \mathcal{S}_{\beta}(Z)=\operatorname{dim} G / P_{\beta}+\operatorname{dim} \mathcal{S}_{\beta}(Z)$.
- a candidate, if $\operatorname{dim} X=\operatorname{dim} G / P_{\beta}+\operatorname{dim} \mathcal{S}_{\beta}(Z)$.

Rem: If $\mathcal{N}_{\mathfrak{q}}=X$, then there is a stratifying fit candidate.
Popov's tree \mathcal{T}_{X} with signature: Vertices in $\mathcal{B Z} \mathcal{Z}_{X}$, with

- Root: $(0, X)$.
- Arrows from the root to the candidates.
- Iterate.

Signature: $\operatorname{sign}($ leaf $)=+$ and for a vertex a

$$
\operatorname{sign}(a)=-\stackrel{\text { def }}{\Longleftrightarrow} \exists a \rightarrow b \quad \text { with } \quad \operatorname{sign}(b)=+
$$

Theorem (Popov, Ts.)

$$
\operatorname{sign}(\text { root })=+\Longleftrightarrow \mathcal{N}_{\mathfrak{q}} \neq X
$$

Computability:

Computability:

$\operatorname{dim} G / P_{\beta}$ are known numbers.

Computability:

$\operatorname{dim} G / P_{\beta}$ are known numbers.
$\operatorname{dim} \mathcal{S}_{\beta}(Z)$ (or $\operatorname{codim}_{X} \mathcal{S}_{\beta}(Z)$) is a challenge, in general.

Computability:

$\operatorname{dim} G / P_{\beta}$ are known numbers.
$\operatorname{dim} \mathcal{S}_{\beta}(Z)$ (or $\operatorname{codim}_{X} \mathcal{S}_{\beta}(Z)$) is a challenge, in general.
$Z_{G_{\beta} / \beta}^{s s}$ is an obstacle (back to square 1).

Computability:

$\operatorname{dim} G / P_{\beta}$ are known numbers.
$\operatorname{dim} \mathcal{S}_{\beta}(Z)$ (or $\operatorname{codim}_{X} \mathcal{S}_{\beta}(Z)$) is a challenge, in general.
$Z_{G_{\beta} / \beta}^{s s}$ is an obstacle (back to square 1).
Complex flag variety: $X=\tilde{U}^{c} / \tilde{P}_{\tilde{\lambda}} \subset \mathbb{P}\left(V_{\tilde{\lambda}}\right), G=U^{c}$.

Computability:

$\operatorname{dim} G / P_{\beta}$ are known numbers.
$\operatorname{dim} \mathcal{S}_{\beta}(Z)$ (or $\operatorname{codim}_{X} \mathcal{S}_{\beta}(Z)$) is a challenge, in general.
$Z_{G_{\beta} / \beta}^{s s}$ is an obstacle (back to square 1).
Complex flag variety: $X=\tilde{U}^{c} / \tilde{P}_{\tilde{\lambda}} \subset \mathbb{P}\left(V_{\tilde{\lambda}}\right), G=U^{c}$.
$\mathcal{S}_{\beta}(Z)$ is a parabolic orbit: $\mathcal{S}_{\beta}(Z)=\tilde{P}_{\beta} x_{\tilde{w}}$ with $\tilde{w} \in \tilde{W}$.

Computability:

$\operatorname{dim} G / P_{\beta}$ are known numbers. $\operatorname{dim} \mathcal{S}_{\beta}(Z)$ (or $\operatorname{codim}_{X} \mathcal{S}_{\beta}(Z)$) is a challenge, in general. $Z_{G_{\beta} / \beta}^{s s}$ is an obstacle (back to square 1).

Complex flag variety: $X=\tilde{U}^{c} / \tilde{P}_{\tilde{\lambda}} \subset \mathbb{P}\left(V_{\tilde{\lambda}}\right), G=U^{c}$. $\mathcal{S}_{\beta}(Z)$ is a parabolic orbit: $\mathcal{S}_{\beta}(Z)=\tilde{P}_{\beta} x_{\tilde{w}}$ with $\tilde{w} \in \tilde{W}$. The conn. comp. of X^{β} are exactly the closed \tilde{G}_{β}-orbits.

Computability:

$\operatorname{dim} G / P_{\beta}$ are known numbers. $\operatorname{dim} \mathcal{S}_{\beta}(Z)$ (or $\operatorname{codim}_{X} \mathcal{S}_{\beta}(Z)$) is a challenge, in general. $Z_{G_{\beta} / \beta}^{s s}$ is an obstacle (back to square 1).

Complex flag variety: $X=\tilde{U}^{c} / \tilde{P}_{\tilde{\lambda}} \subset \mathbb{P}\left(V_{\tilde{\lambda}}\right), G=U^{c}$. $\mathcal{S}_{\beta}(Z)$ is a parabolic orbit: $\mathcal{S}_{\beta}(Z)=\tilde{P}_{\beta} x_{\tilde{w}}$ with $\tilde{w} \in \tilde{W}$.
The conn. comp. of X^{β} are exactly the closed \tilde{G}_{β}-orbits.
$Z_{G_{\beta} / \beta}^{s s} \neq \emptyset \Longleftrightarrow Z_{G_{\beta}^{\prime}}^{s s} \neq \emptyset$

Computability:

$\operatorname{dim} G / P_{\beta}$ are known numbers.
$\operatorname{dim} \mathcal{S}_{\beta}(Z)$ (or $\operatorname{codim}_{X} \mathcal{S}_{\beta}(Z)$) is a challenge, in general.
$Z_{G_{\beta} / \beta}^{s s}$ is an obstacle (back to square 1).
Complex flag variety: $X=\tilde{U}^{c} / \tilde{P}_{\tilde{\lambda}} \subset \mathbb{P}\left(V_{\tilde{\lambda}}\right), G=U^{c}$. $\mathcal{S}_{\beta}(Z)$ is a parabolic orbit: $\mathcal{S}_{\beta}(Z)=\tilde{P}_{\beta} x_{\tilde{w}}$ with $\tilde{w} \in \tilde{W}$.
The conn. comp. of X^{β} are exactly the closed \tilde{G}_{β}-orbits.
$Z_{G_{\beta} / \beta}^{s s} \neq \emptyset \Longleftrightarrow Z_{G_{\beta}^{\prime}}^{s s} \neq \emptyset$
$\mathcal{N}=\bigcup_{j=1}^{n} \bigcup_{\tilde{w}} G \tilde{P}_{\beta_{j}} x_{\tilde{w}} \quad$ for some special $\beta_{1}, \ldots, \beta_{n}$ depending only on $G \subset \tilde{G}$ and not on $\tilde{\lambda}$.

Let $X=\tilde{U}^{c} / \tilde{B}$, with ample cone $\mathcal{A}(X)=\tilde{\Lambda}_{\mathbb{R}}^{+}$, and $G=U^{c} \subset \tilde{U}^{c}$.

Let $X=\tilde{U}^{c} / \tilde{B}$, with ample cone $\mathcal{A}(X)=\tilde{\Lambda}_{\mathbb{R}}^{+}$, and $G=U^{c} \subset \tilde{U}^{c}$. G-ample cone $\mathcal{A}^{G}(X)=\operatorname{Cone}\left\{\tilde{\lambda} \in \tilde{\Lambda}^{+}: \exists n \in \mathbb{N}, V_{n \tilde{\lambda}}^{G} \neq 0\right\}$

Let $X=\tilde{U}^{c} / \tilde{B}$, with ample cone $\mathcal{A}(X)=\tilde{\Lambda}_{\mathbb{R}}^{+}$, and $G=U^{c} \subset \tilde{U}^{c}$.
G-ample cone $\mathcal{A}^{G}(X)=\operatorname{Cone}\left\{\tilde{\lambda} \in \tilde{\Lambda}^{+}: \exists n \in \mathbb{N}, V_{n \tilde{\lambda}}^{G} \neq 0\right\}$
For $\tilde{\lambda} \in \tilde{\Lambda}^{++}, X \subset \mathbb{P}\left(V_{\tilde{\lambda}}\right)$, and

Let $X=\tilde{U}^{c} / \tilde{B}$, with ample cone $\mathcal{A}(X)=\tilde{\Lambda}_{\mathbb{R}}^{+}$, and $G=U^{c} \subset \tilde{U}^{c}$. G-ample cone $\mathcal{A}^{G}(X)=\operatorname{Cone}\left\{\tilde{\lambda} \in \tilde{\Lambda}^{+}: \exists n \in \mathbb{N}, V_{n \tilde{\lambda}}^{G} \neq 0\right\}$
For $\tilde{\lambda} \in \tilde{\Lambda}^{++}, X \subset \mathbb{P}\left(V_{\tilde{\lambda}}\right)$, and $\operatorname{dim} \mathcal{N}_{\beta}=\max \{I(\tilde{w}):\langle\tilde{w} \tilde{\lambda} \mid \beta\rangle>0\}$

Let $X=\tilde{U}^{c} / \tilde{B}$, with ample cone $\mathcal{A}(X)=\tilde{\Lambda}_{\mathbb{R}}^{+}$, and $G=U^{c} \subset \tilde{U}^{c}$.
G-ample cone $\mathcal{A}^{G}(X)=\operatorname{Cone}\left\{\tilde{\lambda} \in \tilde{\Lambda}^{+}: \exists n \in \mathbb{N}, V_{n \lambda}^{G} \neq 0\right\}$
For $\tilde{\lambda} \in \tilde{\Lambda}^{++}, X \subset \mathbb{P}\left(V_{\tilde{\lambda}}\right)$, and
$\operatorname{dim} \mathcal{N}_{\beta}=\max \{1(\tilde{w}):\langle\tilde{w} \tilde{\lambda} \mid \beta\rangle>0\}$
Put $\ell^{\tilde{\lambda}}=\operatorname{codim}_{\chi} \mathcal{N}_{\tilde{\tilde{a}}}=\min \left\{l(\tilde{w}): \tilde{w} \tilde{\lambda} \notin \operatorname{Cone} \tilde{\Delta}^{+}\right\}$and

$$
\begin{aligned}
\ell_{\tilde{U}}=\ell_{\tilde{\Delta}} & =\min \left\{\ell^{\tilde{\lambda}}: \tilde{\lambda} \in \tilde{\Lambda}^{+} \backslash\{0\}\right\} \\
& =\min \left\{l(\tilde{w}): \tilde{w} \tilde{\Lambda}^{+} \nsubseteq \text { Cone } \tilde{\Delta}^{+}\right\}
\end{aligned}
$$

Theorem (Staneva, Ts.)

$$
\begin{aligned}
\# \Delta^{+}<\ell_{\tilde{U}} & \Longrightarrow \mathcal{M}_{U}(X, \tilde{\lambda}) \neq \emptyset, \forall \tilde{\Lambda}^{+} \\
& \Longrightarrow \mathcal{A}^{G}(X)=\mathcal{A}(X)=\tilde{\Lambda}_{\mathbb{R}}^{+}
\end{aligned}
$$

Theorem (Staneva, Ts.)
The values of ℓ_{Δ} for simple root systems are

Type of Δ	ℓ_{Δ}
\mathbf{A}_{n}	1
\mathbf{B}_{n}	n
\mathbf{C}_{n}	n
$\mathbf{D}_{n}, n \geq 4$	$n-1$, for $n \neq 5$ 3, for $n=5$
\mathbf{E}_{6}	5
\mathbf{E}_{7}	10
\mathbf{E}_{8}	$7 \leq \ell_{\mathbf{E}_{8}} \leq 29$
\mathbf{F}_{4}	8
\mathbf{G}_{2}	3

Theorem (Staneva, Ts.)
The values of ℓ_{Δ} for simple root systems are

Type of Δ	ℓ_{Δ}
\mathbf{A}_{n}	1
\mathbf{B}_{n}	n
\mathbf{C}_{n}	n
$\mathbf{D}_{n}, n \geq 4$	$n-1$, for $n \neq 5$ 3, for $n=5$
\mathbf{E}_{6}	5
\mathbf{E}_{7}	10
\mathbf{E}_{8}	$7 \leq \ell_{\mathbf{E}_{8}} \leq 29$
\mathbf{F}_{4}	8
\mathbf{G}_{2}	3

$\ell_{\Delta}^{s d}=\min \left\{\ell^{\lambda}: \lambda \in \Lambda_{s d}^{+} \backslash\{0\}\right\}$, where $\Lambda_{s d}^{+}=\left\{\lambda \in \Lambda^{+}:-w_{0} \lambda=\lambda\right\}$.

Theorem (Staneva, Ts.)
The values of ℓ_{Δ} for simple root systems are

Type of Δ	ℓ_{Δ}
\mathbf{A}_{n}	1
\mathbf{B}_{n}	n
\mathbf{C}_{n}	n
$\mathbf{D}_{n}, n \geq 4$	$n-1$, for $n \neq 5$ 3, for $n=5$
\mathbf{E}_{6}	5
\mathbf{E}_{7}	10
\mathbf{E}_{8}	$7 \leq \ell_{\mathbf{E}_{8}} \leq 29$
\mathbf{F}_{4}	8
\mathbf{G}_{2}	3

$\ell_{\Delta}^{s d}=\min \left\{\ell^{\lambda}: \lambda \in \Lambda_{s d}^{+} \backslash\{0\}\right\}$, where $\Lambda_{s d}^{+}=\left\{\lambda \in \Lambda^{+}:-w_{0} \lambda=\lambda\right\}$.

$$
\begin{aligned}
w_{0}=-1, \# \Delta^{+}<\ell_{\tilde{U}}^{s d} & \Longrightarrow \mathcal{M}_{U}(X, \tilde{\lambda}) \neq \emptyset, \forall \tilde{\Lambda}^{+} \\
& \Longrightarrow \mathcal{A}^{G}(X)=\mathcal{A}(X)=\tilde{\Lambda}_{\mathbb{R}}^{+}
\end{aligned}
$$

Theorem (Staneva, Ts.)
The values of ℓ_{Δ} and $\ell_{\Delta}^{s d}$ for simple root systems are

Type of Δ	ℓ_{Δ}	$\ell_{\Delta}^{\text {sd }}$
\mathbf{A}_{n}	1	$\left\lfloor\frac{n+2}{2}\right\rfloor$
\mathbf{B}_{n}	n	
\mathbf{C}_{n}	n	
$\mathbf{D}_{n}, n \geq 4$	$n-1$, for $n \neq 5$ 3, for $n=5$	$n-1$
\mathbf{E}_{6}	5	9
\mathbf{E}_{7}	10	
\mathbf{E}_{8}	$7 \leq \ell_{\mathbf{E}_{8}} \leq 29$	
\mathbf{F}_{4}	8	
\mathbf{G}_{2}	3	

Corollary
If $G \cong S L_{2}$ or E_{8} and \tilde{G} has no simple factors isomorphic to G, then

$$
\mathcal{A}^{G}(\tilde{G} / \tilde{B}) \cong \mathcal{A}(\tilde{G} / \tilde{B}) .
$$

