
Semisimple elements and the

little Weyl group of real

semisimple Zm-graded Lie

algebras

Hông Vân Lê
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1. Algebraic θ-group and classification of

homogeneous semisimple elements.

g =
⊕
i∈Zm

gi

is a real Zm-graded semisimple Lie algebra,

gC :=
⊕
i∈Zm

gCi where gCi = gi ⊗C.

• G̃ denotes the simply connected algebraic

group with Lie algebra gC. The automorphism

θ of gC that defines the Zm-grading on gC can

be lifted uniquely to an automorphism Θ of

G̃.



G0 := {g ∈ G̃|Θ(g) = g}

is a connected reductive group (by Steinberg’s

Theorem). gC0 and g0 are reductive Lie algebras.

• G0 is defined over R. Let G0(R) denote

the group of R-points of G0.

Definition. The group AdG0(R) will be called

the algebraic θ-group of a real semisimple

Zm-graded Lie algebra (g, θ).



• Aim: investigate the equivalence classes
of homogeneous semisimple elements of gC

and g under the action of G0 ∼ AdG0
and

G0(R) ∼ AdG0(R), respectively.

• hC ⊂ gC1- a Cartan subspace (a maximal
subspace of commuting semisimple elements)

• (Vinberg 1976) Two elements in hC are
conjugate if and only if and they are in the
same orbit of the little Weyl group of (gC, θ)
defined as follows

W := W (gC, θ) :=
NG0

(hC)

ZG0
(hC)

.



• Vinberg’s theorem generalizes results by

Kostant and Kostant-Rally for m = 1 and

m = 2. His theorem gives us infinitely many

orbits of homogeneous semisimple elements

in gC1.

• For m = 1 the “classification” of homogeneous

elements in real reductive Lie algebras using

the decomposition of a semisimple element

into commuting elliptic and hyperbolic parts

has been proposed by Rothschild in 1972.

Note that Rothschild considered the action/orbit

of the identity component of G0(R).



• For m = 2 a scheme of classification homogeneous
elements has been proposed by Lê in 2011,
generalizing Rothschild’s method.

• Rothschild and Lê’ methods give infinite
number of G0(R)-conjugacy classes of p.

• In 1978 Vinberg-Elashvili proposed a method
to enumerate conjugacy classes of ZgC(p) as
the type of p. There is only a finite number
of types. They showed that for gC = e8 =
g−1⊕ g0⊕ g−1 there is a 1-1 correspondence
between the G0-conjugacy classes of ZgC(p)
and the W -conjugacy classes of Wp = ZW (p).



•We wish to classify homogeneous elements

in g using classification of homogeneous semisimple

elements in gC = g ⊗ C and Galois theory,

which asserts that the set of G0(R)-conjugacy

classes in the G0-orbit of element p ∈ g1 is

in a canonical bijection with

ker[H1ZG0
(p)→ H1(G0)].

We need to determine the G0-conjugacy class

of ZG0
(p).

• The geometry of G0(p) is defined by G0-

conjugacy class of ZG0
(p).



2. The Vinberg-Elashvili proposal

g =
⊕
i∈Zm

gi

• hC- a Cartan subspace in gC1.

In order to apply Vinberg-Elashvili’s proposal
to classify homogeneous semisimple elements
in gC1 we need the validity of the following.

• Statement 1: Let g be a Zm-graded semisimple
complex Lie algebra and p ∈ hC. The G0-
conjugacy class of ZgC(p) is determined uniquely
by the W -conjugacy class of Wp.



• Statement 1 is true if m = 1, since in this

case Wp is generated by (complex) reflection

rα, where α is a root of ZgC(p).

• Statement 1 has been proved by Vinberg-

Elashivili (1978) for Z3-graded Lie algebra e8

by explicit computation of Wp and ZgC(p).

Later, using similar methods, Statement 1

has been verified for several cases of Z2-

graded semisimple complex Lie algebras (Antonyan

1981, Antonyan-Elashvili 1982, Dietrich-de

Graaf-Marrani-Origlia 2022).



3. Our main results

A complex semisimple Zm-graded Lie algebra
(gC, θ) is called of maximal rank, if the centralizer
ZgC(hC) of a Cartan subspace hC ⊂ gC1 is a
Cartan subalgebra in gC.

• Theorem 1(De Graaf-L. 2022) Statement
1 is true for complex semisimple Zm-graded
Lie algebra g if m is simple or g is of maximal
rank.

• Statement 1 has many important consequences,
which we discovered during the proof of Theorem
1.



Outline of the proof and consequences

In the first step we shall show that if p, q are

in the same gC-family, equivalently, if ZgC(p)

and ZgC(q) are G0-conjugate, then they are

in the same W -family, equivalently, if Wp and

Wq are W -conjugate (easy part). Then in

the second step we show that under the

condition of Theorem 1, if p, q are in the

same W -family then they are in the same

gC-family.



Proposition 1 Assume that two elements

p, q ∈ hC are in the same gC-family. Then

their centralizers ZG0
(p), ZG0

(q) are G0-conjugate

and p, q are in the same W -family.

Corollary 1. The type of G0-orbit of p, in

particular the G0-conjugacy class of ZG0
(p),

which we need for classification of real orbits

using Galois cohomology, is defined by the

gC-family of p.



Idea of the proof of Proposition 1. Using the

Steinberg theorem, we show that if p, q ∈ hC

are in the same gC-family their centralizers

ZG0
(p), ZG0

(q) are conjugate. Next use the

Vinberg theorem, we infer from the first assertion

of Proposition 1 the second assertion.

The second step of the proof of Theorem 1:

It suffices to show that if Wp = Wq then

ZgC(p) = ZgC(q).



Lemma 1. Assume that a Zm-graded reductive

complex Lie algebra (gC, θ) satisfies one of

the condition of Theorem 1. Then for any

p ∈ hC we have Wp = W (ZgC(p), θ). Hence if

p, q ∈ hC such that Wp = Wq then W (ZgC(p), θ) =

W (ZgC(q), θ).

Outline of the proof. The condition of Theorem

1 implies that every G0-orbit of p is invariant

under the action of

G̃θ
Z = {g ∈ G̃|Θ(g) = g mod (Z(G̃))}.

Using this we show that Wp = W (ZgC(p), θ).



• For the completion of the proof of Theorem

1 we need new notation. For p ∈ hC we let

hCp := {q ∈ hC |Wp ⊂Wq},

hC,◦p := {q ∈ hCp |Wq = Wp}.

• Σ(hCp ) - the weight system of the adjoint

representation of hCp .

hC,reg
p := {q ∈ hCp |σ(q) 6= 0 for all σ ∈ Σ(hCp )\{0}}.

Elements in h
C,reg
p will be called Σ(hCp )-regular.



• Now assume the opposite, i.e. ∃ p, q s.t. (i)

Wp = Wq and (ii) ZgC(p) 6= ZgC(q). W.l.o.g.

we replace (ii) by (ii’) q 6∈ hC,reg

(i) =⇒ (hCp = hCq ) =⇒ ∃preg ∈ (hC,◦p ∩hC,reg
p )

W (ZgC(preg, θ))
Lemma 1

= Wpreg
∗
= Wq

Lemma 1
= W (ZgC(q), θ),

which contradicts (ii’).

This completes the proof of Theorem 1.



Consequences of Statement 1

Theorem 2. Assume that Statement 1 holds

for a complex Zm-graded semisimple Lie algebra

(g, θ). Then

(1) q ∈ h
C,◦
p then ZG0

(p) = ZG0
(hCp ).

(2) Γp(:= NW (Wp)/Wp) =
NG0

(hCp )

ZG0
(hCp )



(3) Assume that H1G0 = 1. Let O = G0 · p.

Write N = NG0
(hCp ), Z = ZG0

(hCp ). Write

H1Γp = {[γ1], . . . , [γs]}, and assume that for

1 ≤ i ≤ s there is a cocycle ni ∈ Z1(Z) projecting

to γi. Let gi ∈ G0 be such that g−1
i ḡi = ni

for 1 ≤ i ≤ s. Then O has an R-point if and

only if p̄ = γ−1
i · p for some i. In that case

gi · p is an R-point of O.

• Let R(W ) be the subset of all complex

reflections of W .



Theorem 2 (De Graaf-L. 2023). Let (gC, θ)

be complex semisimple Zm-graded Lie algebra

and W = W (g, θ, hC). The following assertions

are equivalent.

(1) Statement 1 is valid for (gC, θ).

(2) ∀ w ∈ R(W ) ∃ σ ∈ Σ(hC) s.t. w preserves

the hyperplane σ = 0.

(3) #(reflecting hyperplanes in W )= #( proportional

roots in Σ(hC)).



(4) h
C,◦
r = h

C,reg
r for all r ∈ hC.

Idea of proof. For A ⊂ R(W ) we set

hCA : {p ∈ hC|w ∈Wp for all w ∈ A}. (1)

W (A)- the subgroup of W generated by A.

Then

hC = hC,◦
⋃

A⊂R(W )

h
C,◦
A ∪ {0}, (2)

where h
C,◦
A := {p ∈ hC|Wp = W (A)} if W (A) 6=

W and h
C,◦
A = ∅ otherwise.



Proposition (1) The action of W on hC preserves

the stratification (2).

(2) p, q belong to the same W -family, iff their

projections on the quotient space hC/W belong

to the same cell in the stratification of hC/W

induced by the stratification (2).



• For A ⊂ Σ(hC) (the weight of hC w.r.t. the

adjoint representation) we let

hCA := {p ∈ hC|σ(p) = 0 for all σ ∈ A}(3)

h
C,reg
A := {p ∈ hCA|σ(p) 6= 0 for all σ ∈ Σ(hC) \ A}.(4)

Now we consider a stratification of hC

hC = hC,reg ⋃
A⊂Σ(hC)

h
C,reg
A ∪ {0}, (5)

where hC,reg consists of all Σ(hC)-regular points

of hC.



Proposition (1) The action of the little Weyl

group W on hC preserves the stratification

(5).

(2) Two points p, q belong to the same gC-

family, if and only if their projection on hC/W

belong to the same cell of the stratification

induced by (5).

(3) For every A ⊂ Σ(hC) there exists A ⊂
R(W ) such that h

C,reg
A ⊂ h

C,◦
A . In particular,

for any σ ∈ Σ(hC) there exists w ∈ R(W ) such

that w preserves the hyperplane σ = 0.



Remark: Theorem 2 suggests a way to verify

Statement 1 for all complex Zm-graded semisimple

Lie algebra.



4. Conjugacy classes of Cartan subspaces

in Zm-graded semisimple Lie algebras over

R

Theorem 3 Let hC be a Cartan subspace in

gC and N0 := NG0
(hC). There is a canonical

bijection between the conjugacy classes of

Cartan subspaces in g1 and the kernel ker[H1N0 →
H1G0].

Proposition All Cartan subspaces in g1 are

G0(R)-conjugate, if g is a compact Lie algebra.



Proposition (1) If p ∈ h is regular, then
G0(p)∩ g1 consists of L G0(R)-orbits, where
L is the number of conjugacy classes of Cartan
subspaces in g1.

(2) Assume that all Cartan subspaces in g1
are conjugate. Let p ∈ hC. Then the orbit
G0(p) contains a real point in g1 if and only
if the orbit W (p) contains a real point in
h. For any q ∈ h the set of G0(R)-orbits in
G0(q)∩ g1 is in a canonical bjection with the
set

ker[H1Wq → H1W ].
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