Semisimple elements and the little Weyl group of real semisimple Z_m-graded Lie algebras

Hông Vân Lê Institute of Mathematics, Czech Academy of Sciences joint work in progress with Willem De Graaf

Lie Theory in Prato, January 12, 2023

OUTLINE

1. The algebraic θ -group and classification of homogeneous semisimple elements.

2. The Vinberg-Elashvili proposal.

3. Our main results.

4. Cartan subalgebras of a \mathbf{Z}_m -graded Lie algebra over \mathbf{R} .

1. Algebraic θ -group and classification of homogeneous semisimple elements.

$$\mathfrak{g}=igoplus_{i\in \mathbf{Z}_m}\mathfrak{g}_i$$

is a real \mathbf{Z}_m -graded semisimple Lie algebra,

$$\mathfrak{g}^{\mathbf{C}} := \bigoplus_{i \in \mathbf{Z}_m} \mathfrak{g}_i^{\mathbf{C}}$$
 where $\mathfrak{g}_i^{\mathbf{C}} = \mathfrak{g}_i \otimes \mathbf{C}$.

• $\widetilde{\mathbf{G}}$ denotes the simply connected algebraic group with Lie algebra $\mathfrak{g}^{\mathbf{C}}$. The automorphism θ of $\mathfrak{g}^{\mathbf{C}}$ that defines the \mathbf{Z}_m -grading on $\mathfrak{g}^{\mathbf{C}}$ can be lifted uniquely to an automorphism Θ of $\widetilde{\mathbf{G}}$.

$\mathbf{G}_0 := \{g \in \widetilde{\mathbf{G}} | \, \Theta(g) = g\}$

is a connected reductive group (by Steinberg's Theorem). \mathfrak{g}_0^C and \mathfrak{g}_0 are reductive Lie algebras.

• G_0 is defined over R. Let $G_0(R)$ denote the group of R-points of G_0 .

Definition. The group $\operatorname{Ad}_{G_0(\mathbb{R})}$ will be called the algebraic θ -group of a real semisimple \mathbb{Z}_m -graded Lie algebra (\mathfrak{g}, θ) . • Aim: investigate the equivalence classes of homogeneous semisimple elements of \mathfrak{g}^C and \mathfrak{g} under the action of $G_0\sim \mathsf{Ad}_{G_0}$ and $G_0(R)\sim \mathsf{Ad}_{G_0(R)}$, respectively.

• $\mathfrak{h}^{\mathbf{C}} \subset \mathfrak{g}_{1}^{\mathbf{C}}$ - a Cartan subspace (a maximal subspace of commuting semisimple elements)

• (Vinberg 1976) Two elements in $\mathfrak{h}^{\mathbf{C}}$ are conjugate if and only if and they are in the same orbit of the little Weyl group of $(\mathfrak{g}^{\mathbf{C}}, \theta)$ defined as follows

$$W := W(\mathfrak{g}^{\mathbf{C}}, \theta) := \frac{\mathcal{N}_{\mathbf{G}_0}(\mathfrak{h}^{\mathbf{C}})}{\mathcal{Z}_{\mathbf{G}_0}(\mathfrak{h}^{\mathbf{C}})}.$$

• Vinberg's theorem generalizes results by Kostant and Kostant-Rally for m = 1 and m = 2. His theorem gives us infinitely many orbits of homogeneous semisimple elements in $\mathfrak{g}_1^{\mathbb{C}}$.

• For m = 1 the "classification" of homogeneous elements in real reductive Lie algebras using the decomposition of a semisimple element into commuting elliptic and hyperbolic parts has been proposed by Rothschild in 1972. Note that Rothschild considered the action/orbit of the identity component of $G_0(\mathbf{R})$. • For m = 2 a scheme of classification homogeneous elements has been proposed by Lê in 2011, generalizing Rothschild's method.

• Rothschild and Lê' methods give infinite number of $G_0(\mathbf{R})$ -conjugacy classes of p.

• In 1978 Vinberg-Elashvili proposed a method to enumerate conjugacy classes of $\mathcal{Z}_{gC}(p)$ as the type of p. There is only a finite number of types. They showed that for $\mathfrak{g}^{C} = e_{8} =$ $\mathfrak{g}_{-1} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{-1}$ there is a 1-1 correspondence between the \mathbf{G}_{0} -conjugacy classes of $\mathcal{Z}_{gC}(p)$ and the W-conjugacy classes of $W_{p} = \mathcal{Z}_{W}(p)$. • We wish to classify homogeneous elements in \mathfrak{g} using classification of homogeneous semisimple elements in $\mathfrak{g}^{\mathbb{C}} = \mathfrak{g} \otimes \mathbb{C}$ and Galois theory, which asserts that the set of $G_0(\mathbb{R})$ -conjugacy classes in the G_0 -orbit of element $p \in \mathfrak{g}_1$ is in a canonical bijection with

$$\operatorname{ker}[\operatorname{H}^{1}\!\mathcal{Z}_{\operatorname{G}_{0}}(p) \to \operatorname{H}^{1}(\operatorname{G}_{0})].$$

We need to determine the G_0 -conjugacy class of $\mathcal{Z}_{G_0}(p)$.

• The geometry of $G_0(p)$ is defined by G_0 conjugacy class of $\mathcal{Z}_{G_0}(p)$.

2. The Vinberg-Elashvili proposal

$$\mathfrak{g} = igoplus_{i \in \mathbf{Z}_m} \mathfrak{g}_i$$

• \mathfrak{h}^{C} - a Cartan subspace in \mathfrak{g}_{1}^{C} .

In order to apply Vinberg-Elashvili's proposal to classify homogeneous semisimple elements in $\mathfrak{g}_1^{\mathrm{C}}$ we need the validity of the following.

• Statement 1: Let \mathfrak{g} be a \mathbb{Z}_m -graded semisimple complex Lie algebra and $p \in \mathfrak{h}^{\mathbb{C}}$. The \mathbb{G}_0 conjugacy class of $\mathcal{Z}_{\mathfrak{gC}}(p)$ is determined uniquely by the *W*-conjugacy class of W_p . • Statement 1 is true if m = 1, since in this case W_p is generated by (complex) reflection r_{α} , where α is a root of $\mathcal{Z}_{\mathfrak{a}C}(p)$.

• Statement 1 has been proved by Vinberg-Elashivili (1978) for Z_3 -graded Lie algebra e_8 by explicit computation of W_p and $\mathcal{Z}_{gC}(p)$. Later, using similar methods, Statement 1 has been verified for several cases of Z_2 graded semisimple complex Lie algebras (Antonyan 1981, Antonyan-Elashvili 1982, Dietrich-de Graaf-Marrani-Origlia 2022).

3. Our main results

A complex semisimple \mathbb{Z}_m -graded Lie algebra (\mathfrak{g}^C, θ) is called of maximal rank, if the centralizer $\mathcal{Z}_{\mathfrak{g}^C}(\mathfrak{h}^C)$ of a Cartan subspace $\mathfrak{h}^C \subset \mathfrak{g}_1^C$ is a Cartan subalgebra in \mathfrak{g}^C .

• Theorem 1(De Graaf-L. 2022) Statement 1 is true for complex semisimple \mathbb{Z}_m -graded Lie algebra \mathfrak{g} if m is simple or \mathfrak{g} is of maximal rank.

 Statement 1 has many important consequences, which we discovered during the proof of Theorem 1.

Outline of the proof and consequences

In the first step we shall show that if p, q are in the same \mathfrak{g}^{C} -family, equivalently, if $\mathcal{Z}_{\mathfrak{g}^{C}}(p)$ and $\mathcal{Z}_{\mathfrak{g}^{C}}(q)$ are G_{0} -conjugate, then they are in the same W-family, equivalently, if W_{p} and W_{q} are W-conjugate (easy part). Then in the second step we show that under the condition of Theorem 1, if p, q are in the same W-family then they are in the same \mathfrak{g}^{C} -family. **Proposition 1** Assume that two elements $p,q \in \mathfrak{h}^{\mathbb{C}}$ are in the same $\mathfrak{g}^{\mathbb{C}}$ -family. Then their centralizers $\mathcal{Z}_{\mathbf{G}_0}(p)$, $\mathcal{Z}_{\mathbf{G}_0}(q)$ are \mathbf{G}_0 -conjugate and p,q are in the same *W*-family.

Corollary 1. The type of G_0 -orbit of p, in particular the G_0 -conjugacy class of $\mathcal{Z}_{G_0}(p)$, which we need for classification of real orbits using Galois cohomology, is defined by the $\mathfrak{g}^{\mathbb{C}}$ -family of p.

Idea of the proof of Proposition 1. Using the Steinberg theorem, we show that if $p, q \in \mathfrak{h}^{\mathbb{C}}$ are in the same $\mathfrak{g}^{\mathbb{C}}$ -family their centralizers $\mathcal{Z}_{\mathbf{G}_0}(p)$, $\mathcal{Z}_{\mathbf{G}_0}(q)$ are conjugate. Next use the Vinberg theorem, we infer from the first assertion of Proposition 1 the second assertion.

The second step of the proof of Theorem 1: It suffices to show that if $W_p = W_q$ then $\mathcal{Z}_{gC}(p) = \mathcal{Z}_{gC}(q).$ **Lemma 1.** Assume that a \mathbb{Z}_m -graded reductive complex Lie algebra $(\mathfrak{g}^{\mathbb{C}}, \theta)$ satisfies one of the condition of Theorem 1. Then for any $p \in \mathfrak{h}^{\mathbb{C}}$ we have $W_p = W(\mathcal{Z}_{\mathfrak{g}^{\mathbb{C}}}(p), \theta)$. Hence if $p, q \in \mathfrak{h}^{\mathbb{C}}$ such that $W_p = W_q$ then $W(\mathcal{Z}_{\mathfrak{g}^{\mathbb{C}}}(p), \theta) =$ $W(\mathcal{Z}_{\mathfrak{g}^{\mathbb{C}}}(q), \theta)$.

<u>Outline of the proof</u>. The condition of Theorem 1 implies that every G_0 -orbit of p is invariant under the action of

$$\widetilde{\mathbf{G}}^{\theta}_{\mathcal{Z}} = \{ g \in \widetilde{\mathbf{G}} | \, \Theta(g) = g \mod (\mathcal{Z}(\widetilde{\mathbf{G}})) \}.$$

Using this we show that $W_p = W(\mathcal{Z}_{gC}(p), \theta)$.

• For the completion of the proof of Theorem 1 we need new notation. For $p \in \mathfrak{h}^{\mathbb{C}}$ we let

$$\mathfrak{h}_p^{\mathbf{C}} := \{ q \in \mathfrak{h}^{\mathbf{C}} \mid W_p \subset W_q \},$$
$$\mathfrak{h}_p^{\mathbf{C}, \circ} := \{ q \in \mathfrak{h}_p^{\mathbf{C}} \mid W_q = W_p \}.$$

• $\Sigma(\mathfrak{h}_p^{\mathbb{C}})$ - the weight system of the adjoint representation of $\mathfrak{h}_p^{\mathbb{C}}$.

$$\begin{split} \mathfrak{h}_p^{\mathbf{C},\mathsf{reg}} &:= \{q \in \mathfrak{h}_p^{\mathbf{C}} | \, \sigma(q) \neq 0 \text{ for all } \sigma \in \Sigma(\mathfrak{h}_p^{\mathbf{C}}) \setminus \{0\}\}. \\ \text{Elements in } \mathfrak{h}_p^{\mathbf{C},\mathsf{reg}} \text{ will be called } \Sigma(\mathfrak{h}_p^{\mathbf{C}})\text{-regular.} \end{split}$$

• Now assume the opposite, i.e. $\exists p, q$ s.t. (i) $W_p = W_q$ and (ii) $\mathcal{Z}_{gC}(p) \neq \mathcal{Z}_{gC}(q)$. W.I.o.g. we replace (ii) by (ii') $q \notin \mathfrak{h}^{C, reg}$

(i)
$$\Longrightarrow (\mathfrak{h}_p^{\mathrm{C}} = \mathfrak{h}_q^{\mathrm{C}}) \Longrightarrow \exists p^{\mathrm{reg}} \in (\mathfrak{h}_p^{\mathrm{C},\circ} \cap \mathfrak{h}_p^{\mathrm{C},\mathrm{reg}})$$

 $W(\mathcal{Z}_{\mathfrak{g}^{\mathrm{C}}}(p^{\mathrm{reg}},\theta)) \stackrel{\mathrm{Lemma } 1}{=} W_{p^{\mathrm{reg}}} \stackrel{*}{=} W_q$
 $\overset{\mathrm{Lemma } 1}{=} W(\mathcal{Z}_{\mathfrak{g}^{\mathrm{C}}}(q),\theta),$
which contradicts (ii').

This completes the proof of Theorem 1.

Consequences of Statement 1

Theorem 2. Assume that Statement 1 holds for a complex \mathbb{Z}_m -graded semisimple Lie algebra (\mathfrak{g}, θ) . Then

(1)
$$q \in \mathfrak{h}_p^{\mathrm{C},\circ}$$
 then $\mathcal{Z}_{\mathbf{G}_0}(p) = \mathcal{Z}_{\mathbf{G}_0}(\mathfrak{h}_p^{\mathrm{C}}).$

(2)
$$\Gamma_p(:=\mathcal{N}_W(W_p)/W_p) = \frac{\mathcal{N}_{\mathbf{G}_0}(\mathfrak{h}_p^{\mathbf{C}})}{\mathcal{Z}_{\mathbf{G}_0}(\mathfrak{h}_p^{\mathbf{C}})}$$

(3) Assume that $H^1G_0 = 1$. Let $\mathcal{O} = G_0 \cdot p$. Write $\mathcal{N} = \mathcal{N}_{G_0}(\mathfrak{h}_p^{\mathbb{C}}), \ \mathcal{Z} = \mathcal{Z}_{G_0}(\mathfrak{h}_p^{\mathbb{C}})$. Write $H^1\Gamma_p = \{[\gamma_1], \ldots, [\gamma_s]\}$, and assume that for $1 \leq i \leq s$ there is a cocycle $n_i \in Z^1(\mathcal{Z})$ projecting to γ_i . Let $g_i \in G_0$ be such that $g_i^{-1}\overline{g}_i = n_i$ for $1 \leq i \leq s$. Then \mathcal{O} has an **R**-point if and only if $\overline{p} = \gamma_i^{-1} \cdot p$ for some *i*. In that case $g_i \cdot p$ is an **R**-point of \mathcal{O} .

• Let R(W) be the subset of all complex reflections of W.

Theorem 2 (De Graaf-L. 2023). Let $(\mathfrak{g}^{\mathbb{C}}, \theta)$ be complex semisimple \mathbb{Z}_m -graded Lie algebra and $W = W(\mathfrak{g}, \theta, \mathfrak{h}^{\mathbb{C}})$. The following assertions are equivalent.

(1) Statement 1 is valid for $(\mathfrak{g}^{\mathbb{C}}, \theta)$.

(2) $\forall w \in R(W) \exists \sigma \in \Sigma(\mathfrak{h}^{\mathbb{C}})$ s.t. *w* preserves the hyperplane $\sigma = 0$.

(3) #(reflecting hyperplanes in W) = #(proportional roots in $\Sigma(\mathfrak{h}^{\mathrm{C}})$).

(4)
$$\mathfrak{h}_r^{\mathbf{C},\circ} = \mathfrak{h}_r^{\mathbf{C},\mathsf{reg}}$$
 for all $r \in \mathfrak{h}^{\mathbf{C}}$.

Idea of proof. For $A \subset R(W)$ we set

 $\mathfrak{h}_{A}^{\mathbf{C}}$: { $p \in \mathfrak{h}^{\mathbf{C}} | w \in W_{p}$ for all $w \in A$ }. (1) W(A)- the subgroup of W generated by A. Then

$$\mathfrak{h}^{\mathbf{C}} = \mathfrak{h}^{\mathbf{C},\circ} \bigcup_{A \subset R(W)} \mathfrak{h}_{A}^{\mathbf{C},\circ} \cup \{0\}, \qquad (2)$$

where $\mathfrak{h}_{A}^{\mathbf{C},\circ} := \{p \in \mathfrak{h}^{\mathbf{C}} | W_p = W(A)\}$ if $W(A) \neq W$ and $h_{A}^{\mathbf{C},\circ} = \emptyset$ otherwise.

Proposition (1) The action of W on $\mathfrak{h}^{\mathbb{C}}$ preserves the stratification (2).

(2) p,q belong to the same W-family, iff their projections on the quotient space $\mathfrak{h}^{\mathbf{C}}/W$ belong to the same cell in the stratification of $\mathfrak{h}^{\mathbf{C}}/W$ induced by the stratification (2).

• For $\mathcal{A} \subset \Sigma(\mathfrak{h}^{\mathbb{C}})$ (the weight of $\mathfrak{h}^{\mathbb{C}}$ w.r.t. the adjoint representation) we let

$$\begin{split} \mathfrak{h}_{\mathcal{A}}^{\mathbf{C}} &:= \{ p \in \mathfrak{h}^{\mathbf{C}} | \, \sigma(p) = 0 \text{ for all } \sigma \in \mathcal{A} \} (3) \\ \mathfrak{h}_{\mathcal{A}}^{\mathbf{C}, \mathsf{reg}} &:= \{ p \in \mathfrak{h}_{\mathcal{A}}^{\mathbf{C}} | \, \sigma(p) \neq 0 \text{ for all } \sigma \in \Sigma(\mathfrak{h}^{\mathbf{C}}) \setminus \mathcal{A} \} . (4) \\ \text{Now we consider a stratification of } \mathfrak{h}^{\mathbf{C}} \end{split}$$

$$\mathfrak{h}^{\mathbf{C}} = \mathfrak{h}^{\mathbf{C}, \mathsf{reg}} \bigcup_{A \subset \Sigma(\mathfrak{h}^{\mathbf{C}})} \mathfrak{h}_{A}^{\mathbf{C}, \mathsf{reg}} \cup \{0\}, \quad (5)$$

where $\mathfrak{h}^{C,reg}$ consists of all $\Sigma(\mathfrak{h}^{C})\text{-regular points}$ of $\mathfrak{h}^{C}.$

Proposition (1) The action of the little Weyl group W on \mathfrak{h}^{C} preserves the stratification (5).

(2) Two points p,q belong to the same \mathfrak{g}^{C} -family, if and only if their projection on \mathfrak{h}^{C}/W belong to the same cell of the stratification induced by (5).

(3) For every $\mathcal{A} \subset \Sigma(\mathfrak{h}^{\mathbb{C}})$ there exists $A \subset R(W)$ such that $\mathfrak{h}_{\mathcal{A}}^{\mathbb{C}, \operatorname{reg}} \subset \mathfrak{h}_{A}^{\mathbb{C}, \circ}$. In particular, for any $\sigma \in \Sigma(\mathfrak{h}^{\mathbb{C}})$ there exists $w \in R(W)$ such that w preserves the hyperplane $\sigma = 0$.

Remark: Theorem 2 suggests a way to verify Statement 1 for all complex \mathbf{Z}_m -graded semisimple Lie algebra.

4. Conjugacy classes of Cartan subspaces in \mathbb{Z}_m -graded semisimple Lie algebras over \mathbb{R}

Theorem 3 Let \mathfrak{h}^{C} be a Cartan subspace in \mathfrak{g}^{C} and $\mathcal{N}_{0} := \mathcal{N}_{G_{0}}(\mathfrak{h}^{C})$. There is a canonical bijection between the conjugacy classes of Cartan subspaces in \mathfrak{g}_{1} and the kernel ker[H¹ $\mathcal{N}_{0} \rightarrow H^{1}G_{0}$].

Proposition All Cartan subspaces in \mathfrak{g}_1 are $G_0(\mathbf{R})$ -conjugate, if \mathfrak{g} is a compact Lie algebra.

Proposition (1) If $p \in \mathfrak{h}$ is regular, then $G_0(p) \cap \mathfrak{g}_1$ consists of $L \mathbf{G}_0(\mathbf{R})$ -orbits, where L is the number of conjugacy classes of Cartan subspaces in \mathfrak{g}_1 .

(2) Assume that all Cartan subspaces in \mathfrak{g}_1 are conjugate. Let $p \in \mathfrak{h}^{\mathbb{C}}$. Then the orbit $G_0(p)$ contains a real point in \mathfrak{g}_1 if and only if the orbit W(p) contains a real point in \mathfrak{h} . For any $q \in \mathfrak{h}$ the set of $G_0(\mathbb{R})$ -orbits in $G_0(q) \cap \mathfrak{g}_1$ is in a canonical bjection with the set

 $\ker[H^1W_q \to H^1W].$

THANK YOU FOR YOUR ATTENTION!