An Overview of
Object-Oriented Design Metrics

R. Harrison, S. Counsell, R. Nithi
Department of Electronics and Computer Science,
University of Southampton, Southampton, SO17 1BJ, U.K.
email: th@ecs.soton.ac.uk

Abstract

In this paper, we examine the current state in the field
of object-oriented design metrics. We describe three sets
of currently available metrics suites, namely, those of Chi-
damber and Kemerer, Lorenz and Kidd and Abreu. We con-
sider the important features of each set, and assess the ap-
propriateness and usefulness of each in evaluating the de-
sign of object-oriented systems. As a result, we identify
problems common to all three sets of metrics, allowing us
to suggest possible improvements in this area.

1. Introduction

Various sets of object-oriented metrics have been pro-
posed as a means of assessing whether systems under in-
vestigation exhibit characteristics of quality software [6, 7,
14, 5, 15]. In this paper, three sets of such metrics are con-
sidered. The first set were proposed by Chidamber and Ke-
merer [7], the second by Lorenz and Kidd {15], and lastly,
those proposed by Abreu [5]. All three sets attempt to cap-
ture the key elements of object-oriented software: encapsu-
lation (information hiding), abstraction and inheritance.

In Sections 2, 3 and 4 respectively, each of these sets
of metrics is analysed, and the important features of each
highlighted. The intentions of the designers of the metrics,
in terms of what the metrics were intended to measure, are
also discussed. Various problems with the three sets consid-
ered are highlighted as a result, and these are then discussed
(Section 5); possible future directions are then considered,
taking account of these shortcomings (Section 6).

2. Description of Chidamber and Kemerer
Metrics

In keeping with the key elements of object-oriented soft-
ware, the set of six metrics developed by Chidamber and

0-8186-7840-2/97 $10.00 © 1997 IEEE

230

Kemerer (C&K) [7] attempt to identify certain design traits
in object-oriented software, for example, inheritance, cou-
pling and cohesion etc. The six metrics can be summarised
as:

1. Weighted Methods per Class (WMC). This metric
counts the number of methods in a class,. WMC was
designed to measure the complexity of a class. How-
ever, since C&K offer no definition of complexity, it
is considered to be unity. WMC is therefore a measure
of size, and equivalent to the number of methods in the
class.

. Depth of Inheritance Tree (DIT). This metric measures
the maximum level of the inheritance hierarchy of a
class; the root of the inheritance tree inherits from no
class and is at level zero of the inheritance tree. DIT
was intended to indicate the potential for reuse, and to
indicate the complexity of the design,

. Number of Children (NOC). This metric counts the
number of subclasses belonging to a class. C&K sug-
gest that the NOC can be used to indicate the level of
reuse in a system, and hence be used as a possible in-
dicator of the level of testing required.

. Lack of Cohesion in Methods (LCOM). This metric
purports to measure the lack of cohesion in the meth-
ods of a class. It is based on the principle that a vari-
able occurring in many methods of a class causes that
class to be less cohesive than one where the same vari-
able is used in few methods of the class. As one would
expect, C&K view a lack of cohesion as undesirable.

. Coupling Between Objects (CBO). This metric mea-
sures the level of coupling between classes. Coupling
between two classes is said to occur when one class
uses functions or variables of another class. C&K sug-
gest CBO as an indication of the effort needed for
maintenance and testing. A high CBO is considered
undesirable.

6. Response For a Class (RFC). This metric counts the
occurrences of calls to other classes from a particular
class. In other words, the set of all methods which can
be invoked in response to a message to an object of the
class. C&K view RFC as an indication of class com-
plexity (and hence a reflection of the testing effort re-
quired).

3. Description of Lorenz and Kidd Metrics

We now describe ten metrics proposed by Lorenz and
Kidd (L&K). We note that many other metrics were sug-
gested by L&K in [15]. However, the ten metrics described
give a fair cross-section of the broad areas covered. Unlike
the C&K metrics, most of the L&K metrics are direct met-
rics, and include more directly countable measures, €.g., the
Number of Methods (NM) metric, and the Number of Vari-
ables (NV) metric. Although relatively simple to collect,
doubt can be cast on the usefulness of such metrics because
they give only a limited insight into the architecture of the
system under investigation. For each of the metrics con-
sidered, L&K offered some justification for the existence of
that metric and we include that justification in the following
analysis. The ten metrics can be summarised as:

1. Number of Public Methods (PM). This simply counts
the number of public methods in a class. According to
L&K, this metric is useful as an aid to estimating the
amount of work to develop a class or subsystem.

2. Number of Methods (NM). The total number of meth-
ods in a class counts all public, private and protected
methods defined. L&K suggest this metric as a use-
ful indication of the classes which may be trying to do
too much work themselves; i.e., they provide too much
functionality.

3. Number of Public Variables per class (NPV). This
metric counts the number of public variables in a class.
L&K consider the number of variables in a class to be
one measure of its size. The fact that one class has
more public variables than another might imply that
the class has more relationships with other objects and,
as such, is more likely to be a key class, i.c., a central
point of co-ordination of objects within the system.

4. Number of Variables per class (NV). This metric
counts the total number of variables in a class. The
total number of variables metric includes public, pri-
vate and protected variables. According to L&K, the
ratio of private and protected variables to total num-
ber of variables indicates the effort required by that
class in providing information to other classes. Private
and protected variables are therefore viewed merely as
data to service the methods in the class.

231

5. Number of Methods Inherited by a subclass (NMI).
This metric measures the number of methods inherited
by a subclass. No mention is made as to whether that
inheritance is public or private. In a language such as
C++, we have to consider the possibility that the inher-
itance may be private, Then, any classes using meth-
ods from a subclass would not necessarily have access
to all of the inherited methods.

6. Number of Methods Overridden by a subclass (NMO).
A subclass is allowed to re-define or override a method
in its superclass(es) with the same name as a method
in one of its superclasses. According to L&K, a
large number of overridden methods indicates a design
problem, indicating that those methods were overrid-
den as a design afterthought. They suggest that a
subclass should really be a specialisation of its super-
classes, resulting in new unique names for methods.

7. Number of Methods Added by a subclass (NMA). Ac-
cording to L&K, the normal expectation for a subclass
is that it will further specialise (or add) methods to the
superclass object. A method is defined as an added
method in a subclass if there is no method of the same
name in any of its superclasses.

8. Average Method Size (AMS). The average method
size is calculated as the number of non-comment, non-
blank source lines (NCSL) in the class, divided by the
number of its methods. AMS is clearly a size metric,
and would be useful for spotting outliers, i.c., abnor-
mally large methods.

9. Number of times a Class is Reused (NCR). The defi-
nition of NCR given by L&K is somewhat ambiguous.
We assume the metric is intended to count the num-
ber of times a class is referenced (i.¢., reused) by other
classes. In this sense, we could view reuse in a simi-
lar way to coupling. We could then consider NCR as
a measure of the extent of inter-class communication,
and in this respect, a high value for NCR as undesir-
able.
10. Number of Friends of a class (NF). This metric mea-
sures, for each class, the number of friends of that
class. Friends allow encapsulation to be violated, and
as such should be used with care. A high number of
friends within a class could indicate a potential design
flaw, an oversight in design, which has filtered through
to the coding stage; we note in passing that friends are
a concept specific to the C++ language. NF is a mea-
sure of class coupling, since friends may rely on a par-
ticular class (or classes) to operate properly.

4., Description of Abreu Metrics

The set of six metrics developed by Abreu [S] were in-
tended to be design metrics. The emphasis behind the de-
velopment of the metrics is on the features of inheritance,
encapsulation and coupling. The six metrics can be sum-
marised as:

1. Polymorphism Factor (PF). This metric is based on
the number of overriding methods in a class as a ra-
tio of the total possible number of overridden methods.
Polymorphism arises from inheritance, and Abreu
claims that in some cases, overriding methods reduce
complexity, so increasing understandability and main-
tainability.

. Coupling Factor (CF). This metric counts the number
of inter-class communications. There is a similarity
here with the NCR metric of L&K. Abreu views cou-
pling as increasing complexity, reducing both encap-
sulation and potential reuse and limiting understand-
ability and maintainability.

. Method Hiding Factor (MHF). This metric is the ratio
of hidden (private or protected) methods to total meth-
ods. As such, MHF is proposed as a measure of en-
capsulation.

. Attribute Hiding Factor (AHF). This metric is the ra-
tio of hidden (private or protected) attributes to total
attributes. AHF is also proposed as a measure of en-
capsulation.

. Method Inheritance Factor (MIF). This metric is a
count of the number of inherited methods as a ratio of
total methods. There is a similarity here with the NCR
metric of L&K. Abreu proposes MIF as a measure of
inheritance, and consequently as a means of express-
ing the level of reuse in a system. It could also claim
to be an aid to assessment of testing needed.

. Attribute Inheritance Factor (AIF). This metric counts
the number of inherited attributes as a ratio of total at-
tributes. Just as for the MIF, Abreu proposes AlF as a
means of expressing the level of reuse in a system. It
is claimed, however, that too much reuse causes a de-
terioration in understandability and testability.

5. Analysis of the three metric suites

Each of the individual metrics in the three metric suites
just described purport to measure some attribute(s) of
an object-oriented system. Various shortcomings emerge
when we begin to consider criteria important in designing,
using and interpreting object-oriented metrics for real sys-
tems. The first consideration concerns that of validity.

232

5.1. Validity of Metrics

The theoretical approach to the validation of metrics re-
quires us to clarify what attributes of software we are mea-
suring, and how we go about measuring those attributes
{12, 4, 1, 8]. A metric must measure what it purports to
measure.

Fenton [9] describes the representation condition, satis-
faction of which is the pre-requisite for any metric to be
viewed as valid. The representation condition states that
any measurement mapping must map entities into numbers,
and empirical relations into numerical relations, such that
those relations are preserved. In other words, our observa-
tions in the real world must be reflected in the numerical
values we obtain from the mathematical world.

Kitchenham et al. describe a list of features of metrics
which must hold for that metric to be valid [12]. A di-
rect metric must not exhibit any unexpected discontinuities,
should use the appropriate measurement scale, should be
dimensionally consistent and be based on an explicitly de-
fined model! of the relationship between attributes.

5.2. Example 1

Consider the Weighted Methods Per Class metric
(WMQCQ) of C&K. It was intended to be a measure of com-
plexity, but, in the absence of any definition of complexity,
is a measure of class size. We can not view WMC as an
indicator of the effort to develop a class, since a class con-
taining a single large method may take as long to develop
as a class containing a large number of small methods. The
same can be said of the L&K Public Methods (PM) metric.

5.3. Example 2

Consider the Depth of Inheritance Tree metric (DIT) of
C&K. It was intended to be an indication of the potential for
reuse, but is actually a direct count of the levels in an inher-
itance hierarchy. It is easy to envisage an inheritance hier-
archy which was very deep and yet reused the same num-
ber of methods as a shallow, wide hierarchy; using the DIT
metric in this case would, however, give very different an-
swers for the two systems.

5.4. Example 3

Consider three metrics: the Response for a Class (RFC)
metric of C&K, the Number of Methods Inherited by a sub-
class (NMI) metric and the Number of times a Class is
Reused (NCR) metric, the latter two both of L&K. In each,
there is some ambiguity in exactly what the respective de-
signers meant the metric to measure. This forces the user to
guess what they think the metric was intended to measure.

Clearly, there is a need for a formal definition of each met-
ric so that there is no ambiguity in its interpretation. It is
difficult to validate a metric if its definition is ambiguous.

5.5. Example 4

Consider the Number of Variables per class (NV) met-
ric of L&K. It is claimed that the ratio of private and pro-
tected variables to total number of variables is an indication
of the effort required by that class to provide information to
other classes. However, some would claim that all variables
should be be hidden, so maximising encapsulation.

5.6. Example 5

Consider the Polymorphism Factor (PF) metric of
Abreu. Itis defined as the ratio of overridden methods to to-
tal possible overridden methods. Hence, if there is no inher-
itance in the system under consideration, then the denom-
inator of the metric calculation is zero (giving an infinite
value for the metric itself). This would seem to contradict
a feature stated by Kitchenham et al [12], i.e., that a metric
should not have any unexpected discontinuities.

5.7. The need for empirical evaluation

Numerous authors have suggested that theoretical vali-
dation of any set of metrics should not be the only support
for a proposed set of metrics. It should be accompanied
by empirical evaluation, using proven statistical and exper-
imental techniques; in this way, the practical applicability
of any new metrics in the field can be assessed [4, 1, 2, 17].
For example, in [4], Briand et al. describe metrics for co-
hesion and coupling, showing how an in-depth empirical
evaluation demonstrated and supported the usefulness and
significance of the set of metrics they proposed. Again, we
give a number of examples to illustrate the ideas.

5.8. Example 1

Consider the Number of Friends (NF) metric of L&K
which suggests that too many friends indicates a design
flaw, and is indicative of oversights in design. This the-
sis could be supported by perhaps trying to identify a re-
lationship between NF and the number of modification re-
quests (MR’s). A high number of MR’s indicates a poor de-
sign and so the existence of a relationship between the two
would add weight to this claim.

5.9. Example 2

Consider the Coupling Factor (CF) metric of Abreu.
Coupling is viewed as undesirable, and is claimed to in-

233

crease complexity and reduce both encapsulation and po-
tential reuse. The thesis regarding increased complexity
would be supported more strongly if an empirical evalu-
ation were performed to identify any correlation between
CF and, perhaps, a subjective measure of the complexity of
each class (provided by the system designer). The thesis re-
garding encapsulation would be supported by identifying a
relationship between CF and private/protected methods of
a class; the reuse thesis would be supported by identifying
a relationship between CF and a measure of reuse, such as
the number of methods reused.

5.10. Example 3

Consider the Number of Children (NOC) metric of
C&K. It is claimed to give an indication of the level of test-
ing required. One way to support this thesis might be to in-
vestigate the relationship between NOC values and the test-
ing times for each class. Such times can be easily and accu-
rately collected during testing.

5.11. Data Collection

One of the main problems with the three sets of met-
rics proposed is the difficulty in collecting raw data from
the code in order to calculate the metric values. For large
systems, collection of the more involved metrics becomes
prohibitively time-consuming. For example, calculation of
the Lack of Cohesion in Methods (LCOM) metric (C&K),
requires careful consideration of the use of variables in a
class, and so is only practical for systems with a small num-
ber of classes; similarly for the Coupling Between Objects
(CBO) metric (C&K). We also note that, in systems with
no inheritance, the collection of metrics such as C&K’s,
L&K’s and Abreu’s becomes relatively trivial. Although
this makes the metrics collection easier, our understanding
of the system being analysed is then limited by a large num-
ber of metrics with values of zero.

5.12. Tool Support

There is very little tool support for metrics collection.
The tool used to produce some of the values in [10], and
which collects Abreu’s set of metrics, tends to consume a
lot of machine resources, and it is not entirely clear how the
results obtained have been calculated. Performing a manual
collection (where possible) from the code to validate the re-
sults is a painstaking, yet necessary task.

5.13. The over-emphasis on code metrics
Many of the metrics outlined are simply code metrics in

the sense that they are measures of the code’s characteris-
tics, The WMC and LCOM metrics of C&K are two prime

examples of this. Yet, the three set of metrics studied claim
to be high-level design metrics, and to indicate features of
object-oriented systems design. It would be more useful to
have metrics which measured the quality of the design at a
much higher level of abstraction. Flaws in the design could
then be identified before they filtered through to the code.
This might just possibly alleviate the maintenance and test-
ing problems with which all systems seem to suffer. The
many object-oriented design and modelling techniques cur-
rently available could be used as a basis for these high-level
metrics [16, 3, 19, 18].

5.14. Quality models

The metrics described give suggestions as to what as-
pects of quality object-oriented software they would be use-
ful for measuring. Quality factors such as reusability, main-
tainability and testability are frequently quoted.

However, no concrete notion of what constitutes quality
is provided by the designers of the metrics studied. Since
quality for the systems developer is perceived differently to
quality for the manager or end user, a set of metrics must
make clear what it is they are trying to measure and who
they are directed at. Metrics based on a properly defined
quality model, incorporating ideas from many of the current
standard quality models [11, 13] would clarify what qual-
ity aspects were being considered, and why they were being
considered.

6. Future Directions

From our analysis of the three metric suites considered,
a number of problems have been shown to exist with cur-
rently available metrics:

1. many of the metrics are suspect in terms of their valid-
ity, and often do not measure the attributes of software
they purport to measure.

. there is ambiguity in some of the definitions.

. very little empirical evaluation exists to support the
claims made of the individual metrics.

. in the absence of tool support, manual collection of
metrics can be cumbersome and time-consuming.

there is currently an over-emphasis on code metrics.

a proper definition of quality, based on rigorously de-
fined quality models has been largely ignored.

Future directions in this field are clearly for metrics which
are valid (and unambiguous), are aimed at a higher level of
abstraction (the design stage of development), are based on

234

a rigorous model of what constitutes software quality and,
finally, are supported by appropriate tools and proper em-
pirical evaluation.

7. Conclusion

In this paper, we have described three sets of object-
oriented metrics, the problems associated with those met-
rics, and suggestions for future directions in this field. The
main point to note is that, just as our use and understanding
of object-oriented systems is still in its formative stages, so
the same is true in the field of object-oriented metrics. As a
way forward, we should therefore seck to learn as much as
possible from the problems we are currently encountering
in this area, and adopt solutions to overcome these prob-
lems.

8. Acknowledgements

This work is supported by UK EPSRC project
GR/K83021.

References

[11 V. R. Basili, L. Briand, and W. Melo. A validation of OO
design metrics as quality indicators. Technical Report CS-
TR-3443, 1995.

V. R. Basili and H. D. Rombach. The TAME project: To-
wards improvement-oriented software environments. /EEE
Transactions on Software Engineering, 14(6).758-773,
1988.

G. Booch. Object-oriented design with applications.
Benjamin-Cummings, 1991.

[4] L. Briand, S. Morasca, and V. R. Basili. Defining and vali-
dating high-level design metrics. Technical Report CS-TR-
3301, 1994.

F. Brito ¢ Abreu, M. Goulao, and R. Esteves. Toward the
design quality evaluation of QO software systems. In 5th
Int Conf on Software Quality, 1995.

S. R. Chidamber and C. F. Kemerer. Moose: Metrics for
object oriented software engineering. In Workshop on Pro-
cesses and Metrics for Object Oriented Software Develop-
ment, OOPSLA *93, Washington, 1993.

S. R. Chidamber and C, F. Kemerer. A metric suite for ob-
ject oriented design. IEEE Transactions on Software Engi-
neering, pages 467-493, 1994.

N. E. Fenton. Software measurement: a necessary scien-
tific basis. IEEE Transactions on Software Engineering,
20(3):199-206, 1994,

N. E. Fenton and P. S. L. Software Metrics, A Rigorous
and Practical Approach. International Thomson Computer
Press, 1996.

R. Harrison, S. Counsell, and R. Nithi. Empirical assess-
ment of object-oriented design metrics. In Proceedings of
Empirical Assessment in Software Engineering (EASE) '97,
Keele, UK, 1997.

(2]

[3]

(3]

[6]

7]

8]

{91

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(171

(18]

(19]

ISO/IEC. Joint technical committee: Information tech-
nology - software product evaluation - quality characteris-
tics and guidelines for their use. International standard,
ISO/IEC, 1991.

B. A. Kitchenham, S. L. Pfleeger, and N. Fenton. To-
wards a framework for software measurement validation.
IEEE Transactions on Software Engineering, 21(12):929~
944, 1995.

B. A. Kitchenham, J. D. Walker, and I. Domville. Test spec-
ification and quality management - design of a gms sub-
systemfor quality requiremnets specification. Project Deliv-
erable A27, Alvey Project SE/031, Nov 1986.

W. Li and S. Henry. Maintenance metrics for the object-
oriented paradigm. In Proceedings of the First International
Software Metrics Symposium, Baltimore Maryland, pages
52-60, May 1993.

M. Lorenz and J. Kidd. Object-oriented Software Merrics.
Prentice Hall Object-Oriented Series, 1994,

J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and
W. Lorenson. Object-oriented modelling and design. PHI,
1991.

N. F. Schneidewind. Methodology for validating soft-
ware metrics. IEEE Transactions on Software Engineering,
18(5):410-422, 1992.

S. Shlaer and S. Mellor. Object-Oriented Systems Analysis:
Modelling the World in Data. Prentice Hall, 1988.

R. Wirfs-Brock, B. Wilkerson, and L. Wiener. Designing
Object-Oriented Software. Prentice Hall, 1990.

235

