
Monash University

CSE3313 Computer Graphics

Tutorial 5 2007

1 October 2007

Objectives

• Understand different methods of drawing geometry in OpenGL;

• Understand how to use vertex arrays to send faceted data to OpenGL;

• Gain knowledge about the winged-edge data structure used to repre-
sent polygonal objects;

• Simple lighting models in OpenGL.

Geometric Representation

“OpenGL is principally concerned with object rendering; it does
not provide explicit support for creating object models. The
model input data is left for the application to provide.”

— Advanced Graphics Programming Using OpenGL [2]

These notes look at how to model and represent basic geometric struc-
tures using OpenGL.

Drawing Polygons

To date in CSE3313 Computer Graphics you were taught to draw polygons
like this:

glBegin(GL_POLYGON);
for (i = 0; i < NUM_POINTS; ++i)
{
glColour3f(colours[i].x, colours[i].y, colours[i].z);
glNormal3f(normals[i].x, normals[i].y, normals[i].z);
glVertex3f(vertices[i].x, verticies[i].y, verticies[i].z);

}
glEnd()

1



While this is easy to understand it is not efficient. We covered addi-
tional ‘strip’ primitives such as GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN and
GL_QUAD_STRIP which allow mesh strips and caps to be defined. We also saw
that you could use calls such as glVertex3fv() to send arrays of vertices for
a single primitive, eliminating the need for so many OpenGL calls necessary
to define an object (eliminating the for loop in the above code). Function
calls incur an overhead so can adversely affect performance, particularly if
we are sending large datasets to the GPU.

Display lists are a simple method of managing compound graphics ob-
jects, but those objects still need to be defined. In many instances, we
don’t just want to render a few simple polygons, but complex objects rep-
resented by polygonal or triangular meshes. Meshes have the property that
most edges (hence vertices) are shared between faces. If we were to define
these shapes individually using calls to glVertex*() there would be a lot
of redundancy.

Figure 1: A triangulated representation of a sphere. All vertices are shared
by multiple triangles

Faceted Model Checklist

Here is a basic check list of things you need to generate and check when
creating geometric models for OpenGL.

1. For shaded and textured models, you need to generate:

2



vertex co-ordinates: a scalar triple (x, y, z). Most cards use a float
representation internally so this is the preferred format.

vertex normals: these should be normalised and generated on a per-
vertex basis. ‘Hard’ edges will require different normals for shared
geometric vertices along the edge (hence duplicated vertices).
Facet (polygon) normals can be computed by taking the cross
product of two vectors formed from the two sets of vertex pairs
that are furthest apart from each other. Vertex normals can be
generated by averaging the facet normals for each polygon that
the vertex shares.

texture co-ordinates: for 2D texture mapping, texture co-ordinates
(s, t) must be associated with each geometric vertex. OpenGL
uses 4 dimensional texture co-ordinates (s, t, r, q) and 3D textures
have been possible since OpenGL 1.2. The default value for r and
q is 0. Note that just like geometric vertices, texture co-ordinates
can be transformed by OpenGL allowing you to move, rotate,
scale textures over an object.

2. Ensure that the vertex winding order is consistent (clockwise or counter-
clockwise). CCW is the standard convention. If all polygons have the
same winding order, this allows you to exploit backface removal in
OpenGL.

3. Use compound primitives such as triangle strips where possible. You
can even do compound structures using greedy tri-stripping [2, page
13].

Vertex Arrays

Version 1.1 of OpenGL introduced vertex arrays which are an efficient mech-
anism for sending large numbers of vertices, colours, texture vertices and
normals. Version 1.4 extended the vertex array concept to allow storing of
fog co-ordinates and secondary colours in vertex arrays.

The steps to drawing a vertex array are as follows:

1. Enable up to eight arrays, each storing a different type of data (for
example vertices, normals, colours).

2. Put the data into arrays. The data will be accessed via pointers passed
in OpenGL calls.

3. Draw the geometry using the data. OpenGL obtains the data from
the supplied vertex arrays.

3



Enabling Client State

The first step is to activate the appropriate arrays using the call:

glEnableClientState(GLenum type)

This function takes an enumerated parameter that enables the appropriate
array. The most common arrays you’re likely to use are vertex, normal and
texture co-ordinates. For example:

glEnableClientState(GL_NORMAL_ARRAY);
glEnableClientState(GL_VERTEX_ARRAY);

The corresponding call to glDisableClientState() will disable the use
of that array. Note that these calls cannot be stored in a display list.

Specifying Data

There are eight different calls for specifying the data depending on the type
of data in the array. To specify vertices use:

void glVertexPointer(GLint size, GLenum type,
GLsizei stride, const GLvoid * data);

size is the number of co-ordinates per vertex and must be 2, 3, or 4. type
is the data type (one of GL_SHORT, GL_INT, GL_FLOAT, GL_DOUBLE). stride
is the byte offset between consecutive vertices. This would normally be 0 for
a tightly packed array. Other values are useful when the data is interleaved
(i.e. different types mixed together in one array).

Drawing

Enabling arrays and specifying data does not yet draw anything, or send
any data to the graphics subsystem. The elements need to be extracted
from the arrays in some way. The simplest, random access method is
glArrayElement(GLint i) which obtains the data of the i’th vertex for
all currently enabled arrays. So if you have enabled colour, normals and
verticies, a single call to glArrayElement() specifies all three in a single
call.

glDrawElements() is similar, but assumes the array data has some log-
ical ordering. This allows you to reduce the drawing of an individual prim-
itive to a single call. The function prototype is:

glDrawElements(Glenum mode, GLsizei count, GLenum type,
void * indices)

4



where mode specifies the kind of primitive you want to use to do the draw-
ing: this is one of the values accepted by glBegin() such as GL_POLYGON
or GL_LINE_LOOP. count is the number of elements, which will be found
in the array pointed to by indices. type specifies the type of data in
the array: it must be one of GL_UNSIGNED_BYTE, GL_UNSIGNED_SHORT, or
GL_UNSIGNED_INT. Obviously space considerations and total number of in-
dices will come into play here to determine the appropriate type for each
index.

Figure 2: A cube showing vertex numbering

Here is an example — drawing a cube. We first define arrays of vertices
and colours:

static GLfloat vertices[] = {-1.0, -1.0, -1.0,
1.0, -1.0, -1.0,
1.0, 1.0, -1.0,
-1.0, 1.0, -1.0,
-1.0, -1.0, 1.0,
1.0, -1.0, 1.0,
1.0, 1.0, 1.0,
-1.0, 1.0, 1.0
};

static GLfloat colours[] = { 0.0, 0.0, 0.0,
1.0, 0.0, 0.0,
1.0, 1.0, 0.0,
0.0, 1.0, 0.0,
0.0, 0.0, 1.0,
1.0, 0.0, 1.0,
1.0, 1.0, 1.0,
0.0, 1.0, 1.0

};

5



We could also define normals if necessary at this stage too. Next we define
the connectivity for each face of the cube:

static GLubyte frontIdx[] = {4, 5, 6, 7};
static GLubyte rightIdx[] = {1, 2, 6, 5};
static GLubyte bottomIdx[] = {0, 1, 5, 4};
static GLubyte backIdx[] = {0, 3, 2, 1};
static GLubyte leftIdx[] = {0, 4, 7, 3};
static GLubyte topIdx[] = {2, 3, 7, 6};

The next step is to set up the arrays. This needs to be done once only.

glEnableClientState(GL_COLOR_ARRAY);
glEnableClientState(GL_VERTEX_ARRAY);

glColorPointer(3, GL_FLOAT, 0, colours);
glVertexPointer(3, GL_FLOAT, 0, vertices);

We can now draw each face with a single call to glDrawElements().

/* draw the cube using individual GL_QUADS:
each element is a polygon */

glDrawElements(GL_QUADS, 4, GL_UNSIGNED_BYTE, frontIdx);
glDrawElements(GL_QUADS, 4, GL_UNSIGNED_BYTE, rightIdx);
glDrawElements(GL_QUADS, 4, GL_UNSIGNED_BYTE, bottomIdx);
glDrawElements(GL_QUADS, 4, GL_UNSIGNED_BYTE, backIdx);
glDrawElements(GL_QUADS, 4, GL_UNSIGNED_BYTE, leftIdx);
glDrawElements(GL_QUADS, 4, GL_UNSIGNED_BYTE, topIdx);

As we are drawing GL_QUADS we can concatenate the entire connectivity list
and reduce the cube definition to a single call to glDrawElements().

static GLubyte allIdx[] = {4, 5, 6, 7,
1, 2, 6, 5,
0, 1, 5, 4,
0, 3, 2, 1,
0,4, 7, 3,
2, 3, 7, 6
};

glDrawElements(GL_QUADS, 24, GL_UNSIGNED_BYTE, allIdx);

This would not work is we’d used GL_POLYGON rather than GL_QUADS. Do
you know why?

glMultiDrawElements() replaces a number of calls to glDrawElements()
in a single call. The prototype is as follows.

6



glMultiDrawElements(GLenum mode, const GLsizei * count,
GLenum type, const GLvoid * * indices,
GLsizei primcount)

where mode and type have the same function as for glDrawElements(),
count is an array of vertex counts for each respective array element list.
primCount is the number of elements to be drawn.

Here’s how we would use it for the cube.

static GLubyte * indices[] = { frontIdx,
rightIdx,
bottomIdx,
backIdx,
leftIdx,
topIdx };

static GLsizei counts[] = {4, 4, 4, 4, 4, 4 };

glMultiDrawElements(GL_QUADS, counts,
GL_UNSIGNED_BYTE,
(const GLvoid * *)indices, 6);

Sequenced Arrays

In the examples above, arrays of indices were required to specify which
particular element of the vertex array should be used for each vertex that
makes up the primitive. Additional OpenGL calls are available if you just
wish to ‘sequence through’ your vertex data in linear order. This eliminates
the need for arrays of indices as used in the previous examples.

The function

glDrawArrays(GLenum mode, GLint first, GLsizei count)

constructs a sequence of geometric primitives of type mode using the ar-
ray elements starting at first and ending at first + count - 1 of each
enabled array.

glMultiDrawArrays(), introduced in OpenGL 1.4 parallels the func-
tion glMultiDrawElements(), combining several glDrawArray() calls into
a single call. The prototype is

glMultiDrawArrays(GLenum mode, const GLint * first,
const GLsizei * count, GLsizei primcount)

first and count contain lists of array locations indicating where to process
each list of array elements. See the OpenGL programming guide (the red
book) for more details.

7



Summary

Vertex arrays, used in combination with display lists, are a fast and efficient
way to send polygonal meshes (and other geometric data) to the GPU with
a minimum of overheads. Modern graphics cards are well equipped to take
advantage of these features. I have placed the simple cube demo used in
this paper on the wiki for you to play with.

A typical example of where vertex arrays would be useful for this project
is in describing terrain data. Terrain data can be specified as a height field
(a 2D array of height values for regular samples over a plane). It should
be easy to generate vertex arrays using heights found from combinations
of the noise(), dnoise(), fractalSum() and turbulence() functions, for
example. These functions can be used to generate geometric vertex, normal,
colour, texture, and maybe even fog arrays that can be sent to OpenGL as
triangles1.

Vertex Buffer Objects

The main problem in getting better performance in modern graphics cards
is in moving geometry data from main memory to the GPU. Display lists
give the option of keeping the geometric data in GPU memory so it doesn’t
need to be constantly transferred at each redraw.

Vertex arrays manage memory on the CPU side of the CPU/GPU divide
(in the client’s address space). OpenGL 1.5 adds the concept of vertex
buffer objects to enable the efficiencies of vertex arrays on the server side,
just like display lists. So rather than using main memory, vertex data is
obtained from the GPU side. The application can explicitly transfer or
map vertex array data using the glBufferData and glMapBuffer functions
respectively. Just as with normal vertex arrays, the data can be modified
(to allow animation for example), however read/write access requires shifting
data between main memory and GPU memory. Vertex buffer objects can
be used to get maximum performance from modern graphics cards.

Data Structures for Polygonal Meshes

A large number of data structures have been developed to store and manip-
ulate polygonal meshes. Here I quickly review a few common ones.

The simplest representation for a triangle mesh is to store a list of m
triples of 3m vertices. This is known as a triangle soup. It’s not particularly
efficient for representing structures with shared edges, although easy from
an implementation and management perspective.

We’ll now look at a couple of polygonal data structures, useful for storing
and manipulating compound meshes. The material is primarily taken from

1Using GL QUADS is not advisable as these quads will not be planar.

8



the book by O’Rourke [3].

Winged-Edge Data Structure

One of the first data structures for polyhedral boundary representation is
the winged-edge representation developed by Baumgart [1]. The main focus
of this structure is the edge. Each object maintains three rings: em vertices,
edges and faces. Each vertex points to an arbitrary one of its incident
edges, each face to an arbitary one of its bounding edges. Each edge record,
e, consists of eight pointers: the two verticies v0 and v1 forming the edge;
two faces shared by e, f0 and f1 (left and right according to the direction
of v0 → v1); the two incoming edges e−0 and e+

0 ; the two outgoing edges e−1
and e+

1 . These four edges form the ‘wings’ of e (see Figure 3). Note the
direction of incoming edges e−0 → e+

0 and e−1 → e+
1 is a clockwise ordering.

Figure 3: The winged-edge data structure. From [3, page 146].

O’Roukre gives an example use of this data structure: to find all the
edges bounding face f , retrieve the sole edge record pointed to by f and
follow the e+ edges around f until e is encountered again. However, because
e is ordered arbitrarily, it is necessary to check if f is left or right of e to
decide whether the e+

1 or e+
0 edge should be followed.

The twin-edge data structure improves on the winged-edge method by
allocating each edge as two opposing half edges. This increase in storage
space makes traversal and modification operations easier and faster. The
quad-edge data structure is slightly more complex but extremely general in
terms of representation (see [3] for details). These data structures are not
only used for geometric modelling, but for other entities such as graphs.

9



The main reason to use these data-structures is if your geometric data is
being edited or changed. For something like a regular height-field it would
probably be unnecessary. In many interactive graphics applications, several
different representations of the same object are maintained (for example, for
physics simulation or view-frustrum culling a low-resolution model may be
used, while a more detailed version used for display).

References

[1] Bruce Guenther Baumgart. A polyhedron representation for computer
vision. Proceedings AFIPS National Computer Conference, 44:589–596,
1975. 9

[2] Tom McReynolds and David Blythe. Advanced graphics programming
using openGL. The Morgan Kaufmann series in computer graphics and
geometric modeling. Elsevier Morgan Kaufmann Publishers, San Fran-
cisco, CA, 2005. 1, 3

[3] Joseph O’Rourke. Computational geometry in C. Cambridge University
Press, Cambridge, UK; New York, NY, USA, 2nd edition, 1998. 9

10


	Drawing Polygons
	Faceted Model Checklist

