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Abstract

We address the question of how processes from evolution-
ary biological ecosystems can be abstracted and beneficially
applied in creative domains. Evolution is a process capa-
ble of generating appropriate (fit) novelty in biological sys-
tems, so it is interesting to ask if it can do so in other, non-
biological systems. Past approaches have focused on optimi-
sation via fitness evaluation (either machine representable or
human evaluated), but this is ill-suited to creative systems,
as creativity is not necessarily an optimisation process. Our
approach is to consider the creative system as a virtual evolu-
tionary ecosystem, specifically adopting the process of niche
construction. We show how the abstracted niche construction
process can be applied to an agent-based line drawing sys-
tem, enhancing the diversity and heterogeneity of drawings
produced over a version without niche construction.

Introduction

Two well known systems exhibiting creativity are the hu-
man brain and evolution. While advances in neurological
understanding of creative processes and aesthetics are on-
going (Perlovsky, 2010; Griffiths, 2008; Ramachandran and
Hirstein, 1999), both the cognitive and social processes that
lead to creative outcomes remain difficult to quantify, and
hence, to simulate. Evolutionary processes, on the other
hand, are far better understood and continue to be success-
fully studied using a variety of simulation methods.

In this paper we explore the adaptation of evolutionary
ecological processes to problems in creative design. As a
process, evolution is eminently capable of novel design, hav-
ing innovated things such as prokaryotes, eukaryotes, higher
multicellularity and language, through a non-teleological
process of replication and selection (Maynard Smith and
Szathmdry, 1995; Nowak, 2006). While much exists on
what constitutes human creativity — e.g. Boden (2004);
Sternberg (1999)) — for the purposes of this paper we con-
sider creativity more generally as the appropriate novelty
exhibited by a system. ‘Appropriate’ in that the artefacts
produced are fit or useful in some domain, and ‘novel’ in

that the system is capable of repeatedly producing artefacts
that it has not produced before'.

Darwinian processes of selection and replication with dif-
ference only provide a simplified picture of natural evolu-
tion. Many have argued that explaining the growth of com-
plexity that typifies the creativity of evolution requires a
broader consideration of the systems of the natural world
(Maynard Smith and Szathmary, 1995; Laland et al., 1999;
Gould, 2002). In recent years, that has meant, for exam-
ple, increasing our understanding of (i) the effects of evolu-
tion on the processes of ontogenetic development (Carroll,
2005) (ii) the interdependent relationships between species
and their environment: ecosystems. This second approach is
the one adopted in the work described here.

Evolution and Aesthetic Creativity

The field of Evolutionary Computing (EC) has adopted the
metaphor of genetic evolution to successfully solve prob-
lems in search, optimisation and learning. Where EC has
been less successful, however, is in tackling problems of
creativity, in particular artistic creativity, as it is difficult to
conceptualise creative artefacts in terms of a single (or multi-
objective) optimisation or general machine-representable fit-
ness evaluations.

A popular EC approach to using evolution in creative con-
texts is the Interactive Genetic Algorithm (IGA), in which
the fitness evaluation of a standard genetic algorithm is per-
formed by a human, who may use any (subjective) criteria to
assign fitness to individuals in a population (Takagi, 2001).

In the context of the application presented in this pa-
per (line drawing) the system of Baker and Seltzer (1994)
used variable length genomes representing an ordered set of
strokes to define a line drawing. Each stroke included pa-
rameters in the genome to affect the way drawing is inter-
preted, including space enclosing, relation to the next stroke
(e.g. separate or joined) and symmetry operations. Drawings
were evolved using an IGA. The system could be seeded
with random genotypes or genotypes created by interpret-

"For a more formal specification of this relatively informal def-
inition, see McCormack (2010).

Proc. of the Alife XII Conference, Odense, Denmark, 2010

525



reproduction

fitness
tness

R ;

fi
~

fitness

individual survival

NS LI

condition

condition condition

Figure 1: Example organism viability curves for reproduction, growth and survival, from (Begon et al., 2006).

ing the strokes of a human artist. The Drawbots system of
Bird et al. (2008) attempted to create a line-drawing robot
using evolutionary robotics. They defined “implicit” fitness
measures that did not restrict the type of marks the robot
drawer should make, including an “ecological model” in-
volving interaction between environment resource acquisi-
tion and expenditure through drawing. However, the results
demonstrated only minimal creativity, and the authors con-
cluded that fitness functions that embodied “artistic knowl-
edge about ‘aesthetically pleasing’ line patterns” would be
necessary if the robot were to make drawings worthy of ex-
hibition.

Formalised ‘“‘aesthetically pleasing” fitness measures of
any generality have been difficult to find, despite a num-
ber of attempts (see e.g. Birkhoff (1933); Staudek (2002);
Ramachandran (2003); Svangdard and Nordin (2004);
Machado et al. (2008)), hence the use of the IGA. While
the IGA has achieved some success in a variety of domains,
in general it suffers from a host of problems, particularly
for creative applications (McCormack, 2005). The most
commonly cited of these is “user fatigue”, where human
users quickly tire of the repetitive act of phenotype evalu-
ation (Takagi, 2001), limiting the range of evolutionary ex-
ploration possible. In general, IGAs are more valuable to
non-experts, who may lack the sophisticated understanding
of how to design and manipulate a medium for creative pur-
poses.

More importantly, for most creative domains the idea of
evolving towards a single optimum is counterintuitive, as an
artist or designer normally produces many new artefacts over
their professional lifetime. New designs often ‘evolve’ from
previous ones, offspring of both the originating artist and her
peers (Basalla, 1998). Indeed, as Basalla (1998) and others
have pointed out using the example of technological evo-
Iution, the Western emphasis on individual creativity (rein-
forced socially through patents and other awards) obscures
the important roles played in the evolutionary ecosystem of
interactions between environment and prior work of many
individuals.

Thus, an alternate approach to the narrow individual op-
timisations of standard EC methods, is to consider the in-

teraction of components in an evolutionary ecosystem, as
such a system can potentially exploit facets of evolution
other than single optimisations. In the research presented in
this paper, we examine the biological process of niche con-
struction, whereby organisms modify their heritable envi-
ronment. The concept of niching has been successfully used
in EC previously, particularly in problems requiring multi-
ple solutions (Mahfoud, 1995). However, niching in EC is
primarily about maintaining stable sub-populations to im-
prove the efficiency and efficacy of search — in general these
methods do incorporate the biological concept of niche con-
struction in their methodology, as is the case with the meth-
ods described in this paper. Before explaining the concept
in more detail, we give a brief overview of the concept of a
niche and niche construction.

Niches

In broad terms, biological environments have two main
properties that determine the distribution and abundance of
organisms: conditions and resources. Conditions are phys-
iochemical features of the environment (e.g. temperature,
pH, wind speed). An organism’s presence may change the
conditions of its local environment (e.g. one species of plant
may modify local light levels so that other species can be
more successful). Conditions may vary in cyclic patterns
or be subject to the uncertainty of prevailing environmental
events. Conditions can also serve as stimuli for other or-
ganisms. Resources, on the other hand, are consumed by
organisms in the course of their growth and reproduction.
One organism may become or produce a resource for an-
other through grazing, predation, parasitism or symbiosis,
for example.

For any particular condition or resource, an organism may
have a preferred value or set of values that favour its survival,
growth and reproduction. Begon et al. (2006) define three
characteristic curves, which show different “viability zones”
for survival, growth and reproduction (Fig. 1).

The complete set of conditions and resources affecting an
organism represent its niche, which can be conceptualised
as a hypervolume in n-dimensional space. As an example,
for two conditions c; and ce, two different types of species
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Figure 2: Example exclusive and overlapping niche areas for
a two-dimensional set of conditions.

relationships are shown in Fig. 2. The shaded area repre-
sents the viability zone for the species. A species will only
survive if conditions are maintained within this shaded area.
A relatively large distance in any single dimension denotes
a generalist in that dimension (s; is relatively generalist in
c2), specialists have small distances (s3 is more specialised
in both ¢; and ¢s). This size is referred to as niche width, and
may vary for each dimension. If the mean viability zones
overlap in a particular dimension, multiple species can co-
exist within the range of overlap.

Competition and other species interactions are important
in determining habitat distribution. Niche differentiation can
permit coexistence of species within a biotope. Higher num-
ber of species can coexist by utilising resources in different
ways. It is reasonably well understood in Biology how these
mechanisms give rise to species diversity and specialisation.

The challenge addressed in this paper is to devise use-
ful ways of employing these mechanisms in non-biological
contexts. An important problem is in devising appropriate
mappings between conditions and resources, and establish
trade-offs for an individual’s survival based on tolerances to
specific conditions in order to enhance the quality and diver-
sity of output in a creative generative system.

Niche Construction

Niche construction is the process whereby organisms change
their own and each other’s niches. They do this by modify-
ing or influencing their local environment. Proponents of
niche construction argue for its importance in understand-
ing the feedback dynamics of evolutionary process in nature
(Odling-Smee et al., 2003). By modifying their niche, either
reinforcing or degrading it, organisms provide a heritable
environment for their offspring. Hence niche construction
can create forms of feedback that modify the dynamics of
the evolutionary process, because ecological and genetic in-
heritance co-influence the evolutionary process. Computa-
tional models of niche construction show that it can influ-
ence the inertia and momentum of evolution and introduce
or eliminate polymorphisms in different environments (Day

et al., 2003). Other models have demonstrated that a simple
niche constructing ecosystem can support homeostasis and
bi-stability similar to that of Lovelock’s popular Daisyworld
model (Dyke et al., 2007).

Whereas standard evolutionary algorithms tend to con-
verge to a single (sub)-optimum, niche construction can
promote diversity and heterogeneity in an otherwise fixed
and homogeneous evolutionary system. In creative systems
where the design of an explicit fitness function may be diffi-
cult or impossible, niche construction provides an alternate
mechanism to explore a generative system’s diversity over
more traditional methods, such as the IGA. An “ecosys-
temic” approach to creative systems recognises that multiple
designs may be equally valid and interesting, the emphasis
shifting from single optimised solutions to the exploration of
appropriate novelty offered through the feedback dynamics
of an evolutionary ecosystem (McCormack, 2007).

Processes such as niche construction may serve as a type
of “design pattern” (Gamma, 1995) that facilitates the build-
ing of creative evolutionary systems. To illustrate the utility
of niche construction, we will describe a series of experi-
ments where niche construction influences the structure and
variation of the creative artefacts produced in an agent-based
line drawing system.

Case 1: Line Drawing Agents

We will consider a simple creative system that au-
tonomously draws lines with ink on a page. This system
is inspired by Mauro Annunziato’s The Nagual Experiment
(Annunziato, 2002), which consisted of simple line draw-
ing agents controlled by stochastic processes. In Annunzi-
ato’s original system he changed the global characteristics of
the drawings produced through manual adjustment of line-
drawing probability parameters, such as fecundity, mortality
and curvature. The resulting drawings have been acknowl-
edged as artistically interesting and demonstrate the richness
of creative output possible from a relatively simple genera-
tive specification.

Our system consists of a population of haploid line-
drawing agents who inhabit a two-dimensional drawing sur-
face or canvas. The canvas is initially blank (white). Agents
roam over the surface, leaving a trail of black ink that marks
out the path they travel. If a drawing agent intersects with an
existing line, drawn either by itself or another agent, it dies.
An agent may undergo reproduction during its lifetime, with
offspring placed adjacent to the parent. The canvas is seeded
with a small initial population of founder agents, initialised
with uniformly distributed random genomes, that proceed to
move, draw and reproduce. There is no limit to the number
of offspring an agent may have, but in general the lifespan of
agents decreases as the simulation progresses since the den-
sity of lines becomes greater, making it increasingly difficult
to avoid intersection with existing lines. Eventually the en-
tire population dies out (predominantly due to the intersec-
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tion rule), and the image is finished. This finished drawing
represents the “fossil record” of all the generations of lines
that were able to live over the lifetime of the simulation.

In this first experiment, agents have no sensory informa-
tion about their environment, for example they cannot detect
proximity to an existing line or other agent. Thus, the char-
acteristics of the line an agent draws are determined by ge-
netics, with the genome serving as the control parameters of
a stochastic process. An agent’s genome is specified by the
following alleles, each represented as a normalised floating
point value:

curvature (o), controls the rate of curvature of the line (%,

where 0 is the heading direction). Curvature varies from
a straight line (0) to a maximum curvature rate (1);

irrationality (r), controls the rate and degree of change in
the rate of curvature according to a stochastic algorithm
(detailed below, see also Fig. 3);

fecundity (f), the probability of the agent reproducing at
any time step. New agents are spawned as branches from
the parent;

mortality (m), the probability of the agent dying at any
time step;

offset (¢), the offset angle of child filaments from the par-
ent;
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Figure 3: Individual line drawing agents with different mea-
sures of irrationality. Note that the ‘die if intersect’ rule has
been turned off for these examples.

In addition each agent maintains state information which
includes the current position on the canvas, heading direc-
tion, speed and current rate of curvature. Changes to the
rate of curvature are determined by the curvature and irra-
tionality alleles, with the overall rate of change given by

do
— =0 + fracSun(p, k - T)O'SgTZ, (D

dt
where p is the agent’s current position, k£ a constant known
as the octave factor, and fractSum a function that sums oc-
taves of Perlin (2002) 2D noise. This function was chosen
as it gives band limited, continuous stochastic variation with

second order continuity, and is statistically invariant under
affine transformation. Increasing r (irrationality) increases
the octaves of noise, changing the rate of change in direc-
tion in increasingly finer detail. Fig. 3 shows the effects of
varying the irrationality allele, r, over its normalised range.

This system was run a number of times varying the ran-
dom number seed and location of founder agents on the
blank canvas. At each time step the fecundity and mor-
tality alleles determine probabilistically if an agent will die
or reproduce. In the case of reproduction, child agents are
placed next to the parent line, with their heading determined
by the offset allele (¢). A child agent’s genome may un-
dergo mutation (modification of an allele by adding a Nor-
mally distributed random number with mean 0). Addition-
ally, children have a short gestation period before they begin
to draw, allowing the parent to continue drawing past the
point where reproduction took place, avoiding intersection
with their offspring.

The images that emerge from this process demonstrate a
wide variety of output possible from this system (two sample
images are shown in Fig. 4). While there is no explicit fitness
function or evaluation, implicit agent fitness is determined
by a combination of genetics and environment. Importantly,
the environment is constantly changing. As drawing pro-
gresses, it becomes increasingly difficult to reproduce and
live, since the probability of intersecting with an existing
line typically becomes higher as more lines crowd the can-
vas.

While the images produced by this system are interesting,
in general they lack a changing dynamic or visual counter-
point, that is, they are largely homogeneous in structure, or
have progressive changes that take place as genes mutate
through drift. Much of the overall structure is determined
by the founder lines, who can carve up large areas of blank
canvas for themselves and their offspring, preventing other
lines from entering. Genetically similar offspring continue
to reproduce inside these boundaries until the space is filled.

Case 2: Line Drawing with Niche Construction

In a second experiment we tested the hypothesis that by in-
troducing an ecosystemic process of niche construction into
the system, the overall diversity and heterogeneity of images
produced by the system could be significantly enhanced.
To do this, each agent was given an additional allele in its
genome: a local density preference d; (a normalised float-
ing point value). This defines the agent’s preference for the
density of lines already drawn on the canvas in the imme-
diate area of its current position, i.e. its niche (Fig. 5). In
a preferred niche, an agent is more likely to give birth to
offspring and has a better chance of survival. As children
inherit their parent’s genes they are more likely to survive as
they have a similar density preference. So in a sense, parents
may construct a niche and pass on a heritable environment
well-suited to their offspring.
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Figure 4: Two sample outputs from the line drawing system (without niche construction).
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Figure 5: The niche construction mechanism for drawing
agents, who try to construct a niche of local density that sat-
isfies their genetic preference.

For each agent, i, d; defines it’s preferred niche. Local
density, defined as the ratio of inked to blank canvas per unit
area, is measured over a small area surrounding the agent at
each time step. Proximity to the preferred niche determines
the probability of reproduction, given by

T T

Pr(rep) = f; - cos”(clip(2m(Ap, — &), ~55

), @
where A, is the local density around the point p;, the
agent’s position, w a global parameter that varies the effec-
tive niche width, f; is the agent’s fecundity and clip is a
function that limits the first argument to the range specified
by the next two. Being in a non-preferred niche similarly
increases the probability of death.

Founder agents begin with a low density preference, uni-

formly distributed over [0, 0.2]. Beginning the drawing on a
blank canvas means that only those agents who prefer a low
density niche will survive. As the drawing progresses how-
ever, more ink is added to the canvas and agents who prefer
higher densities will prosper. As with the previous experi-
ment, at birth the agent’s genome is subject to the possibil-
ity of mutation (proportional to the inverse of the genome
length), allowing offspring to adapt their density preference
and drawing style as the drawing progresses. Eventually the
population becomes extinct, since higher density favouring
agents don’t have much room to move, and the drawing fin-
ishes. Some example drawings are shown in Fig. 6. Notice
the greater stylistic variation and heterogeneity over the im-
ages shown in Fig. 4.

Analysis and Discussion

Visually, the examples appear to show that by adding niche
construction, the line drawing system is capable of produc-
ing images with greater heterogeneity, variation in density,
counterpoint and overall visual interest (Fig. 7). We might
even be tempted to say it is more creative.

To support this intuition, a number of images produced
using the niche constructing and non-niche constructing ver-
sions were analysed statistically. A total of 40 images
were sampled: 20 niche constructed and 20 non-niche con-
structed. For each image, the mean density (A) and vari-
ance of density over the entire image was computed. Then
for each set (non-niche constructed, niche constructed) the
variance of mean density and the mean density variance was
calculated. Table 1 summarises this analysis. p-values were
calculated using a Welch t-test. As shown in the table, niche
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Figure 7: Detail from two drawings, showing density varia-
tion (left) without niche construction, and (right) with niche
construction.

constructed images exhibit a far greater variation in overall
density (by a factor of 3.83). Significantly, the density vari-
ation over each image is, on average, 4.31 times greater for
the niche constructed over non-niche constructed drawings.

Non NC NC p-value
Number of Images 20 20 -
Variance of A 0.00298 0.0114 0.0634

Mean Variance  0.0140  0.0604 1.57 x 1010

Table 1: Density variation between non-niche constructed
and niche constructed drawings.

Analysis of the mean agent density preference, § =
% E?:l d;, at each epoch shows an overall adaption to the
mean image density (A) over the lifetime of the drawing,

indicating that agents evolve to fit niches (Fig. 8). On aver-
age, agents favour slightly denser niches than currently exist
(the line in the figure is always positive), we infer this is be-
cause an agent’s density measure is always centred around
the agent’s current location, and this will necessarily include
parts of the images with lines drawn (even if only the agent’s
own trail). The value of A tends to increase over the life of
the drawing. This is not surprising, as there is no mechanism
for an agent to reduce the density of its niche?. The best any
parent can do is carve out the largest possible border around
empty space, so that its offspring can grow without fear of
intersecting with other parents or their offspring.

Conclusions and Future Work

We have demonstrated how the ecological “design pattern”
of niche construction can be used to enhance the creative
output of a generative line-drawing system. Elsewhere, (Mc-
Cormack and Bown, 2009), we have also applied a similar
process in the sound domain, leading to on-going change
in an agent-based sound generation system. While it may
be premature to suggest the generality of this method, our
on-going experiments demonstrate that with the appropriate
design, niche construction can introduce heterogeneity and
useful variation into creative generative systems.

The line-drawing agents described in this paper have only
one way to sense their environment: through their density
preference. A more sophisticated system might give agents
greater sensory capabilities so that they can better optimise

2An observed (short-lived) strategy is to draw a closed circular
area and not place any offspring in it, but this only generates a low-
density niche after death!
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Figure 8: Difference between mean image density and mean
agent density preference averaged over 40 runs. The stan-
dard deviation is shown in light blue.

their niche construction to their environment. For example
being able to sense proximity to another line would allow
more graphically complex strategies to evolve.

Additionally, the agents are limited in their productive
utilisation of evolution, as any adaptation must take place
over the life of a single drawing. Typically, 103 — 10° off-
spring may be produced in a single image, but less than
10 — 30 generations from the initial parent. Essentially,
all lines are of the same species. An improved strategy
would be to allow different species of line-drawing agents
to be pre-evolved on test canvases, permitting better optimi-
sation for different density niches and inter-species interac-
tions. These pre-evolved species could then share a com-
mon drawing canvas in order to produce a more complex
finished drawing, better adapted to their specific niche re-
quirements. We are currently exploring this idea. One can
imagine that the next generation of artist’s drawing systems
could incorporate such pre-evolved drawing agents as “in-
telligent brushes”; the artist selecting from a palette of pre-
evolved styles and applying them to the canvas at various
stages. Agents with different niche density preferences try
to draw in order to construct their preferred niche, but their
interactions with each other could result in the emergence of
competitive or cooperative strategies.

In summary, we believe that niche construction is a useful
technique that can be successfully exploited in generative
creative systems to enhance the dynamics and heterogene-
ity of output produced. The ecosystemic approach favoured
in this paper is in contrast to previous IGA or fitness-based
GA systems aimed at search or optimisation to singular
outcomes or subjective criteria. The complex dynamics of
ecosystem processes are a source of rich and varied inspira-
tion that has much to offer as we develop autonomous cre-
ative systems.
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