
Creating and Rendering Convolution Surfaces

Jon McCormack and Andrei Sherstyuk

Department of Computer Science
Monash University, Victoria, Australia

Abstract

Implicit surfaces obtained by convolution of multi-dimensional primitives with some potential function,
are a generalisation of popular implicit surface models: blobs, metaballs and soft objects. These models
di�er in their choice of potential functions but agree upon the use of underlying modelling primitives,
namely, points. In this paper a method is described for modelling and rendering implicit surfaces built
upon an expanded set of skeletal primitives: points, line segments, polygons, arcs and planes. An algo-
rithm for ray-tracing the surfaces formed through convolution of any combination of these primitives
is also presented. The algorithm employs analytical methods only, which makes it computationally
e�ective.
Keywords: convolution surfaces, geometric modelling, implicit surfaces, ray-tracing.

1. Introduction

Geometric modelling with superimposed �eld func-
tions (also known as density distributions) was in-
dependently introduced by Blinn1 and Nishimura et
al.11. In general, �elds have contributions from a num-
ber of sources, each of which de�nes a density distri-
bution in three-dimensional space. The contribution
from each source is summed, and a surface is formed
at some threshold value. The modelling equation may
be speci�ed in an implicit form:

NX
i=1

Fi(x; y; z)� T = 0; (1)

where Fi are the source potentials and T is the iso-
potential value. A set of points (x; y; z) satisfying
equation (1) forms an iso-surface. Such iso-surfaces
are commonly known in computer graphics as implicit
surfaces. The constituent �eld functions Fi of equa-
tion (1) are usually de�ned to be monotonically de-
creasing, with a negligible contribution beyond a cer-
tain distance from the source. With appropriate �eld
function selection, the resulting iso-surfaces provide
smooth blending between sources as they are brought
together. In animation, the structural and topological

changes are continuous. These features, combined with
the ability to construct complex shapes that are dif-
�cult for other modelling primitives to describe, have
made implicit surfaces a popular tool for many mod-
elling tasks, particularly where the shapes to be mod-
elled are from the natural world1; 3; 4, or exhibit a
`soft' structure15 .

The capabilities of any modelling system based
on equation (1), will be dependent on the possi-
ble choices of modelling primitives, denoted as �eld
functions Fi, and this choice is the essence of the
model. As with many modelling techniques in com-
puter graphics, the following dilemma exists: whether
an object should be represented by a large num-
ber of simple primitives, or by a smaller number of
complex ones. With respect to the iso-surface equa-
tion (1), many di�erent approaches have been de-
scribed. The earliest methods used only simple prim-
itives, such as spherical or ellipsoidal bumps, either
Gaussian1 or polynomial11 ; 15 . More complex prim-
itives have included super-quadrics8 ; 16, generalised
implicit cylinders5 and convolution surfaces3.

These approaches have their advantages and dis-
advantages with respect to designing and rendering.
For designing purposes, it is desirable to have a wide
range of �eld functions Fi representing commonly used

c The Eurographics Association 1997. Published by Blackwell

Publishers, 108 Cowley Road, Oxford OX4 1JF, UK and 238 Main

Street, Cambridge, MA 02142, USA.

shapes. For rendering purposes, these functions should
be easy to evaluate in order to e�cently locate the iso-
surfaces. Naturally, these constraints contradict each
other.

Direct rendering of models (that is, without con-
version to some intermediate form such as polygons),
de�ned using simple point �eld primitives, has been
described using a scan-line based approach utilis-
ing numerical methods1, or via ray-tracing and ray-
casting8 . Simple point �elds yield relatively simple
implicit equations that can be solved during the ren-
dering process, without the need for conversion into
other geometric primitives, such as polygons. How-
ever, modelling with point �eld sources, makes the
design of complex shapes cumbersome. In addition,
the use of point sources during an interactive mod-
elling session provides little indication of how the �-
nal iso-surface will appear when rendered. Attempts
to circumvent this problem by visualising each source
with a sphere or ellipsoid (that represents each source
as though it were an isolated surface), can make the
interactive modelling process a little more intuitive.
Finally, datasets produced with point-based �eld func-
tions have di�culty describing circular structures and
can only approximate at regions.

The use of more complex potential-source primitives
can solve many of the short-comings of point sources.
In most cases however, the iso-surface equations (1)
become too complex to a�ord practical direct render-
ing times. Polygonisation methods are normally em-
ployed, which involves evaluation of �eld functions (1)
over some 3D-grid2; 10. This process is a piece-wise lin-
ear approximation to the true surface, and may result
in under-sampling artefacts.

In a skeletal-based approach to modelling with im-
plicit surfaces, elements such as lines, planar curves
and polygons are employed as potential sources4.
These primitives are structured to represent the un-
derlying `skeleton' of the object being modelled, the
implicit surface created by combining the �eld con-
tribution of each source using a blending function.
Blending functions allow many of the common CSG
set operations, as each implicit function may be con-
sidered a solid volume in the non-negative region.

Convolution surfaces, introduced by Bloomenthal
and Shoemake3 , convolve polygonally-based skeletal
primitives with a three-dimensional Gaussian �lter
kernel. This process overcomes some of the problems
of related distance surfaces, which include bulges and
curvature discontinuity where there is a �eld contribu-
tion from more than one non-convex primitive. Find-
ing a direct analytical representation for even a sin-
gle convolved polygon is di�cult, so Bloomenthal and
Shoemake take advantage of the planer nature of their

convolution primitives and perform a series of 1 and 2
dimensional convolutions, which are superimposed to
obtain the �nal convolution. The resulting iso-surface
in then found using polygonisation techniques.

In this paper we describe a method of creating and
rendering convolution surfaces using an extended set
of potential source primitives. A new potential func-
tion is described and we derive a set of �eld functions
for the following widely used primitives: points, line
segments, polygons, arcs and planes. These functions
may be used both for polygonising or direct render-
ing of the implicit surfaces formed by the combination
of primitives. We also describe an algorithm for ray-
tracing the surfaces formed and discuss some imple-
mentation issues.

2. Creating convolution surfaces

2.1. De�nition

Let f be a tri-variate function f : <3 ! <, represent-
ing the geometry of a modelling primitive P :

f(r) =

�
1 r 2 P ;
0 otherwise;

Let h be a potential function that describes the �eld
generated by a single point of that primitive:

h : <3 ! <

The total amount of �eld at point r, generated by the
whole primitive is

F (r) =

Z
<3

f(p)h(r� p)dp; (2)

which is a convolution of two functions f and h. Al-
though convolution is a commutive operation, for our
purposes we say that the �eld function F (r) is ob-
tained by convolving a geometry function f(r) with a
potential function h(r), also called a convolution ker-
nel. Thus, equation (2) may be conveniently re-written
as an integral of the potential function h(r) over the
volume of the primitive:

F (r) =

Z
V
h(r� v) dv (3)

Each type of primitive has its own unique geometry
(point, line, triangle etc.), and, therefore, yields its
own �eld function Fi(r) that can be used in iso-surface
equation (1).

c The Eurographics Association 1997

-3 -2 -1 0 1 2 3

0.2

0.4

0.6

0.8

1
h(r)

r

Figure 1: Exponential kernel (dotted line) and the
kernel of equation (4) (solid line).

2.2. Convolution kernels

The ability to perform the actual integration depends
on both the primitive and potential function. Most
previous choices for potential functions h prove them-
selves to be illsuited for practical use with equation (2)
when the geometry function f is more complex than
just a point, particularly when an analytical solution
to the integration is required. For example, kernels
with a �nite support, such as piece-wise polynomi-
als, can not be convolved analytically with primitives
whose dimensions are larger than the kernel's width.
Kernels with in�nite support (e.g. Gaussian, rational
functions) do not yield closed-form expressions for all
desired types of primitives13 .

Bloomenthal and Shoemake3 used a Gaussian ker-
nel, approximated by a cubic spline. For surface eval-
uation, they developed a technique of evaluating the
�eld function (3) for planar primitives, using pre-
computed mosaic of scan-converted polygons, �ltered
in 2 dimensions with a Gaussian �lter.

A useable kernel should have the properties that
it is continuous, monotonic, diminishes to a negligi-
ble contribution beyond a certain distance from the
centre, and exhibits zero or near zero gradient at this
distance.

We choose a new kernel that allows direct analytical
solution of equation (3) for a wide family of primitives.
In other words, with this kernel we are able to calcu-
late the exact amount of �eld generated by a primitive
at an arbitrary point without sacri�cing accuracy nor
speed. The kernel is:

h(r) =
1

(1 + s2r2)2
; (4)

where r is the distance from the point and coe�cient

s controls the width of the kernel, similar to the stan-
dard deviation parameter, a, in Blinn's blobby model1:

h(r) = e�a
2r2

A comparison of both kernels is shown in Figure 1,
with s = 0:85 and a = 1. Notice, that kernel (4) is
spherically symmetric and quadratic, which allows us
to re-write the �eld equation (3) simply as:

F (r) =

Z
V

dv

(1 + s2r2(v))2
(5)

2.3. Field functions

Using the kernel shown in (4), the �eld function for a
number of primitives can be derived. These primitives
are points, line segments, arcs, triangles and planes.
Other primitives, e.g. circles and polygons, may be
built by combining, respectively, arcs and triangles.
We now describe the �eld function of each primitive
in detail.

Points. A point is a 0-dimensional object, so its
geometry is a simple delta-function at point p. Inte-
gration of equation (5) yields the kernel function itself:

Fpoint(r) =
1

(1 + s2jp� rj2)2
(6)

Figure 2 shows, clockwise from top-left: diagramatic
representations of p and r; an intensity plot of Fpoint

over the Z = 0 plane; and a rendered version of an
isolated point, p (in red) and it's corresponding iso-
surface (transparent surface).

y

z

r

x

y

z
Fpoint

p

x

Figure 2: Point modelling primitive.

Line segments. A line segment of length l is de-
�ned as:

p(k) = b+ ka; 0 � k � l;

where b is the base vector, a is the normalised axis.
The squared distance between an arbitrary point r and
a point on the line segment is

r2(k) = d2 + k2 � 2kda;

c The Eurographics Association 1997

where d is a vector from segment base to r: d = r�b.
To obtain the �eld function, we substitute r2 into the
general formula (5) and integrate:

Fline(r) =

=

Z l

0

dk

(1 + s2r2(k))2
=

=
x

2p2(p2 + s2x2)
+

l� x

2p2q2
+

+
1

2sp3
(atan[

sx

p
] + atan[

s(l � x)

p
]); (7)

where x = da and p and q are distance terms:

p2 = 1 + s2(d2 � x2);

q2 = 1 + s2(d2 + l2 � 2lx)

y

z

x

y

z

b
a

d

r

x

Fline

Figure 3: Line modelling primitive.

Arcs. An arc and its distance function r2 are conve-
niently de�ned in the arc's local z-aligned coordinate
system as:

p(t) = (rcos(t); rsin(t); 0); 0 � t � �;

r2(t) = (x� rcos(t))2 + (y� rsin(t))2 + z2;

where r is the radius of the circle the arc lies on, � is
the arc angle (Figure 4, top-left). Integrating along the
angle, we obtain the �eld function in local coordinates:

Farc(x; y; z) =

=

Z �

0

dt

(1 + s2r2(t))2
=

=
by

xp2(kx� b)
+

k(x2 + y2)sin(�)� by

xp2(k(xcos(�) + ysin(�))� b)
+

+
2b

p3
(atanh[

ky

p
] + atanh[

(kx+ b)tan(�
2
) � ky

p
]);(8)

where k = 2rs2 and distance terms d, b and p are:

d2 = x2 + y2 + z2;

b = 1 + r2s2 + s2d2;

p2 = �r4s4 + 2r2s2(s2(d2 � 2z2)� 1)� (1 + s2d2)2:

y

x

cos(t)r

sin(t)r

Farc

y

z

x

Figure 4: Arc modelling primitive.

Triangles. We split a general triangle into two
right-angled triangles, do integration for both halves
and sum the result. We de�ne the following parame-
ters (see Figure 5, top-left): a point b, the projection
onto the longest edge of the opposite vertex; vectors u
and v that form the local surface coordinate system,
with b as its origin and u aligned in the direction of
the longest edge. We also de�ne scalars a1, a2 that
subdivide the longest edge at b, and h, the distance
from b to the apex of the triangle. Introducing the
vector d = r� b and scalars u = du and v = dv, the
�nal �eld function of an arbitrary triangle is:

Ftriangle(r) =

=
1

2qs
(
n

A
(atan[

s(vh+ a1(a1 + u))

A
] + atan[

s(gh+ a1u)

�A
]) +

+
m

B
(atan[

s(vh+ a2(a2 � u))

�B
] + atan[

s(gh� a2u)

B
]) +

+
v

C
(atan[

s(a1 + u)

C
] + atan[

s(a2 � u)

C
])); (9)

where

A2 = a21w+ h2(q + s2u2)� 2hs2a1ug;

B2 = a22w+ h2(q + s2u2) + 2hs2a2ug;

C2 = 1 + s2(d2 � u2);

g = v � h;

q = 1 + s2(d2 � u2 � v2);

w = c2 � 2hs2v+ h2s2;

m = a2g + uh;

n = uh� a1g

Planes. Unbounded planes have the following �eld
function:

Fplane(r) =
�

s2(1 + s2d2)
; (10)

where d is distance between point r and the plane.

c The Eurographics Association 1997

1a
2a

z

b

v
ur d

x

z

h

x

y

y

Ftriangle

Figure 5: Triangle modelling primitive.

We have described �eld functions for �ve modelling
primitives: points (6), lines (7), arcs (8), triangles (9)
and planes (10). Notice that when the iso-surfaces
generated by solitary skeletal primitives are rendered,
they correspond to the following three-dimensional ob-
jects: spheres, cylinders, arc tubes, prisms and slabs.
These objects may be conveniently used as visual mod-
elling aids during the design stage, because they show
the approximate structure of the composite implicit
surface (1). The actual blending, of course, can only
be obtained after the model is rendered. This is dis-
cussed in the following section.

3. Rendering convolution surfaces

Once the �eld functions (6, 7, 8, 9, 10) are de�ned, the
main equation (1) may be used to locate the surface,
and the object can be rendered. This may be done by
approximating the surface with a mesh of polygons2 ,
which can then be rendered using standard polygon
rendering techniques6 . Alternatively, iso-surfaces may
be rendered directly using ray-tracing, provided we
can perform ray / iso-surface intersection tests ef-
�ciently. Here we describe a direct rendering algo-
rithm using ray-tracing to locate the iso-surfaces gen-
erated from any combination of primitives described
in the previous section. This algorithm is based on the
original `metaball' ray-tracing algorithm developed by
Nishimura et al.12. We briey outline the ray-tracing
algorithm, developed for metaballs, and show how it
can be extended to render the set of new modelling
primitives.

3.1. Ray-tracing algorithm for metaballs

In the metaball model, the constituents Fi of the iso-
surface equation (1) are point potentials approximated
by piece-wise quadratic polynomials:

F (r) =

"
1� 3(r=R)2 0 � r � R=3;
(3=2)(1 � r=R)2 R=3 < r � R;
0 r > R;

(11)

t 1

t 2

t
1

t
2

1
s

2
s

Field
function

T

P(t)

Ray
distance

Cylinder

RayRay

Sphere

Line segment
Sphere

Figure 6: Computing intersection with a line seg-
ment.

where R is radius of inuence of the metaball, r is the
distance from its centre to point r. The key idea of the
algorithm is to keep the iso-surface equation (1) in the
polynomial form, so it may be solved quickly during
the ray / surface intersection test. To do that, the ray
equation

r(t) = a+ tb (12)

(a is the ray's origin and b is its normalised direc-
tion) is substituted into potential function (11). This
yields at most three piece-wise quadratic polynomi-
als per metaball that describe its �eld along the ray.
When all metaballs have been processed in this man-
ner, the whole extent of the ray inside their collective
�eld becomes diced into a set of intervals with cor-
responding polynomials derived from equation (11).
To �nd the intersections, the algorithm walks through
these intervals, building and solving the iso-surface
equation (1). Since all components are represented by
quadratic polynomials, the collective iso-surface equa-
tion is also a quadratic, and all roots (hence intersec-
tions) can be found analytically.

3.2. Modi�ed algorithm for new primitive

types

The nature of the algorithm described above is that
it may be applied to solve iso-surface equations gen-
erated by primitives of any type, provided the �eld
function of each primitive can be represented in poly-
nomial form, with ray distance t as an argument. For
metaballs, this representation is straightforward, be-
cause the point source �eld function is already a poly-
nomial. Field functions of more complex primitives,
such as those discussed in the previous section, are not
expressed in polynomial form, so additional process-
ing is required in order to provide this representation.
This can be achieved using polynomial interpolation.
We evaluate the �eld function at speci�c points along
the ray and apply either Lagrangian or Hermite in-
terpolation to these evaluated points. The resulting
polynomials are ready for use with the root-solving
part of the algorithm.

To demonstrate, consider the simple example of

c The Eurographics Association 1997

�nding all intersections between a ray and a surface
modelled by a single line segment (Figure 6, left).
First, we �nd the total extent of the ray inside the
�eld, i.e., we intersect the ray with the bounding vol-
ume of the primitive. For line segments, the bounding
volume is a union of a cylinder and two spheres at
the endpoints (Figure 6, centre). The extent [t1; t2] is
the geometric location along the ray where the �eld
is considered non-zero. After the extent is found, the
actual geometry of the underlying primitive becomes
irrelevant: we know that its �eld function Fline is given
by (7) and it inuences the ray on interval [t1; t2]. This
interval is then split into �ve equal sub-intervals xi, so
that x1 = t1 and x5 = t2. We de�ne fi = Fline(r(xi))
to be the value of the �eld at a given position along
the ray. Using the symmetry of Fline and the bound-
ary conditions at x1 and x5, we obtain �ve samples of
Fline, covering the whole extent of the �eld along the
ray, within the bounding volume of the primitive:

f1 = 0;

f2 = Fline(r(x2));

f3 = Fline(r(x3));

f4 = f2;

f5 = 0; (13)

where r(t) is the ray equation (12). Lagrangian inter-
polation of the constraints (13) produces a 4-degree
polynomial P (t) (Figure 6, right). Since there are no
other primitives, the iso-surface equation (1) for this
ray and this object becomes

P (t)� T = 0;

which has in this case two solutions within the interval
[t1; t2], s1 and s2, corresponding to intersection points
x1 = r(s1) and x2 = r(s2). It's important to note
that if we con�ne the interpolating polynomials to be
of degree 4 or less, analytical root-�nding methods
can be used to obtain a solution to the ray / surface
intersection test14.

To conclude the discussion of the algorithm, we
show the bounding volumes for all primitives (Fig-
ure 7).

3.3. Normal vector computation

The normal vector n at the ray/surface intersection
point x is computed as a weighted sum of gradient
vectors from all contributing primitives:

n = �

NX
i=1

wirFi(x):

For the sake of brevity, we omit the exact expres-
sions for rFi(x): they may be obtained by taking par-
tial derivatives of corresponding �eld functions. Scalar

3 cylinders + 3 spheres + 1 prism

1 cylinder + 2 spheres

1 infinite slab

1 piece of torus + 2 spheres

1 sphere

Arc

Plane

Primitive Bounding volume

Line segment

Point

Triangle

Figure 7: Bounding volumes for modelling primitives.

weights wi = Fi(x) are also used to interpolate be-
tween photometric characteristics of materials associ-
ated with modelling primitives. These usually include
ambient and di�use body colour, transparency, reec-
tivity and other information about the material of
which the surface is composed.

4. Results

Several images have been computed to demonstrate
the �eld functions described in Section 2.3. They were
rendered using a ray-tracing program that computes
the iso-surface intersections using the algorithm de-
scribed in Section 3. All images were rendered on a 90
MHz Pentium, shooting at most 16 eye rays per pixel.

The star�sh-like object in Figure 8 is modelled with
seven arcs, each image shows the arcs convolved with
kernels of various widths and heights. The top-left
image shows the underlying skeletal representation
(union of seven arcs). Rendering time, with respect
to the top-left image (clockwise): 1, 4.5, 5.7, 2.9, 2.2,
1.05. Notice how the tentacle colour is blended along
the surface.

Figure 9 shows some well known objects, that use
arcs, line segments, triangles and planes as their skele-
tal elements. The uni�ed polynomial representation of
each modelling constituent allows primitives of di�er-
ent types to blend smoothly.

The images of coral trees in Figure 10 illustrate
the modelling power of convolution surfaces built with
�eld functions described in this paper. Both upper im-
ages are rendered using the same dataset, based upon
Eric Haines's tree model7 . Each tree consists of 31
branches, modelled with cylinders of various radii, and
512 randomly positioned spikes, also cylindrical. The
only di�erence, from designer's point of view, is in ma-
terial descriptions: the left coral is described as

c The Eurographics Association 1997

surface Trunk: diffuse Pink

surface Spikes: diffuse White

while the right coral tree has its surface speci�ed as

surface Trunk: diffuse Pink, blobbiness 100

surface Spikes: diffuse White, blobbiness 500

To switch between `hard' and `soft' representations
of the surface, it su�ces to change its blobbiness,
which controls the width of the kernel (4). The de-
fault value is in�nity, which makes the convolution
kernel a delta function, yielding conventional, `hard'
surfaces, with no blending between primitives. In our
implementation, objects with `soft' or implicit surfaces
have the same properties as their `hard' siblings: they
may be transformed, grouped into hierarchies, instan-
tiated etc.

Unexpected but pleasant results were obtained
while experimenting with triangular �eld function as
a skeletal modelling primitive. Triangular meshes are
normally employed to approximate surfaces. Adding
a potential function produces a texturing e�ect: the
surface becomes much more interesting and realistic,
especially when used to model skin of not quite human
characters (see Figure 11). The images in the top row
are rendered with traditional polygons and look very
much like CG objects or plastic dolls as they lack the
complex detail that characterises faces. The images in
the bottom row were rendered using convolution sur-
faces, the original polygonal database providing the
skeleton. The results give Yoda a much more complex
and `mature' look.

5. Conclusions

We have presented a method of creating convolution
surfaces based upon exact evaluation of the �eld func-
tion for a wide set of modelling primitives. These prim-
itives, used as components of the main iso-surface
equation (1), provide far greater exibility in mod-
elling implicit surfaces than traditional point sources.
The techniques described augment the possibilities for
skeletal-based modelling, by extending the list of pos-
sible primitives from which �eld functions may be di-
rectly evaluated.

We have shown closed-form expressions for all �eld
functions and their gradients. Most of the calculations
can be performed in world coordinates (with the ex-
ception of arcs). All of the above makes direct ren-
dering of convolution surfaces feasible. To illustrate
this, we presented a ray-tracing algorithm, that builds
and solves the iso-surface equations using analytical
methods only. Therefore, one can chose if the convo-
lution surface should be polygonised prior to render-

ing or rendered directly. In other words, polygonising
becomes an option, not a requirement.

We are currently investigating the possibility of ex-
tending the set of primitives to include other geo-
metric data types. These include non-planar paramet-
ric curves and surfaces, which would prove useful for
the modelling of many natural tentacle and branching
structures. It should be pointed out that even with
the current list of primitive types, it is possible to de-
compose a parametric curve into line segments and
surfaces into polygons.

The skeletal-based approach allows the construction
and animation of a wide variety of natural forms, many
of which would be di�cult to construct, and impor-
tantly, animate, using other geometric modelling tech-
niques.

References

1. Blinn J.F., \A Generalization of Algebraic Sur-
face Drawing", ACM TOG, Vol. 1, No. 3, July
1982, pp. 235-256.

2. Bloomenthal J., \Polygonization of Implicit
Surfaces", Computer Aided Geometric Design,
5(1988), pp. 341-355.

3. Bloomenthal J. and Shoemake K., \Convolution
Surfaces", SIGGRAPH Proceedings, Vol. 25, No.
4, July 1991, pp. 251-256.

4. Bloomenthal J., \Skeletal Design of Natural
Forms", Ph.D. thesis, The University of Calgary,
Department of Computer Science, January 1995.

5. Crespin B., Blanc C. and Schlick C., \Im-
plicit Sweep Objects", Computer Graphics Fo-
rum, Vol.15, No.3, pp. C165-74, 1996.

6. Foley J. D., van Dam A., Feiner S. K. and
Hughes J. F., Computer Graphics, Principles and
Practice, second edition. Reading, Massachusetts:
Addison-Wesley, 1990.

7. Haines E., \A Proposal for Standard Graph-
ics Environments", IEEE Computer Graphics
and Applications, Vol. 7, No. 11, Novem-
ber 1987, pp. 3-5. The SPD (Standard Pro-
cedural Databases) package is available at
ftp.princeton.edu:/pub/Graphics/SPD

8. Kalra D. and Barr A., \Guaranteed Ray Inter-
section with Implicit Surfaces", SIGGRAPH Pro-
ceedings, Vol. 23, No. 3, July 1989, pp. 297-306.

9. Kincaid D. and Cheney W., Numerical Analysis:
Mathematics of Scienti�c Computing,
Brooks/Cole Publishing Company, 1991.

c The Eurographics Association 1997

10. Ning P. and Bloomenthal J., \An Evaluation of
Implicit Surface Tilers", IEEE Computer Graph-
ics and Applications, November 1993.

11. Nishimura H., Ohno H., Kawata T., Shirakawa I.
and Omura K., \LINKS-1: A Parallel Pipelined
Multimicrocomputer System for Image Cre-
ation", in Proceedings of the Tenth Interna-
tional Symposium on Computer Architecture,
ACM SIGARCH Newsletter, Vol. 11, No. 3, 1983,
pp. 387-394.

12. Nishimura H., Hirai M., Kawai T., Kawata T.,
Shirakawa I. and Omura K., \Object Modelling
by Distribution Function and a Method of Im-
age Generation", The Transactions of the Insti-
tute of Electronics and Communication Engineers
of Japan, 1985, Vol. J68-D, Part 4, pp. 718-725, in
Japanese (English translation by Takao Fujuwara
available).

13. Sherstyuk A., \Ray tracing implicit surfaces:
a generalized approach", Technical Report No
96/290, Monash University, Department of Com-
puter Science, December 1996.

14. Schwarze J., \Cubic and Quartic Roots", Graph-
ics Gems (editor, Andrew S. Glassner), Academic
Press, Cambridge, MA, 1990, pp. 404-407.

15. Wyvill G., McPheeters C. and Wyvill B., \Data
structure for soft objects", The Visual Computer,
Vol. 2, pp. 227-234, 1986.

16. Wyvill B. and Wyvill G., \Field Functions for
implicit surfaces", The Visual Computer, Vol. 5,
pp. 75-82, 1989.

Figure 8: Family of convoluted star�sh.

Figure 9: Blends: arcs, lines and planes (bottom);
arcs and lines (left); triangle with triangle (right);

c The Eurographics Association 1997

Figure 10: Coral tree made of line segments, `explicit'
and `implcit' versions.

Figure 11: Aging Yoda: polygonal mesh (left top),
polygonal mesh with smoothed normals (right top),
polygonal mesh convolved with kernel function (bot-
tom).

c The Eurographics Association 1997

