Chapter 2
Creative Ecosystems

Jon McCormack

Abstract Traditional evolutionary approaches to computer creativity focus on op-
timisation, that is they define some criteria that allows the ranking of individuals in
a population in terms of their suitability for a particular task. The problem for cre-
ative applications is that creativity is rarely thought of as a single optimisation. For
example, could you come up with an algorithm for ranking music or painting? The
difficulty is that these broad categories are shifting and subjective: I might argue
that Mozart is more musically creative than Lady Gaga, but others may disagree.
Objective, fine-grained ranking of all possible music is impossible, even for hu-
mans. [ will show how reconceptualising the exploration of a creative space using
an “ecosystemic” approach can lead to more open and potentially creative possibil-
ities. For explanatory purposes, I will use some successful examples that are simple
enough to explain succinctly, yet still exhibit the features necessary to demonstrate
the advantages of this approach.

2.1 Creative Systems

In this book you will find a broad range of definitions of creativity. Dorin and Korb
(Chap. 13), for example, emphasise a system’s propensity to generate novelty irre-
spective of its perceived value, similarly Schmidhuber (Chap. 12) views creativity
as a problem of learning information compression. Nake (Chap. 3) is more sceptical
about formal computer models of creativity, seeing the popular concept of creativity
today as “a US-American invention,” one that may be considered as a means for ac-
tivity, or as its goal. Pachet (Chap. 5) prefers to focus on “virtuosity”, emphasising
the thousands of hours that human artists must spend to master a discipline or instru-
ment. Each of these views place a different emphasis on which qualities, properties
or functions are important to understanding creativity precisely, and hence appreci-
ating its worth or relevance in any given domain.

If we take Boden’s popular definition—that creativity involves the generation
of ideas or artefacts that are new, surprising, and valuable (Boden 2010)—then an

J. McCormack ()
Centre for Electronic Media Art, Monash University, Caulfield East, Victoria 3145, Australia
e-mail: Jon.McCormack @monash.edu

J. McCormack, M. d’Inverno (eds.), Computers and Creativity, 39
DOI 10.1007/978-3-642-31727-9_2, © Springer-Verlag Berlin Heidelberg 2012



40 J. McCormack

interesting question to ask is: what are the mechanisms that enable this creativity? It
appears likely that any such mechanisms are numerous and diverse. While creativ-
ity is commonly associated with the human individual, clearly societies and nature
invent, too.

The psychologist David Perkins (1996) talks about “creative systems”; recognis-
ing that there are different mechanisms or classes of underlying systems that are all
capable of producing creative artefacts. A creative system, in this view, is simulta-
neously capable of the production of novelty and adaptation in a given context. This
suggests natural selection is a creative system, generating things like prokaryotes,
multicellularity, eusociality and language, all through a non-teleological process of
hereditary replication and selection. Social interaction is another creative system,
having given rise to cultural customs such as shaking hands and a variety of gram-
matical forms in different human languages.

A number of authors have offered explanations of fundamental creative mecha-
nisms based on evolution or evolutionary metaphors, e.g. Martindale (1999), Lums-
den (1999), Dawkins (1999), Aunger (2002). George Basalla’s The Evolution of
Technology detailed a theory of technological evolution, offering an explanation for
the creative diversity of human made artefacts: “novelty is an integral part of the
made world; and a selection process operates to choose novel artifacts for replica-
tion and addition to the stock of made things” (Basalla 1998). Evolution has also
played an important role in computer-based and computer-assisted creative systems
(Bentley and Corne 2002), being able to discover, for instance, seemingly counterin-
tuitive designs that significantly exceed any human designs in performance (Keane
and Brown 1996, Eiben and Smith 2003, p. 10). Such results illustrate the potential
of evolutionary systems to devise unconventional yet useful artefacts that lie outside
the capabilities of current human creative thinking.

Defining a class of phenomena in formal, systemic terms allows for a transition
to the computer. The purpose of this chapter is to look at what kinds of computa-
tional processes might qualify as “creative systems” in their own right. Here I draw
my inspiration from natural systems, in particular evolutionary ecosystems. Biolog-
ical evolution is readily accepted as a creative system, as it is capable of discovering
“appropriate novelty”. The computer science adaptation of evolution, a field known
as Evolutionary Computing (EC), selectively abstracts from the processes of bio-
logical evolution to solve problems in search, optimisation and learning (Eiben and
Smith 2003). It is important to emphasise selectively abstracts here, as only certain
components of the natural evolutionary process are used, and these are necessar-
ily highly abstracted from their physical, chemical and biological origins, for both
practical and conceptual reasons. In the case of designing a creative system, the
challenge is somewhat different than that of standard EC: understanding how a pro-
cess that is creative in one domain (biology) can be transformed to be creative in
another (e.g. the creation of art) requires different selective abstractions.

Generating the adaptive novelty exhibited in creative systems can be concep-
tualised as a process of exploration through a space of possibilities, searching for
regions of high creative reward. Perkins (1996) uses the metaphor of the “Klondike
space”—Gold is where you find it. Perkins identified four basic problem types in
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Fig. 2.1 Illustrative diagram of “Klondike spaces” (left, after Bell 1999) and, characterisation of
archetypical search spaces in Evolutionary Computing (right, after Luke 2009)

the creative search of a conceptual space (Fig. 2.1, left): (1) rarity: viable solutions
are sparsely distributed in a vast space of non-viable possibilities; (ii) isolation:
places of high creative value in the conceptual space are widely separated and dis-
connected, making them difficult to find; (iii) oasis: existing solutions offer an oasis
that is hard to leave, even though better solutions might exist elsewhere; (iv) plateau:
many parts of the conceptual space are similar, giving no clues as to how to proceed
to areas of greater creative reward.

This classification is similar to archetypical search and optimisation problems
encountered in EC (Fig. 2.1, right), where algorithms search for optima in what are
often difficult phenotypic spaces (Luke 2009). For example, “rarity” corresponds to
“Needle in a haystack”, “oasis” to “Deceptive”. Noisy landscapes are particularly
problematic, where evolutionary methods may do no better than random search.

Knowing as much as possible about the structure of the space you are searching
is immensely important, as it allows you to strategically search using the most ef-
ficient methods. Additionally, being able to restructure the space can make it more
intuitive for creative exploration. Hence the design of any creative system should
take the structural design of the creative space very seriously. It is also important
to emphasise that the search process is an explorative one. For most creative sys-
tems, this search space is Vast (McCormack 2008b), and there may be many iso-
lated “Klondike spaces” of rich creative reward. The challenge is to efficiently and
effectively find and explore them.

2.1.1 Spaces of Possibility

We should make further distinctions about creative spaces and spaces of possibility.
As 1 have previously discussed (McCormack 2008b), in many domains there are
large and crucial differences between the possible and actual. For example, consider
a digital image defined by executing an arbitrary Lisp expression over some do-
main (x, y), where x and y are the co-ordinates of a rectangular grid of pixels that
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comprise the image. Iterating through each co-ordinate, the expression returns the
corresponding pixel’s colour. Different expressions will usually generate different
images (although many different expressions will also generate the same image). In
theory, this system is capable of generating any possible image, provided you have
the appropriate Lisp expression to generate it.

This represents a space of possibilities than encompasses every possible image
that can be represented by coloured pixels over (x, y). For any reasonable image
dimensions, the size of this space is Vast, far beyond comparisons with astronom-
ical maximums such as the age of the universe, or the number of basic sub-atomic
particles estimated to exist in the universe.

However, the actual space of images that can be practically created with a Lisp
expression is considerably smaller, limited by physical constraints. From the per-
spective of evolutionary creativity, if we evolve a Lisp expressions using, for ex-
ample, an Interactive Genetic Algorithm (IGA, see Sect. 2.2), the actual images
produced are all relatively similar and represent an infinitesimally small fraction
relative to the possible space of which the system is theoretically capable.!

So while a representational system may theoretically cover a large range of possi-
bilities, searching them—even with evolutionary methods—will only permit exami-
nation of insignificantly small regions. Furthermore, transformation or modification
of the underlying generative mechanism? may open up new spaces not so easily
found by the original, e.g. the addition of symmetry functions for the Lisp expres-
sion example would make it easier to generate images with symmetric elements. Of
course we need some way of finding the “right” transformations or modifications to
make. This is a kind of “meta-search” (a search of the different types of generative
mechanisms that define a representational space). Further, this opens a hierarchy
(meta-meta-search, meta-meta-meta-search, etc.), which effectively amounts to the
same problem of the possible and actual in our original “flat” search.

What this means in practical terms is that there must be some human-defined
generative mechanism as the basis for any computational creative system,> which
will require serious human ingenuity and creativity if it’s design is to be effective.
I will return to this point in Sect. 2.4.3. While much research effort and discussion
has focused on evaluation and judgement in computational creative systems, repre-
sentation has received far less attention.

A somewhat analogous situation exists in biology. The space of possible DNA
sequences is far greater than the space of viable, or possible, phenotypes.* The space
of possible phenotypes (those which could exist) is again larger than the space of

By my estimates, about 5 x 1071444925 ¢

nomically small.

for images of modest dimensions, far beyond astro-

2By “generative mechanism” I am technically referring to the genotype and the mechanism that
expresses it into a phenotype.

3The mechanism can include the ability to self-modify, change, or learn.

4We might think of “viable” as meaning being able to effectively express a living organism from a
zygote or through mitosis of a parent cell. But this is problematic for many reasons, most of which
are too tangential to the argument to list here.
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actual phenotypes (those which have existed, or currently exist). In nature, what can
be successfully expressed by DNA is limited materially by physical constraints and
processes. In contrast to our Lisp expression example, once RNA and DNA were es-
tablished evolution has not really experimented with different self-replication mech-
anisms. We think of DNA as being a highly successful self-replicating molecule,
which might be true, but we have little to compare it with. Many factors affect the
variety of life that has evolved on Earth. As evolution involves successful adapta-
tions, the changing environment of the Earth is an important factor in determining
evolutionary variety. In addition to geological events, environments change due to
presence of species and their interactions, a point that I will return to later in this
chapter.

2.2 Evolutionary Computing and Creativity

As noted in the previous section, EC methods (which include techniques such as Ge-
netic Algorithms, Evolutionary Strategies and Genetic Programming) have demon-
strated success in assisting users of complex creative systems to better locate re-
gions of high creative reward (Bentley and Corne 2002, Romero et al. 2008). In
broad terms they are “generate and test” algorithms that evolve a population of can-
didate solutions or artefacts. New, child artefacts are generated through random mu-
tation and/or recombination with selected parents. Populations are tested or ranked
by some measure, with the most highly valued individuals and their offspring more
likely to survive in subsequent generations. Incrementally, the overall “quality” of
the population should improve according to the fitness measure used. How well the
method does depends on many factors, including the nature of the fitness landscape
(determined in part by the representational scheme) and the evaluation of solution
fitness in artefacts. Success or otherwise is dependent on (i) the structure of the phe-
notype space, and (i1) the effectiveness of the fitness evaluation in determining the
quality of the artefacts produced.’

Evolutionary approaches and aesthetic evaluation are reviewed extensively in the
chapter by Galanter (Chap. 10). So it is pertinent here to make just a few points.
Firstly, it is important to differentiate between an evolutionary system that gives
creative results and one that generates aesthetically pleasing results. The former
does not preclude the latter, but they are in general, independent (i.e. it is possible
for a machine or algorithm to generate aesthetically pleasing images without that
system being creative). This distinction is often overlooked.

Some evolutionary systems use learnt or predefined measures of “creative” fea-
tures in their generated artefacts (Baluja et al. 1994, Machado and Cardoso 2002), or
rely on some form of aesthetic measure to evaluate an individual’s fitness (Birkhoff
1933, Staudek 2002, Ramachandran 2003, Svangaard and Nordin 2004, Machado
et al. 2008). Others use iterative human selection to rank individuals as part of the

SThis issue is a topic of discussion in Chap. 4.
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evolutionary process (Takagi (2001) provides a comprehensive survey). These ap-
proaches suffer from difficulties, however. Pre-defined measures of aesthetic prop-
erties, for example, risk implicit judgements as to which specific properties are of
value (thus determining what will be measured). While a number of researchers
describe “aesthetic universals” of evolutionary origin (Brown 1991, Dissanayake
1995, Martindale 1999, Ramachandran and Hirstein 1999, Dutton 2002), it is long
proposed that aesthetic values also shift according to individual taste, time and cul-
ture. Moreover, aesthetics has many interpretations (Koren 2010), and in contempo-
rary art surface aesthetic qualities are often downplayed or given little significance in
appreciating the creativity of the work. Evolving artefacts exclusively for aesthetic
value does not necessarily make them creative.

Some attempts have been made to expressly minimise or remove the aesthetic
judgement of a particular individual. This is what is referred to as removing “the
signature” of the artist (Boden 2010, Chaps. 9 & 10). The Drawbots system de-
scribed by Bird et al. (2008) attempted to create a line-drawing robot using evo-
lutionary robotics. Researchers defined “implicit” fitness measures that did not re-
strict the type of marks the robot drawer should make, including an “ecological
model” involving interaction between environment resource acquisition and expen-
diture through drawing. However, the results demonstrated only minimal creativity,
and the authors concluded that fitness functions which embodied “artistic knowl-
edge about ‘aesthetically pleasing’ line patterns” would be necessary if the robot
were to make drawings worthy of exhibition to humans.

Using human selection (known as the Interactive Genetic Algorithm, IGA) suf-
fers from a “fitness evaluation bottleneck™ that reduces the human operator role to
that of a “pigeon breeder” who quickly fatigues (Takagi 2001, Dorin 2001). IGAs
are generally more suited to explorations by a non-expert user, who is unfamiliar
with the generative mechanism being evolved. Here the IGA allows limited naviga-
tion through a space of possibilities without necessarily understanding the underly-
ing mechanisms that generate them.®

These standard evolutionary approaches, while historically important and capa-
ble of significant results, are not able to consistently generate convincingly creative
results in many domains. Can we do better? Biology seemingly can. A useful in-
sight is in recognising that finding the creative “Klondike spaces” is not simply an
optimisation problem (i.e. finding a global optima using some fitness criteria). In-
deed, for most creative domains the idea of evolving towards a single optimum is
counterintuitive, as an artist or designer normally produces many new artefacts over
their professional lifetime. New designs or techniques often “evolve” from previous
ones, offspring of both the originating artist and his or her peers (Basalla 1998). As
Basalla (1998) and others have pointed out using the example of technological evo-
lution, the Western emphasis on individual creativity (reinforced socially through
patents and other awards) obscures the important roles played in the evolutionary

6Although there are exceptions where the IGA has proved useful to expert users as well,
e.g. Dahlstedt (2006), McCormack (2008a).
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ecosystem of interactions between environment and prior work of many individu-
als. Hence:

The trajectory through a creative space is not one of incrementally optimis-
ing towards a single goal or fitness measure, rather it is a complex pathway
through a series of intermediate and changing goals, each of which may de-
termine the pathway of the next, and may be creative in its own right.

If we are interested in discovering new creative spaces through the synergetic
combination of human intelligence and intuitive structuring and representation of
the conceptual space, then there are other possibilities. The evolution of species
on earth involves a complex set of interrelated processes and events. For example,
species do not exist in isolation from their environment or from other species; to-
gether they form a complex network of interdependencies that may impact on the
evolutionary process significantly. Let us see what happens if we re-conceptualise
the search of a creative space using insights from the structure and function of evo-
lutionary biological ecosystems.

2.3 Ecosystems

Ecosystems are a popular yet somewhat nebulous concept increasingly adopted in
contemporary culture. Environmental groups want to preserve them, businesses
want to successfully strategise and exploit them, and the media is part of them.
With recent sales of Nokia mobile smartphones on the decline, Nokia CEO Stephen
Elop bemoaned that fact that his company, unlike its rivals, had failed to create
an “ecosystem’: one that encompassed smartphones, the operating system, services
and users (Shapshak 2011). Media theorists speak of “media ecologies”—the “dy-
namic interrelation of processes and objects, beings and things, patterns and matter”
(Fuller 2005). Philosopher Manuel De Landa emphasises the flows of energy and
nutrients through ecosystems manifesting themselves as animals and plants, stating
that bodies are “nothing but temporary coagulations in these flows: we capture in
our bodies a certain portion of the flow at birth, then release it again when we die
and micro-organisms transform us into a new batch of raw materials” (De Landa
2000).

In the broadest terms, the modern concept of an ecosystem suggests a community
of connected, but disparate components interacting within an environment. This in-
teraction involves dependency relationships leading to feedback loops of causality.
The ecosystem has the ability to self-organise, to dynamically change and adapt in
the face of perturbation. It has redundancy and the ability to self-repair. Its mech-
anisms evoke symbiosis, mutualism and co-dependency, in contrast to pop-cultural
interpretations of evolution as exclusively a battle amongst individuals for fitness
supremacy. Yet we also speak of “fragile ecosystems”, implying a delicate balance
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or harmony between elements that can easily be broken by external interference.
Any anthropomorphic projection of harmony or stability to ecosystems is naive
however. The history of evolution is the history of change: species, their diversity,
morphology and physical distribution, the chemical composition of the biosphere,
the geography of the earth—all have changed significantly over evolutionary time.
The ecosystem’s stability is seemingly transitory then, tied to the shifts in species
distribution and environment.

2.3.1 Biological Ecosystems

Of course, ecosystems and Ecology are the domain of Biology, where we find a
formal understanding, along with many inspirational ideas on the functional re-
lationships found in real biological ecosystems. Modern Ecology is the study of
species and their relations to each other and their environment. The term “Ecology”
originated with the German Biologist and Naturalist, Ernst Haeckel,” who, in 1866,
defined it as the “science of the relationship of the organism to the environment”,
signifying the importance of different species embedded in specific environments.
The term “Ecosystem”, from the Greek (otkog, household; Aoy og, knowledge) is
attributed to the British Ecologist, Sir Arthur Tansley, who coined it from fellow
Botanist Arthur Clapham. It grew out of debates at the time about the similarity of
interdependent communities of species to “complex organisms”. Importantly, Tans-
ley’s use of the term ecosystem encompassed “the inorganic as well as the living
components” (Tansley 1939), recognising that the organism cannot be separated
from the environment of the biome, and that ecosystems form “basic units of na-
ture” (Willis 1997).

Contemporary definitions of ecosystems begin with the work of American Ecolo-
gists Eugene and Howard Odum. Eugene wrote the first detailed Ecology text, Fun-
damentals of Ecology, published in 1953. Odum recognised energy flows, trophic
levels,® functional, and causal relationships that comprised the ecosystem. Willis
defines the modern concept of an ecosystem as “a unit comprising a community
(or communities) of organisms and their physical and chemical environment, at any
scale, desirably specified, in which there are continuous fluxes of matter and energy
in an interactive open system” (Willis 1997).

In more modern terms, Scheiner and Willig (2008) nominate seven fundamental
principles of ecosystems:

1. Organisms are distributed in space and time in a heterogeneous manner (inclu-
sionary rule).

"Danish biologist Eugen Warming is also attributed as the founder of the science of Ecology.

8 Autotrophs, such as plants, produce organic substances from simpler inorganic substances, such
as carbon dioxide; heterotrophs unable to perform such conversions, require organic substances as
a source of energy.
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2. Organisms interact with their abiotic and biotic environments (inclusionary rule).
The distributions of organisms and their interactions depend on contingencies
(exclusionary rule).

Environmental conditions are heterogeneous in space and time (causal rule).
Resource are finite and heterogeneous in space and time (causal rule).

All organisms are mortal (causal rule).

The ecological properties of species are the result of evolution (causal rule).

»

Nk

For those wanting to know more details on the contemporary science, a text such
as that by Begon et al. (2006) provides a useful overview of Ecology science.

2.3.2 Ecosystem Models in the Creative Arts

A number of different “ecosystemic” approaches exist in the arts. Examination finds
that they are quite diverse and only loosely drawn from biological concepts, proba-
bly due to multiplicitous and nebulous understandings of Ecology outside Biology,
and various metaphoric interpretations of the ecosystem concept.

Design and Architecture. Given the state of human impact on the environment,
much theory in landscape and architectural design has sought to bring ideas from
Ecology and ecosystems into the design lexicon (see, e.g. Bell 1999). Through a
greater understanding of nature’s process and function, it is believed that designers
can better integrate human interventions within the landscape, minimising their de-
tritus impact, or at least appreciate how design decisions will effect change to the
environment over the life of a project, and beyond. In architecture, Design Ecolo-
gies seeks connections between biological Ecology, human communication, instruc-
tion and aesthetics, with an emphasis on “novel concepts of ecologically informed
methodologies of communication through design practice” (Murray 2011).

Generative design uses processes adopted from evolution as a source of design
variation and customisation. It brings a number of desirable features to the design of
artefacts, including a means to generate and manage complexity; self-maintenance
and self-repair; design novelty and variation (McCormack et al. 2004). As discussed
(Sect. 2.2), evolutionary methods such as the IGA are useful for generative design
when the designer has only a rudimentary grasp of the underlying generative mech-
anism that is being evolved. They permit design changes without the need to under-
stand in detail the configuration or parameter settings that generated the design. The
application of generative design to customised manufacture has become feasible in
recent years due to the availability of automated, programmable fabrication devices,
such as 3D printers, laser cutters, etc. that can inexpensively translate computer rep-
resentations into one-off physical objects. This allows physical generative designs
to be customised to individual constraints or desires on commercial manufacturing
scales.

Design associations with Ecology and ecological principles often suggest the
superiority of natural over human design, and ecosystems embracing harmony and
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stable configurations, “in tune” with nature and natural surroundings. Ecological
processes provide a certain cachet, appeal and authority that conveniently lend both
a design and moral credibility to a project. Such views have been rightly criticised
(Kaplinsky 2006). Evolution needs only to offer adequate solutions—ones that are
sufficient for growth, survival and reproduction—not necessarily the best or globally
optimal ones. “Optimality” for evolution is dependent on environment (obviously
polar bears don’t do well in deserts). But it is not that nature has nothing useful
to teach us. Moving beyond mimicry, a better understanding of the function and
behaviour of real biological ecosystems offers new and rewarding possibilities for
design, along with a greater awareness of how our activities ripple out through the
environment and affect other species.

Music and Performance. Waters (2007) uses the concept of a “performance
ecosystem”—one that encompasses composition, performance, performers, instru-
ments and environment. Here music and music making are seen as part of a multi-
layered, complex dynamical system, operating from the acoustic to the social. Em-
phasis is placed on the dynamical interactions and, importantly, feedback processes
between components of the ecosystem. For example, the feedback between a per-
former and their instrument encompasses the body, tactility, vibrating materials,
physical and acoustic properties of the room in which the instrument is played, along
with the “psychological adaptations and adjustments” in the body of the performer,
who is deeply connected to, and part of these interacting elements.

Such connections evoke the cybernetic: instruments can be considered part of
a continuum that originates from the body, extending through instrument and en-
vironment. Italian composer, Agostino Di Scipio (2003) seeks a reformulation of
what is meant by “interaction” in a technological performance context and invokes
the cybernetic concept of ecosystems and feedback dependencies as a sonic inter-
action paradigm. This is indicative of a more general sense of failure, in creative
contexts, of standard technical approaches to human-computer interaction. These
traditional approaches emphasise the functional over the explorative and connected.
An alternate view, advocated by Di Scipio and many others, sees interaction as “a
by-product of lower level interdependencies among system components” (Di Sci-
pio 2003). Components are adaptive to their surrounding external conditions and
able to manipulate them. In the case of sound, this involves a sound ecosystem of
sound-generating, sound-listening and sound-modifying components, connected in
feedback loops with their acoustic environment. In this configuration sound itself is
the medium in which the ecosystem exists. The coupling of components with their
environment allows them to change and reconfigure in response to environmental
variation: an environment that the components themselves may be modifying.

Visual and Installation Art. My own interactive installation, Eden (McCormack
2001), is a complex artificial ecosystem running in real-time on a two-dimensional
lattice of cells, projected into a three-dimensional environment (Fig. 2.2). The sim-
ulation includes seasonal variation, planetary albedo modified by biomass compo-
sition (Lenton and Lovelock 2001), and a simulation of sound propagation and at-
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Fig. 2.2 The author’s Eden installation: an evolving ecosystem of virtual creatures learn new
behaviours based on interaction with their environment and with their human audience

tenuation. Evolving, learning agents modify and adapt to their surroundings. Inter-
estingly, the agents learn a number of behaviours not explicitly programmed into
the system, including hibernation during winter months when food resources are
scarce, predation, and primitive signalling using sound. A computer vision system
links human visitor presence to the generation of biomass (food for the agents), and
over time agents learn to make interesting sequences of sound in order to keep vis-
itors attracted near the work, thus increasing their supply of food and chances of
reproductive success (McCormack 2005).

Over the last twenty years, Dutch artists Erwin Driessens and Maria Verstappen’
have been experimenting with generative “processes of production” in their art prac-
tice. This has extensively encompassed the use of ecosystem metaphors in a number
of their works. For example, E-volver is a generative visual artwork where a small
collection of agents roam a gridded landscape of coloured pixels, choosing to mod-
ify the pixel underneath them based on it’s colour, and those of the neighbouring
pixels. Each agent has a set of rules that determine how to change the colour and
where to move next (Driessens and Verstappen 2008). Through the interaction of
these pixel-modifying agents and their environment (the pixels which comprise the
image), E-volver is able to generate a fascinating myriad of complex and detailed
images (Fig. 2.3 shows one example), all of which begin from a uniformly grey
canvas. The images, while abstract, remind the viewer of landscape viewed from
high altitude, or an alien mould overwhelming a surface, or electron micrographs of
some unidentified organic structure. Importantly, they exhibit details on a variety of
scales, with coherent structures extending far beyond the one pixel sensory radius of

9See their website at: http://www.xs4all.nl/~notnot/index.html.



50 J. McCormack

Fig. 2.3 An image produced by Driessens and Verstappen’s E-volver. Eight pixel modifying
agents build the image by modifying pixels. Notice the image contains coherent structures over
multiple levels of detail

the agents that created them. This suggests a collective self-organisation achieved
through agent-environment interaction, with the environment acting as a “memory”
that assists agents in building coherent structures within the image.

Like Di Scipio’s sonic ecosystems, E-volver’s “environment” is the medium it-
self (an image comprised of coloured pixels). For Eden, the real and virtual environ-
ments are causally connected through sound, human presence and the production of
resources. In both E-volver and Eden, agents modify their environment which, in
part, determines their behaviour. Causally coupling agent to environment allows for
feedback processes to be established, and the system thus becomes self-modifying.
This iterative self-modification process facilitates the emergence of heterogeneous
order and fractaline complexity from an environment of relative disorder and sim-
plicity. For Eden this is further expanded by the use of an evolutionary learning
system (based on a variant of Wilson’s XCS (Wilson 1999)) that introduces new
learning behaviours into the system. Learnt behaviours that have been beneficial
over an agent’s lifetime are passed onto their offspring.

Unlike Eden’s learning agents, E-volver’s agents are not evolutionary over the
life of the ecosystem, yet they are evolved: a variation on the IGA allows the user
of the system to evolve ecosystem behaviours through aesthetic rejection (“death of
the unfittest”). The entire ecosystem (a set of eight agents and their environment)
is evolved, not individual agents within a single image. Selection is based on the
subjective qualities of the images produced by an individual ecosystem.

There are numerous other examples of successful artworks based on ecosystem
metaphors and processes. To return to the central questions of this chapter: how and
why do they work successfully?
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Table 2.1 General properties of creative ecosystem models

Property Features

Components & their Together these constitute the ecosystem

environment

Dynamical system Enables the ecosystem to temporally adapt and change in response to
internal and external conditions

Self-observation Provides a link between component action and environment

Self-modification ~ Allows a component to adjust its behaviour within the system

Interaction Components must interact with each other and their environment to give rise
to emergent behaviours of the system as a whole

Feedback loops Provide pathways of control, regulation and modification of the ecosystem

Evolution Allows long term change, learning and adaptation

2.4 Ecosystem Design Patterns

Within our research group!” at the Centre for Electronic Media Art we have inves-
tigated ecosystemic processes as a basis for designing or enhancing generative art-
works (see e.g. McCormack (2001, 2007b, 2007a), Eldridge et al. (2008), Eldridge
and Dorin (2009), Bown and McCormack (2010)). Our long-term aim has been to
develop a catalogue of ecosystemic “design patterns” in the spirit of Gamma et al.
(1995), which facilitate the building of creative evolutionary systems. Developing
these patterns does not imply a “plug-and-play” approach where one just selects the
appropriate patterns, connects them together, and then sits back to watch the creativ-
ity evolve. Rather, the patterns serve as starting points in conceptualising a specific
creative system, documenting intermediate mechanisms and the typical behaviours
they produce. Choosing which pattern to use and how to apply them remains a matter
of significant creative judgement.

Di Scipio sees the artistic system as a “gathering of connected components”, and
it is these components and their interdependencies that must be carefully designed
if successful system-level results are to ensue. Components must additionally be
adaptive to surrounding external conditions and be able to manipulate them.

Table 2.1 summarises the basic properties we think are important to creative
ecosystem models. The key to developing a successful ecosystem model is in the
design of the system’s components, their meaning, interpretation and interaction. In
the following sections, I will explore some of these features in more detail, using
completed ecosystem artworks as examples.

2.4.1 Environments: Conditions and Resources

In broad terms, biological environments have two main properties that determine the
distribution and abundance of organisms: conditions and resources. Conditions are

10Which has included over the last few years: Oliver Bown, Palle Dahlstedt, Alan Dorin, Alice
Eldridge, Taras Kowaliw, Aidan Lane, Gordon Monro, Ben Porter and Mitchell Whitelaw.
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Fig. 2.4 Example organism viability curves for reproduction, growth and survival, from Begon
et al. (20006)

physiochemical features of the environment (e.g. temperature, pH, wind speed). An
organism’s presence may change the conditions of its local environment (e.g. one
species of plant may modify local light levels to that which another species is
adapted for). Conditions may vary in cyclic patterns or be subject to the uncertainty
of prevailing environmental events. Conditions can also serve as stimuli for other
organisms. Resources, on the other hand, are consumed by organisms in the course
of their growth and reproduction. One organism may become or produce a resource
for another through grazing, predation, parasitism or symbiosis, for example.

For any particular condition or resource, an organism may have a preferred value
or set of values that favour its survival, growth and reproduction. Begon et al. (2006)
define three characteristic curves, which show different “viability zones” for sur-
vival, growth and reproduction (Fig. 2.4).

In developing artworks, we can abstract these concepts significantly as long as
we are clear about the functional relationships between conditions, resources and
organism. From here on we will consider the organism as a “component” of an
ecosystem, this more genetic term useful to remind us of the abstractions in play.
Components may often be called “agents” in a computer simulation, typically rep-
resenting autonomous entities with parameterised, possibly evolving, behaviours.

2.4.2 Self-observation and Feedback

Self-observation gives rise a type of feedback process, similar to a governor or more
simply “rein control” (Harvey 2004). Here “observation” means the system mon-
itoring of environmental conditions or resources that are necessary for reproduc-
tion, growth and survival and shifting its configuration in response. A component is
causally coupled to the environment through relevant conditions or resources within
its environment. Observation may be implicit or explicit, local or global. Observa-
tion forms a critical connection between a component’s effect on the environment
and its ability to modify its behaviour in response, typically to retain homeostasis
in local conditions or resources. The use of the term “observation” is deliberately a
loaded one. It is used in the cybernetic sense and does not imply a necessary concept
of agency (although it does not preclude it). It might be considered the most simple
precursor to more complex observational intelligence. It also suggests a system-level
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(as opposed to an individual-level) ontology that emerges through the interaction of
system components.

The well-known model of planetary homeostasis, Daisyworld, uses a simple
form of system level self-observation (Lenton and Lovelock 2001). Planetary albedo
is affected by proportions of black and white daisies, whose relative proportions
change according to surface temperature. What is fascinating about Daisyworld is
its ability to maintain a homeostatic surface temperature while the incoming radiant
heat energy increases.

In the ecosystem artwork Colourfield (McCormack 2007a), individual compo-
nents (“agents”) are bands of colour occupying a 1D lattice of cells. Genetic infor-
mation controls the colour the agent produces, along with its preference to adapt to
the colour of its neighbours and its propensity to occupy vacant neighbouring cells
(thus making a larger contribution to the overall colour distribution). A feedback
mechanism uses a colour histogram of the overall colour distribution to allocate re-
sources to each individual agent on a per-time step basis (Fig. 2.5). Here the obser-
vation mechanism—resource allocation based on the image histogram—is implicit
and global (the system as a whole is observing itself). An individual agent’s contri-
bution to the overall image influences the production of its own resources and those
of others. The more cells an individual occupies, the greater the reliance of other
individuals to it. Here feedback is an environmental reward function that favours
symbiotic adaptations because of its global nature (resources are equally divided
between cells). As the system is evolutionary, as a whole it has the ability to modify
its colour composition and distribution in response to the “self-observation” pro-
vided by this feedback mechanism.

A different self-observation mechanism is in operation in the ecosystem art-
work Niche Constructions (McCormack 2010). Niche construction is the process by
which organisms, through their activities, modify their heritable environment (and
potentially the environments of others). Advocates of niche construction theory in
biology argue that it is an initiator of evolutionary change, rather than simply an evo-
lutionary outcome (Odling-Smee et al. 2003). The complete set of conditions and
resources affecting an organism represent its niche, which can be conceptualised as
a hypervolume in n-dimensional space.

In the Niche Constructions artwork, evolutionary line drawing agents draw on an
initially blank canvas as they move around. A set of normalised scalar values forms
an agent’s genome, which directs its behaviour over its lifetime. Individual alleles
control rate of drawing curvature, “irrationality” (Fig. 2.6), fecundity and mortality.
Agents die if they intersect with any previously drawn line or run off the page.
The canvas is seeded with a small initial population of founder agents—initialised
with uniformly distributed random genomes and positions—that proceed to move,
draw and reproduce. There is no limit to the number of offspring an agent may
have, but in general the lifespan of agents decreases as the density of lines becomes
greater, because it is increasingly difficult to avoid intersection with existing lines.
Eventually the entire population dies out and the image is complete. This finished
drawing represents the “fossil record” of all the generations of lines that were able
to live over the lifetime of the simulation.
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Fig. 2.5 Feedback relationships between component and environment creates a self-observation
in the ecosystemic artwork “Colourfield”

Niche construction is enabled in this work through the addition of a self-
observation mechanism that genetically links drawing behaviour to local conditions.
As an individual agent draws on the canvas, the local density around it is measured.
Each agent has an allele that represents its ideal density preference, i.e. the local line
density that is most conducive to its survival, growth and reproduction. As the actual
density shifts away from this ideal value, the agent finds it harder to reproduce, grow
and survive. If the preferred density and actually density differ too greatly, the agent
will die (see Fig. 2.7). Of course the actual value of this density preference is subject
to evolutionary change and over the life of the drawing, average density preference
increases in the population (McCormack 2010). The niche construction process in-
fluences agent behaviour: low density liking agents try and draw large, closed spaces
to prevent other lines from decreasing their local density. High density seeking lines
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Fig. 2.6 Individual line drawing agents with different genetic values of irrationality. Note that the
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Fig. 2.7 The niche construction mechanism for drawing agents: a local line density measure, Ap;,
facilitates a self-observation mechanism. The agent’s genome includes an allele that represents a
preferred density (3;). The difference between preferred density and measured density affects the
agent’s effective fitness, hence its ability to survive, grow, and reproduce

give birth to large numbers of offspring, who quickly fill the canvas with lines of
close proximity. Some examples are shown in Fig. 2.8.

This local, implicit self-observation plays a vital role in influencing the over-
all density variation and aesthetics of the images produced. We know this because
turning the mechanism off produces images of significantly less density variation
(statistically) and visual interest (subjectively).

2.4.3 Automation and the Creative Role of the Artist

automation (noun): the use of largely automatic equipment in a system of manufacturing or
other production process
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Fig. 2.8 Two sample outputs from the line drawing system with niche construction

The term “automation” originated in the USA, from the newly industrialised en-
gineering of the 1940s, although similar concepts arose prior in different guises,
both historically and geographically. The central idea was to create machines to per-
form tasks previously performed by humans. The rational was largely economic:
machines that could replace and even out-perform their human counterparts will in-
crease production efficiency. As a central driving force in US industrialisation and
technologisation throughout the twentieth century, computers enabled the increas-
ing sophistication and range of capabilities for automation within the capitalist eco-
nomic system. The idea of machines automating human tasks still underpins many
technology-driven approaches to “automating creativity”. Traditional Al or EC ap-
proaches seek the automation of aesthetic or creative optima finding. In contrast,
the ecosystemic approach, as outlined here, does not seek to automate the human
out of the creative process, nor claim to equal or better human creative evaluation
and judgement. It views creative search and discovery as an explorative process, as
opposed to an optimisation.

Ecosystemic processes recognise the importance of the link between structure
and behaviour. Ecosystem components must be embedded in, and be part of, the
medium in which they operate. The design of the system—components and their
interdependencies—requires skill and creativity. This design forms the conceptual
and aesthetic basis by which the outcomes can be understood. So rather than re-
moving the artist by automating his or her role, the artist’s contribution is one of
utmost creativity—creativity that is enhanced through interaction with the machine.
As 1s also argued elsewhere in this book, forming an “ecosystem” that encompasses
humans, technology and the socially/technologically mediated environment, opens
up further ecosystemic possibilities for creative discovery.
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There are of course, many reasons why we might seek some form of “automated
creativity” or aesthetic judgement,'! apart from replacing human labour. For exam-
ple, automated creativity could lead to creative discovery that exceeds any human
capability, or provides greater insights on the mechanisms of human creativity by
attempting to model it. But these are “blue sky” speculations, and current techno-
logical advances in this area can just as easily homogenise and suffocate the creative
decision-making process for human users, as they can expand or enhance it. A good
example can be seen in recent digital camera technologies. Over the last ten years,
as computational power has escalated, digital cameras have increasingly shifted cre-
ative decision making to the camera instead of the person taking the picture. We see
modes with labels like “Intelligent Auto” or scene selection for particular scenarios
(“Fireworks”,“Landscape”,“Sunset”, “Beach”). These modes supposedly optimise
many different parameters to achieve the “best” shot—all the photographer has to
do is frame the image and press the button.!? Recent advances even take over these
decisions, choosing framing by high-level scene analysis and deciding when the
picture should be taken based on smile detection, for example. Such functionality
trends towards the removal of much human creative decision-making, subjugating
the human photographer to an increasingly passive role.

As anyone who has used a entirely manual camera knows, hand-operated “slow
technology” forces the user to think about all aspects of the photographic process
and their implications for the final image. The user’s role is highly active: experi-
mentation, mistakes, and serendipitous events are all possible, even encouraged—
well known stimuli for creativity. If the design of components and their interaction
is good, then using such a device isn’t marred by complexity or limited by inade-
quate functionality, which is often the rationalisation given in automation of creative
functionality.

Shifting the thinking about the design of technology from one of “complexity
automation” (where complexity is masked through “intelligent” simplicity) to one of
“emergent complexity” (where interaction of well designed components generates
new, higher-level functionality) allows the human user to potentially expand their
creativity rather than have it subsumed and homogenised.

2.5 Conclusions

Ecosystemics represents an alternative, biologically-inspired approach to creative
discovery over more traditional methods such as genetic algorithms or genetic pro-
gramming. It offers an interesting conceptual basis for developing new creative sys-
tems and processes, even in non-computational settings. Incorporating an “environ-
ment”, and allowing interactions between dynamic components and that environ-
ment, permits a rich complexity of creative possibilities for the artist wishing to

' Chapter 4 discusses this issue in more detail.

12Reminiscent of Kodak founder George Eastman’s famous tag line of 1888 for the Kodak No. 1
camera: “You press the button, we do the rest”.
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exploit the generative nature of ecosystem processes. While ecosystemic methods
don’t offer a “magic bullet” in terms of searching the creative Klondike spaces of
any generative system, they do make it easier to at least begin to conceptualise and
design systems capable of high creative reward. As the complexity and sophistica-
tion of ecosystem artworks develop, we are likely to see further advances in the new
creatively made possible with computers that use this approach.
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