
The Application of L-systems and

Developmental Models to Computer Art,

Animation, and Music Synthesis

Jon McCormack, B.Sc.(Hons), Grad Dip. Art (Film & Television)

A Thesis Submitted for the Degree of Doctor of Philosophy.

School of Computer Science and Software Engineering,

Monash University, Clayton, Australia.

December 2003.

© 2003 Jon McCormack

Contents iii

Contents

Contents .. iii

List of Figures ..viii

List of Tables... xiii

Abstract..xiv

Declaration ...xv

Acknowledgements ...xvi

1 Prolegomenon 1
1.1 Motivation .. 2

1.2 Original Contributions of this Thesis ... 5
1.2.1 Background.. 5
1.2.2 Research Context... 5

1.3 Related Work ... 7
1.3.1 Generative Modelling Systems .. 8
1.3.2 Critical and Art Theories... 9

1.4 Overview of the Thesis.. 10

2 Art and Science 15
2.1 Language and Methodology.. 16

2.2 Science and its Philosophies... 17
2.2.1 The Origins of Science... 17
2.2.2 The Enlightenment and Beyond.. 18
2.2.3 Logical Positivism .. 19
2.2.4 Contemporary Historical and Social Studies of Science 19
2.2.5 Realism and Anti-Realism... 21
2.2.6 Science as Social Activity .. 22
2.2.7 Science, Rationality, Modernity... 23
2.2.8 Postmodern Narratives.. 23
2.2.9 Discussion .. 24
2.2.10 Summary.. 24

2.3 Art and its Philosophies .. 25
2.3.1 Philosophical Traditions .. 26
2.3.2 Definitions of Art ... 26
2.3.3 Art Theory and Art Criticism .. 28
2.3.4 The Beautiful ... 28
2.3.5 Summary.. 33

2.4 Science on Art.. 33
2.4.1 Neural Mechanisms of Artistic Experience........................... 34
2.4.2 Biological Basis of Creative Behaviour 35
2.4.3 Perception.. 37
2.4.4 Discussion .. 37

iv Contents

2.5 Science Relations in Art...37
2.5.1 Art Movements and Science .. 38

3 Real / Natural 39
3.1 Computer Graphics and Realism..40

3.2 Realism and Photorealism in Art..41
3.2.1 Perceptually Real and Real ... 44

3.3 Technology and Interpretations of Realism...............................46
3.3.1 Postmodern Realism.. 47

3.4 Summary: Graphics and Realism ...48

3.5 Nature ...49
3.5.1 Botanical Art.. 50
3.5.2 Nature as a Source of General Systems................................ 52

3.6 Generative Art..53
3.6.1 Historical Precedents for Generative Art.............................. 53
3.6.2 Definition of Generative Art .. 56
3.6.3 Non-Computer Based Generative Art 57
3.6.4 Computer Based Generative Art ... 58
3.6.5 The Computer in Visual and Screen-Based Art 59
3.6.6 Related Artificial Life Art Systems .. 60

3.7 Summary ..62

4 Emergence 63
4.1 Introduction..63

4.2 Artificial Life...64

4.3 Generative Art..66

4.4 Emergence..66
4.4.1 History and Overview of Emergence..................................... 67
4.4.2 Levels and Patterns ... 68
4.4.3 Prediction, Explanation and Determinism............................ 70

4.5 Emergence for Generative Art..71
4.5.1 Creating Emergent Art with Machines 72

4.6 Methodologies of Generative Art ..76
4.6.1 The Role of Subversion.. 76
4.6.2 Symbol Manipulation, Mental Models................................... 77

4.7 The Computational Sublime..81

4.8 Conclusions...82

5 Generative Modelling with L-systems 87
5.1 Modelling Taxonomies...87

5.2 Generative Modelling...90
5.2.1 Modeller–Renderer Relationships ... 90
5.2.2 Developmental Models .. 91

5.3 L-systems..91
5.3.1 Visualisation of Produced Strings ... 92
5.3.2 0L-systems ... 93

Contents v

5.3.3 Context Sensitive L-systems .. 95
5.3.4 Stochastic 0L-systems.. 97
5.3.5 Parametric 0L-systems.. 98

6 Turtle Interpretation 103
6.1 Specification and Dataflow... 104

6.2 Symbol Equivalence .. 105

6.3 Turtle state... 105
6.3.1 Instantiating Geometry.. 107

6.4 Basic Turtle Commands .. 108

6.5 Surface modelling commands .. 113

6.6 Advanced Geometric Modelling Commands............................ 115
6.6.1 Previous Work.. 115
6.6.2 Creating Generalised Cylinders... 118
6.6.3 Turtle Commands for Creating Generalised Cylinders 120
6.6.4 Cylinder Construction and Calculation of Intermediate

Geometry.. 125

6.7 Texture Mapping ... 128
6.7.1 Generating 2D textures ... 128

6.8 Special Functions for Parametric L-systems........................... 130
6.8.1 Interpolative Functions ... 131
6.8.2 Pseudorandom and Noise Basis Functions 133
6.8.3 Environmental Functions .. 137
6.8.4 Summary.. 138

7 Applications 139
7.1 Phyllotaxis.. 139

7.1.1 Related Work ... 141
7.1.2 Features of the Model.. 143

7.2 The Area-Based Phyllotactic Model... 143
7.2.1 Surfaces of Revolution... 144
7.2.2 Example: Sphere.. 148
7.2.3 Example: Oblate and Prolate Spheroids 151

7.3 Stochastic Functions ... 155
7.3.1 A Simple Grass Model.. 156
7.3.2 Distribution over Surfaces... 158
7.3.3 Terrain Generation and Distribution 160
7.3.4 Element Placement over Terrain .. 164
7.3.5 Results.. 165

8 Animation 171
8.1 Animation using L-systems... 171

8.1.1 Related Work ... 172

8.2 Timed, Parametric 0L-systems... 173
8.2.1 Development Functions ... 177
8.2.2 Growth Examples .. 179

8.3 Detaching Turtle State .. 187

8.4 Animation of Legged Gaits.. 190

vi Contents

8.4.1 Techniques for Legged Figure Animation........................... 190
8.4.2 Leg and Body Configuration.. 191
8.4.3 Animation of a Single Leg ... 192
8.4.4 Building Multiple Body Segments 196
8.4.5 Discussion .. 197

8.5 The Developmental Algorithm..198
8.5.1 DOL-System Rewriting .. 199
8.5.2 Timed L-system Rewriting... 200

8.6 Discussion...213

9 A Developmental System for Generative
Media 215

9.1 Related Work..216

9.2 The Developmental Model...216
9.2.1 Cell Definitions... 216
9.2.2 Cell State .. 219
9.2.3 Cell Rules ... 221
9.2.4 Cell Interpretation ... 228

9.3 Cell Programming ..229
9.3.1 A 2-State Oscillator Example .. 230
9.3.2 Hierarchy of Legged Figures... 231
9.3.3 Relation to Sub-L-systems... 233

9.4 Music Generation...235

9.5 Summary ..236

9.6 Implementation Details ...237
9.6.1 Media Synchronisation .. 238
9.6.2 User Interface .. 253

9.7 Conclusions...258

10 Interactive Evolution 259
10.1 Introduction..260

10.1.1 L-systems ... 260
10.1.2 Evolution.. 260
10.1.3 Genetic Terminology.. 261
10.1.4 Overview of the Aesthetic Evolution Process...................... 262

10.2 L-Systems Implementation..263

10.3 Mutation of L-system Rules...264
10.3.1 Rule Mutation .. 264
10.3.2 Parametric Mutation ... 267
10.3.3 Development Function and Module Age Mutation 269
10.3.4 Mutation Probabilities ... 269

10.4 The Interactive Process ...270
10.4.1 Implementation ... 273

10.5 Results ...274

10.6 Conclusions and Further Work ...276

10.7 Epilogue..276
10.7.1 More Recent Work in Evolving L-systems........................... 277
10.7.2 Other Work in Aesthetic Evolution...................................... 280

Contents vii

10.7.3 The Use of Crossover Operators.. 281
10.7.4 Aesthetic Evolution and Subjectivity................................... 282
10.7.5 The Inference Problem.. 284

11 Music Composition 287
11.1 Music .. 288

11.1.1 Musical Representation Systems... 289
11.1.2 Musical Patterns .. 290

11.2 Musical Creativity.. 291
11.2.1 Semantics and Meaning .. 292

11.3 Representation for Music Composition.................................... 293
11.3.1 Procedural Models... 294
11.3.2 Stochastic Processes.. 294
11.3.3 Events and Event Spaces... 295
11.3.4 Markov Models .. 295

11.4 Related Work in Grammar Based Composition 297
11.4.1 Related Work in Formal Grammars.................................... 297
11.4.2 Other Work in L-systems Composition................................ 298
11.4.3 Characterisation of Music Generation with L-systems....... 300
11.4.4 Sequential and Parallel Re-writing 301

11.5 Grammars for Music Composition ... 302
11.5.1 L–Systems .. 302
11.5.2 Music with DOL–Systems... 302
11.5.3 Stochastic D0L-systems ... 303
11.5.4 Parametric Extensions .. 304
11.5.5 Hierarchical L-systems.. 304

11.6 Implementation ... 305
11.6.1 Data Flow... 306
11.6.2 Players and Symbol Interpretation 307
11.6.3 Polyphony and Context.. 308

11.7 Application of Developmental Systems.................................... 309
11.7.1 Specification of Timing Information.................................... 310
11.7.2 Timed L-systems and Developmental Systems 311

11.8 Conclusions and Future Work .. 321

12 Conclusions 325
12.1 Summary of Results .. 325

12.1.1 Artworks Produced.. 326
12.1.2 Topics Addressed in this Thesis .. 326

12.2 Computation, Aesthetics and Generative Systems.................. 328

12.3 Future Work... 331

Appendix A ... 335

Appendix B ... 349

References .. 353

viii List of Figures

List of Figures

Figure 2-1: The golden ratio (

!

"). .. 29
Figure 2-2: The 3-4-5 pentagonal triangle from (Doczi 1981). 31
Figure 2-3: 'Leaf Study' (after Doczi).. 31
Figure 3-1: Homage to R. Buckminster Fuller. ... 53
Figure 3-2: Overview of the generative process. .. 56
Figure 3-3: Cornelius Cardew: Score for Paragraph 7 of ‘The Great Learning’

(1967).. 57
Figure 4-1: Concepts and information flow between the artist or programmer

and the computer.. 78
Figure 6-1: Basic dataflow for generating visual models from L-systems....... 104
Figure 6-2: A sphere primitive with differing level-of-detail values as shown.107
Figure 6-3: Turtle axis and positioning system. ... 109
Figure 6-4: Turtle interpretation of the L-system (5.1) from Section 5.3.2. 110
Figure 6-5: Built-in turtle geometric primitive commands and the shapes they

produce. .. 113
Figure 6-6: A simple horn defined using cylinders and with the use of

generalised cylinders.. 118
Figure 6-7: Construction of a generalised cylinder... 119
Figure 6-8: Twisted cross-sections.. 119
Figure 6-9: The Frenet Reference Frame... 120
Figure 6-10: The effect of the tangent multiplier, passed as the parameter to

the c command... 122
Figure 6-11: Turtle commands to generate a simple cross-section................. 123
Figure 6-12: Example generalised cylinders and their generating L-systems.124
Figure 6-13: Three different methods of forming branching segments. 125
Figure 6-14: Stages of construction of a generalised cylinder segment. 126
Figure 6-15: L-system generated skeleton and convolved surface generated by

convolving the skeleton with an exponential kernel. 128
Figure 6-16: Two dimensional texture mapping. ... 129
Figure 6-17: Simple tree like structure with texture mapping. 130
Figure 6-18: Plots of some of the functions defined in Table 6–7. 133
Figure 6-19: Cylinders with randomly varying heights.................................... 136
Figure 6-20: Graph of the noise function in one dimension............................. 136
Figure 6-21: Graph of the fractalSum function in one dimension with 3 and

7 octaves. .. 137
Figure 7-1: Planar and Cylindrical phyllotaxis using L-systems...................... 140
Figure 7-2: Plants from Isopogon exhibiting phyllotaxis over sections of

approximate prolate spheroids (from (Greig 1999)). 141

List of Figures ix

Figure 7-3: Varying Thorns in the style of Kurt Fleischer et. al. (cf. (Fleischer
et al. 1995, page 247)).. 143

Figure 7-4: Generating curve for a sphere. .. 144
Figure 7-5: Sphere generated as a surface of revolution................................. 146
Figure 7-6: Phyllotaxis of various geometric elements over the surface of a

sphere. .. 149

Figure 7-7: Elements arranged on a sphere from

!

"

6
$

"

2
. 149

Figure 7-8: Elements of differing size placed over a sphere............................ 151
Figure 7-9: Illustrates the growth and placement of the elements.................. 151
Figure 7-10: Oblate and Prolate spheroids... 152
Figure 7-11: Surface area of oblate and prolate spheroids as a function of

distance from the polar radius along the z axis. 153
Figure 7-12: Oblate and Prolate spheroids with phyllotactic placement of

elements over their surfaces.. 154
Figure 7-13: Plant model created using the system described in this thesis... 154
Figure 7-14: Model created by placing thorn-like elements over a prolate

spheroid. ... 155
Figure 7-15: Single grass stalk produced by the L-system (7.24) using

generalised cylinders.. 156
Figure 7-16: A number of grass stalks generated by normally distributing the

!

"b ,

!

"r and

!

"l constants. .. 157

Figure 7-17: Patterns produced by assigning different functions to

!

" created
using the L-system defined in (7.27).. 160

Figure 7-18: Output of L-system (7.28)... 162
Figure 7-19: Fractal terrain generated using the uniform subdivision method

of L-system 7.29. .. 163
Figure 7-20: Landscape with plane at z=0 added, representing the water line.

Geometry below the plane is underwater, above, land. 164
Figure 7-21: Species distribution over the landscape. 165
Figure 7-22: Grass Field. Two views of the grass model with stochastic

distributions.. 167
Figure 7-23: Terrain model rendered without vegetation. 168
Figure 7-24: Terrain and plants generated using L-systems as described in

this section.. 169
Figure 8-1: Nomenclature for predecessor and successor modules in a timed

L-system.. 175
Figure 8-2: Diagram of the piston system... 179
Figure 8-3: tDOL-system to simulate a simple piston mechanism................... 180
Figure 8-4: Frames from the piston simulation.. 181
Figure 8-5: Sequence of frames showing the development of the Twin-Headed

Boykinia. ... 182
Figure 8-6: Fragment of the timed L-system controlling stem development. . 183
Figure 8-7: Graph of development functions gseg and gsegb

. 184

Figure 8-8: Development function used for animation of the flower head
based on a Bessel function of the first kind... 185

x List of Figures

Figure 8-9: Growth of the flower head. .. 185
Figure 8-10: Various instances of the Twin-Headed Boykinia model showing

how variation is achieved using the stochastic functions of the L-system
model described in this thesis.. 186

Figure 8-11: Frames showing the development of the Twin-headed Boykinia
sequence from the interactive animation Turbulence. 186

Figure 8-12: Still image of the ‘spitter’ sequence from the interactive
animation Turbulence showing seeds and seed-cases referred to in this
section... 188

Figure 8-13: Timed L-system fragment for the ‘spitter’ sequence shown in
Figure 8-14. .. 189

Figure 8-14: ‘Spitter sequence’ from the interactive animation Turbulence... 190
Figure 8-15: Legged animal composed of multiple articulated body segments

and detail of an individual segment’s joint configuration......................... 191
Figure 8-16: Individual body segment showing the geometry created using

generalised cylinders.. 192
Figure 8-17: L-system to specify a single leg configuration............................. 193
Figure 8-18: Key development functions for the gait of a single leg. 194
Figure 8-19: Multiple exposure of a single body segment showing the gaits of

the legs from the front, side and top.. 195
Figure 8-20: Still frame showing the legged creature running........................ 196
Figure 8-21: A herd of walking creatures. ... 197
Figure 8-22: Individual frames showing the walking creature from the

interactive animation Turbulence .. 197
Figure 8-23: Iterative development of a DOL-system....................................... 199
Figure 8-24: Code fragment for string rewriting DOL-systems........................ 200
Figure 8-25: For timed L-system development, modules may be active for an

arbitrary time period.. 201
Figure 8-26: the TimeStruct data structure... 202
Figure 8-27: Sample instances of the TimeStruct members and their

relation to the developing L-system modules. ... 203
Figure 8-28: Development of timed L-systems – the DevelopModuleList

function... 205
Figure 8-29: Data structure showing key elements of a formal module. 206
Figure 8-30: Key elements of the data structure representing an instanced

module. ... 207
Figure 8-31: Data structures representing a successor module and

production... 208
Figure 8-32: The ApplyProductionSet function, which controls the

development of timed L-systems.. 212
Figure 8-33: The MIN_CHANGE_EPSILON tolerance constant treats changes

within a small range as being applied in parallel. 213
Figure 9-1: Master and Instance cells, and their principle components. 217
Figure 9-2: A system cell may contain other cells which in turn may be system

cells. .. 218
Figure 9-3: Higher dimensional context relations and their specification. 222
Figure 9-4: A 2D reaction diffusion cell system.. 224

List of Figures xi

Figure 9-5: Reaction-diffusion simulation output... 225
Figure 9-6: Graph of the state variable x over the first 2 time units of the life

of the cell. ... 227
Figure 9-7: Graphical representation of cell changes brought about by rule

actions... 228
Figure 9-8: Simple program for an oscillator. .. 230
Figure 9-9: Sequence of frames from the rendered output of the oscillator

system. .. 231
Figure 9-10: Hierarchical structure of the legged creature............................. 231
Figure 9-11: Specification of systems and modules corresponding to the

hierarchy illustrated in Figure 9-10. ... 233
Figure 9-12: Cellular definition of the sub-L-system.. 234
Figure 9-13: A note playing system... 236
Figure 9-14: Time-state diagram contrasting the developmental differences

between discrete L-systems and the cellular developmental system
described in this chapter. ... 237

Figure 9-15: Cellular update algorithm.. 243
Figure 9-16: UML diagram of the Pool class hierarchy.................................... 244
Figure 9-17: UML diagram of the timed event class hierarchy........................ 247
Figure 9-18: UML diagram of time control and synchronisation classes. 249
Figure 9-19: Conductor GUI, showing transport, timing and synchronisation

controls. .. 250
Figure 9-20: Calls of the Ticker::Notify() function at regular intervals... 250
Figure 9-21: The three stages of processing within a single interval.............. 251
Figure 9-22: Recalculation of intervals if computation time exceeds Ticker

intervals. ... 252
Figure 9-23: Graphical User Interface for the gene splicer software, showing

the key user interface elements accessible to the user. 255
Figure 9-24: Editing section of gene splicer, showing the hierarchical

structure of a collection of cells. .. 256
Figure 9-25: Text display/editing of individual cells... 257
Figure 10-1: The mutation and selection process. ... 262
Figure 10-2: The initial genome is selected from an existing library to

undergo the evolutionary processes described in this chapter. 263
Figure 10-3: Detail of the main mutation parameter controls of the system. . 270
Figure 10-4: Screen shot showing a selection of mutated phenotypes and a

selection of the controls for mutation probabilities, fitness selection and
genotype file operations. .. 271

Figure 10-5: A phenotype evolved using the software system described in this
chapter, shown in vector format and software rendered with extra
surface detail. ... 272

Figure 10-6: Parent (top left) and 14 mutations... 273
Figure 10-7: Original form (a Sunflower) and the form after many generations

of aesthetic evolution using the system described in this chapter. 275
Figure 10-8: Sequence showing the temporal development of the evolved

model shown in Figure 10-7B.. 275

xii List of Figures

Figure 10-9: Rendered images of models created using the evolutionary
system described in this chapter. ... 285

Figure 11-1: A set of input notes (from a popular nursery rhyme), and the
corresponding 1st order Markov model, represented as a transition
matrix. .. 296

Figure 11-2: Musical interpretation of a Hilbert curve generated by an L-
system [from (Prusinkiewicz & Hanan 1989)]. ... 299

Figure 11-3: A simple hierarchical grammar consisting of two rule sets, A and
B. ... 305

Figure 11-4: Stages of processing in the system. ... 306
Figure 11-5: String interpretation using an indexed table and note

parameters to specify note-based timing. ... 310
Figure 11-6: Simple rhythm generated using the timed L-system (11.3) 312
Figure 11-7: Two chord pattern with volume and filter control 313
Figure 11-8: The two chord sequence of Figure 11-7 showing plots of

continuous changes in volume and filter frequency.................................. 314
Figure 11-9: Hierarchical decomposition of the sonata form. The lines with

arrows show progression through the sonata... 315
Figure 11-10: The sonata form encoded as a cellular developmental system. 316
Figure 11-11: Harmonic chord progression modules. 319
Figure 11-12: Up and down arpeggio modules. ... 320
Figure 11-13: System for harmonic shifting arpeggios. 320
Figure 11-14: Excerpt from a musical score generated using the techniques

described in this chapter. ... 323

List of Tables xiii

List of Tables
Table 6–1: Basic turtle commands affecting turtle position and orientation... 109
Table 6–2: Turtle bracket commands. .. 110
Table 6–3: Turtle transformation commands. .. 111
Table 6–4: Turtle commands for generating basic geometric primitives. 112
Table 6–5: Turtle surface modelling commands... 115
Table 6–6: Turtle commands for the creation of generalised cylinders........... 121
Table 6–7: Interpolative functions... 132
Table 6–8: Pseudorandom and Noise functions.. 135
Table 6–9: Environmental Functions. ... 138
Table 8–1: Use of the derivation function for the sample L-system. 176
Table 9–1: Rule actions.. 228
Table 9–2: A selection of modules used to create music. 235
Table 11–1: Context sensitive strings and their musical interpretation. 309

xiv Abstract

Abstract

This thesis addresses the development of Lindenmayer systems (L-systems)

and associated developmental models for the purposes of creating generative

art, animation, and music. The research presented takes formalisms initially

developed for the modelling and visualisation of biological systems and ex-

tends them as a creative tool for the generation of time-based visual and sonic

structures.

New techniques for the geometric interpretation of produced strings are

introduced. These techniques improve over previous methods in their flexi-

bility and scope in modelling organic form. Extensions introduced include: the

use of generalised cylinders as a biologically inspired modelling tool, a variety

of stochastic basis functions, and communication functions that connect the

developing grammar with external events and environments. New develop-

ments are illustrated by applying them to modelling phyllotaxis, surfaces rep-

resenting landscapes, and population distribution models over such surfaces.

An analytical method for modelling phyllotaxis over arbitrary surfaces of

revolution is presented. Temporal and developmental extensions specific to

the generation of animated visual models and musical events are discussed in

relation to L-systems. A number of related extensions are combined to form a

generalised developmental model suited for hierarchical specification of both

morphogenetic geometric models and musical events. Examples illustrate the

application to the animation of articulated legged figures and the growth and

development of plant models. Aesthetic evolution techniques for L-systems,

and the application of object-oriented methods suited to synchronisation and

real-time performance in practical implementations, are also described.

These technical developments are placed in context historically by exam-

ining previous attempts at applying formal systems to artistic applications,

and the use of botanical and biological visualisation in creative and scientific

contexts. Specific topics on realism and mimesis in relation to computer

graphics and views of nature and natural systems are considered. In particu-

lar, the concept of emergence is discussed in relation to generative art such as

that produced by the formal systems detailed in this thesis.

Declaration xv

Declaration

I hereby declare that this thesis contains no material which has been ac-

cepted for the award of any other degree or diploma at any university or

equivalent institution and that, to the best of my knowledge and belief, this

thesis contains no material previously published or written by another person,

except where due reference is made in the text of the thesis.

Jon McCormack Date

xvi Acknowledgements

Acknowledgements

This thesis is based on my work over the last 12 years in creating artworks

and animation unique to digital computers. I am grateful to the many people

who have directly, or indirectly, supported the development of my work and

provided important inspiration and criticism during this time.

Firstly and most importantly, I am indebted to Gary Warner, who many

years ago gave me a copy of Chris Langton’s paper on Artificial Life from the

first workshop held in Santa Fe, New Mexico in 1987. By accident or design (I

suspect the latter) this turned out to be one of those seminal moments that

went on to define my activities for many years to come. While working at the

Australian Film Commission in the early 1990s, Gary was instrumental in

funding and supporting my interactive animation, Turbulence, at a time when

such works were not well understood or supported by cultural funding bodies.

Gary’s support and encouragement for my work over the years has been

without question, of critical importance.

I would like to thank Alessio Cavalaro, Michael Hill, Rachel Kent, Jacque-

line Ford Morie, and Deanna Morse, who were all prodigious in supporting

the earliest exhibitions of Turbulence at acm siggraph Florida, usa , in 1994

and in Australia in 1995 at the Filmmaker and Multimedia Conference and

the Ian Potter Gallery at the University of Melbourne. Ross Gibson advocated

securing and funding the redevelopment and acquisition of my work for the

Australian Centre for the Moving Image, during his time as creative director.

Few people will be more relieved to see this document complete than my

erstwhile supervisor, Peter Tischer, who’s encouragement and supply of re-

ferences has been invaluable. Peter also generously proofread and provided

many useful comments on the final version of this thesis.

Alan Dorin, my co-conspirator in the Centre for Electronic Media Art

(cema), Monash University, has kept me occupied with many valuable discus-

sions, useful suggestions, and his continued enthusiasm and support for many

of my more esoteric ideas.

Acknowledgements xvii

I have had numerous interesting discussions, inspiration and advice from

my many colleges at Monash University, in particular Lloyd Allison, John

Crossley, Kevin Korb, Binh Pham, and Peter Tischer. I would also like to thank

Professor Les Goldschlager who had great faith in offering me an academic

position despite my lack of professional credentials. Trevor Dix, David Abram-

son and Bala Srinivasan have all supported my career and professional devel-

opment during my time as a university employee.

I am grateful for inspiration, discussions, and information over the years

from Mark Bedau, Char Davies, Jim Hanan, Przemek Prusinkiewicz, Bill Sea-

man, and Karl Sims. In particular, my debt to the inspirational research and

ideas of Professor Prusinkiewicz and his colleagues will be apparent to the

reader. I would also like to thank Phil Husbands and his colleagues at cogs,

University of Sussex, for hosting my position as visiting researcher in 2001,

where components of the research for this thesis were carried out.

Sections of this work were made possible through project grants from the

Australian Film Commission and funding provided by a New Media Arts

fellowship from the Australia Council for the Arts. I am grateful to these or-

ganizations for their faith in me and support of my work, even when some of

the time it didn’t appear that what I was doing was making art (I wasn’t).

I would also like to acknowledge the continuing support of Wavefront

Technologies Inc., (now Alias|Wavefront Inc.), and Pixar Animation Studios

who have generously supported my work by providing me with their render-

ing software as part of their artist support and university donation programs.

Finally to my family: my wife Julie and my children Imogen and Sophie

who have put up with all of this for many years, always with their love and

support. I now hope to make up some of the time we have lost. It is to them

that I dedicate this thesis.

August 2003. Melbourne, Australia.

Acknowledgements xix

Chapter 1: Prolegomenon 1

1 Prolegomenon1

Expelled from the smaller, friendlier world in which previous
centuries of men moved with confidence born of familiarity, we
are today compelled to cope with an expanded scale of events in a
big, alien, redefined world. In order to live freely and fully in our
new world, we have to learn to map its strange vistas, to discern
in them harmonious structures appreciable by our visual sensi-
bilities, and to arrange our lives in conformity with the new per-
spectives.

So far, we have failed to live up to the twentieth-century chal-
lenge. Science has opened immense new vistas to us, but we have
failed to utilize our new technology fully or share it wisely. We
shrink from accepting the deeper and richer sense of life,
uniquely in our twentieth-century world, that is sometimes
touched upon in the best moments of our best artists. We have not
yet found our places in this broadened world.

— Gyorgy Kepes (Kepes 1944)

The state of knowledge at the beginning of the twenty-first century suggests

the complex nexus of relationships between art, science, and nature are,

paradoxically, becoming increasingly detailed and accessible, yet simulta-

neously more complex and unfathomable. Our experiential understanding of

what constitutes nature and the natural is blurred, and with an eye on the

progress of science and technology ensues a shifting redefinition of the way

we view the world: experientially, epistemologically, ontologically and cultur-

ally.

In recent decades, the computer has had a profound impact on our know-

ledge and understanding of the world. Computer modelling and simulation

1 Meaning “introduction” — used in the tradition of the late Alain Fournier, whose articles were
inspirational for the origins of the research presented here.

2 1.1: Motivation

have opened up immense new vistas, but in the spirit of Gyorgy Kepes, it is

poignant to question if we have used our new knowledge and technology to

create a deeper and richer sense of life. This thesis attempts to address that

question. As the philosopher John Gray reminds us, while science has enabled

humans to satisfy their needs, it has done nothing to change them (Gray

2002). If we accept that knowledge and theories cannot only be considered in

isolation, we are then required to address a broader range of issues in rela-

tion to that knowledge and those theories. How concepts are applied and en-

gaged with: the purposes for which they are used and the modes under which

they are explored, mandates consideration as well if we are to address Kepes’

challenge. Such exploration feeds back into the knowledge understanding and

discovery process, and therefore has a role in determining what is discovered

and why.

The research presented in this thesis takes formalisms initially developed

for the modelling and visualisation of biological systems and extends them as

a creative tool for the generation of time-based visual and sonic structures.

The rational and context for this design is investigated within the theoretic

and historic framework of applying formal systems to creative applications.

These systems are broadly classified as generative systems, whereby some

formal process is enacted to generate new systems, properties, and struc-

tures. These features are distinguished by a far greater novelty and com-

plexity over that of the system specifying them. Generative design involves the

implementation and orchestration of autonomous processes by the designer.

Generative art involves the use of such generative systems and processes for

creative purposes.

The core of the generative system described here is general enough to

have scientific and artistic value. The results and representations used are

mainly confined to the development of an aesthetic theory, which is the pri-

mary motivation for this research.

1.1 Motivation

The research described in this thesis began as an exploration of ideas in bo-

tanical modelling from a computer graphics perspective. Foley et. al. regard

computer graphics as “a branch of computer science … but its appeal reaches

Chapter 1: Prolegomenon 3

far beyond that relatively specialized field” (Foley et al. 1994, page 1). Re-

search in computer graphics finds motivation from, and application in, a di-

verse set of fields which include: scientific visualisation; simulation; engi-

neering; marketing; product and prototype design; feature films and televi-

sion; medical imaging; office automation; art. Not all techniques are applic-

able to all application areas. Computer graphics, as I use the term in this the-

sis, I define to mean the development of mathematical and computational

models with the goal of a perceptually coherent visual representation. That is,

in the broadest sense, they produce patterns that can be interpreted by the

viewer. The results of my research and the practical experimentation that en-

sues from it were developed with the goal of making dynamic and interactive

creative works, both visual and musical. As this process developed, I began to

think more about the relation between computer graphics and art, and to

search for theories and discourses in art to place my own work in context

with elements of art theory (in addition to its utility in computer graphics per

se). This led to a deeper analysis of the relationship between computer

graphics and art, and inexorably science and art as a whole. As a result, this

thesis includes discussion and analysis not typically found in a work that deals

primarily with a branch of computer science. It is my view that science and

science as a cultural activity are not easily separated. As Gyorgy Kepes chal-

lenges: science may open up the vistas, but it is up to individuals to develop

“the deeper and richer sense of life”.

So while science may have some justification to its claims of objectivity in

the abstract, the application of scientific theories, their realisation as technol-

ogy, even the justification and selection of which particular areas are re-

searched does not appear to be “value-free”. As Hansen’s slogan reminds us:

“seeing is a theory laden enterprise” (Hansen 1958). This is particularly the

case for computer graphics, where much research is applied science: applied

to the process of visualising the world. In computer graphics, the goal of most

research is the simulation of “reality”, be it a computer scientists, engineers,

movie-producers, botanists, or even photographers view of reality. Even when

computer graphics deals with the non-real, it still tries to emulate a particular

approach, in a way that is beheld to be perceptually faithful (real), not to the

style or feature itself, but to primarily a screen-based version of that style or

feature. Everything real is ultimately expressed through the fundamental

4 1.1: Motivation

quanta of pixels. This is true too of artistic styles2 where the success of a

simulation is in how real it appears in relation to the analogue version of the

technique, as viewed through the limitations of the crt or other graphics dis-

play technology.

Is it possible to use computers in general (and computer graphics specifi-

cally) to create artworks that are not based on the standard focus of realism,

or designed to borrow visual styles and methodologies directly from other

media? Certainly, this is one of the goals of the work described here.

Aside from any issues of correctness, thoroughness and readability by

which any scientific paper would be judged, much research in computer

graphics is implicitly judged on how “real” or true the images or animations

are to the element or aspect of reality they try to reproduce. However, if the

subject of the simulation has no analogue in reality, this form of validation

breaks down. In addition, as will be detailed in the following chapters, if our

goal in being real is in explaining some held truth about a representation, the

literal visual version of this truth may not be the best way of imparting it.

If we are interested in developing scientific and technical processes for ar-

tistic purposes, it makes sense to look at theories of art that might be useful in

understanding how art theory views the world, and in particular the concepts

of “copying nature” and representing nature in art.

The primary motivation, however, is in extending and applying the class of

mathematical formalisms, known as Lindenmayer systems (L-systems) to ap-

plications in computer graphics, fine art, and music synthesis. The concept of

generative processes, of which L-systems form a part, has a rich and diverse

history in many aspects of creative exploration. A significant motivation for

the use of generative processes is that the results they produce are often em-

ergent. I use this term in the sense that emergent processes can “exceed the

designers expectations” in terms of the behaviour, form, pattern or interac-

tion that they produce. Hence, this thesis illustrates the results of an investi-

gation into using L-systems as a basis for modelling complex, emergent devel-

opmental phenomena, suitable for creative applications.

2 Often referred to as “non-photorealistic rendering” in the computer graphics literature.

Chapter 1: Prolegomenon 5

1.2 Original Contributions of this Thesis

1.2.1 Background

The main body of research and development on which this thesis draws be-

gan in 1991. At this time, I embarked on the creation of an interactive art-

work that would revolve around the philosophical and technical mediation of

nature and natural history. Much of the research for this work involved devel-

oping a software system capable of visual simulation of natural systems. To

this end, I used L-systems as the basis of my work.

Over a number of years, I developed a variety of extensions, algorithms

and methods related to the goal of an experimental system capable of auto-

mating the tedious production of computer animation by capitalising on the

generative power of the digital computer. The interactive artwork, titled Tur-

bulence: an interactive museum of unnatural history was first exhibited in

1994. In order to produce this work, I had developed a number of technical

advances related to the automated generation of animation using L-systems.

These advances were driven by the practical consideration of using the sys-

tem to actually create and produce an artwork that exploited the generative

features found in biological systems.

Following this production, the system was further extended to the genera-

tion of musical structures in addition to visual ones. In an attempt to unify a

number of different models based on L-systems, reaction-diffusion systems

and cellular models, I devised the cellular developmental model, described in

detail in Chapter 9.

1.2.2 Research Context

This research draws from a wide variety of sources, including art theory, the

history and philosophy of science, critical theory3, computer graphics, visuali-

sation, biological modelling, and computer music. Due to this broad base of

3 Critical theory traditionally is inspired by the German philosophers of the “Frankfurt School”,
such as Theodor Adorno, Max Horkheimer and Herbert Marcuse. Critical theory takes society
itself as an object of study and attempts to explain how knowledge emerges in human sciences
and society. Critical theory distinguishes itself from traditional scientific enquiry in that critical
theory is always mindful of the entanglement between theory and the circumstances in which it
is developed, whereas scientific theory has what Horkheimer terms “instrumental reason” in
which objects are external to the theory describing them (Horkheimer 1937).

6 1.2: Original Contributions of this Thesis

enquiry, few readers could be expected to be expert in all these areas, so an

important first step is to survey key research and ideas from these areas, as

they relate to the original research presented in this thesis. My contributions

can be summarised in two principle areas:

! An analysis and discourse investigating artificial life (“A-life”) art and

artists in representing nature as aesthetic object and as generative

system. This analysis is defined in terms of an art theory that describes

and influences the production of generative artistic works.

! Research into the concept of emergence, and how emergence relates to

generative systems, particularly those concerned with novelty and cre-

ativity.

! The development of time-based, hierarchical, developmental for-

malisms, based on L-systems, which find application in the synthesis of

three-dimensional form and the creation of musical patterns. The goal

of this research is in producing new kinds of creative visual and musical

works that autonomously change and develop over time.

To quote art theorist and critic Jack Burnham, I am “seeking sustenance in

the austere soil of the scientific model and technical invention” (Burnham

1968a).

Due to the long period over which the research described here has been

undertaken, a number of other researches have independently described

similar or related techniques to those described here. For example, the use of

generalised cylinders to model complex shapes in plant modelling detailed in

Chapter 6 of this thesis has not been previously published even though it was

developed for the production of Turbulence in 1994. An analytic method for

generating phyllotaxis over surfaces of revolution, and the generation of

large-scale landscape models illustrate how these geometric modelling ad-

vances can be applied, in addition to their own utility in using L-systems to

model natural form.

My use of artificial evolution of L-systems dates back to 1993 (McCormack

1993) and was the first time such techniques had been applied to L-systems

for this purpose. An updated version of this publication can be found in

Chapter 10.

Chapter 1: Prolegomenon 7

The application of L-systems to music composition (discussed in Chapter

11), is based on material I first published in 1996 (McCormack 1996). This

chapter describes a number of new methods for generating music from L-

systems, including the use of hierarchies to mirror compositional structure

and the use of polyphony and context to create musical sequences of greater

musical complexity than has been previously demonstrated by other re-

searchers (detailed in Chapter 11).

The developmental cellular model, introduced in Chapter 9, unifies a num-

ber of different L-system formalisms and discusses methods for real-time

generation and synchronisation. Such methods are crucial when the model is

used for interactive music generation or real-time interactive graphics appli-

cations, for example.

1.3 Related Work

Related work is divided into three broad (and sometimes overlapping) catego-

ries. I distinguish technical methods primarily developed by artists for ex-

pressing a creative idea or work, which I have loosely labelled “Artificial Life

Art Systems”; these are detailed in Section 3.6.6. I would include my own

work in this category. This I differentiate from related technical work with a

different emphasis, for example contributing to theoretical computing and

language formalisms, botanical modelling, or simulation. This area I have

called “Generative Modelling Systems” (Section 1.3.1), though a significant

proportion is related to the use of Lindenmayer systems (L-systems) in plant

modelling. I use this more general term since much of the contribution of this

thesis is in extending techniques pioneered by L-systems to a creative domain.

Hence, some related systems have not necessarily focused on L-system for-

malisms to achieve their goals as generative modelling systems. Finally, there

have been a number of critical and art-based studies, which analyse genera-

tive and A-life methodologies for creative applications. These are summarised

in Section 1.3.2.

8 1.3: Related Work

1.3.1 Generative Modelling Systems

Much of the work in this thesis related to L-systems and developmental bo-

tanical models is based on and influenced by the pioneering work of Prze-

myslaw Prusinkiewicz and his colleagues at the University of Calgary over the

last 16 years. Building on the theoretical model developed by Lindenmayer

(Lindenmayer 1968), Prusinkiewicz applied the turtle interpretation of pro-

duced strings to generate realistic three-dimensional plant models

(Prusinkiewicz 1986b), further developed in (Prusinkiewicz, Lindenmayer &

Hanan 1988). A number of developments followed, including parametric ex-

tensions (Hanan 1992; Prusinkiewicz & Hanan 1989); animation techniques

(Prusinkiewicz, Hammel & Mjolsness 1993); synthetic topiary (Prusinkiewicz,

James & Mech 1994); environmental interaction and open L-systems (Mech &

Prusinkiewicz 1996); visually realistic and complex ecosystem models

(Deussen et al. 1998) and interactive plant modelling system that incorporates

positional information from user-edited parametric curves (Prusinkiewicz et

al. 2001).

The book, The Algorithmic Beauty of Plants (Prusinkiewicz & Lindenmayer

1990) summarises the important contributions of the authors in the applica-

tion of L-systems to plant modelling and computer graphics research into the

modelling of natural phenomena (at the time of its publication — many im-

portant developments have been made since then, e.g. see (Prusinkiewicz et

al. 1995)). The Algorithmic Beauty of Plants served as the original inspiration

for my involvement in research into L-systems and their application to gen-

erative art.

The L-system modelling programs, cpfg (Prusinkiewicz, Hanan & Mech

2000) and L-studio/cpfg (Prusinkiewicz et al. 2000) have some degree of

intersection with the L-system modelling programs developed in this thesis,

although they are primarily directed at generating realistic visual models of

plants.

Similarly, the xfrog modelling program developed by Lintermann and

Deussen is an interactive plant modelling system which uses a visual pro-

gramming technique to generate plant models for computer graphics

(Lintermann & Deussen 1996, 1998, 1999). The xfrog system places an em-

phasis on giving the user expressive graphical interaction for interactive de-

Chapter 1: Prolegomenon 9

sign, at the expense of offering the generality and flexibility that hand coding

of complex L-system productions permit.

Shape grammars (Stiny 1975) are also related to the work described here.

The pioneering work of George Stiny and James Gips was one of the first at-

tempts to develop an aesthetic theory based around generative computer

models which used Chomsky-like grammars to build and design aesthetic ob-

jects (Stiny & Gips 1978). Shape grammars specify a series of shape rewriting

rules and operate directly on geometry, rather than via an intermediate sym-

bol representation as is common with L-systems.

1.3.2 Critical and Art Theories

Attempting to define a role for art in relation to science is not new. In a cer-

tain sense, art has had a continuing relation to science since the origins of

science itself. Some of this history is detailed in Chapter 2.

In modern times, the work of Jack Burnham stands out as an important

precursor to current positivist engagements of art and science. Burnham’s

book, Beyond Modern Sculpture, pre-empted the focus of A-life art today.

Burnham and his contemporaries are discussed in Chapter 3.

In terms of locating the related fields of A-life art, generative art and new

media art, Mitchell Whitelaw has studied the work of a number of A-life ar-

tists, including my own work (Whitelaw 2000). He sees particular historical

relevance to the work of the artists Paul Klee and Kasimir Malevich in the di-

verse creative practice of a number of A-life artists (Whitelaw 1999). Stephen

Wilson provides an overview of A-life art in his book Information Arts, and

surveys a number of prominent artists working in this area (Wilson, S. 2002).

Critical engagements with a number of artificial life researchers have been

carried out in the humanities. N. Katherine Hayles looked at the meta-

narratives developed in artificial life, in particular the work of Tom Ray and

his Tierra program. She comments on the narratives being developed in arti-

ficial life research, and how they are used in order to fit the agenda of re-

searchers who seek to redefine the definition of “life” (Hayles 1996).

Anthropologist, Lars Risan studied artificial life researchers and concluded

that for some approaches to artificial life, it was a “technoscience leaving

10 1.4: Overview of the Thesis

modernity” (Risan 1997). Risan comments on the methodological closeness or

distance between subjects (the researchers) and objects (the machines that

are studied), seeing influences and similarities in twentieth century conti-

nental phenomenology, rooted in the philosophy of Martin Heidegger.

Stefan Helmreich, also an anthropologist, spent time at the Santa Fe Insti-

tute to develop his theory of a “second nature” created by artificial life re-

searchers that “mirrors the first nature” (Helmreich 2000). Helmreich also

looked at gender roles and sexual stereotyping in a-life simulations, however

a number of his assumptions have been criticised, even from within his own

profession (Hayles 2001).

1.4 Overview of the Thesis

The remainder of this thesis is divided into two parts. The first part looks at

the theoretical and critical background associated with using science and

biological processes to produce generative artworks. The second part of this

thesis details the technical research based on L-systems and similar develop-

mental models to realise generative temporal and sonic structures.

Chapter 2 develops an introductory analysis of the basic systems used in

art and science and also covers some specific attempts of science to study and

explain art and artistic behaviours. Chapter 3 examines the concepts of

beauty and realism, or mimesis and its relation to computer graphics and

“naturalism”. Realism is a central concept in computer graphics so it is poig-

nant to examine this concept in relation to art theory if computer graphics

techniques are to be used in an artistic setting. The work of a number of

photographers who used botanical imagery as their principle subject are also

examined as a precursor to the images generated using the techniques de-

scribed in part 2.

Chapter 3 also introduces concepts regarding generative art, looking at

historical and contemporary examples, both computer and non-computer

based. It is argued that generative processes place particular emphasis on the

concepts of emergence and hierarchies — the subject of Chapter 4. From

these discussions, a theory of the computational sublime is developed, exam-

ining similarities and differences with historical theories of the sublime. The

Chapter 1: Prolegomenon 11

concepts and theories developed in this chapter serve as a guiding philosophy

in determining the motivations and design decisions for the technical research

presented in the following chapters.

Part 2 describes the technical component of the research. Chapter 5 gives

an overview of L-systems as formalisms used for generative modelling, in-

cluding deterministic, stochastic, context sensitive, context free and paramet-

ric L-systems. Chapter 6 describes the use of turtle interpretation of strings,

introducing techniques that extend the range and complexity of model gen-

eration over previous methods. Key enhancements include the use of gener-

alised cylinders and the addition of stochastic and other functions to control

development of models. These enhancements are applied to a number of ex-

amples in Chapter 7, which also introduces a new method for generating

phyllotaxis over surfaces of revolution. Techniques discussed in the previous

chapters are applied to the modelling of landscapes and vegetation, as an il-

lustration of the practical application for the techniques developed.

Chapter 8 deals specifically with animation and extends previous uses of

timed L-systems to applications in computer animation, such as continuous

animation of morphogenesis and growth, and the animation of legged gaits in

animals. A description of the practical algorithm used to simulate timed L-

systems is also detailed.

A number of previously described variants on L-systems are unified in the

cellular developmental model of Chapter 9. This model represents a develop-

mental system that combines discrete and continuous techniques in a hierar-

chical specification. Novel contextual and interpretative schemes allow appli-

cation of the model to generation of both music and geometric form. The de-

sign of an object-oriented developmental and synchronisation system gives

the system the ability to generate data in real-time and to maintain synchro-

nisation with external timing sources. This is particularly useful in applica-

tions involving human-computer interaction and real-time musical perform-

ance.

Chapter 10 extends the design of L-system grammars to include an evolu-

tionary component whereby the grammar evolves according to the aesthetic

criteria of the operator. A review of major developments in this area since the

12 1.4: Overview of the Thesis

original publication (on which the chapter is based) was written, are also pro-

vided in an epilogue.

Chapter 11 focuses on the application of L-systems to music generation,

describing how grammars can be devised that open new possibilities for com-

posers, as well as being capable of simulating a number of other popular

music generation techniques such as Markov models and Petri-nets.

Finally, Chapter 12 summarises the thesis and provides some conclusions.

13

Part 1

Chapter 2: Art and Science 15

2 Art and Science

Language sets everyone the same traps; it is an immense network
of wrong turnings. And so we watch one man after another
walking down the same paths and we know in advance where he
will branch off, where walk straight on without the side turning,
etc. etc. What I have to do then is erect signposts at all the junc-
tions where there are wrong turnings so as to help people past the
danger points.

— Ludwig Wittgenstein. (Wittgenstein & Wright 1980)

Art and Science are two very broad terms that encompass a wide range of

activities, ideas, theories, and opinions. Most observations that can be made

at this “top level” are restricted to being crude generalisations. Yet, it is at

this level that many discussions and much of the literature takes its focus.

One might observe that, for every example proposing some generalisation

about relationships between art and science, a counter-example can usually

be found. Nevertheless, in any effort to detail work of a cross-disciplinary

nature, entry is often easiest via the synoptic overview.

This chapter looks at the basic premises of art and science. Some of the

important philosophies and methods of each are detailed. As this is a broad

overview, observations will be general and it is difficult to cover in detail what

amounts to a major portion of human intellectual and creative activity.

Nevertheless, some of the key differences will be examined with the desire to

frame and situate discussions in the following chapters. In addition, some im-

portant efforts by science to “explain” artistic and creative behaviours are

examined.

An important component of this thesis is to place in context the primary

motivations and design decisions that have influenced the original research

16 2.1: Language and Methodology

presented in later chapters. In many cases, such motivations and design deci-

sions are established as part of the cultural presuppositions of the particular

field of enquiry.

In the case of the work described in this thesis, the aim is not only to de-

scribe the relevance of the work to the fields of computer graphics and com-

puter music, but also to place in theoretical and historical context the appli-

cation of technical components to the artwork they are designed to create.

While the methodology and manner of presentation of this thesis follows a

scientific format, the motivations and goals have significant artistic compo-

nents. Hence, the research presented here draws from both artistic and sci-

entific disciplines.

2.1 Language and Methodology

Science and art have evolved to become two quite distinct fields. For most of

modern history, they have blissfully coexisted predominantly with indifference

or ignorance to each other. There have of course, been notable exceptions,

some of which will be examined later in this chapter.

Given the multi-disciplinary nature of this material, this section will look

broadly at the methodologies and philosophies of art and science and intro-

duce some essential concepts and disciplinary-specific terminology. However,

unlike cross-disciplinary studies in the sciences, the so-called “bridge laws”

(Nagel 1961) that span scientific disciplines are not so easily constructed.

Understanding contemporary art and science is not as simple as detailing

definitions or explaining jargon. Many of the terms used by science are also

used by art: “creativity”, “knowledge”, “discovery”, “genius”, “real”, “beauty”,

“understanding”, for example. But an analysis of how these terms are used

and what they attempt to describe reveals that, like the iceberg, there are

many layers of implicit theories, constructions, epistemologies, and even on-

tologies hidden underneath. Fundamentally, art theories and science theories

are largely built on different philosophical systems. These systems, for the

most part, exist as separate enterprises, suited to developing the agendas of

the disciplines that are constructed on top of them.

Chapter 2: Art and Science 17

In addition to their predominantly distinct philosophies and agendas, art

and science differ radically in their approach. The physical sciences, for ex-

ample, cumulatively develop theories, hypotheses or laws based on empirical

experiment, models, simulations and logical propositions with a view to ex-

plaining and understanding the natural world in a rational and coherent way.

Discussions about art are based around critiques and discourses — a term

generally understood to “comprise an organized body or corpus of statements

and utterances governed by rules and conventions of which the user is largely

unconscious” (Macey 2000, page 100). This is not to suggest that all art cri-

tiques and discourses are irrational and incoherent (though this may be so for

some), on the contrary, many discourses in the arts have provided valuable

insights beyond their original frame of reference.

It could be argued that science pays less day-to-day critical attention to its

philosophical and cultural assumptions than art, because it has been so suc-

cessful in the “progress” of modern society. In political terms, science’s prac-

tical results and its power of prediction are often seen as justification enough

for its methods, without the need to directly defend or qualify the methodol-

ogy and assumptions of science itself. The latter half of the twentieth century

has seen the formal establishment of the history and philosophy of science,

which seeks to explicitly examine and understand science’s claim to being a

special kind of knowledge. This period has also seen the development of

studies in the humanities and social sciences, also with an interest in studying

science, but from a different perspective. Some sectors of the humanities,

seeing science’s success and power, have tried to adopt some of science’s

methodologies and practices, with a view that being more scientistic will

make them more powerful voices of knowledge.

2.2 Science and its Philosophies

2.2.1 The Origins of Science

Science has its origins with the ancient Greeks. Wolpert argues that, unlike

forms of creative practice, which are ubiquitous in human culture, science as

18 2.2: Science and its Philosophies

a discipline originated in human culture only once, in ancient Greece4

(Wolpert 1993). In the sixth century bc, the Milesian philosophers were look-

ing for the archê — the origin or principle of all things. They asked the question:

“what is reality made of?” Thales of Miletos (624–546 bc) theorised that the

world was made of water, because of its multiple states, ubiquity on earth,

and its essential use for life. Anaximenes (585–528 bc) thought air, Anaxi-

mander (610–546 bc) thought reality made from “the boundless” from which

everything is created and eventually returns. A number of authors see some

essential characteristics from the philosophy of Thales5 and his Greek con-

temporaries that forms the basis of Western science: an emphasis on ration-

ality; a mode of thought that distrusted everyday perceptions of the world and

“common-sense” beliefs; and, as opposed to myths and supernatural explan-

ations, theory that was self-consistent and open to argument, debate, and

critical analysis.

2.2.2 The Enlightenment and Beyond

The new science of the seventeenth century brought about major publications

and discoveries in science, its nature, and method. With the Enlightenment

came the first modern encyclopaedias and its philosophical contributions

pushed the envelope in trying to liberate humanity through rational thinking.

This “age of reason” is typified by Kant’s motto “Sapere aude: have courage

to use your own understanding” and Goya’s famous etching from the Los

Caprichos series showing a philosopher fallen asleep at his writings, sur-

rounded by nightmarish creatures with the caption reading: “The sleep of

reason produces monsters”.

In the centuries that followed science was increasingly associated with

progress, spurring unparalleled changes to Western society. In the late nine-

teenth and early twentieth centuries, major contributions to mathematics,

4 Wolpert goes to great lengths to differentiate science from technology, which he argues has
originated in many different cultures.
5 Some debate exists over exactly what can be attributed to Thales, since no written works by
him survive. His philosophy regarding water is attributed to Aristotle in his Metaphysics. De-
scribing Thales observation that “all things are water”, Brumbaugh, writes that this “...may
seem an unpromising beginning for science and philosophy as we know them today; but,
against the background of mythology from which it arose, it was revolutionary.” (Brumbaugh
1981)

Chapter 2: Art and Science 19

logic, physics and biology “made for an unprecedented excitement in science”

(Machamer 2002, page 1).

2.2.3 Logical Positivism

As the twentieth century progressed, logical positivism became an important

philosophical movement in relation to the validation of scientific laws. The

logical positivists saw the factual basis and empirical grounding of science as

superior to other knowledge systems. In support of this view, they attempted

to formulate and solve the problem of the nature of empirical meaning. This

problem was solved in two parts. Firstly, using first-order predicate logic to

formally specify sentences in scientific theories, and secondly, relating theory

to observation via the verification principle. This principle was used to con-

nect theory with experiment and observation.

The positivist view of scientific methodology was static and universal,

based in empiricism and logic. Their goals eventually proved untenable: by

the 1940s logical positivism had given way to a number of other doctrines,

notably logical empiricism. Machamer notes that the positivists were “the first

to see the problems with their program” and that “virtually all the major

moves that were to come later and so change the character of the philosophy

of science were first initiated by the positivists themselves” (Machamer 2002).

2.2.4 Contemporary Historical and Social Studies of Science

With the establishment of formal studies in history and philosophy of science,

emphasis shifted from the positivist agenda of modelling scientific theories as

axiomatic systems, to looking at the history and process of science. In The

Structure of Scientific Revolutions, Thomas Kuhn divides scientific history into

periods of “normal science” in which the dominant conceptual framework

(which he terms “paradigm”) prevails (Kuhn 1996). These periods of normal

science are punctuated by “paradigm shifts”, where new paradigms come into

play due to the increasing untenability of the existing ones. An oft-quoted ex-

ample is the “revolution” in mechanics from the theories of Newton to those

of Einstein. In these shifts, there is meaning variance, where the meanings of

previously axiomatic properties change (for example, the property of “mass”

has different meanings in Newtonian and Relativistic mechanics). Old para-

20 2.2: Science and its Philosophies

digms die out because eventually they cannot answer the questions they raise.

Kuhn argues that there is no rational basis for the change from one paradigm

to another, and thus revolutions must be explained in terms of social pro-

cesses. Differing versions of “theory loading” in science have also been devel-

oped by Feyerabend (Feyerabend 1985) and Hansen (Hansen 1958). A num-

ber of exceptions have been shown to Kuhn’s basic hypothesis, for example in

the recognition that a scientific theory contradicts observation only being re-

cognised after the theory has been replaced by a generally accepted new

theory (Wolpert 1993, page 103).

Nonetheless, if one looks at science from the point of view of history, his-

tory shows that in numerous cases, what was once held to be commonly ac-

cepted scientific truth — has turned out to be wrong.6 Belief and knowledge

systems are always in a state of flux, and based on this assumption, there is

no reason to believe that today the same argument does not apply. There may

be new “paradigm shifts” that await science and dispel what is commonly

held to be “scientific truth”. In a sense, however, one of science’s strengths is

that it can anticipate such shifts, because it is a cumulative knowledge sys-

tem. Paradigm shifts do not necessarily render the old paradigm obsolete.

Newtonian physics is still taught to students of physics, and for the majority of

engineering applications it still is the dominant paradigm, due to its predictive

successes. This suggests that scientific theories can be validated in other

terms, such as their utility.

Interpretations with a focus on the history and process of science have

lead to a general thinking of relativism in scientific theories. If social pro-

cesses determine the acceptability of competing theories, then to some extent,

paradigms or theories are determined by social constructions. Facts are con-

structed rather than discovered.

2.2.4.1 The Demarcation Problem

Another important characterisation of science is often called the demarcation

problem. One of the most popular answers to this problem comes from Karl

Popper. Popper used as his starting point Hume’s induction problem — the

6 This was essentially the view of Nietzsche, who argued that the values by which we judge the
reliability of knowledge are subject to historical change, so can we be sure we have the right
values. See (Faith 2000).

Chapter 2: Art and Science 21

inferring of relationships from repeated instances as being logically unten-

able. In the case of scientific statements, Popper argued, induction was a key

element used to support their universality. For example, we cannot infer that

because we have seen only numerous white swans that all swans are white.

Popper proposed the solution of falsifiability, whereby scientific statements

are not confirmed by positive verification, but are subject to potential falsifi-

cation by succeeding and more accurate statements. Popper saw scientific

theories as “nets which attempt to ‘catch’ the world, to explain, rationalise

and master it” (Magee 1982; Popper 1968).

According to Worrall, it is now (almost) universally accepted that Popper’s

account fails (Worrall 2002). Warrall also points to the work of Duhem and

“auxiliary assumptions” as a difficulty with the falsification proposal that ex-

isted even before it was proposed by Popper (Duhem 1906). There are of

course, many examples where falsification of scientific theories has been ig-

nored with positive results7, so the criterion of falsifiability does not com-

pletely encompass the scientific methodology.

2.2.5 Realism and Anti-Realism

The issue of falsifiability raises another reoccurring issue with science, in its

perceived claims to objectivity and truth — claims that give science its ele-

vated status, social and epistemological currency. The validity of such claims

rests on differing philosophical viewpoints, broadly classified as realist and

anti-realist. Scientific realism asserts that the entities described by scientific

theories exist and that the theories themselves are objectively true (and inde-

pendent of the representation used). Theories opposed to realism include

positivism, empiricism, instrumentalism and constructivism (Wilson, R. A. &

Keil 1999, page 707). Realist philosophies have been influenced both from

scientific discoveries (e.g. quantum theory (Fine 1986a, 1986b) and from ar-

guments within philosophy itself, for example the “miracles” argument

(Putman 1975; Smart 1963). In the latter part of the twentieth century,

realism has come under increasing debate, further fragmented and revised

from previous definitions. For example, entity realism limits itself to the inde-

7 See for example, Boyles repeated attempts to prove the existence of a vacuum in (Shapin,
Hobbes & Schaffer 1985)

22 2.2: Science and its Philosophies

pendent existence of theoretical entities and not the truth or otherwise of the

theories that employ them.

More recent alternatives to realism, that still encompass some of its origi-

nal propositions (in spirit at least), include: Putman’s “internal realism”,

which allows scientific claims to be “true from certain perspectives, but

denying that science tells the whole story, or even that there is a whole story

to tell” (Fine 1999); Van Fraassen’s “constructive empiricism”, which forgoes

truth for empirical adequacy (Van Fraassen 1980); and Fine’s “natural onto-

logical attitude”, which “regards truth as basic but, seeing science as open, it

challenges general prescriptions for scientific truth, including the perspec-

tivalism built into internal realism and the external-world correspondence

built into realism itself” (Fine 1986b, 1999).

Constructivism, on the other hand, maintains that knowledge is socially

constructed — that “facts” are made rather than existing. This view has been

used to counter science’s claims to truth and objectivity (as do many others),

and leverages a general relativism to the weight of scientific beliefs.

2.2.6 Science as Social Activity

Paul Feyerabend saw the power of science as social rather than epistemologi-

cal and claimed that when analysed sufficiently, scientific propositions were

as meaningless as those of metaphysics, and critiques the rationality of sci-

ence as a whole (Feyerabend 1975). For Feyerabend, evidence and proof are

seen as rhetorical, and theories proffered by those with the most power and

rhetoric becomes accepted.

Pessimistic accounts of science’s claims to objectivity and truth, such as

those advanced by Kuhn and Feyerabend were themselves influenced by the

more general ordinary language philosophies associated with Austin and

Wittgenstein. In the social studies of science, science is viewed as a social ac-

tivity, and like all social activity should be studied in the socio-cultural milieu

wherein that activity takes place (Latour 1979). This includes the rules of

social engagement and social and cultural dynamics by which scientists de-

velop power structures over each other and society in general.

Chapter 2: Art and Science 23

2.2.7 Science, Rationality, Modernity

In general terms, modernity is the period that signifies a break from Classical

Antiquity, beginning with the Enlightenment. In criticisms of modernity, sci-

ence is seen as a key player in the definition of the modernist, post-

Enlightenment worldview, where individualism and personal freedom is

achieved from a foundation of scientific knowledge and rational values. This

focus on rationality is seen as the basis for social and personal progress,

made possible by material labour and self-controlled work.

Critics see modernity as “a movement of ethnic and class domination,

European imperialism, anthropocentrism, the destruction of nature, the dis-

solution of community and tradition, the rise of alienation, [and] the death of

individuality in bureaucracy” (Cahoone 1996). A rationalist view does not

seem to fully account for what it is to be human, in the sense that the pure

rationalist doctrine seeks to “eschew feeling, emotion and other distortions to

knowledge in favour of pure reason” (Coyne 1999, page 5). Nor has it been

able to achieve its desires for the liberation of society by virtue of values

founded on reason alone. As echoed by the failure of logical positivism, ra-

tionalism has thus far failed to provide a complete understanding of the ob-

jectivity of knowledge. If one sees limits and brittleness in human knowledge

then a rationalist viewpoint cannot offer the certainty it seeks to provide (nor

can any other).

2.2.8 Postmodern Narratives

In the view of postmodern philosophers such as Lyotard, science forms one of

many grand narratives or metanarratives — narratives that make forms of

knowledge legitimate by supplying them with a validating philosophy of his-

tory (Lyotard 1984; Lyotard & Benjamin 1989). Metanarratives are seen as

universal with the ability to explain all other narratives by translating them

into each particular metanarrative’s language. Lyotard defines postmodern-

ism as incredulity towards metanarratives, where the grand narratives of

modernity have collapsed, to be replaced by “little narratives” none of which

has genuine claims to specialised status or power.

Postmodernism is a blanket term describing both the period “after mod-

ernism” and a collection of vaguely related movements in philosophy, archi-

24 2.2: Science and its Philosophies

tecture, and the arts. In popular (mis)understandings, it has been synonymous

with the notion that all forms of knowledge, taste and style are relative, and

the political, logical, even scientific arguments used to justify superiority of

one over another are invalid. However, many key theorists and critics reject

the reading of simplistic relativisms so popular in perceptions of postmodern

theory (Clark 2002, page 4).

The postmodern rejection of absolutism has not been confined to the hu-

manities or arts. Even in mathematics — a branch of science with perhaps the

strongest claims to objectivity and truth — a number of authors suggest that

mathematics has several ontological difficulties (Chaitin 1999), that is much

more empirical than previously thought (Chaitin 2002; Tymoczko 1986) and

might even be considered “postmodern” (Tasi´c 2001).

2.2.9 Discussion

Arguments over metaphysics, realist and anti-realist philosophies, and the

social construction of science have had only minor effects on “the scientific

methodology8”, in the sense that such philosophical arguments are not nor-

mally part of the day-to-day concerns of scientists, or limited and applicable

to science alone. In addition, science’s predictive utility and explanatory

power continues to reinforce its status and legitimacy. In the arts, however,

the objections and incongruity of some philosophies to science have been

more widely exploited. These will be more fully detailed in the next section.

2.2.10 Summary

The goal of this discussion is not argue for any particular point of view, either

in favour of, or against, science and its claims. Scientists may hold different

realist or even relativist philosophies and still be able to practice science suc-

cessfully. A testament to science’s power as an epistemic system is in its

ability to cope with radical changes and paradigm shifts. The purpose here is

to survey some of the major contributions as far as they are influential in the

development of contemporary views of science from outside science itself. In

8 Few would argue that there is really such a thing as the scientific methodology — in contem-
porary scientific practice, scientists may pursue any number of vastly different methodologies
in investigation and research (Wolpert 1993).

Chapter 2: Art and Science 25

the main, the arts draw their intellectual and philosophical ideas from ele-

ments of the “human sciences”9, art theory, cultural studies, and the some-

what ironically named area of “critical theory” (Macey 2000, pp. 74-76). In

simplistic, but fundamental terms, these disciplines do not see science in the

same way that science (or even the history or philosophy of science in the

analytic tradition) sees itself. When trying to cross borders between art and

science, there will inevitably be conflicts and disjunctions, often glibly sum-

marised with a reference to the “two cultures” of C.P. Snow10 (Snow 1959).

It would show some naïveté to claim to make absolutely no value-

judgements about science as described here. In writing this thesis, I have, in

general, adopted an approach based on a conventional scientific methodology

and its written conventions. This must implicitly indicate at least, the value

and respect that I judge science to have.

However, when it comes to discussions about artwork and artistic practice,

such methodologies and conventions are not always appropriate, and in these

cases discussion has been framed in the context of an arts discourse. My hope

is that such distinctions will be clear to the reader in the pages that follow.

2.3 Art and its Philosophies

Today, art has many meanings. The Encarta dictionary definition includes

reference to “the creation of beautiful or thought-provoking works, for exam-

ple, in painting, music, or writing” and “beautiful or thought-provoking works

produced through creative activity”. Such definitions seem to fail to capture

the broad range of activities carried out as “art”. Unlike science, art, or at

least some form of creative behaviour, is universal to human cultures (Brown,

D. E. 1991). My goal here is not to define art in general, or even cover all its

philosophies. Science has a much more definite and definable philosophical

heritage, whereas art might be summarised as a history of rejection and

change. Unlike many authors, I see little that can broadly characterise art in

any meaningful way, rather I see greater benefit in focusing on particular

9 Generically defined to include the fields of anthropology, history, psychology, sociology, and
linguistics.
10 Although Snow’s concerns were based more around a fashionable disciplinary ignorance ra-
ther than contradictory systems of knowledge and belief (Cordle 1999).

26 2.3: Art and its Philosophies

vectors of art that I deem most relevant to those associated with the notions of

art as expressed later in this thesis.

2.3.1 Philosophical Traditions

Much of the history and philosophy of science as discussed in the previous

section comes from the Anglo-American tradition, often referred to as ana-

lytic philosophy. In general, analytic philosophy, its discourses and traditions,

are distinguished from continental philosophy — a covering term for modes of

thought that originated in Europe. Analytic philosophy has had little interest

in European philosophy since Kant. Hence, the two traditions have evolved

with scepticism, ignorance and indifference towards each other. From a sci-

entific perspective, much continental philosophy can appear impenetrable,

vague, nonsensical, even wrong11, which may be why literature, cultural

studies and artists more often embrace it.

Science expects explanations to be rational and coherent — the hallmark

of any good scientific theory or hypothesis is that anyone, given enough time

and resources, could learn it at any time12, without recourse to “mysterious

incalculable forces”, poetic, or multi-layered readings. Art, because it does

not necessarily adhere to the modernist rationalist doctrine often embraces

irrationality and relativism just as enthusiastically as the more “traditional”

concepts of rationality and beauty, for example.

2.3.2 Definitions of Art

The practice and domain of art has undergone radical changes in western

society over the last two hundred years. These changes reflect political,

structural, social, and intellectual changes to life and culture, many fuelled by

science and technology. According to Wilson:

Previously, art was produced in historically validated media, presented

in a limited set of contexts for a circumscribed set of purposes, such as

the search for beauty, religious glorification, or the representation of

persons and places. … this century has generated an orgy of experi-

11 As illustrated by Alan Sokal’s famous “spoof” paper published in Social Text, which liberally
quoted continental philosophy, and the follow-up article exposing the fraud (Sokal 1996b,
1996a).
12 This was the sociologist, Max Weber’s thinking on the meaning of science. (Weber & Eisen-
stadt 1968)

Chapter 2: Art and Science 27

mentation and testing of boundaries. New technological forms, such as

photography and cinema, have already raised questions about art. Ar-

tists have added new media, new contexts and new purposes. (Wilson, S.

2002)

Spurred by many dialogues in philosophy of art, critical theory, and cultural

studies — particularly those involving epistemological and cultural relativ-

isms, deconstructive analyses and post-modern discourses — art’s definition,

its meanings, status, and role in society have diffused and fragmented to the

point where “anything goes”13, and almost any object, activity, or idea can be

called “art”. Artist Robert Irwin has said that art “has come to mean so many

things that it doesn’t mean anything any more”.

In a similar vein, Wilson quotes the Getty Museum Program in Art Educa-

tion:

Art-making may be described at the process of responding to observa-

tions, ideas, feelings, and other experiences by creating works of art

through the skilful, thoughtful, and imaginative application of tools and

techniques to various media. The artistic objects that result are the pro-

ducts of encounters between artists and their intentions, their concepts

and attitudes, their cultural and social circumstances, and the materials

and media in which they choose to work. (Wilson, S. 2002, page 17)

A self-referential definition such as this gives little insight into the process or

qualities of modern art, and is perhaps, conspicuous by its supposition that

art must involve resultant objects.14 Interestingly, one could substitute the

word “scientist” for “artist”, “scientific” for “artistic”, and “Science” for “Art-

making”, and still get a reasonable result.15 Attempts to give all-encompassing

definitions fail to capture what is unique about specific types of art or an ar-

tistic practice. Many individual artists seek definitions that aid in bringing a

sense of legitimacy to their particular practice, as this cannot be addressed by

all-embracing definitions. For example, Irwin seeks to define art’s role as “a

continuous examination of our perceptual awareness and a continuous ex-

pansion of our awareness of the world around us”.

13 Or perhaps more accurately, “anything you can get away with”.
14 In the political sense that the Getty museum improves its status through its collection of
unique objects, so it is in its interest to define “art-making” (rather than art) as producing ob-
jects, since it cannot so readily collect more intangible things like performance or conceptual
art.
15 One could also substitute almost any profession that involves producing things through inter-
action with the world, which highlights the paucity of this definition.

28 2.3: Art and its Philosophies

There is no right and wrong or even a relative scale in between when dis-

cussing ways of being an artist or of making art. This is a kind of category er-

ror, which seeks a semantic solution to a different problem, one that cannot

be framed in such a context. However, this does not mean that art rejects

critical analysis or that it cannot be examined by theory.

2.3.3 Art Theory and Art Criticism

In discussing issues of art we can make a broad distinction between art

theory as developing discourses and ideas around collections of artworks, ar-

tistic ideas or artistic practices, and art criticism as developing critical opin-

ions and dialogues around particular art movements, artworks or artists.

Freeland describes the difference between scientific theory and art theory

thus:

Art theory is not like scientific theory in that it’s use for prediction or

general explanation is minimal. There does not seem to be any laws of

art that will predict artists’ behaviours, or that explain the ‘evolution’ of

art history by detailing what ‘succeeds’ in making a work beautiful or

significant. (Freeland 2001)

2.3.4 The Beautiful

They [scientists] tend to expect artists to be interested in beauty,
and to be surprised to find that we have a stock response that
beautiful things must be sentimental or facile.

— A.S. Byatt (Ede 2000, page 10)

Throughout most of recorded history, theories of aesthetics and beauty are a

consistent subject when discussing art. For example, Plato, within his phi-

losophy of ideals (such as form) and universals saw the arts as a kind of craft,

with artistic practice as a form of mimesis or imitation (covered in more detail

in the next chapter). Aristotle however defended imitation, particularly in epic

tragedy and poetry, as an instinct and source of both knowledge and pleasure.

In the thirteenth century, Thomas Aquinas developed a theory that beauty

was an essential or “transcendental” property of God. Hence, artworks should

seek to emulate and aspire to God’s awe-inspiring properties, reflected in the

formalist traditions of proportion, light, and allegory as used by medieval ca-

Chapter 2: Art and Science 29

thedral builders. The transcendental nature of art is still important today,

even though it has shed its religious origins.

Edmond Bourke’s differentiation of the beautiful from the picturesque and

sublime is indicative of a change in art theory in the eighteenth century, par-

ticularly towards landscape (the sublime will be covered in more detail in

Chapter 4). Following Bourke, Kant developed an extensive treatise on the

concepts of beauty and the sublime.16 He tried to explain how we make

judgements about the universality of an artwork’s “beauty”, deciding that

true beauty was a property of the object itself rather than a subjective judge-

ment of the observer. For Kant, art was judged by taste, nature by beauty, and

the concept of nature’s subjective “purposiveness” (Zweckmäßigkeit) being

judged aesthetically.

2.3.4.1 Proportion and Beauty from Nature

A continuing theme in art, architecture and design is the use of special pro-

portions, such as the golden ratio17 (Figure 2-1) as a basis for beauty in the

designed form.

!

" =
1

" #1

!

" =
1
2

1+ 5()
1.618034

Figure 2-1: The golden ratio (

!

"). A golden rectangle (left) with sides in the ratio 1:

!

" can
be partitioned into a square and new rectangle. This new rectangle has sides with the ra-
tio 1:

!

" .

16 Kant’s treatment of Beauty was far more developed than Bourke, and it was not only framed
in relation to the Sublime.
17 Also referred to as the “golden section” or “golden mean”.

30 2.3: Art and its Philosophies

This particular ratio has been documented in the architecture of Stonehenge

(12th–16th centuries, b.c.), the ancient Greek architecture of the fifth century,

b.c., through the Renaissance and on to the present day. Leonardo Da Vinci

was fascinated by branching structures, finding that the cross-sectional area

of daughter branches summed to that of the parent. Studies by Fechner in the

late nineteenth century, and later by Lalo in 1908 show that the majority of

people surveyed have a natural preference for rectangles proportioned to the

golden ratio (Elam 2001, pages 6-7).

The golden ratio is also found in a variety of natural objects, including the

phyllotaxis observed in flower heads and pinecones (the subject of Section

7.1); the spiral growth of seashells and the body proportions of animals (as

studied by D’Arcy Thompson, for example (Thompson 1942)).

A detailed study of proportional harmonies in nature, art and architecture

was undertaken by the architect György Doczi, who showed special harmonic

relationships in natural and artificial structures, with particular emphasis on

the golden ratio (Doczi 1981). Doczi also showed how musical systems exhibit

similar harmonic relationships, thus establishing an aesthetic connection

between natural form and musical scales. He invents the term dinergy18 be-

cause while many terms “refer to aspects of the pattern-forming process of

the union of opposites…none expresses its generative power”. Doczi’s key

emphasis was that in nature harmonies are dynamic, generative processes

that result from the union of opposites: this union forming a harmonious pro-

portion. For example, his “leaf study” reveals the harmonic order of vein

structure in a lilac leaf, showing that proportional relationships approximate

the golden section and the pentagonal Pythagorean 3-4-5 triangle (Figure

2-2). These find correspondence in the diapente (fifth) and diatessaron

(fourth) musical harmonies, giving rise to an aesthetic connection between

nature and music (Doczi 1981, page 11).

18 Made from two Greek words: dia— “across, through, opposite;” and “energy”.

Chapter 2: Art and Science 31

Figure 2-2: The 3-4-5 pentagonal triangle from (Doczi 1981).

I carried out my own leaf study (Figure 2-3), which shows comparable results

to that of Doczi (with ratios approximating the inverse golden ratio and a 1:1

ratio for the leaf chosen).

Figure 2-3: 'Leaf Study' (after Doczi) carried out by the author shows the analysis of har-
monious proportions of a leaf. Distances of veins branching from the midrib (C) are shown
as heights (B), secondary branches are also plotted (A). Distances are numbered from 1—

9 (D). A number of neighbouring distances are grouped and labelled A-L. The distances

32 2.3: Art and its Philosophies

and their groupings are aligned in pairs and plotted (E). Two approximate ratios emerge,
one approximating the inverse golden ratio (0.618) and the other an approximate 1:1 ratio
between successive vein groupings. Plots of alternating distances show approximately
constant ratios between branching distances, both in the primary (G) and secondary (F).
The log plot of branching ratios for secondary veins approaches a limit of 1.618 (H).

As shown in the figure the main vein structure of the leaf (C) is analysed.

Distances between the starting points of the veins along the midrib are meas-

ured and form harmonic orderings. In the case of Figure 2-3, both the pri-

mary veins from the midrib and a selection of secondary veins branching off

the first primary vein are measured (B and A respectively). The distances

between successive veins are calculated for the primary veins and numbered

from 1 to 9 (D). Other groupings of distances, created by accumulating neigh-

bouring distance measurements, are also calculated. These groupings are la-

belled A-L. These distance measures are lined up by neighbouring pairs, (E),

which show the two main ratios between measurements. Pairs of distances

form points in two-dimensions and can be plotted in sequence. For n distance

measurements, the pairs

!

0,1(), 1,2()K i, i +1(), i +1, i + 2()K n"1, n() are plotted.

The plots F and G are obtained by this method for the secondary and primary

distances respectively. Finally, a log plot of the ratio between successive

branch distances (points at which vein branching occurs) approaches a limit

that approximates the golden ratio.

Similar to the leaf study, relationships are described by Robert Bringhurst

showing harmonic relations from music and nature as a basis for page layout

and typographic structure for the printed page (Bringhurst 1992). Such rela-

tionships date back to medieval times and the earliest days of the design of

the printed page.

2.3.4.2 The Loss of Formalisms

Thinking about art as no longer purely a matter of form (and form’s loss of

previously held spiritual and mysterious powers), lead to a general aban-

donment of formalism in art. From the late nineteenth century, classical con-

cepts of beauty and direct imitation became less and less important to many

art movements, given the increasing plurality of ideas in western art, liber-

ated by rapid changes in culture and technology. Modernist searches for a

universal formal quality of beauty have continued into the twentieth century,

Chapter 2: Art and Science 33

suggesting that “beauty” as an idealised concept may have survived as a topic

of continued interest. But the twentieth century also brought about many

diasporic hybrids and so more recently, post-modern, post-colonial, feminist,

and post-structuralist theories deal with the concept of beauty in ways that

bear little resemblance to classical or modernist concepts.

Today, Western art opens and admits many more possibilities than in any

previous time. As one recent overview admits that art “includes not just

works of formal beauty to be enjoyed by people with ‘taste’, or works with

beauty and uplifting moral messages, but also works that are ugly and dis-

turbing, with a shatteringly negative moral content.” (Freeland 2001)

Or, as critic Matthew Collings summarises it:

‘Why do we have to conceptualise anything’ is one of the main anxieties

that society has about the art of now. Within art there are many anxie-

ties too because art expresses the anxieties of the society among other

things. But it rarely expresses the main one directly, the anxiety that art

is vacuous now. (Collings 2000, page 225)

2.3.5 Summary

In summary, the purpose of this section has been to acknowledge that art, as

it is understood today, does not only mean or include the classical, traditional

or even modernist realisations or ideas, found in the fine arts of, for example,

painting and sculpture. As reflected by changes in life and culture, art may be

instantiated in a variety of new and traditional media; be ugly, disturbing, or

morally repugnant; it may even be conceptually vacant (Francblin & Baudril-

lard 1991). Such factors, however, should not preclude developing a consis-

tent theory or scholarly discourse around a contemporary art practice. What

is important is for the individual to define meanings and definitions within

their own particular practice.

2.4 Science on Art

Science has made various attempts to study art, in the sense of accounting for

artistic behaviour in humans from psychological, behavioural, evolutionary,

and neuroscience perspectives. In addition, research has focused on areas

related to art, such as perception and creativity. The basis of most scientific

34 2.4: Science on Art

analysis of art and artistic behaviour resolves to reduce art to its universal

roots and propose a materialist explanation for those roots.

One of the earliest modern attempts to formalise creativity was by the

mathematician G. D. Birkhoff, who endeavoured to define the aesthetic meas-

ure of objects to be the ratio of their symmetry to complexity (Birkhoff 1933).

While moderately successful for simple shapes such as polygons and some

vases, the theory broke down when attempts were made to generalise the

measure to a broader range of art objects.

Humphrey sees humans drawn to beauty as a dog is drawn to saccharine

— there is an innate desire to find beauty in certain constructs of likeness

tempered with difference (Humphrey 1973). Humphrey sees aesthetics as a

biological predisposition of humans and animals to seek classification of

structure in the world around them. Beautiful structures facilitate classifica-

tion since they provide evidence of possible taxonomies in ways that are easy

to understand.

2.4.1 Neural Mechanisms of Artistic Experience

A study by Ramachandran and Hirstein proposed “a theory of artistic experi-

ence and the neural mechanisms that mediate it” in the Journal of Conscious-

ness Studies (Ramachandran & Hirstein 1999). Their experiments suggest

that visual art provides “super-stimuli” that excite certain regions in the brain

more strongly than natural stimuli, and that artists consciously or uncon-

sciously develop rules or principles to “titillate these visual areas of the

brain”. Like the evolutionary psychologists, Ramachandran and Hirstein seek

to find universals that define creative behaviour and response in humans.

Their thesis is in part based around the peek-shift principle from animal

learning: that learning is not based on prototypes, but rules. Artworks are in

some sense caricatures of prototypes, with the exaggeration or difference

from the prototype form, resulting in a form with relevant features that are

more prominent than in the prototype form itself.

Responses to this study from an artistic perspective, criticised the article’s

narrow understanding of art (referring to it as “our propensity to create and

enjoy paintings and sculpture”), the patriarchal language used, and the ig-

norance of the influence of culture on interpretation of aesthetics and beauty

Chapter 2: Art and Science 35

by such reductionist and materialist analysis (Mitter 1999). Such responses

are typical to the science/art divide — that when one discipline studies an-

other each make implicit assumptions or simplifications about language, defi-

nitions and knowledge systems, or, even more unfortunately, they fail to gain

sufficient understanding of the opposing area under study, resulting in sim-

plistic or inappropriate generalisations. Nonetheless, the idea of developing a

neural understanding of certain types of creative behaviour and response

seems to hold some potential.

2.4.2 Biological Basis of Creative Behaviour

In disciplines such as evolutionary psychology, investigators look for the bio-

logical origins and the psychological relations of art. Investigating human

creative behaviour from a biobehavioral and ethological viewpoint, anthro-

pologist Ellen Dissanayake suggested that the biological could offer better ex-

planations than the metaphysical in this regard. She identified three major

features that suggest art as a biological adaptation. Firstly, that art making in

some form is a universal human behaviour (Brown, D. E. 1991). Secondly, it is

costly, often involving considerable time and effort. Thirdly, that it is pleasur-

able to both creator and viewer (Dissanayake 1988, 1995).

Art-making, in the sense of creating aesthetic objects with some cost to the

organism, but with no apparent direct survival advantage, is not unique to

humans. Many animals practice or can learn some form of creative behaviour

(Diamond 1992, Chapter 9), and it is suggested, as with animals, creative be-

haviour has a biological basis. Most accounts begin by showing that art’s ap-

parent lack of biological utility is only an illusion, then illustrating how art

functions in terms of improving mating chances. According to Pinker, the arts

engage “not only in a psychology of aesthetics, but also a psychology of sta-

tus” (Pinker 1997, Chapter 8). Pinker, drawing on work by Wolfe (Wolfe 1975)

and Bell (Bell, Q. 1976) argues that the value of art is largely unrelated to

aesthetics (something that many postmodern theorists would agree with) but

confers status to both its creator and those who possess it. Such status is only

maintained if the value of the work is conferred socially.

In his book, The Mating Mind, Geoffrey Miller states there are two strat-

egies science can take in order to understand the evolutionary origins of art

36 2.4: Science on Art

— focusing on the high-arts (the “Western modernist arts infrastructure”), or

the “bottom up” approach looking at the everyday aesthetic productions and

experiences of a diverse range of human groups (Miller, G. F. 2000, Chapter

8).19 Like Diamond, Miller uses the Bowerbird as an example of another spe-

cies that exhibits creative behaviour. Miller postulates that art may have ev-

olved through sexual selection, offering various possibilities that account for

creative behaviour — runaway sexual selection, fitness indication and sensory

biases (extended phenotype effects, as proposed in (Dawkins 1982)). Most

authors who discuss the biological impetus of art also point out that “modern”

or post-modern art is a complex nexus of social and cultural systems, beliefs

and ideas and that the biological accounts tend to focus on general “creative”

behaviour, not specific to a particular mode, medium or practice. Nonetheless,

their views differ as to the ultimate significance of biology to contemporary

art theory. Diamond (Diamond 1992) states:

Thus, human art has come far beyond its original functions. But let us

not forget that even the greatest art may still serve those primal func-

tions.

Whereas, Dissanayake suggests that the two types of understanding are dif-

ferent and should not interfere with each other. However, she concludes by

suggesting that contemporary art is in conflict with its origins: “what the arts

were for, an embodiment and reinforcement of socially shared significances,

is what we crave and are perishing for today” (Dissanayake 1988).

Accepting basic abilities and desires for art-making as adaptations does

not limit the potential for art to offer experiences of significance in an art-

gallery context (Nake 1998). Owning a Porsche to increase ones status

through conspicuous consumption does not deny that a Porsche is a clever

piece of engineering.20 It remains, however, disappointing that the majority of

present-day contemporary art courses do not include biology as part of their

syllabus and that theories of the biological origins of art are treated with

scepticism in the arts.

19 Miller seems unaware that the “everyday aesthetic productions and experiences of a diverse
range of human groups” have been the subject of investigation and production in the “high-
arts” as well.
20 This is not to ignore the obvious political implications regarding wealth and status, and the
ownership of “great works of art” to a privileged few.

Chapter 2: Art and Science 37

2.4.3 Perception

Many scientific and psychological studies of perception have been influential

on art. For example, the Gestalt psychology (Ellis 1938; Koffka 1935) initially

concerned itself with perceptual organization in the relationships between

parts and wholes, resulting in a kind of perceptual holism. Important aspects

of Gestalt perception include grouping principles (Wertheimer 1938), the fig-

ure-ground relation (Rubin 1921), and frames of reference. Recent studies in

perceptual development suggest that principles of organization develop dur-

ing the first year of life, in contrast with the Gestalt view (Kellman & Spelke

1983).

2.4.4 Discussion

Science has made many varied attempts to study art. From the point of view

of science, many of these attempts are seen as credible and successful.21 In

general, from an arts viewpoint, they are treated with suspicion and scepti-

cism. This may be due to, for example, deconstructive or social theories of

science that (if accepted) limit science’s claim on being a special kind of

knowledge.22 Or, it may be simply that science’s understanding of what art is

bears little resemblance to the artist’s conception of it, or that the activities

and behaviours defined as “creative” and “artistic” seem overtly naïve or

simplistic and fail to account for the complexity, subtlety and diversity of art.

2.5 Science Relations in Art

Despite many pessimistic accounts of science from some domains, a number

of art movements have embraced science or scientific methodologies in some

form. Note, that this relationship does not necessarily mean in a way that sci-

entists develop their science or scientific methodologies. In Section 2.2.1, I

noted the differentiation between science and technology. Not all authors see

this distinction so vividly, for example, Penny refers to it as a continuum with

21 “Credible and successful” meaning they have been accepted by peer-reviewed journals, and
conferences of international standing.
22 Note that the reciprocal may be true as well — that if art was “explained” or shown not to be
a special kind of knowledge, or at least did not have some inexplicable component, then it too
would lose much of its cultural mystique and power.

38 2.5: Science Relations in Art

no clear boundary23 (Penny 1996). Increasingly, as science has progressed

and diversified the differentiation between science and technology has be-

come less clear, particularly in a general sense, which inherently these terms

themselves are. Therefore, many movements that sought to embrace “sci-

ence” may have more accurately sought to embrace “science and technology”

or even just technology. A more detailed examination of some particular art

movements (Section 3.6) will look at this issue more closely.

2.5.1 Art Movements and Science

Futurism utilised the elevation of speed and movement as a celebration of

technology and science. Futurism was influential on Constructivism, which

sort to develop an artistic system out of the characteristics of the real world,

in that it sought representation of the fundamentals of nature as proclaimed

by science, rather than through perceptual mechanisms or phenomenological

means (Fenton 1969).

Hungarian artist, Laslo Moholy-Nagy continued the constructivist tradition,

seeing technological change as an accelerator of social progress. His kinetic

light sculptures, created in the 1930s, can be considered “generative” ma-

chines that created futuristic temporal displays of light in motion. Moholy-

Nagy’s idea of creating virtual volumes by tracing the paths of objects in mo-

tion is seen as a precursor more contemporary digital installations (Paul

2003, page 13).

Many of these movements believed that utopian social changes could be

brought about by technological advancement. This advancement could be fa-

cilitated or accelerated by art — bridging the gap between our emotional lives

and social progress. In art critic Terry Fenton’s criticism of Kepes’s theories,

he sees Kepes as being forced to speak in terms of potential, rather than

achievement. This is a continuing theme in associations with art, science, and

technology where the utopian progress of digital creativity is always expec-

tant, continually residing in the future (Coyne 1999, Chapter 1).

23 Penny uses the terms “technology” and what he calls the “engineering world view” somewhat
interchangeably.

Chapter 3: Real / Natural 39

3 Real / Natural

Art is not a copy of the real world. One of the damn things is en-
ough.

— Attributed to an essay on Virginia Woolf. From (Goodman 1968)

When an object is exactly like another, it is not exactly like it, it is
a bit more exact.

— Jean Baudrillard.

The previous chapter surveyed philosophies, relations and studies between

art and science in a broad and general sense. In this chapter, I look at three

critical issues for developing a visual arts practice that uses computational

process as its formal basis. These issues are:

! The notions of realism and representation in art and in computer

graphics. In order to employ computer graphics techniques in making

art, it makes sense to differentiate computer graphics for its own sake

(or the sake of the many other applications to which the techniques may

be put), and using computer graphics to make art. Realism is one of the

major research goals for computer graphics and a significant basis for

how it is judged within the field. For art however, realism is a vexed but

well-explored concept. Through this discussion, I hope to make it clear

why producing “realistic” computer graphics (or even realistic botanical

models) is not necessarily the only way to judge results, even though

systems described in lattter chapters have been used to create realistic

images of plants.

! Related historical traditions in art. Rarely do new forms of art come

from nowhere — ideas and theories in art seem to resurface in different

40 3.1: Computer Graphics and Realism

forms (Foster, H. 1996), so an examination of related historical art

movements is appropriate. In particular, I identify and examine three

different areas:

 i. Botanical art and photography, which situates itself at the border

of art and science, and is a precursor to modern scientific visuali-

sation.

 ii. Systems art: a movement in art that followed on from Construc-

tivism. It’s principle ideas can be found in the writings of Jack

Burnham and Gyorgy Kepes. It has close relations to cybernetics

and cybernetic art, and the systems theory of Von Bertalanffy.

 iii. Romantic and sublime traditions in art and their newer inter-

pretations in technology based art. This is covered in more detail

in the next chapter.

! Related contemporary work in the areas of A-life and generative art.

The software and artwork described in later chapters can be classified

as generative art. In this section, I briefly introduce these areas and

survey related work.

3.1 Computer Graphics and Realism

One of the major goals of computer graphics is the synthesis of realistic im-

ages, often referred to as photographic realism or photorealism (Foley et al.

1990, Chapter 14). Essentially, the intent is to reproduce certain visual per-

ceptual qualities of reality, in a similar way that a photograph or certain

paintings capture “reality”. What constitutes realism in a manufactured24

image has been the subject of much debate (Hagen 1986). A common test in

computer graphics to validate the realism of a particular synthesis algorithm

is to show test subjects two photographs: one of a real scene, the other of a

computer simulation of that scene, and ask each test subject to decide which

is the photograph of the real scene, and which the simulation. This suggests,

as the name implies, photorealism attempts not to simulate reality, but to

24 Meaning human-made, e.g. photograph, painting, computer generated image.

Chapter 3: Real / Natural 41

simulate photographs of reality25, as evidenced by the numerous algorithms

designed to simulate flaws and artefacts of the photographic process; such as

lens flare, depth of focus and motion blur. Foley et. al suggest that if the ulti-

mate goal of a picture is to convey information, then a picture that is free of

shadows and reflections may well be more successful than a tour de force of

photographic realism. They go on to illustrate how simulations of impossible

or staged conditions can often make an image more “realistic”. Hence, even

from within the goal of realism in computer graphics, we see that making an

image more accurately real can distract from the information the image seeks

to convey.

The idea that an image conveys information is crucial in both scientific and

artistic applications. In the classic text of Nelson Goodman, Languages of Art,

he argues that all manufactured images show symbols subject to interpreta-

tion (Goodman 1968). This interpretation is always done within a cultural

context, and hence can be subjective or culturally dependent (scientific im-

ages often require specialist interpretation based on the scientific culture

under which they operate, for example).

3.2 Realism and Photorealism in Art

The concept of painting realistic “trompe-l’oeil” (fool-the-eye) images dates

back to the ancient Greeks. Later, in Renaissance painting, a mathematical

theory of perspective combined with improved painting technologies spurred

on the artistic obsession with visual realism. In the eighteenth century, Natu-

ralism referred to an artist’s fidelity in rendering appearances of the world.

Like many art movements, Naturalism found application in painting, sculp-

ture, and literature.

Realist art has its origins in mid-nineteenth century France. It is exempli-

fied by the painter Gustave Courbet, a pioneer of the movement who justified

realism by saying that “having never seen an angel, he could certainly never

paint one”. In this nineteenth century sense, Realism meant not only trying to

capture nature in a visually realistic way, but also choosing subject matter

25 Donald Greenberg in the ACM SIGGRAPH video “The Story of Computer Graphics” states that
his research goal was to synthesise images with the computer that were “indistinguishable
from real world images” (Foster, F. 1999).

42 3.2: Realism and Photorealism in Art

that was real or faithful to the artist’s experience. Here, the idea of a realistic

image implies a truth that extends beyond the image itself. Realism was a re-

action to previous traditions in art that focused on the extraordinary depic-

tions of mythology, religious events and the sublime — each in their own way

trying to capture what was beyond the artist’s experience.

Realism and Naturalism gave way to more interpretative techniques such

as impressionism and can be seen in a number of ways as a reaction to the

limitations of trompe-l’oeil painting in representing reality.

Photorealism is also a term given to an art movement that grew out of the

pop art of the 1960s. Principle practitioners included Ralph Goings, Richard

Estes, Robert Bechtle, Audrey Flack, and Charles Bell. Many of the practition-

ers of photorealism literally made “paintings of photographs” (Chase & Goings

1988) — the photographic image serving as a basis for their view of reality.

In their book Remediation: Understanding New Media, Bolter and Grusin

develop their theory of “Remediation” — the negotiation of one media through

other media (Bolter & Grusin 1999). Bolter and Grusin argue that photo-

realism relies on “the cultural assumption that that the photograph has a spe-

cial relationship to reality” [p.120], justified by the “automaticity of the photo-

graphic process, which draws its images with Talbot’s ‘pencil of nature’26”.

Photo Realism is an art of many ironies — not the least of which is that

the artist seeks a directness in relation to the visually experienced world

through the use of secondary source material, and that he achieves a

heightened sense of reality by reproducing an illusion of an illusion. With

his use of the photograph, the artist actually gains a double immediacy.

— Linda Chase, quoted in (Bolter & Grusin 1999, page 121)

A further irony in photorealism is that the justification for simulating reality is

because the situation (or reality) being simulated would be impossible with

conventional models (Foley et al. 1990, page 607). If a situation is impossible

in reality, then a simulation of that impossibility is obviously not a simulation

of reality.

From these examples, one could conclude that what reality appears to

mean, is not that the scene depicted is real. Rather, it is that the spatial, tex-

tural and illumination cues suggest a correspondence to perceptual cues from

26 ‘Talbot’s “pencil of nature”’ refers to the book published by photographic pioneer William
Henry Fox Talbot (b. 1800 – d. 1877).

Chapter 3: Real / Natural 43

the world, when viewed through the mediation of a photograph or pixel-based

display medium. These cues are, in general, organizationally and culturally

sufficient to suggest a cognitively plausible model of space and object.

While acknowledging these ironies and assumptions, it would be simplistic,

however, to consider the goal of photorealism research in computer graphics

as singularly the synthesis of images indistinguishable from photographs.

Since the earliest days of computer graphics research, an emphasis has been

placed on the synthesis of dynamic environments. Here the simulation not

only includes the behaviour of light/surface and surface/surface interactions,

but of developmental and dynamic interactions, such as the simulation of

rigid and soft body dynamics (Barzel 1992); objects and entities with amorph-

ous properties (Blinn 1982; Nishimura et al. 1985); or features ill-suited to

fixed surface-based representations, such as gasses, clouds, dust, etc. (Reeves

1983). In computer graphics, realism focuses on both the static and dynamic

image. The dynamic visualisation used in graphics is itself an illusion: visual

dynamics are most often conveyed as a rapid succession of static images,

giving the illusion of animation.

In a general sense, a simulation is considered successful in the context of

computer graphics if it demonstrates a likeness to the perceptual qualities as-

sociated with the developer’s expectations of reality, within the context of the

languages of cinema, television and photography. For example, Phong shad-

ing (Phong 1975), a technique to simulate specular highlights on surfaces, has

no real physical27 basis in its implementation (Watt & Watt 1993, Chapter 2)

— yet it looks acceptable enough for it to be used in almost every major com-

mercial computer graphics software system. While refinements in illumina-

tion models have been developed that do have a basis in physics (Cook, R. L.

& Torrance 1992), the perceptual qualities are ultimately the pragmatic factor

for acceptance of any technique.

Similarly, particle systems (Reeves 1983), used to simulate amorphous

phenomena such as fire, smoke, water and clouds, rely on the idealisation

from physics — a particle as an imaginary object with a finite mass yet infi-

nitely small size — a convenient approximation for the purposes of an effi-

cient simulation.

27 Meaning from the laws of physics or derived via empirical experiment.

44 3.2: Realism and Photorealism in Art

The driving force behind these compromises is the trade-off between time

and accuracy, understanding and complexity. A model is by necessity a sim-

plification that seeks homomorphic relations between model properties and

the phenomena that it seeks to describe. Developing complex animated se-

quences requires large amounts of computer time and detailed mathematical

models. If the ultimate goal is images or animations that appear realistic,

then the assumption is that, in general, the viewer is not concerned with the

factual accuracy of the simulation, only its perceptual coherence within the

tradition and language of photography and realist painting. Thus the homo-

morphic properties of such models are morphisms to cultural traditions as

much as empirical observations.

3.2.1 Perceptually Real and Real

Why is it important to make distinctions between perceptions of reality and

reality itself? In many art movements, artists have tried to express their per-

ceptions of reality, with vastly differing results. Within various phenomologi-

cal philosophies that negate subject/object distinctions (Clark 2002; Dreyfus

1991) this expression can take on many more diverse forms than those ex-

pressed by photo-realistic computer graphics.

A dialogue about imitating reality, or mimesis28, has its origins in ancient

Greece. In Plato’s dialogue Cratylus, Socrates describes how Zeuxis painted

grapes so realistically that birds tried to eat them. Such an anecdote suggests

the paradox that an imitation exists only if we can perceive some difference

between it and the original (Macey 2000, page 254). If that difference does

not exist, then to the observer it is a replica like the grapes painted by Zeuxis.

It also highlights the perceptual context — qualities of similarity are confined

to those properties provided by the context of the comparison. The birds

would soon discover that the grapes were not “real” the moment they tried to

eat them.

In a further discussion of the story of Zeuxis and his grapes, Hal Foster

retells the story as told by the psychoanalyst Lacan as a “trompe-l’oeil con-

test” between Zeuxis and Parrhasios (Foster, H. 1996, pp. 112-113). Zeuxis

paints grapes in a way that entices birds, but the birds are not scared away

28 From the Greek meaning imitation.

Chapter 3: Real / Natural 45

by the image of the boy that holds them (much to the frustration of Zeuxis, for

if he had rendered the boy perfectly the birds would have been scared away).

Parrhasios, however paints a veil in a way that deceives Zeuxis, who asks to

see what lies behind the veil and “concedes the contest in embarrassment”.

Foster argues that the animal is lured in relation to the painted surface,

whereas the human is deceived in relation to what lies behind.

A perfect illusion is not possible, and, even if it were possible it would

not answer the question of the real, which always remains, behind and

beyond, to lure us. This is so because the real cannot be represented; in-

deed, it is defined as such, as the negative of the symbolic, a missed en-

counter, a lost object. (Foster, H. 1996, page 112)

To make distinctions between the real and the perception of the real is to en-

gage one of the most famous of philosophical topics. Experiments in visual

psychology demonstrate that perception is not a direct mapping of reality;

many artefacts and illusions are easily demonstrated (Anstis 1999), leading to

the (flawed) question “how do we know what reality really is if the only way

we can experience it is through our senses?”

Joe Faith divides the problem of mind into two general approaches that

lead to the “sceptics conclusion” about our ability to know the world. The first

via neuroscience, illustrated by Descartes argument that if thoughts are gen-

erated as neurological events in our head then the knowledge of the contents

of our minds will be more reliable than the knowledge of the world, distilled

via sense data. The second approach, illustrated via Nietzsche, argues that

the validity of the way we judge the reliability of our knowledge changes his-

torically (as discussed in Section 2.2), thereby rendering our current values

about our knowledge suspect. This has lead to the break-down in what were

previously considered absolute values systems, exemplified by more recent

developments in post-modernism, and a general relativism of knowledge sys-

tems.

Rorty in Philosophy and the Mirror of Nature attempts to counter the view

that knowledge is something with objective foundations — that non-material

representation or ideas cannot faithfully mirror the external world of nature.

For Rorty, the epistemological model pioneered by Descartes and Kant, and

the presumption of the ontology of objective truths, is “simply a product of the

metaphor of seeing that informs so much of western philosophy” (Jay 1993;

46 3.3: Technology and Interpretations of Realism

Macey 2000, page 335), knowledge being a matter of conversation and social

practice. Hence, truth is seen as a relative construct, dependent on the values

of the community from which it is made.

Extreme positions of relativism do not create difficulty in discussions

within particular discourses, it is only when disciplines cross boundaries that

problems arise, because the relativism breaks down.

3.3 Technology and Interpretations of Realism

Seeing a manufactured image carries the implicit fact that the image was

made by someone, and hence the choice of subject, object and framing, even

in the most casual of images, is in a sense subjective. This subjectivity is com-

pounded by the act of seeing, which is inherently subjective also. The art

critic and cultural historian, John Berger argues that when an image is pre-

sented as a work of art, the way people look at it is affected by a series of

learnt assumptions, many of which come from classical traditions (or mystifi-

cations) promoted by art theory (Berger 1972).

In his essay Seker Ahmet and the Forest (Berger 1980, pp. 86-93), Berger

recounts his fascination with the painting Woodcutter in the Forest by the

Turkish artist Seker Ahmet Pasa, who gained an art education in Paris in the

nineteenth century before returning to Istanbul where he introduced a

“European optic into Turkish art”. Berger argues that the painting is inter-

esting because it shows the artist trying to reconcile two opposed ways of

seeing, not trying to simply change his technique (from that of the Turkish

pictorial tradition to that of European painting), but to “change his ontology”.

This disjuncture is deeper than styles or traditions, and illustrates how the

representations of space may be culturally constructed.

Walter Benjamin saw that with the advent of photography, the nature of

art was changed (Benjamin & Arendt 1968). Mechanical reproduction

changed the way paintings were seen and the realist convictions of painting.

Some artists however, realised that the camera had the ability to see beyond

that of the eye. Bauhaus artist, Maholy-Nagy wrote:

In photography we possess an extraordinary instrument for reproduc-

tion. But photography is much more than that. Today it is in a fair way

Chapter 3: Real / Natural 47

to bringing (optically) something entirely new into the world. (Moholy-

Nagy 1967)

Even in photography, the goal of “reproducing the real” was not seen as the

pinnacle of this new technology for artists, rather its assets were the ex-

panded understanding and new possibilities the medium potentially made

available. One could make a similar argument for image synthesis and com-

puter graphics in general. Indeed, this idea of facilitating an expanded faculty

of the imagination was advocated by the philosopher Gaston Blachard in

1958:

By the swiftness of its actions, the imagination separates us from the

past as well as from reality; it faces the future. To the function of reality,

wise in experience of the past, as it is defined by the traditional psychol-

ogy, should be added a function of unreality, which is equally positive…

Any weakness in the function of unreality, will hamper the productive

psyche. If we cannot imagine, we cannot foresee. (Bachelard 1958)

This “function of unreality” is the crux of the mode of engagement advocated

in this thesis. It suggests the distinction made by Aristotle between historical

truth explaining what has happened, and poetic truth explaining the kinds of

things that might happen. The use of an interactive computer simulation as a

tool for expanding understanding of a process is crucial to both scientific and

artistic simulations that operate in this mode of “poetic truth”. The physicist

Norman Zabusky calls this interaction “computational synergetics” — a pro-

cess where using computers in “heuristic mode” gives an enhanced under-

standing of a model, which he claims was previously without precedence

(Zabusky 1984).

3.3.1 Postmodern Realism

Contemporary theorists see mimesis take on new definitions because of tech-

nology. Baudrillard, for example describes the hyperreal as something “more

real than real”: something fake and artificial that comes to be more definitive

of the real than reality itself (such us our understanding of “war” which may

come almost exclusively from television). A simulation in his terminology is a

copy or imitation that substitutes for reality. Television reverses the Platonic

relation between mimesis and reality, since the representation precedes the

48 3.4: Summary: Graphics and Realism

reality and even comes to define it (Baudrillard 1981, 1983; Francblin &

Baudrillard 1991).

3.4 Summary: Graphics and Realism

In its quest for photographic verisimilitude, computer graphics uses incom-

plete assumptions about what it is trying to imitate and relies on implicit cul-

tural interpretations of what constitutes realism in the static and dynamic

image. An image synthesised by computer graphics techniques that is indis-

tinguishable from a photograph fulfils the paradox of mimesis: if it is genu-

inely indistinguishable it is no longer an imitation, but a replication. In gen-

eral, computer graphics uses a representation of reality that suits both the

technical constraints of the medium and cultural assumptions of the classical

western tradition of painting and photography. A picture is obviously not a

computer, and the world is not symbolic. The world is not like a ray-traced or

radiosity image; water is not a collection of infinitely small Newtonian parti-

cles; teapots are not really made of parametric, infinitely thin, surfaces. It is

unlikely any computer graphics researcher would argue the worldview of the

simulation of reality to have a direct and absolute factual correspondence to

reality itself (be isomorphic in the terminology of simulation).

The goal of this discussion is not to discredit the intellectual effort that

goes into the research of computer graphics, with respect to realism. It is to

acknowledge that the concept of realism and the mimicry of reality are prob-

lematic issues that have a well-explored history in philosophy and the arts.

This history is rarely acknowledged in computer graphics, because it works in

a domain that serves ideological imperatives that have little need to acknow-

ledge such a history or the problems it raises.

“Realistic” images and simulations are ultimately driven by their useful-

ness to the domains in which they are employed — engineering and techno-

logical sciences, cinematic special effects, interactive games, for example —

with emphasis on particular aspects of that realism and the technology that

enables it skewed to the particular domain.

Photorealism is an historical movement in art that largely predates its

digital counterpart. As an art movement, it is seen to have failed, in that even

Chapter 3: Real / Natural 49

though the images were realistic, visual realism alone is not sufficient for

achieving truth in painting. In postmodern philosophies, the concept of abso-

lute truth is problematic, which is one of the reasons Realism’s influence has

diminished. Photorealistic images were a product of both a technical and con-

ceptual process that could not fulfil the goal that realism had set. In the con-

text of developing an artistic system that is based on techniques from com-

puter graphics, the issue of mimesis takes on a relevance that is more im-

mediate for the artist than the computer graphics researcher.

3.5 Nature

The seemingly innocent word, “Nature”, used so often in everyday conversa-

tion, belies a raft of rich and complex meanings, “so various and comprehen-

sive in its use as to defy our powers of definition” (Soper 1995).

Since the earliest records of creative expression, artists have sought inspi-

ration from, and reflected upon, nature. Over the previous centuries, the

meaning of the term “nature” and the context in which it is used has changed

dramatically. Emphasis has shifted from a pure reflection upon form, to a

multiplicity of interpretations of natural systems. Key amongst these is the re-

cognition that emergence and process are as much a part of nature as the

forms and behaviours they produce.

Reflecting a move away from myth and superstition, our understanding

and appreciation of nature has also been shifted in response to scientific

theories, notably Darwin’s (and Wallace’s29) theory of evolution by natural

selection. More broadly, our theories of nature have come to include the wider

processes of the universe as explored by the physical sciences.

However, scientific theories of nature cannot be viewed in isolation. A

complex nexus of experience, mediation by media and interpretation of sci-

entific theory, influences the representation of our beliefs about nature.

Added to this mix is the increasingly politicised construct of nature, ecology,

and culture. Consequently, it is possible to see why artists no longer seek in-

fluence from the purity of form alone.

29 For an engaging discussion regarding the political dynamics of Darwin and Wallace and their
theories of evolution and natural selection, see (Quammen 1996).

50 3.5: Nature

In the context of this thesis, I am particularly interested in the quality re-

ferred to by the poet Manley-Hopkins as inscape — the distinctive and essen-

tial inner quality of something, especially a natural object or a scene in na-

ture. Inscape cannot be considered through a Kantian framework of inac-

cessibility, but rather should be linked to the romantic and emotional loss of

“traditional” nature.

In this section, I will look at a selection of individual artists (and the art

movements they belonged to), as a way of framing the background and heri-

tage of the artistic software system I have developed and described later in

this thesis.

3.5.1 Botanical Art

Biological and Botanical art occupies a somewhat special place in the domain

of art and science. The European tradition of plant drawing often involved

removing specimens from their natural surrounds and drawing them in pre-

pared form, “at times even altering the very substance of the plant”

(Blossfeldt & Sachsse 1994). This context is important because it illustrates a

tradition of altering and subjectifying aspects of botanical function and

structure according to both aesthetic and scientific biases — staging or alter-

ing images of reality in order to privilege or detail certain features over oth-

ers.

Ernst Haeckel’s Art Forms in Nature is influential in this discussion.

Hackel, the first full professor of zoology in Jena, was “renowned for his em-

phatic advocacy of Darwin’s theory of evolution” (Breidbach 1998). Haeckel

saw knowledge of nature as natural aesthetics, nature having an intangible,

Kantian beauty derived from seeing humans and their activities as products of

evolution. His argument was a monistic one: human knowledge — subject to

and developed within the laws of nature — is in nature itself. Haeckel’s per-

ception was determined by a style, seeing nature � à la mode de l’art nouveau

made for a determining approach to his work30 (Breidbach 1998). Despite his

claims of objectivity, Haeckel’s “foreign forms filtered through a decorative

lens” reveal a perspective in and from his time and culture. He “provided a

30 This “decorative”, ornamental nature of Art Neuveau is seen most clearly in the gregarious
ceiling ornament created by Haeckel based on his illustrations of the jellyfish Toreuma
bellagemma.

Chapter 3: Real / Natural 51

picture of nature’s entirety, which contemporary physics seemed to loose

sight of in its formal operations”.

At the end of the nineteenth century, the technology of photography and

cinema began to have a major impact on biological and botanical art. Pho-

tography’s pencil of nature promised a more real representation of botanic

forms and an automation of the laborious process of capturing with technical

accuracy, the complex detail found in flora’s rich structures. As with their

drawn predecessors, plant photography often served a dual purpose as im-

ages of aesthetic quality and scientific utility.

Karl Blossfeldt’s photographs drew inspiration from the pharmaceutical

catalogues and classification books of the late Middle Ages and the herbaria

of the seventeenth and eighteenth centuries (Adam & Blossfeldt 1999; Bloss-

feldt & Sachsse 1994). Specimens were placed on a uniform white or grey

background, to permit easier comparison, without the distraction of a native

milieu. In this case, plants became modernist architectural structures, il-

lustrating nature’s feats of engineering (an influential topic of art criticism for

the avant-garde artists of the time — 1920s and 30s).

Blossfeldt’s photographs typify the use of art within the framework of a

semi-scientific context — nature as architect of the elegant and beautiful

structure (in a modernist sense). This dialogue persists throughout the twen-

tieth century, evident in key works such as D’Arcy Thompson’s On Growth

and Form (Thompson 1961), Gyorgy Kepes’ Structure in Art & Science (Kepes

1944), Peter S. Stevens’ Patterns in Nature (Stevens 1974) and the modern

computer graphics analogues lead by Alain Fournier’s The Modeling of Natu-

ral Phenomena (Fournier et al. 1987).

Blossfeldt’s philosophy was “part romantic view of nature, part critique of

functionalistic design, and part reductive application of Darwinism to both

social and aesthetic developments” and his photographs and the styles that

were influenced by them all “demonstrate the dubious success of a way of

thinking which has constructed a view of nature bent into mechanical shape”

(Blossfeldt & Sachsse 1994).

It is also interesting to compare Blossfeldt’s photography to that of Imogen

Cunningham, another artist well known for her sensuous photographs of

plants, who considered the paradox in her pictures; even though objectively

52 3.5: Nature

rendered, they were produced by “sensation and emotion” (Lorenz & Cun-

ningham 1996). Here manipulation took place to intimate the sensuality and

emotive qualities, in contrast to the functionalist emphasis of Blossfeldt’s

photographs. Likewise in the sensuous plant photographs of Edward Weston,

he did not wish to impose his personality upon nature, but to make visible as-

pects of nature that were “a revelation”:

Through photography I would present the significance of facts, so they

are transformed from things seen into things known. Wisdom controlling

the means — the camera — makes manifest this knowledge, this revela-

tion, in form communicable to the spectator. (Weston 1973, page 241)

Key amongst these forms and practitioners of botanical and biological art

is the concept of nature possessing an inherent beauty that is born out

through the emphasis of subjective features. In Blossfeldt’s work, particularly,

natural structure is shown as a source of architectural beauty — the “bend-

ing” of nature into mechanistic form. However, this structure is a static one,

frozen by the drawing or photograph in a way that represents a Platonic

idealisation of form in a temporal sense. This could be understood as a re-

sponse to the search for an inscape that melded Darwin’s theory of evolution

with the technical and industrial economies of the time. Likewise, Cunning-

ham’s aesthetic of the hidden and personal space of flora by treating the

image as an expressive rather than representational medium, even though

the subject matter is “real”.

3.5.2 Nature as a Source of General Systems

In the context of the artistic methodology presented in this thesis, there is a

shift brought about by the general philosophies of the system sciences: sys-

tems theory, cybernetics, and artificial life. These fields emphasise the ab-

stracting of process: a shift from materials to mechanisms. Hence, with the

advent of computers and mathematical theories of plant development, there is

a shift from formalist architectural beauty alone to a dynamic or algorithmic

beauty (Flake 1998; Prusinkiewicz & Lindenmayer 1990): the re-mediation of

process via computer simulation.

Nature has served as inspiration for many different artists, but it has also

provided, in a dynamic process-based sense, a rich palette for designers.

Chapter 3: Real / Natural 53

In the work of Universalist, R. Buckminster Fuller, nature is both a prob-

lem to be solved and a source of inspiration in seeking a purity and utility of

form (Figure 3-1). Fuller’s exploration of mathematical forms in geometry

was not unique, but his oeuvre indicates a reflection on form that went be-

yond the norm for individual disciplines. Fuller’s success was in his combina-

tion of mathematical form, natural beauty, architectural utility and Pro-

methean thinking (Krausse & Lichtenstein 1999).

This methodology of “systems thinking” involves looking at structures, pro-

cesses and inter-relationships between them. Educational realisations of this

methodology could be found in the Generative systems program at the School

of the Art Institute of Chicago or the Conceptual Design Program at San Fran-

sisco State University (Wilson, S. 2002, page 336).

Figure 3-1: Homage to R. Buckminster Fuller. Study of geodesics formed by the intersec-
tion of great circle planes with the edges of platonic solids. The geometric models were
created with the modelling system described later in this thesis.

3.6 Generative Art

This section discusses generative art — a specialised category of art that re-

lies on the formal specification of some form or process in order to generate

the artistic work. A more formal definition will be given in Section 3.6.2.

3.6.1 Historical Precedents for Generative Art

The term “generative art” refers to a number of distinct, but related artistic

practices, so it is often used in many contexts. The earliest adoptions of com-

puter technology for art were necessarily generative, since there was little in

the way of pre-configured software, hence paradigms for the simulation of

54 3.6: Generative Art

traditional media. Artists had to write their own software in order to generate

the results. Undoubtedly too, the fields of systems theory and cybernetics had

a major influence on generative art (Bertalanffy 1968; Rosenberg 1983;

Wiener 1961), since they looked at systems and information in ways which

were novel at the time. Interestingly, these formative years of computing and

cybernetics spawned many theories of generative process.

In the 1950s, several researchers attempted to apply the information

theory of Shannon and Weaver to aesthetics, believing it could offer a better

understanding than psychology. The idea mooted that such a theory of infor-

mation aesthetics could be used for both analysis and synthesis. German phi-

losopher, Max Bense developed a theory of generative aesthetics, linking in-

formation theory with the generation of aesthetic artefacts and semiotics.

This theory was highly influential for a number of artists in the “Stuttgart

school”, such as Georg Nees31, Frieder Nake and Manfred Mohr, who were

interested in the generative power of algorithms to make art (Nake 1998).

In the late 1960s, Jack Burnham published a series of seminal writings on

process-based art. His Artforum article, “Systems Esthetics”, attempted to de-

fine a new role for sculpture — a “paradigm shift” in the terminology of Kuhn

— where art could borrow from new discoveries in science and shift from

being object-oriented to systems-oriented (Burnham 1968b). These ideas

were further articulated in Burnham’s book, Beyond Modern Sculpture, which

predicted movements in generative, robotic, and cyborg art, and related them

to historical and contemporary art practices and movements (Burnham

1968a). In a narrative reminiscent of the Constructivist’s faith in social

change through science and technology, Burnham had faith that the systems

esthetic offered a new and superior path for art. This path would follow in the

philosophies of science and technology, particularly systems theory and cy-

bernetics.

In a subsequent issue of Artforum, critic Terry Fenton responded to this

new romance (or “muddle” as it was called) between art and science. Fenton

was critical of movements that tried to use science as a methodology, or

31 According to Frieder Nake, Nees wrote one of the first Ph.D. theses on generative computer
art in 1969, its title (in German) translates to “Generative Computer Graphics”. “In a very triv-
ial sense, what was meant was nothing but the application of algorithms to produce drawing[s]
as aesthetic objects” (Nake 2002).

Chapter 3: Real / Natural 55

worse, a philosophy for art, particularly those of Burnham and Gyorgy Kepes,

arguing that art should not become “a handmaiden of science as technology is

a handmaiden of science” (Fenton 1969). In the years that followed, the sys-

tems esthetic did not become the dominant paradigm for art.

Writing some twenty years following Beyond Modern Sculpture, Burnham

acknowledged that the social utopias for art drawn from science had not ar-

rived. He wrote that “most computer artists became profoundly disillusioned

with the creative potential of tools” and that “the use of computers in the arts

has yet to produce anything approaching an entirely new aesthetic experi-

ence” (Burnham 1986).

Looking back, almost twenty years on again from Burnham’s concession

about the failure of art and technology, a new appraisal is possible.32 While

the effect of science and technology on the “art world” may be oscillating, and

in some sense peripheral, the cumulative effect of the “articism” of technology

that began in university labs and artists studios in the 50s and 60s has had a

profound effect on mainstream technological culture. Hence, much of the in-

novation today is not achieved within the precious bubble of fine art, but by

those who work in the industries of popular culture — computer graphics,

film, music videos, games, robotics, and the Internet. This innovation may be

problematic from a critical perspective, but suggests a cultural mutation of

the ideals (although not necessarily the ideas) and programs established by

Bense, Moholy-Nagy, Burnham, Kepes and others.

Burnham’s vision for systems theory and cybernetics in the art of the

1960s, sees a curious echo in the artificial life art and generative art of the

twenty-first century. It therefore serves as an important historical legacy for

many artists working in this area today. However, in the spirit of Fenton’s ori-

ginal criticism, it is legitimate to question if these forms of art have indeed

become the “handmaidens of technology”, serving the technological interests

of modern industrial and information cultures. Perhaps the truth lies closer to

a collaborative or synergetic relationship with the rationalism of the engineer

with the techno-romanticism of the new media artist (Coyne 1999), in a push-

me-pull-you entanglement mediated by the commerce and glamour of tech-

nological and creative industries.

32 For alternate views on the legacy of Jack Burnham in new media art see (Penny 1999;
Whitelaw 1998).

56 3.6: Generative Art

3.6.2 Definition of Generative Art

A contemporary definition of generative art involves the use of biological

metaphors (Dorin & McCormack 2001). The terms genotype and phenotype

are used to represent the distinct aspects of this process. Essentially the

authoring process is directed towards the creation of the genotype. The

genotype is a formal specification of process, generally unambiguous. When

this process description is enacted, it generates the phenotype, which is effec-

tively the experience of the artwork. Figure 3-2 illustrates these key elements.

An important factor in this generative process is that through the processes

specified in the genotype, the phenotype “unfolds in the world”. In informa-

tional terms, this means that the volume of information generated in the

phenotype is significantly greater than the genotype itself (often referred to as

database amplification (Smith 1984)). It is through the application of a gen-

erative process that this amplification occurs. In some situations, the geno-

type will include specification of generative processes that may act on the

genotype itself — leading to new outcomes in the phenotype. Physical and/or

computational interaction may also be possible between elements.

Figure 3-2: Overview of the generative process.

The spatial layout of this diagram should not be interpreted literally (as in:

“the artist is separated from the audience by some formal mechanisms”, for

example). Layers of interaction may occur between all the elements of this

diagram, possibly blurring the distinction between artist and audience. People

experiencing the work may be part of the generative process, which may in-

clude chance or physical events that occur as the phenotype is generated.

Hence, these terms are generalisations and should not be considered limiting.

Chapter 3: Real / Natural 57

3.6.3 Non-Computer Based Generative Art

Typically, we might think of the genotype (generative process specification) as

being a set of unambiguous, mechanical instructions, such as those that could

be executed by a Turing machine or digital computer. However, this need not

be the case. Consider the Happening events of artist Allan Kaprow, such as

Fluids (1967), where instructions were issued for the building of a series of

large rectangular “houses”, built from blocks of ice and later left to melt.

Figure 3-3: Cornelius Cardew: Score for Paragraph 7 of ‘The Great Learning’ (1967).

British composer Cornelius Cardew’s Paragraph 7 of The Great Learning is a

generative musical work for a chorus of singers (Cardew 1971). Each per-

former is provided with the same set of instructions (the genotype, shown in

Figure 3-3). The instructions consist of a series of words and phrases to be

sung on the “length-of-a-breath” note. The performers begin by selecting a

note to sing at random, but are then given instructions such as “choose a note

that you can hear being sung by a colleague” and “do not sing the same note

58 3.6: Generative Art

on two consecutive lines”. Paragraph 7 also highlights another common fea-

ture of generative systems: the emergence of new properties that result from

local interactions between individual components. These new properties are

not specified in the genotype — they emerge via the generative process.

A more recent example of generative art that is not computer based can be

found in the work of the French artist, Hubert Duprat. In a series of sculptu-

ral works, Duprat works “in collaboration” with caddis fly larvae, replacing

their natural environment with a series of artificial environments of gold and

precious stones (Duprat & Besson 1998). The caddis fly larvae construct the

sculptures from the materials of these environments (the casing made by the

animal required during metamorphosis), resulting in tiny cases of gold, opals,

sapphires, etc. In this case, the artist intervenes on an existing natural pro-

cess to generate the artwork. Duprat’s work draws attention to the relation-

ship between organism and environment, a relationship unexplored in many

computer-based works.

3.6.4 Computer Based Generative Art

Naturally, the computer seems the ideal vehicle for making generative art be-

cause of its ability to enact formal processes automatically. Computers were

not designed as “art-machines”, but they have been co-opted to the task par-

ticularly well in the case of generative art. The idea of using machines or au-

tomata to make art is not new, and dates back at least to the ancient Greeks.

When considering examples, it is important to make a distinction between

machines that are generative by the definition in Section 3.6.2, and those

simply used as “playback” devices. Machine processes are considered gen-

erative in the sense that they are designed to create new works from the

genotype, in contrast to the many other mechanical systems that have been

made for the purposes of recording and replaying performances — where the

output is largely predictable and duplicates a performance made elsewhere or

by other means.

3.6.4.1 A-Life Art and Generative Art

The term “A-life Art” or “Artificial Life Art” refers to artworks created based

on the philosophies and research from Artificial Life (Adami 1998; Boden

Chapter 3: Real / Natural 59

1996; Langton 1989), using systems such as cellular automata, L-systems,

neural networks, self-organising systems and evolutionary algorithms to cre-

ate generative artworks, often with the goal of simulating life-like behaviour

(also a goal in A-life research).

In relation to generative art, A-life art can be considered a “specialised”

subset of generative art as a whole, in that generative processes are used in

order to portray some “life-like” behaviour in the phenotype. Generative art,

explicitly or implicitly, references natural phenomena (such as emergence) or

natural processes (such as evolution), as does artificial life.

3.6.5 The Computer in Visual and Screen-Based Art

As discussed in Section 3.6.1, early computer art was necessarily generative.

John Whitney Sr. was one of the first artists to see the potential of the com-

puter for the creation of screen-based visual art. His first computer work,

made in the 1950s using an M-5 anti-aircraft gun director was converted into

an analogue computer and used to make films of dynamic, organic patterns

based on mathematical equations (Jankel & Morton 1984). Together with his

brother James, Whitney produced a series of remarkable animations, begin-

ning first with “painting-on-film” techniques that served as the aesthetic basis

for later computer generated works (such as Lapis (1963-66)). Subsequent

films included Permutations (1967), made while an artist at ibm, and what he

considered his masterwork, Arabesque (1975) were both created on digital

computers. Whitney used the metaphor of “writing on water” to succinctly de-

scribe his process of dynamic visualisation. Throughout his career was inter-

ested in developing new “languages” that related algorithmic image and

sound. His statement, “Above all, I want to demonstrate that electronic music

and electronic color-in-action combine to make an inseparable whole that is

much greater than its parts,” underlies his integrated approach to the emer-

gence of “visual music” in his art.

Also in the 1950s, American artist Ben Laponsky used analogue computers

to create artworks realised in a variety of media, including photographs,

films, light-boxes and kinetic oscilloscope displays. Laponsky used methods

based on his experience with mathematically defined geometric systems, such

60 3.6: Generative Art

as harmonograph machine tracings, to program a from of oscillography

(Laposky 1975).

Charles Csuri, another computer art pioneer, developed a number of gen-

erative techniques beginning in the late 1960s, creating animations and still

images using those techniques.

The German artist Manfred Mohr began as a painter, being interested in

formal Constructivist art, particularly the influence of Jazz music expressed in

a visual domain. He later turned to fractured cubes and then n-dimensional

cubes, describing the structure of the cube as a “system” or “alphabet”. His

cube-based works were generative, in that Mohr specified the algorithms that

generated new structures and relationships in their output. He describes the

results as being “unique to the computer”.

3.6.6 Related Artificial Life Art Systems

Yoichiro Kawaguchi was a pioneering artist in the development of computer

graphics software to facilitate his art (Kawaguchi 1985). His “GROWTH”

(Growth Rationale Object Work Theorem) system was inspired by the work of

D’Arcy Thompson, and permitted the morphogenic modelling of a variety of

natural shapes and forms, such as shells, horns and plants. He used an itera-

tive, rule-based algorithm to generate dynamic growth in a range of branch-

ing structures (Kawaguchi 1982). Following this, he refined his branching

structures to include structures formed using density distribution (“Metaball”)

techniques run on the LINKS-1 system developed by Nishimura et. al.

(Nishimura et al. 1983; Omura, Kawaguchi & Noji 1985).

American artist and researcher Karl Sims applied evolutionary techniques

to the generation of plant-like structures for his film Panspermia (Sims

1990a). His techniques for interactive evolution (Sims 1991b, 1991a, 1993),

based on the original ideas from Richard Dawkins’ Biomorph software, de-

scribed in (Dawkins 1986), were strongly influential for both artists and re-

searchers. They are discussed further in Chapter 10.

Jules Bloomenthal developed modelling techniques to model branching

structures using generalised cylinders defined over branching topologies. A

free-form surface model was used to connect the branching limbs and

“blobby” techniques for the tree trunk. He used these techniques to create a

Chapter 3: Real / Natural 61

convincing visual model of a maple tree (Bloomenthal 1985). Peter Oppen-

heimer used recursive techniques to develop “fractal” plant and tree models

for creative purposes (Oppenheimer 1986, 1988). His models produced

strange and complex branching models, which were used for both still images

and animation.

William Reeves and Ricki Blau developed stochastic shading and rendering

algorithms, based around particle systems, to create “impressionistic” land-

scapes of grass and trees. Unlike the models of Bloomenthal and Smith (Smith

1984), which focused on the detailed structure of individual plants, this model

took a “global view of the forest environment” (Reeves & Blau 1985) and pro-

duced softer impressionistic images of forests and vegetation, used in a num-

ber of early Pixar (then Lucasfilm) films.

William Latham and Steven Todd developed a system to evolve three-

dimensional forms based on csg techniques (Todd, S. & Latham 1991). In ad-

dition, Latham also attempted to place historically his artistic practice in

terms of a distinctive artistic style, which he called evolutionism (Todd, S. &

Latham 1992). Latham’s main emphasis was on the synthesis of form, the

focus on process implicit in the techniques used to produce his art.

Midori Kitagawa De Leon developed a system, known as “BOGAS” to model

branching structures with C1 continuity using cubic Hermite interpolation (De

Leon 1990a, 1991). She produced several beautiful and engaging animations

and still images using the techniques she developed (De Leon 1990b, 2002).

The early work of Christa Sommerer and Laurent Mignonneau developed

systems that incorporated developmental models. In their work, Interactive

Plant Growing the physical interaction with real plants causes synthesised

plant-like structures to grow on a large video projection screen. This interac-

tive response was further developed in the work Transplant, where user’s

movement was transformed into growth of plant-like objects projected around

the viewer (Sommerer & Mignonneau 1998).

Sommerer and Mignonneau’s evolutionary work AVolve utilised the meta-

phor of a virtual fish tank. This work defined two distinct processes for users.

The first used a “conventional” interactive design metaphor, where via a

touch screen, profiles and characteristics of the creature’s appearance and

behaviour were specified. Following this stage the interaction switches to a

62 3.7: Summary

more poetic context, where users are asked to interact with the virtual crea-

tures by moving their hands in a pool into which images of the creatures are

projected. This work illustrates an interesting duality whereby the mode of

interaction signifies the implicit assumptions of the artists — in the design

mode the interface is a technical one, similar to standard cad tools. At this

stage, the user is not required to accept the creatures as “living”, rather ma-

chines designed by cad–like techniques. Later however, when the creatures

are “released” into the real pool, the user is implicitly asked to accept that

these are living creatures and the mode of interaction changes from a techni-

cal and functional mode to a more playful anthropomorphic one.

3.7 Summary

There are many examples of generative art and the works discussed above

have been necessarily selective. Today, a number of conferences are devoted

to both critical, aesthetic and technical aspects of generative art, including the

Iteration series of conferences, organised by myself and Alan Dorin in 1999

and 2001 (Dorin 2001b; Dorin & McCormack 1999) and the Generative Art

conferences held annually in Milan, Italy.

A brief history of generative art has been presented as a basis for under-

standing contemporary approaches that make use of computational pro-

cesses. In the context of the systems presented later in this thesis, I have also

introduced some key issues in relation to botanical and systems art, because

in many ways these art forms are trying to “copy nature” using photography

and associated technologies. I have also discussed the difficulty in using

photorealistic computer graphics as the basis of an artistic process or repre-

sentation scheme, particularly if one wishes to seek a “poetic truth” in any

representation.

Chapter 4: Emergence 63

4 Emergence33

Every doctrine of aesthetics, when put into practice, demands a
particular mode of expression — in fact, a technique of its own.

— Igor Stravinsky, 1936

In the previous chapter, the area of generative art was introduced as an ap-

propriate artistic paradigm under which to classify the artwork developed

using the software systems described later in this thesis. This chapter pro-

vides a survey of critical and technical issues of relevance to generative art. In

particular, it examines the concept of emergence, looking at its historical ori-

gins, interpretation in different disciplines, and salient issues surrounding its

classification and meaning for developing generative art. These issues include

the hierarchy of levels associated with emergence, recognition and ontology of

patterns, prediction, and determinism. Each of these topics are then related

to attempts to create with computers emergent phenomena for artistic pur-

poses. Several methodologies for developing emergent generative art are dis-

cussed including what is termed in this chapter “the computational sublime”.

This definition is considered in relation to historical and contemporary defini-

tions of the sublime and is posited as a methodology for thinking about the

process of creating an artwork that is “more than the sum of its parts”.

4.1 Introduction

As with a number of art movements, generative art draws from selected ele-

ments of science and philosophy as part of its basis, and as a primary influ-

33 Sections of this chapter were first published in (McCormack & Dorin 2001). The material that
appears in this chapter is exclusively the original work of the first author.

64 4.2: Artificial Life

ence on its motivation. Naturally, these influences are well known and widely

discussed in scientific literature and from scientific perspectives. However,

little attention has been paid to these influences from within generative art

beyond the fact that they are seen to be part of science’s way of describing

the world. If such influences are important to the art form, they need to be

addressed from the perspective of generative art itself.

In particular, I will examine the concept of emergence, with a view to using

it as a basis for developing strategies in generative art. The views presented

here are influenced primarily by investigations in evolutionary biology, phi-

losophy of science, cybernetics, systems theory, and artificial life. These

frameworks are not the usual basis for forming a discussion about art, but for

generative art, they hold special significance, often being the major founda-

tions for developing artworks and forming ideas. This is partly due to the

nebulous influence of concepts such as emergence, novelty, chaos theory, de-

terminism, complexity, self-organization, and “natural” selection on genera-

tive works. If these are going to form part of the foundation of a practice, it is

surely wise to ensure they are well constructed — lest whatever is con-

structed on them may collapse.

No doubt, there are other important criteria for thinking about generative

art. The purpose here is to examine the concept of emergence and propose

possible strategies that the generative artist can use to exploit it. At the very

least, this may provide a way of creating and, in parallel, critically evaluating

generative art.

How might we think about generative processes in relation to an artistic

practice? Oddly enough, this question has been asked many times before in

relation to cybernetics and artificial life. Often in these disciplines, less im-

portance is attached to distinctions between art and science than is attached

to the philosophy used to approach the endeavour (Risan 1997).

4.2 Artificial Life

The idea of giving life to inanimate objects is a consistent fascination for hu-

mans. Domains of enquiry such as artificial life (AL) suggest by their very

name a kind of “Frankensteinian” fascination with mortality, a perceived re-

Chapter 4: Emergence 65

versal of entropy, and the super-human ability to breathe real life into inani-

mate objects. It appears that “giving life” to inanimate objects interests us,

because “life” interests us. Such modalities may be either conscious or uncon-

scious forces in the AL artist’s creative impetus.

Different interest groups have different interpretations and visions for Ar-

tificial Life (Artificial Lives as Bonabeau and Theraulaz call them (Bonabeau

& Theraulaz 1994)). The perspective presented in this chapter is taken from

that of the artist wishing to engage critically with AL. Therefore, important

and cognisant ideas that compel the AL artist may centre, for example, on the

concepts of control, inscape, the sublime, novelty, aesthetics, phenomenology,

determinism, causation, and ecology.

When we express our relationship to “the natural” through poesis34, ex-

plicitly or implicitly we express our concern about control. Nature is seen as a

force that must be controlled, harnessed and tamed. This belief is reflected in

popular notions of nature as “the chaos”, the uncontrollable force, and is ex-

emplified by its effects and their consequences (death). For example, the act

of gardening is often quoted as a metaphor to describe aesthetic evolution.35

In some sense, gardening is about mastering the uncontrollable — harnessing

nature and manipulating it for aesthetic purposes (from the perspective of the

gardener). The issue of control translates from the biological garden to the

digital garden; in the case of aesthetic evolution, it becomes even more acute

— the digital gardener selects what will “live” and what will “die”.

Important also, is AL’s original claim of broadening the definition of life

and offering new or novel forms of life not currently observed in terrestrial

biology — life-as-it-could-be (Langton 1989). Much of the life-as-it-could-be

mode of investigation has been dismissed by scientists because it is ill defined

(Bonabeau & Theraulaz 1994) — if we were to create life-as-it-could-be that

was significantly different from life-as-we-know-it, how would we recognise it

as life? It is also easy to misinterpret life-as-it-could-be as simply a search for

the novel or bizarre — how far can the phenomenological experience of life

34 Poeisis is the process of bringing-forth via human hands, of revealing the world in a way that
could not have occurred by natural processes (which are the processes of physis).
35 Evolutionary artist, William Latham says “The artistic process takes place in two stages: cre-
ation and gardening. The artist first creates the systems of the virtual world…the artist then
becomes a gardener within this world he has created;” see (Todd, S. & Latham 1992).

66 4.4: Emergence

(particularly in an art context) be (un)reasonably extended in a postmodern

view of the world?

Indeed, AL techniques form part of the broader category of generative art

— art that uses some form of generative process in its realisation (introduced

in the previous chapter).

4.3 Generative Art

A definition of generative art was given in Section 3.6. Generative art practice

focuses on the production and composition of the genotype and the media in

which it produces the phenotype. When run, interpreted, or performed, the

genotype produces the phenotype, the work to be experienced and the reali-

sation of the process encoded by the genotype.

Generative art usually involves poeisis, which suggests that it should reveal

the world in ways that nature can’t, hence technology seems a possible

(though as we have seen, not necessarily unique) vehicle to achieve this aim.

Implicit too, is the act of creation, but it is poignant to ask in a critical context

what is being created, what is being revealed, and what is the difference be-

tween the two.

The role of the artist in developing a generative artwork often involves

creation and manipulation of the genotype and the developmental and

(pseudo) physical process systems that “unfold” it into the phenotype, “re-

vealing” it in the world. Creation needs to involve some form of novelty, ad-

dressing the difference between creating and revealing in this context.

4.4 Emergence

In this section, one of the central concepts for developing and understanding

generative art is examined: emergence. Emergence is an all-encompassing

term, with a nexus of barely related meanings in different domains, making it

a difficult term to clearly define, let alone understand. Since the term’s early

use, almost every author has provided his or her own sub-categorisation for

different types of emergence.36 There is little consensus between individual

36 One recent survey distinguishes no less than 27 different classifications (McDonough 2002).

Chapter 4: Emergence 67

authors, much less between disciplines. Debate continues as to the merits of

the concept in a number of areas, primarily trying to decide if emergence is a

linguistic, epistemic or ontological construct. Comprehensive overviews and

historical reviews can be found in (Beckermann, Flohr & Kim 1992; Blitz

1992).

The common non-specialist interpretation of the term emergence refers to

revealing, appearing, or “making visible” an event, object, or the outcome of a

process. In a creative context, emergence also encompasses novelty, surprise,

spontaneity, agency, even creativity itself — aspects of emergence I will

examine more formally in this section.

4.4.1 History and Overview of Emergence

Emergence has its origins in the nineteenth century studies of physical,

chemical and biological systems. John Stuart Mill drew a distinction between

“two modes of the conjoint action of causes, the mechanical and the chemi-

cal,” (Mill 1872). Influenced by Mill, George Henry Lewes recognised Mill’s

fundamental differences between heteropathic and homopathic effects, call-

ing them emergents and resultants respectively (Lewes 1879). As described by

C. Lloyd Morgan (Morgan 1923), emergent evolution (emergentism) describes

the “incoming of the new”, that is, emergence is defined as the creation of

new properties. Emergentism was a philosophy about the nature of the uni-

verse and the way material elements combine to make structures of increas-

ing complexity. When the complexity of material configurations reaches a

certain level, genuinely novel properties emerge that have not been instanti-

ated before and could not have been predicted (Beckermann 1992).

The oft-quoted example of Mill’s (from Morgan) relates to molecular

chemistry: carbon has certain properties, sulphur has certain properties;

when the two are combined the result is not an additive mixture of the two

but a new compound (carbon disulphide), some of the properties of which are

quite different than those of either component, hence the interpretation that

the whole is more than the sum of its parts. Morgan, referencing the work of

Mill, Lewes and psychologist Wundt’s “principle of creative synthesis”, saw

emergence as a phenomenon that occurs in many different systems or hierar-

chical levels including molecular interactions, life, mind, and self-

68 4.4: Emergence

consciousness. This concept of emergence has been described as “that rea-

sonable aspect of vitalism which is worth to maintain” (Emmeche, Køppe &

Stjernfelt 1997), that is, it removes vitalism’s non-materialist suppositions.

Emergence and emergentism have continued to rise and fall in popularity

throughout the twentieth century. Important criticisms in Nagel’s Structure of

Science (Nagel 1961) and Hempel and Oppenheim’s Studies in the logic of Ex-

planation (Hempel & Oppenheim 1948) saw support for emergence as a

strong philosophical concept wane for many years. A key criticism of emer-

gence as a phenomenon is that its usefulness as a classification method is

limited because it tends to ignore the specific physicality of the individual

systems — how similar is the emergence of new properties of carbon disul-

phide from its atomic components to the emergence of consciousness from

cells? How does giving a property the attribute of emergent aid in our under-

standing of that phenomena?

The idea, which is nascent in emergentism, of separating phenomena and

processes from substance became formalised in the systems-theoretic ap-

proach of the 1940s. Systems theory manifested itself in a number of areas,

such as the philosophy of Bunge, Bahm, and Laszlo; information theory of

Klir; biology of von Bertalanffy, Thom and Waddington, cybernetics of Weiner,

Ashby and Rosenberg (Audi 1999, page 898) and today in artificial life.

4.4.2 Levels and Patterns

Emmeche, Køppe and Stjernfelt (Emmeche, Køppe & Stjernfelt 1997), give a

detailed epistemic analysis of Morgan’s “creation of new properties”. They

differentiate between three different uses of the word “properties” — refer-

ring to primary levels (similar to Morgan, the borders between the major sci-

ences), secondary levels (sub-fields within the major sciences), and aspects of

single entities. These classifications suggest different types of emergence. In

relation to the creation of levels, their gestalt view holds that the higher level

manifests itself as a pattern or as a special arrangement of entities at the

lower level.

The emergence of patterns is of concern to a number of authors. In the

field of emergent computing, for example, Forrest writes:

Chapter 4: Emergence 69

In these systems interesting global behavior emerges from many local

interactions. When the emergent behavior is also a computation, we re-

fer to the system as an emergent computation. . . . Three important and

overlapping themes that exhibit emergent computation are self-

organization, collective phenomena, and cooperative behavior (absence

of any centralised control). (Forrest 1990)

What Forrest terms “interesting global behaviour” suggests two important is-

sues in understanding emergence: (1) that of the perceptible, and (2) that of

the influence of the observer. As Forrest admits:

The emergent phenomena of interest are often understood implicitly

rather than explicitly. Currently, many emergent computations are inter-

preted by the perceptual system of the person running the experiment.

How do we implicitly recognise “interesting” patterns? What is the difference

between emergent and non-emergent patterns? Philosopher Daniel Dennett

discusses the “reality of patterns” in (Dennett 1991). Looking at how agents

distinguish a particular pattern from noise, he makes important observations

about the information-theoretic content of a pattern in relation to its ontologi-

cal status. Visual systems evolved to distinguish pattern from noise, but the

“level” of pattern recognition has evolutionary constraints: a balance between

the fidelity of pattern perception, its costs and payoffs. If we rely on recogni-

tion of patterns to justify emergence in systems, there could be patterns that

we as observers cannot recognise37, yet may still be “interesting” when

studying emergent phenomena.

Information-theoretic approaches to understanding patterns in emergent

systems have been studied (for example) by Crutchfield (Crutchfield, J. P.

1994). He recognises that “patterns are guessed rather than verified” and so

seeks information-theoretic measures to obtain a more objective analysis of

pattern formation. Crutchfield defines intrinsic emergence, where the system

itself capitalises on patterns that appear (i.e. the patterns exploit their own

dynamics).

Our natural perception38 defines the concept of everyday things and objects

(animals, plants, etc.) that we have evolved to perceive at a particular level, in

order to function in the world. Science has added to this a means for us to

37 Dennett often uses Wimsatt’s example that an ant-eater sums a collection of ants to their to-
tality, hence “sees” them a whole rather than as a collection of individual ants (Wimsatt 1980).
38 Meaning unaided by technology.

70 4.4: Emergence

“see” at other levels. Following on from Dennett, taking perception to its ulti-

mate end, if we could “perceive” the universe in a kind of gods-eye view or

“Laplacian inversion”, with the recognition of every single sub-atomic particle

over its spatio-temporal configuration, would we have any need for patterns

or levels?39 These concepts (patterns and levels) are necessary conveniences,

developed as the result of pragmatic evolutionary pressures, to assist our sur-

vival within the limitations of being perceptual entities that are part of the

world.

Compare to this, the view that it is impossible to interpret a lower-level ex-

planation without using some higher-level concepts to identify what is going

on. That is, higher-level phenomena need to be recognised as a basis to iden-

tify what must be explained at the lower level (Kincaid 1988).

4.4.3 Prediction, Explanation and Determinism

Life can only be understood backwards; but it must be lived for-
wards.

— Kierkegaard, quoted in (Dennett 1984)

Since the coining of the term emergence by Lewes (McLaughlin 2001), a dis-

tinction is made between those emergent properties that are explainable as

products of lower level interactions, and those that are not. The meaning of

“explainable” is the crux of the issue and the basis of the reduction-

ist/emergentism debate. Emmeche et. al. refer to two kinds of processes:

those that cannot yet be explained but are not, in principle unexplainable,

and processes that are in some sense of the word, unexplainable (Emmeche,

Køppe & Stjernfelt 1997). It is this second sense that usually provokes the re-

ductionists into retaliation, because this implies that such processes are on-

tologically irreducible. Further, how are we to know what will be explainable

in the future? In this case, it becomes impossible to distinguish between the

epistemological and ontological senses of emergence.

Consequently, the idea that “the whole is more than the sum of its parts”

may be expanded to give form its own ontological status40 — the term “more”

39 Such a fanciful proposition raises numerous difficulties, particularly given the fundamental
uncertainty in measurement of sub-atomic particles. However, the proposition can be more ap-
propriately applied to computer simulations.
40 That is, non-subjectivist features.

Chapter 4: Emergence 71

defining a “specific series of spatial and morphological relationships between

the parts”. Matter and form, “opposing but not contradictory points of view of

the same reality” (Emmeche, Køppe & Stjernfelt 1997).

Central to a modern concept of emergence are the relevance of determin-

ism and boundary conditions. Von Neumann pointed out that physical laws

are reversible in time, but that measurement is intrinsically irreversible

(Pattee 1988) — (Prigogine & Stengers 1984) offer a contradictory view. Mod-

ern physics has shown that even those systems that can be described deter-

ministically are subject to a critical dependence on initial conditions (for ex-

ample, the three body problem). Polanyi recognised that while physics may be

able to describe what is going on at a micro level, the macro emergent prop-

erties cannot be predicted from the micro level physics, because they are

computationally irreducible — determined by boundary conditions at the

macro level (Polanyi 1968). That is, the lower level laws are unspecific

(Bonabeau & Theraulaz 1994) with respect to the higher-level phenomena

they may produce. Emmeche et. al. use the example of the cell to illustrate

this idea: “if you list all known chemical regularities and laws, it would be im-

possible for you, on the basis of this list and without any knowledge of the

biological cell, to select those entities, regularities and types of behaviour

which are specific to the biological cell” (Emmeche 1994).

Thus, according to these views, Physics presents an immense phase space

of possibilities, in which it is impossible to determine exactly what will em-

erge at higher levels. Emergence can only be recognised after it has occurred,

since it cannot be predicted in principle.

4.5 Emergence for Generative Art

Most electronic artists are looking for an out-of-control quality
that will result in their work actually having outcomes that they
did not anticipate. If the piece does not surprise the author in
some way then it is not truly successful in my opinion.

— Rafael Lozano-Hemmer quoted in an interview with Heimo
Ranzenbacher. (Stocker & Schöpf 2001)

72 4.5: Emergence for Generative Art

The richness of emergence in the physical world serves as a great source of

inspiration to generative artists.41 Artists are often looking for surprise,

novelty, agency and that “out-of-control” feeling in their work, what Ashby

describes as Descarte's Dictum: how can a designer build a device which out-

performs the designer's specifications? (Ashby 1956)

Artists can get away with much more than scientists can where emergence

is concerned, since art is not bound by the same obligations as science. But in

gaining such freedom, the artist also acquires new problems because, in gen-

eral, the search space lacks reference points42 and becomes potentially vast.

Given that true emergence defies prediction, how can one begin to design

works that do have outcomes that were not anticipated?

Langton’s life-as-it-could-be seems like an excellent starting point for de-

veloping the concept of art-as-it-could-be — emergent creative behaviour in

artificial systems. However, given the problems discussed in previous sections,

achieving life-as-it-could-be seems difficult, life-as-it-could-be creating art-as-

it-could-be even more so. Moreover, if we are going to find it tough to recog-

nise life-as-it-could-be, surely art-as-it-could-be will be unrecognisable, in-

comprehensible, or just plain uninteresting.

The idea of autonomous systems making art might seem appealing, but

how does it relate to our understanding of human art? Bowerbirds might be

considered autonomous systems that make “art”, but such activities remain

principally of interest to biologists, not art critics. The creation of evolving

agents that develop their own artistic practices should not be confused with

the goal of widening the scope of art for human appreciation.

4.5.1 Creating Emergent Art with Machines

“But you know, all pictures painted inside, in the studio, will
never be as good as the things done outside.”

— Paul Cézanne in a letter to Emile Zola, 19 October 1866

41 From here on, when we refer to “art” and “artists” I am primarily referring to generative art
and those who make it.
42 By reference points, I mean events, relations and epistemologies that form the basis for de-
veloping a particular work. Science has the physical world and the scientific method as possible
reference points. Normally, conventional artists will have their own personal reference points
and those from art theory, but with works that attempt genuine emergent properties, these may
not be appropriate, particularly if the artist does not wish to simply mimic the existing refer-
ence points of art or science.

Chapter 4: Emergence 73

Today, generative art is often implemented on a computer.43 Thus it is poig-

nant to consider the limitations and possibilities of computation for creativity,

and of the computer as an “art machine” if we want to create emergent

works. As discussed in Section 4.2, some of AL’s goals (e.g. emergent behav-

iour) are not dissimilar and there is much in biological and AL literature dis-

cussing the limitations of using symbol processing machines to make strong

AL, for example. This could be a suitable starting point for examining similar

issues in generative art.

Pattee distinguishes between simulation — as a metaphorical representa-

tion of a specific structure or behaviour that we recognise as “standing for”

but not realizing the system being simulated (weak AL) and realisation — a

literal, substantial replacement of that system (strong AL) (Pattee 1988).

Computers are symbol-processing machines and while they are capable of

simulating physical systems and phenomena, a symbol processing simulation

is not a priori grounds for a theory of what is being simulated.

This raises an important question in relation to computer-based generative

art works. If they are simulations, their basis must come from simulating

something known. Most current generative art works are developed in this

way (they tweak the conceptual space in the terminology of Boden (Boden

1994)). Since new emergent phenomena cannot be predicted, we must de-

pend on the simulation of known emergent systems, or on intuition and heu-

ristics based on existing systems in order to guess which particular configu-

rations of micro properties will result in emergent macro-phenomena. Com-

putation has a smaller phase space than that of physics, that which is practi-

cally computable, even smaller. Increasing computing resources has two sim-

ultaneous implications for this practical space: it enlarges its size, giving more

potential configurations, and yet it increases the speed at which this space

may be searched. This recent advance in search speed often makes searches

that would be impractical to explore in physical systems possible in simula-

tion.

This begs the question: is generative art made on computers just tweaking

the simulation of existing systems, or is it exploring the phase space of com-

43 “often” does not necessarily imply the best. Some generative artworks have used other phys-
ical entities to set up process-based works with considerable longevity and critical success (see
(Dorin & McCormack 2001) for examples).

74 4.5: Emergence for Generative Art

putation in a genuinely novel way? Should our starting point in developing

generative art be based in the simulation of reality, particularly given the dis-

cussion regarding the problems of representing the real in art? Alternatively,

do we begin with the more constrained possibility of exploring the symbol

processing space of computation in general? The latter, while conceptually

interesting, seems much more difficult in terms of locating a starting point.

Nature — life-as-we-know-it — provides numerous starting-points that can be

tweaked, subverted and distorted in our search for novelty (e.g. replication,

evolution, fitness, form, matter, etc.). Computation is abstract and un-

grounded, inevitably needing to be made concrete through some interpreta-

tion44. To date, these interpretations primarily reference the metaphors on

which their processes are based.

Simplistically, some of these problems can be avoided by embedding our

system in physical reality (e.g. by building robots or systems that interact di-

rectly with the world through measurement and action). However, in this

case, while we loose the difficulties of simulation, we do not remove the

problem of predicting genuine emergence, nor do we remove the granularity

of digital computation. To reverse a common truism: a real system has the

same or worse difficulties of prediction as a simulation of it does.45

Artists and designers are always endeavouring to create works that are

more than the sum of their parts. The “more” in this case is specific to the

context of the artist’s concerns for the work, rather than to physical examples

of emergence.

For example, Saunders defines: “Concepts derived from an existing know-

ledge base but which demonstrate significantly different properties are called

emergent” (Saunders 1999). However, such a definition seems too broad. By

this definition, an image on a television may be considered an emergent prop-

erty of phosphor dots excited by electrons. This definition does not distinguish

between systems in which there is no interaction between components at the

micro level and those in which there are both interaction and process rela-

tionships at this level (this is the difference, for example, between a television

44 Although one can imagine an uninteresting conceptual art work that consists of a process
running on a machine with no directly perceptible output.
45 For example, many evolutionary robotics systems spend much of their development time in
simulation, as it is faster and cheaper than developing real robots.

Chapter 4: Emergence 75

image and a cellular automata simulation). A preferred definition is more

specific about the category of phenomena it purports to distinguish.

Cariani refers to factors outside the frame of reference of the computer

program in what he calls “emergence relative-to-the-model”. This gives us an

insight into one of the possible roles for emergence in generative art, where

the “emergence” is not in the simulation itself; rather how it changes the way

we think and interact with the world (Cariani 1991), and discussion in

(Emmeche 1994, Chapter 6).

British artist, Richard Brown, in developing his artwork Biotica, “wanted

creatures to spontaneously emerge from a primitive soup, rather than craft

them by hand” (Brown, R. 2001). Such goals are similar for many AL artists

and researchers alike who seek to develop self-organizing systems that lead

to emergent phenomena. Self-organizing systems encode some form of phys-

ical (or pseudo- or meta- physical) relationships, including basic laws of how

entities operate within the (simulated) physical system. The “trick” is in the

selection of local rules that determine the nature of the resultant behaviour

and the careful selection of initial conditions — this can prove illusive. By

Brown’s own admission, the work “did not produce any surprising emergent

results.” Adding complexity to the rules and simulated physical phase space

of Biotica resulted in a more complex system, but not in results that created

new levels of surprise, agency or novelty.

Sim’s Virtual Creatures (Sims 1994a) on the other hand, do indeed produce

novelty and surprising results, but are they truly emergent? Sims designed a

specific low-level infrastructure to support his conscious goal of creating

block-like creatures that discover, via competitive evolution, solutions to spe-

cific goals (following lights, competing for objects), rather than spontaneously

emerging. For open-ended evolution, much more consideration needs to be

given to designing the environment. For genuinely new symbolic information

to arise in the genome, the entire semantically-closed organization (genotype,

phenotype and the interpretation machinery that produces the latter from the

former, including the whole developmental process through which an adult

phenotype is produced) – needs to be “embedded in the arena of competition”

(Taylor 2002).

76 4.6: Methodologies of Generative Art

In a design sense, it is possible to make creative systems that exhibit em-

ergent properties beyond the designer's conscious intentions, hence creating

an artefact, process, or system that is “more” than was conceived by the de-

signer. This is not unique to computer-based design, but it offers an important

glimpse into the possible usefulness of such design techniques — “letting go of

control” as an alternative to the functionalist, user-centred modes of design

currently popular in commercial computing (Norman & Draper 1986). Nature

can be seen as a complex system that can be loosely transferred to the pro-

cess of design, with the hope that human poiesis may somehow obtain the

elements of physis so revered in the design world. Mimicry of natural pro-

cesses with a view to emulation, while possibly sufficient for novel design,

does not alone necessarily translate as effective methodology for art however.

4.6 Methodologies of Generative Art

Emergence, while part of the generative artist’s impetus, is too broad a goal

in a general sense, due to a lack of reference points (unless we wish simply to

mimic existing systems, creating a simulation). What is needed are some re-

ference points suited to creating generative works that aspire to some genu-

ine sense of emergence. In this section, we discuss a number of methodologies

that either might be, or have been, used to produce such emergent qualities

in artworks.

4.6.1 The Role of Subversion

As discussed in Section 4.5.1, computational phase space is too large to serve

as a starting point alone for developing an artwork. Thus, it seems that the

majority of generative art works have drawn from the palette of existing

technical procedures and subverted them in order to expose some interesting,

novel or previously unconsidered feature of such processes, or to re-interpret

a particular process for the artist’s own ends (tweaking the conceptual space).

For example, in the works of Australian artist John Tonkin, evolutionary pro-

cesses are subverted, and used by the artist to expose political and social con-

cepts of evolution and its implications (Tonkin 2001).

Chapter 4: Emergence 77

Other approaches may be to visualise, sonify, or create in unusual or con-

text dependent ways, systems that reveal the process in hitherto unknown

ways. There is no doubt that subversion and the irrational play an important

role in many forms of contemporary art, seemingly much the anthesis of the

standard scientific mode of practice, or that of the teleological engineer. How-

ever, generative processes in particular often appear most strongly to deny

this conventional mode of thinking, providing a deeper connection with the

seeming irreducibility of a strong emergent process.

4.6.2 Symbol Manipulation, Mental Models

Consider how the generative artist might think about the relation between the

world, the computer program, and its outcomes. In addition, consider too,

how such relations may be different for someone using and experiencing a

generative artwork (the phenotype).

In the theory of modelling and simulation literature, a number of different

frameworks have been proposed. These frameworks are used to help for-

malise the task of creating simulation from model, and model from observa-

tion. One such approach is the System Specification Hierarchy (ssh), which

consists of a number of hierarchical levels that encapsulate different episte-

mological properties (Zeigler, Kim & Praehofer 2000). Specification levels in-

clude observation frames, I/O function and behaviour, state transition and

coupled component. This framework is useful because it deals with dynamic,

processed based systems that change over time. Elements of this framework

will be adopted here, but it is important to stress that simulation theory has

different formal goals than that of generative art, particularly where formal

verification and validation are concerned.

The diagrams shown in Figure 4-1 capture aspects of a particular way of

working, but one general enough to be useful. In Figure 4-1A, relationships

between the generative artist, the computer, and the world, are expressed in

terms of experimental and observation frames (Zeigler, Kim & Praehofer

2000, Chapter 1), concepts and information flow. Figure 4-1B shows the rela-

tionships for the user or viewer of the generative artwork. There are two key

sets of concepts (models) held by the artist: how the world works and how the

computer works. In order to program the computer with a view to imple-

78 4.6: Methodologies of Generative Art

menting aspects of how the world works (e.g. emergent behaviour), there

must be a translation or mapping between the concepts of how the world

works and how the computer works. Knowledge of how the world works is

informed by interactions in the world (the experimental frame). In developing

models of how the world works, and implementing simulations on the com-

puter, the computer simulation may inform us how the world works as well.46

As the figure shows, there are two feedback loops operating. Concepts

about how the world works inform concepts about how the computer works

reciprocally. Concepts of how the world works must be mediated by concepts

of how the computer works before they can be implemented as a program run

on the computer. The output of such a program may inform both concepts of

how the world works (as this is what the simulation or artwork is attempting

to achieve) and how the computer works.

THE WORLD

ARTIST

COMPUTER

Concepts of how
the world works

Concepts of how
the computer

works

inout

informs

informs

Intent expressed
as programs

Experience of
the world

Experience of the
computer simulation of
the world

THE WORLD

USER

COMPUTER

Concepts of how the
world works

Concepts of how
the computer
works

inform
s

inform
s

Intent
expressed as
interaction

Experience
of the world

Experience of the
computer simulation of
the world

A. Development Mode. Information flow for
the artist (with the intent of authoring a
generative artwork) interacting with the
computer working in the world. The red
lines show key information flows.

B. Experience Mode. Information flow for
the user interacting with the computer,
working in the world. The lighter shaded
lines indicated weakened channels of in-
formation flow.

Figure 4-1: Concepts and information flow between the artist or programmer and the
computer.

There are many observations we can make from these relations and feedback

loops. For example, consider the mapping or translation of concepts about the

world to the more limited domain of the computer. Many AL simulations map

concepts about the world to the purely symbolic domain of computation

46 Of course, we make no assumption of the accuracy of the simulation, beyond its intent to
simulate some aspects of the world, thus what the computer informs us about the world may
possibly be incorrect or irrelevant.

Chapter 4: Emergence 79

(birth, death, life), even the concept of the world itself is reduced to a finite,

Cartesian, possibly discrete representation. If such representations go on to

inform concepts about the (real) world, then clearly their usefulness may be

limited. In simulation terms, we speak of morphism relationships between

corresponding levels in the System Specification Hierarchy (Zeigler, Kim &

Praehofer 2000, pp. 18-21). Two different observation frames are isomorphic

if there is a one-to-one correspondence between the elements of different

models (in the ssh framework, this requires respective inputs, outputs and

time bases to be identical). In general, homomorphic equivalence is desired at

the state transition level. For two systems

!

S and

!

" S , suppose

!

S is bigger than

!

" S (has more states). A homomorphism is where some state transition from

!

si " si+n, n > 1 in

!

S is equivalent to a single state transition in

!

" S (i.e.

!

" s k # " s k+1) where the pairs

!

si , " s k() and

!

si+n, " s k+1() correspond to equivalent

states.

Ideally, we would like an isomorphic correspondence in our simulation of

observed phenomena (Suppes 1960), but this is, in practical terms, difficult or

impossible for all but the simplest cases. In the semantic view, homomorph-

isms commonly operate between systems. For example, we would like our

model to exhibit homomorphisms between simulation and reality.

Models, as they operate here, correspond to what Ronald Giere terms rep-

resentational, where they function as tools for representing the world (Giere

1999). In a representational model, one property or state represents another

property or state from the observed system. Such models are interest relative

where the properties of the model necessarily reflect the interests of the

model designer (mediated by their knowledge of how the world works). Inter-

estingly, the semantic interpretation of model properties may be different

between development mode and experience mode.

The use of frameworks and morphisms relates to the verification and vali-

dation of empirical models. These qualities are important when comparing

two different models or attempting to assess critical information provided by

the simulation (e.g., global warming, population dynamics). However, in the

artistic context, verification and validation requires no formal proof. Frame-

works do however provide a more complete basis for establishing formal

80 4.6: Methodologies of Generative Art

specification (and accuracy) in the modelling process, regardless of applica-

tion.

Consider also, how we might achieve Cariani’s relative-to-the-model emer-

gence (Cariani 1991) and how our assumptions in Figure 4-1A will be differ-

ent for the user/viewer of the artwork. This is shown in Figure 4-1B. Some of

the information flows are shown in a lighter shade to reflect the possibility

that their effects may be diminished in the experience of the artwork. In this

case, the feedback loops become minimal or disappear, meaning we may have

to work harder to achieve emergent behaviour. One important way this can be

obtained is by strengthening the connection between the user’s interaction

with the model and their concepts of how the world works. To achieve rela-

tive-to-the-model emergence, engagement with the computer needs to sug-

gest that the work is more than its design intended it to be — it must be in-

formationally open. For artworks, this might be achieved in a number of

ways:

! through interaction (a feedback loop) with the work in real-time, where

continuous re-assessment of the work suggests (for example) dynamics

beyond the physical or virtual elements that compose the work;

! through suggestion of the sublime by an apparent vastness — that the

simulation’s representation of the world is broader than the user’s con-

cept matching47 of the same phenomena. This is the subject of discus-

sion in the next section.

A more problematic area is that of the user’s concepts about how the com-

puter works, what it is capable of, and so forth. Naively, people may find some

things the computer does impressive because the computer is doing them

(rather than a person for instance). We are fascinated and amazed in many

cases, that a mere machine can produce things of seemingly un-machine-like

qualities — technical prowess, even qualities we only associate with, for in-

stance, nature itself. Of course, such assumptions reveal gaps in our analysis

of both the world and the machine. These gaps can be easily exploited; mak-

ing computer-based works seems more impressive than they really are.

47 As used here “concept matching” means matching the experience of some phenomena to
concepts held by the person experiencing those phenomena.

Chapter 4: Emergence 81

4.7 The Computational Sublime

The sublime has a long and well-explored history in art, particularly in the

eighteenth and nineteenth centuries. Kant distinguished the mathematically

sublime and the dynamically sublime. The mathematically sublime brings to

our attention that which we can conceive of symbolically (through math-

ematics), but cannot experience sensorially. The dynamically sublime sug-

gests the incomprehensible power of nature. An important aspect of the sub-

lime is the tension created between pleasure and fear: the pleasure of know-

ing that we can be aware of what we cannot experience and the fear that

there exist things that are too vast or powerful for us to experience. In relat-

ing nature and aesthetics, the sublime formed a major critical and philosophi-

cal approach in western art in the eighteenth and nineteenth centuries (for an

overview of the relation of the sublime to nature see (Soper 1995, Chapter 7)).

Bourke and Kant argued that it is possible to suggest the sublimity of nature

(that which we cannot experience in totality) through the experience of an

artwork.

In recent times, the postmodern sublime has contrasted beauty as a form

that can be comprehended against the sublime, as that which is unrepresent-

able in sensation (Lyotard 1984). As discussed, emergence in computation is

unrepresentable, in the sense that the product of elements interacting in ways

gives rise to properties that cannot be predicted. Artworks that seek to give a

sense of the processes of nature in machines, seek to give experience to that

which cannot be experienced in totality — only suggested through a dynamic

interaction.

Therefore, the concept of the computational sublime is introduced: the in-

stilling of simultaneous feelings of pleasure and fear in the viewer of a pro-

cess realised in a computing machine. A duality, in that even though we can-

not comprehend the process directly, we can experience it through the ma-

chine — hence we are forced to relinquish control. It is possible to realise

processes of this kind in the computer due to the speed and scale of its inter-

nal mechanism, and because its operations occur at a rate and in a space

vastly different to the realm of our direct perceptual experience.

An example of a work that subverts standard technological processes and

suggests the role of the computational sublime is that of the Dutch artists Er-

82 4.8: Conclusions

win Driessens & Maria Verstappen (Driessens & Verstappen 2001a). Their

work, IMA Traveller subverts the traditional concept of cellular automata by

making the automata recursive, leading to qualitatively different results to

those achieved through direct mimicry of technical ca techniques in other

generative works. IMA Traveller suggests the computational sublime because

it is in effect, an infinite space. It offers both pleasure and fear: pleasure in

the sense that here inside a finite space is the representation (and partial ex-

perience) of something infinite to be explored at will; fear in that the work is

in fact infinite, and also in that we have lost control over it. The interaction is

somewhat illusory, in the sense that while we can control the zoom into par-

ticular sections of the image, we cannot stop ourselves from continually fall-

ing (zooming) into the work, and we can never return to a previous location in

the journey. The work creates an illusion of space that is being constantly

created for the moment (as opposed to works that draw from pre-computed

choice-sets). The zooming process will never stop. That there is no real

ground plane or point of reference suggests Kierkegaard’s quote of Section

4.4.3: you are always going, but only from the point of where you’ve been.

4.8 Conclusions

Generative processes offer a rich and complex area for artists to explore. This

chapter has only touched upon a few issues, and ignored many of importance.

The concept of emergence, though constantly changing and often criticised, is

a recurring philosophical theme that evolved to supersede the vitalist philoso-

phies of the nineteenth century. This philosophical theme links a number of

schools of thought in the sciences of the twentieth century — systems theory,

cybernetics, and artificial life. If such a theme could be expressed succinctly,

it would be as a philosophy of process that includes both mechanism and

matter as fundamental properties of the universe.

It is important however, to consider the fate and usefulness of both systems

theory and cybernetics. Systems theory was a cultural reaction to reduction-

ism and highly specific modes and languages in science. Cybernetics (as de-

fined by Ashby) was a theory of machines, but it treats, not things, but ways

of behaving (Ashby 1952). Today, at the beginning of the twenty-first century,

Chapter 4: Emergence 83

while both these disciplines still have their proponents, such a holistic ap-

proach is not the predominate methodology for training scientists.

The longevity of artificial life is yet to be determined. As the stepchild of

systems theory and cybernetics, AL, once again, is hedging its bets on the

process philosophy. The real payoffs and long-term goals of AL, such as the

creation of artificial systems that we can confidently call alive, have yet to

materialise. AL may not have the same escape hatches as AI did, but even by

failing to create our own artificial living systems, we may still be learning

about life.

Generative art draws from the philosophies of the process-based sciences.

Its potential is rich: art-as-it-could-be, artworks that are autonomous, genu-

inely novel, emergent, active, self-renewing and never-ending. Yet, while

many innovative generative artworks have given us glimpses into these possi-

bilities, such lofty goals remain intangible at present, and with no guarantee

of success. It remains for future generations of generative artists to determine

if any of these goals will be achieved.

This chapter has discussed some modes and methodologies for generative

art to explore: the role of subversion; mental models of understanding for the

artist and audience; the computational sublime. I do not suggest that these

are the only issues for consideration, and inevitably, artworks will be judged

not only on the themes explored here, but also in terms of the more comfort-

able and fashionable theories of the electronic and new-media arts, and con-

temporary art in general.

Generative art seeks to exploit the out-of-control nature of nature, but to

achieve this in a genuine sense the artist is obliged to acknowledge that con-

trol must really be relinquished. This abandonment remains a very difficult

thing to achieve, and a challenge to the conceptual processes of developing an

artwork.

I have also acknowledged that computation, as it exists today, may never

be able to give us true emergence, the likes of which we observe in the world

around us. As a number of authors have shown, the dialectic of simulation

and realisation, of life-like and life, are fundamental issues still seeking a

stronger resolution.

84 4.8: Conclusions

Such a prognostication views modern sculpture as a preparatory stage

representing steps towards the simulation of biological life, a point in

human evolution when the sculptor begins to imitate the machine maker

and the creator of scientific models, unaware that the artifacts of tech-

nology are meant to do the same things as his own forms, and that they

do them more successfully. … The machine, he intuitively realized, as

unstable and inefficient as it was, remained the only means by which

man would eventually reconstruct intelligent life, or what might be

called life-bearing artifacts. As a result, much modern sculpture has

been concerned with the creation of pseudo-machines which haphaz-

ardly approximate the life impulse. (Burnham 1968a)

85

Part 2

Chapter 5: Generative Modelling with L-systems 87

5 Generative Modelling

with L-systems

To see a world in a grain of sand

And a heaven in a wild flower,

Hold infinity in the palm of your hand

And eternity in an hour.

— William Blake, ca. 1803

The previous chapters provided overviews of salient issues related to certain

types of art practice, such as the relation of science to art, the fields of Artifi-

cial Life and generative art, issues of emergence, levels and patterns, and the

computational sublime. I now turn to a technical description of my research

into generative systems for artistic purposes. Here I provide a survey of re-

lated work in computer graphics, organic and botanical modelling and then

go on to describe the specific systems developed in detail.

In particular, this chapter looks at generative modelling using string re-

writing grammars (L-Systems) formalisms originally conceived as a theoreti-

cal framework for the developmental modelling of multicellular structures,

such as plants.

5.1 Modelling Taxonomies

In the 1980s, a number of computer graphics researchers turned their atten-

tion to the “realistic” modelling of “natural phenomena” for the purposes of

dynamic visualisation of natural forms and processes. Common examples in

88 5.1: Modelling Taxonomies

computer graphics include: shells (Fowler, Meinhardt & Prusinkiewicz 1992);

plants (Prusinkiewicz & Lindenmayer 1990); trees and flowers (de Reffye et

al. 1988); ocean waves (Fournier & Reeves 1986; Mastin, Watterberg & Ma-

reda 1987; Peachey 1986); ocean and terrain (Max 1981), fractal terrain

(Fournier, Fussell & Carpenter 1982); clouds (Gardner 1984, 1985); waterfalls

(Sims 1990b); fire (Gardner 1990; Stam & Fiume 1995); natural “textures”

such as stone and marble (Peachey 1985; Perlin 1985b), “organic” cellular

textures (Fleischer et al. 1995); and animal skin patterns (Turk 1991; Witkin

& Kass 1991).

Interestingly, “natural phenomena” rarely included complete animals.

When attempts were made to model animals, the modelling was limited to

particular facets, such as the motion dynamics of snakes and worms (Miller,

G. S. P. 1988), or the group behavioural characteristics of flocks, herds and

schools (Reynolds 1987). Modelling of individual animals in detail involves a

number of separate sub-topics in computer graphics, such as inverse kin-

ematics, articulated body dynamics, complex surfaces and texturing. Each

considered somewhat separate problems for a dynamic visual simulation.48

Fournier proposed a taxonomy of different approaches to the modelling of

natural phenomenon (Fournier 1987).

! Empirical models — data generated from empirical sources, such as

terrain models acquired from digitisation systems, geographic informa-

tion systems (GIS), or models constructed as a result of direct observa-

tion and measurement.

! Physical models — models generated by simulating domain specific

physical laws, such as the wave simulation of Miyata (Miyata 1986), or

the cloud models of Kajiya and Von Herzen (Kajiya & Von Herzen 1984).

Physical modelling is a more general topic in simulation and computer

graphics, including areas such as rigid and soft-body dynamics (Barzel

1992).

! Morphological models — models that directly give the shape of the

model, for example the parametric shell models of D’Arcy Thompson

(Thompson 1961). In a wider context, these models are often know as

48 Developments in the following decade saw attempts to incorporate all these elements. See for
example: (Tu & Terzopoulos 1994).

Chapter 5: Generative Modelling with L-systems 89

functional, as they are defined by some closed-form mathematical

function.

! Structural models — models defined by formal specification of struc-

ture, with the interpretation of that structure a separate component of

the model. This includes the formal language approach of Smith (Smith

1984) and the string re-writing grammars developed by Lindenmayer

(Lindenmayer 1968; Lindenmayer & Rozenberg 1976). In the context of

plant modelling, Hanan calls these architectural and further categorises

them into developmental and non-developmental models (Hanan 1992).

! Impressionistic models — do not seek any structural or morphogenic

realism, rather a “softer” impressionistic style in their visualisation,

similar to that of the impressionist painters. Examples include the cloud

and tree models of Gardner (Gardner 1984, 1985) and forest and tree

models of Reeves and Blau (Reeves & Blau 1985).

! Self-models — are self-defined models such as Julia and Mandelbrot

sets (Mandelbrot 1983; Peitgen & Richter 1986; Peitgen & Saupe 1988).

In a mathematical sense, these may also be classified as functional

models.

! Mixed models — models of mixed type that do not easily fit into any of

the above categories, or combine elements of the other categories.

It can be argued that most methods used to model natural phenomena fall

into the more widely used physically based, functionally based and pro-

cedurally based categories common in computer graphics classifications (Barr

et al. 1988; Ebert et al. 1993; Ebert et al. 1994; Inakage et al. 1988). In class-

ifications used in botanical modelling, Waller and Steingraeber define spatial

models as those providing topological and geometric information necessary to

produce an image (Waller & Steingraeber 1985). Non-spatial models focus on

global characteristics often providing statistical information rather than spe-

cific geometric datasets. Within the classification framework listed above, all

models would be described as spatial.

90 5.2: Generative Modelling

5.2 Generative Modelling

In general, computer graphic models of natural scenes reflect the complexity

of nature and therefore the data they generate can be relatively large.

Models that define some process (be it physical, functional or procedural),

and which generate data from that process (which is the primary output of

the model), are known as generative models. In the modelling of natural

scenes, generative models often use the principle of database amplification

(Smith 1984), where the model is many orders of magnitude smaller than the

data it generates. This may often be an advantageous approach, since ma-

nipulating large datasets directly can be difficult, whereas the management of

a far simpler generative specification is potentially easier. The principle of

database amplification is often seen in nature, for example in the expression

of dna into an organism.

The modelling systems described in this thesis falls into the category of de-

velopmental procedural, whereby development of geometric datasets is con-

trolled by endogenous information flow. What makes this system different

from similar systems is both its preservation of temporal continuity and its

ability to allow natural hierarchies in procedural specification.

5.2.1 Modeller–Renderer Relationships

Generation of large geometric datasets may present visualisation problems

due to the time and memory requirements needed to process the geometric

data. In this situation, designing a system with some form of “intelligent” on-

demand processing can be advantageous. Hart classifies procedural genera-

tive methods into “data amplifier” or “lazy evaluation” paradigms (Hart

1996). These criteria relate to the relationship between geometric data gen-

eration and the rendering of that data. With the data amplifier paradigm,

geometric data for the entire scene is generated by the modeller and sent to

the rendering system to be turned into raster images. With lazy evaluation,

the renderer drives the process calling for geometric detail where needed,

dependent on visibility and level-of-detail required.

Natural scenes often contain repeated elements over a number of hier-

archies; these elements can be either geometrically identical or statistically

Chapter 5: Generative Modelling with L-systems 91

similar. Ultimately, geometric specification must be decomposed into a set of

geometric primitives that the renderer is capable of rendering natively (i.e.

without further decomposition), typically triangles or convex polygons in

hardware-based systems (Woo et al. 1997). In software rendering systems this

may vary, for example the RenderMan system decomposes all geometry into

sub-pixel, micropolygons (Cook, R. L., Carpenter & Catmull 1987). Ray-tracing

based systems allow the direct rendering of more complex primitives such as

algebraic surfaces, quadric surfaces, parametric surfaces, volumetric data,

“soft” objects, as well as polygons (Hanrahan 1983; Heckbert 1987; Kajiya

1983; Kajiya & Von Herzen 1984; Levoy 1990; Whitted 1980).

The statistical similarity of many higher order structures may result from

the transformation and organization of simpler geometric entities. A scheme

that can capture these hierarchical relationships can then take advantage of a

more efficient relationship between model generation and renderer.

For example, consider a field of flowers of the same species — each flower

may be statistically similar, each of the elements that comprise individual

flowers may be topologically identical (petals, florets, stamen, etc. made from

individual geometric primitives — see Section 7.3.1). In this situation, instan-

cing of geometric data at a number of levels provides an efficient method of

minimizing the volume of data-flow between the modeller and renderer.

5.2.2 Developmental Models

Developmental models are often used in the biological sciences. They capture

the developmental and morphogenic changes an organism or population

undergoes in its lifetime. In the sense that the term is used in this thesis, de-

velopmental models imply some form of time-based modelling, i.e. that tem-

poral specification is an integral part of the model. A developmental model,

suitable for animating morphogenic forms, is presented in Chapter 9.

5.3 L-systems

Lindenmayer systems, or L-systems were originally conceived as a theoretical

modelling framework for the development of multi-cellular organisms, such

as plants (Lindenmayer 1968). The original emphasis was on plant topology

92 5.3: L-systems

— neighbourhood relations between plant cells or higher structures. They

arose from an interest in string rewriting based on Chomsky’s work on formal

grammars in the 1950s (Chomsky 1956). The main difference between Chom-

sky grammars and L-systems is that with Chomsky grammars, productions

are applied sequentially as opposed to L-systems where productions are ap-

plied in parallel.

Initially, results were interpreted by looking at the words generated during

a derivation. Simple graphical substitution for individual letters was applied,

resulting in schematic images. With the advent of computer graphics displays

capable of displaying colour images and manipulating two- and three-

dimensional primitives, researchers looked at more advanced methods of

visualizing produced strings. These attempts are summarised in the following

section.

5.3.1 Visualisation of Produced Strings

In order to visualise detailed botanical and biological structures, particularly

the branching structures found in plants, more complex interpretation tech-

niques were required. Aono and Kunnii were the first to consider the use of L-

systems for generating realistic botanical images (Aono & Kunii 1984). How-

ever, they found the original DOL-system49 “not powerful enough” to repre-

sent complex branching structures. They added additional drawing rules in

addition to the L-system to generate three-dimensional tree models exhibiting

monopodial and dichotomous branching patterns. Hogeweg and Hesper stud-

ied propagating, deterministic bracketed 2L-Systems to produce a rich variety

of tree structures, but their graphical results were limited to 2D black and

white line drawings (Hogeweg & Hesper 1974). Similarly, Frijters and Lin-

denmayer made simple graphic interpretations, focusing on topology with

geometric enhancements made in a post-processing step (Frijters & Lin-

denmayer 1974).

The use of L-Systems for computer graphics modelling was developed later

by Smith (Smith 1984) who coined the term graftals and referred to the

“fractal” nature of structures that can be formed by rewriting grammars. In-

fluenced by the use of interpreting individual letters with plotter pen com-

49 Deterministic, context-free L-system, defined in section 5.3.2.1.

Chapter 5: Generative Modelling with L-systems 93

mands (Szilard & Quinton 1979), Prusinkiewicz used a LOGO-style turtle in-

terpretation (Abelson & DiSessa 1982) to create two- and three-dimensional

models from the strings produced by L-systems (Prusinkiewicz 1986b, 1987).

He showed the technique is particularly useful in modelling herbaceous (non-

woody) species. Highly detailed and realistic images were created by extend-

ing grammars, providing pre-defined surfaces for plant elements that were

difficult to model within the L-system directly, adding advanced turtle inter-

pretations, and rendering models using a ray tracing technique

(Prusinkiewicz & Hanan 1989; Prusinkiewicz & Lindenmayer 1990; Prus-

inkiewicz, Lindenmayer & Hanan 1988).

The issue of symbol and turtle interpretation will be discussed in more

detail in Chapter 6.

5.3.2 0L-systems

OL-systems are the simplest class of L-system, being context-free, interac-

tionless, or zero-sided. Following the terminology and presentations found in

(Hanan 1992; Herman & Rozenberg 1975; Prusinkiewicz & Lindenmayer

1990; Rozenberg & Salomaa 1980), a formal description is presented below.

5.3.2.1 Definition of 0L-systems

A context-free, 0L-System is defined as the ordered triple

!

G = V ,", P where:

!

!

V = s1,s2 ,...,sn{ } is an alphabet composed of a set of distinct symbols,

!

si ;

!

!

" #V + , a non-empty word (sequence of symbols) over

!

V is known as

the axiom;

!

!

P "V #V * an endomorphism defined on

!

V * , known as the finite set of

productions.

A production

!

s , "()# P is written in the form

!

s " # , where the symbol s is

known as the predecessor and the word

!

" #V * the successor of the produc-

tion. Where there is no specific production for a symbol s, the identity produc-

tion

!

s " s is assumed.

94 5.3: L-systems

Deterministic L-systems (DOL-systems) have at most one production for each

symbol. A 0L-system is deterministic if and only if for each

!

s "V there is ex-

actly one

!

" # V * such that

!

s " # .

The L-system, G applies a production to a symbol, s, in a word when the pre-

decessor for that production matches s. The notation

!

s a " means module s

produces a word

!

" as a result of applying a production in G.

Let

!

µ = s1s2...sk be an arbitrary word over

!

V . The word

!

" = #1#2...#m is gen-

erated by G from

!

µ , denoted

!

µ "# , if and only if

!

s
i
a "

i

!

"i : i = 1,2,K , k . G

generates a developmental sequence of words

!

µ0µ1...µn by applying the

matching productions from P at each iteration, beginning with the axiom,

!

" .

That is

!

µ0 =", and µ0 # µ1 # ...# µn . A word

!

" is a derivation of length n if

there exists a developmental sequence such that

!

" = µn .

For example, this DOL-system

!

V = F , R , L, [,]{ }
" : F
p1 : F # FFR [RFLFLF]L[LFRFRF]

(5.1)

Generates the sequence of words:

!

" = µ0 = F
µ1 = FFR [RFLFLF]L[LFRFRF]
µ2 = FFR [RFLFLF]L[LFRFRF]FFR [RFLFLF]L[LFRFRF]R

[RFFR [RFLFLF]L[LFRFRF]LFFR [RFLFLF]L[LFRFRF]
LFFR [RFLFLF]L[LFRFRF]]L[LFFR [RFLFLF]L[LFRFRF]
RFFR [RFLFLF]L[LFRFRF]RFFR [RFLFLF]L[LFRFRF]]

As can be seen, the size of the string increases rapidly under such a produc-

tion, illustrating the generative nature of even simple productions. Moreover,

it is easy to see recursive patterns developing in the produced strings, leading

to self-similarity in the visualisations of the string.

5.3.2.2 A Note on Symbol Notation

Traditionally, the symbols

!

si of the alphabet

!

V are notated using single al-

phabetic characters or special characters such as “[“, “]”, “+”, “–”, “&”, “^”,

“|”, “\”, “/”, and so on. Throughout the rest of this thesis, symbols with multi-

character representations are also used. This mirrors the actual computer

Chapter 5: Generative Modelling with L-systems 95

implementation, where identifiers denoting specific symbols can be composed

of multiple alphanumeric characters, but must always begin with an alpha-

betic character: [a-zA-Z].

5.3.3 Context Sensitive L-systems

Context sensitive L-systems use contextual relations to determine the appro-

priate production. A wide variety of different types of context sensitive L-

systems have been detailed in the literature (Herman & Rozenberg 1975; Lin-

denmayer 1968; Lindenmayer & Rozenberg 1976; Salomaa 1973). Since the

main concern here is in the practical application of formalisms to the elec-

tronic arts, rather than a contribution to the theory of formal languages, a

simplified and pragmatic description will be given here. This follows the no-

tation and definitions of (Hanan 1992; Prusinkiewicz & Lindenmayer 1990).

A particular generalisation of context sensitive L-systems, known as

(m,n)L-systems will be considered. In this case, m and n refer to the number

of symbols on the left and right sides respectively of the predecessor symbol

under consideration. These additional symbols will be considered in deter-

mining a match for the predecessor symbol of a given production. In specify-

ing such a production, the following notation is used:

!

sl1
sl2

...slm
< s > sr1

sr2
...srn

" #

where the symbol s (known as the strict predecessor), can produce the word

sequence

!

" if and only if the sequence

!

sl1
sl 2

...sl m
s sr1

sr2
...srn

 exists in the de-

velopmental word

!

µi of the current iteration. The values of m and n may be

different for each production in the set of productions for a given L-system. It

is also possible for m or n to be 0. If

!

m = n = 0 , then the production is no

longer context sensitive.

The sequence

!

sl1
sl2

...slm
 is known as the left context of length m,

!

sr1
sr2

...srn

the right context of length n, of s in a production

!

pi .

An (m,n)L-system is deterministic if and only if no two productions can

match the same symbol in a string. Since there are no restrictions on the

lengths of context it is quite easy to devise (m,n)L-systems that are non-

deterministic, hence some resolution rule is required to determine which

96 5.3: L-systems

particular production should be applied when more than one matches. Here,

a number of possible approaches have been considered:

1. Use the first matching production (this implies productions must be or-

dered);

2. Select the production randomly from the set of matching productions;

3. Use the matching production with the highest (most specific) context,

i.e. the matching production with the highest value of

!

m + n. If more

than one production has this highest value then select the first produc-

tion from this set of highest value matching productions;

4. Same as 3, except that in the case of multiple highest value contexts,

randomly select from the set of highest value matching productions.

Note that 3 can be achieved using 1 if productions are ordered in descending

length of context (similarly for 2 and 4). As an example, consider the following

(m,n)L-system:

!

" : ABAB
p1 : A > BAB # C
p2 : A > BA# D
p3 : A > B # E

(5.2)

In this case, all three productions match the first symbol of the axiom. Ap-

plying rule 1 or 3 to resolve this ambiguity would result in

!

p1 being applied. If

the order of rules were changed however:

!

" : ABAB
p1 : A > B # E
p2 : A > BA# D
p3 : A > BAB # C

(5.3)

Rule 1 would apply

!

p1 , rule 3 would apply

!

p3 .

The choice of appropriate resolution depends on the application. Using

rule 1 above is used in most cases (Prusinkiewicz & Lindenmayer 1990), rule

2 defines a non-deterministic L-system (see next section, 5.3.4). Choosing the

productions with higher context sensitivity may be useful to allow more spe-

cific rules to be used in specialised circumstances, while more general situa-

tions utilise productions with contexts of smaller lengths (this is analogous to

the rule-based learning systems described in (Holland 1995), whereby specific

Chapter 5: Generative Modelling with L-systems 97

rules are preferred over general ones). It also removes the ordering con-

straint that may make large production sets more readable, hence easier to

construct and change.

5.3.4 Stochastic 0L-systems

With the exception of the use of rule 2 in the preceding section, only deter-

ministic L-systems have been described. For a given L-system, the application

of productions is deterministic; hence, the models generated by the same L-

system will be identical. However, we may wish to introduce some variation in

the way productions are applied allowing variation in both topology and ge-

ometry. Stochastic L-systems will also find application in simulating Markov

models for music in Section 11.3.4.

Here the definition of stochastic L-systems is from (Prusinkiewicz & Lin-

denmayer 1990, Section 1.7), which is similar to that of (Eichhorst & Savitch

1980; Yokomori 1980).

5.3.4.1 Definition of Stochastic 0L-systems

A stochastic 0L-system is an ordered quadruplet

!

G
"

= V ,#, P," , where:

! the alphabet, V, axiom

!

" and set of productions, P are as defined for

deterministic 0L-systems in Section 5.3.2.

! The function

!

" : P # 0,1(] is called the probability distribution and

maps the set of productions to a set of production probabilities.

Let

!

ˆ P s()" P be the subset of productions with s as the predecessor. If no pro-

duction for s is specified the identity production,

!

s " s is assumed. Each pro-

duction

!

pi "
ˆ P s() has with it an associated probability

!

" pi(), where

!

" pi()
pi #

ˆ P s()

$ = 1 (5.4)

The derivation

!

µ "# is known as a stochastic derivation in

!

G
"
 if for each oc-

currence of s in the word

!

µ , the probability of applying production

!

pi is equal

to

!

" pi(). In a single word, different productions with the same predecessor

may be applied in a single derivation step. Selection is weighted according to

98 5.3: L-systems

the probabilities associated with each production with the appropriate prede-

cessor.

A production in a stochastic L-system is notated

!

pi : s "

pi()

$.

5.3.5 Parametric 0L-systems

Parametric L-systems were proposed to address a number of shortcomings in

previous L-system models, particularly for the realistic modelling of plants. As

string re-writing systems, L-systems are fundamentally discrete. This discrete

nature makes it difficult to model many continuous phenomena or accurately

represent irrational ratios.

Lindenmayer recognised these difficulties and proposed the association of

numerical parameters with symbols (Lindenmayer 1974). With application to

both string rewriting and turtle interpretation, Prusinkiewicz and Hanan de-

scribed parametric L-systems, whereby a group of continuous parameters are

associated with L-system symbols and used in the turtle interpretation of

those symbols (Prusinkiewicz & Hanan 1990). The application of parametric

L-systems to plant modelling was further developed by Hanan in his Ph.D.

thesis (Hanan 1992). The definition below is based on the definitions found in

those references.

5.3.5.1 Definition of Parametric 0L-systems

Parametric L-systems associate real-valued parameters with each symbol,

collectively forming a parametric module. A module with symbol

!

S " V and

parameters

!

a1,a2 ,...,an " # is written

!

S a1,a2 ,...,an() . Strings of parametric

modules form parametric words. It is important to differentiate the real-

valued actual parameters of modules, from the formal parameters specified

in productions. In practice, formal parameters are given unique50 identifier

names when specifying productions.

Assuming the following definitions:

!

!

" is the set of formal parameters,

!

C "() is a logical expression using pa-

rameters from

!

",

!

E "() is an arithmetic expression with parameters

from the same set.

50 Within the scope of the associated production.

Chapter 5: Generative Modelling with L-systems 99

! C and E consist of formal parameters and numeric constants, combined

using the standard operators +, –, /, *, ^ (exponentiation)

!

n (nth root,

defaulting to n=2 if n is not specified); relational operators

!

<,

!

>,

!

",

!

=,

!

";

logical operators ! (not), & (and), | (or); a number of trigonometric, sto-

chastic and other functions, detailed in Section 6.8; and parentheses “(“,

“)”. Rules for constructing expressions, operator precedence and asso-

ciativity are the same as for the C programming language (Kernighan &

Ritchie 1988).

!

!

! "() and

!

! "() are the sets of correctly constructed logical and arithme-

tic expressions with parameters from

!

". Logical expressions evaluate to

Boolean values of TRUE or FALSE (equivalent to 1 or 0). Logical expres-

sions evaluate to a real number in an arithmetic context.

A parametric 0L-system is defined as an ordered quadruplet

!

G = V ,",#, P

where:

!

!

V = s1,s2 ,...,sn{ } is an alphabet composed of a set of distinct symbols,

!

si ;

!

!

" the set of formal parameters;

!

!

" # V $%*()
+

, a non-empty parametric word known as the axiom; and

!

!

P " V # $*() # ! $() # V # " $()
*%

&
'

(
)
*
*

 the finite set of productions.

Productions

!

s,C, "() are denoted

!

s : C " # where the formal module

!

s " V # $
* is the predecessor, the logical expression

!

C " ! #() is the condition

and

!

" # V $! %()
*&

'
(

)
*
+
*

 is a formal parametric word known as the successor. A

formal parameter appears once in the predecessor. The number of formal pa-

rameters must be consistent for any given symbol and match the number of

actual parameters for the same symbol. A production without a condition has

an implicit condition constant value of TRUE.

A production is applied to a module in a parametric word if the production

matches that module. The necessary conditions for matching are: if the mod-

ule and production predecessor symbols and parameter counts match; the

condition statement, C, evaluates to TRUE when the module’s actual param-

eters are bound to the formal parameters as specified in the predecessor

module. When a module is matched it is replaced by the successor word,

!

" ,

100 5.3: L-systems

whose formal parameters are evaluated and bound to the corresponding ac-

tual parameters.

5.3.5.2 Derivation and Developmental Sequence Generation

The parametric L-system, G applies a production to a module m in a paramet-

ric word when the production matches m. The notation

!

m a " means module

m produces a parametric word

!

" as a result of applying a production in G.

Let

!

µ = m
1
m

2
...m

j
 be an arbitrary parametric word over

!

V . The word

!

" = #1#2...# k is generated by

!

µ , denoted

!

µ "# , if and only if

!

mi " # i

!

"i : i = 1,2,K , j . G generates a developmental sequence of words

!

µ0µ1...µn by

applying the matching productions from P at each iteration, beginning with

the axiom,

!

" . That is

!

µ0 =", and µ0 # µ1 # ...# µn . A word

!

" is a derivation

of length n if there exists a developmental sequence such that

!

" = µn .

For example, the following parametric L-system

!

" : A 1,1()
p1 : A x, y()# A y, y + x()

(5.5)

generates the derivation sequence

!

A 1,1()" A 1,2()" A 2,3()" A 3,5()K (5.6)

calculating the Fibonacci sequence. An example with a condition

!

" : A 1,2()

p1 : A x,c() : x * x # c $ A 1
2

x +
c
x

%

&
'

(

)
* ,c

%

&
'

(

)
*

(5.7)

computes the square root of the second parameter of A (labelled c) using

Newton’s method:

!

A 1,2()" A 1.5,2()" A 1.416667,2()" A 1.414216,2()"K (5.8)

For parametric L-systems to be deterministic no two productions can match

the same module in a derivation word by the definition above. However, en-

suring determinism by these criteria can be difficult to prove for all possible

combinations of parameter values, hence a practical solution is to order the

set of productions and apply the first production that matches in the list. If

Chapter 5: Generative Modelling with L-systems 101

there are no matching productions, the identity production is assumed and

the parameters for that module remain unchanged.

Chapter 6: Turtle Interpretation 103

6 Turtle Interpretation

FFF[+FF[+F][-F]-FF[+F][-F]]!

— Turtle string.

The turtle interpretation of produced strings from L-systems has become a

popular method for generating visual models of plants. The term “turtle in-

terpretation” is somewhat of a misnomer, based on the concept of logo turtle

geometry (Abelson & DiSessa 1982) where a mechanical turtle holding a pen

responds to simple user commands to more around a two-dimensional sur-

face (e.g. “turn left”, “turn right”, “move forward x units”). In addition, pen

control commands (“pen up”, “pen down”, “change colour”) permit drawing

to be carried out, either on real paper in the case of a mechanical turtle or as

a drawing on the computer screen in the case of a simulation.

In the turtle interpretation of L-systems, a derivation word is read sequen-

tially from left to right, with certain symbols having an interpretation for the

turtle (others are ignored). The turtle, moving in three-dimensional space,

interprets these commands to create geometric structures. These geometric

structures can then be visualised using standard computer graphics tech-

niques. The earliest interpretations involved line drawings with a simple rep-

ertoire of turtle commands. As more detailed and realistic models were re-

quired, more complex turtle commands were added. In the system developed

in this thesis, commands build, effect, and control a scene graph. The scene

graph is a dynamic structure for representing three-dimensional geometry

(Döllner & Hinrichs 1997).

104 6.1: Specification and Dataflow

6.1 Specification and Dataflow

A complete system to generate visual models based on L-systems requires

more information than just the L-system itself. In the system described here, a

number of predefined variables specify default behaviours and parameters

that are used by the system in the absence of any other over-riding informa-

tion. These include the default length, angles, and derivation length (herein

referred to as l,

!

" , and

!

nµ respectively) used in turtle interpretation of pro-

duced strings.

The basic dataflow model representing a system that implements the for-

malisms defined in the preceding chapter is outlined in Figure 6-1. A file

containing L-system definitions51 is read into the system and geometric

datasets are produced. These datasets may be visualised in real-time using

appropriate graphics hardware, or sent to a software rendering system.

L-system
definition

Parse definition Initialise turtle

Load axiomApply rulesInterpret stringGeometric
data

string

Pre-process
Input file

!

µ0

!

µn

!

µi

!

µi+1

Figure 6-1: Basic dataflow for generating visual models from L-systems. Rule application is
an iterative process, proceeding until the required derivation length is reached.

The L-system definition file is first pre-processed by a system equivalent to

the macro processor, cpp (C pre-processor) (Kernighan & Ritchie 1988, pages

228-233). This permits macro replacements of, for example, parameter con-

stants and functions, making the L-system easier to understand and modify.

Comments, enclosed by the characters “/*” and “*/” or beginning with “//”

and terminated by an end of line, are also removed by the macro processor.

In addition to the L-system definition itself, the input file may include a

number of compiler directives and statements. Directives control symbol in-

terpretation, read predefined surfaces and control geometric output. Global

turtle parameters, such as the l and

!

" constants may be assigned new values.

51 Axioms, productions, control statements and ancillary definitions.

Chapter 6: Turtle Interpretation 105

6.2 Symbol Equivalence

L-systems are fundamentally symbol re-writing systems and interpretations

are applied to some of the symbols produced by the re-writing process. Situa-

tions arise where we would like to have two or more different symbols that

have the same interpretation (i.e., perform the same function when inter-

preted). This is particularly true in a turtle interpretation where symbols are

interpreted as turtle commands. For example the “+” symbol represents a

turn about the

!

r

U vector (see Section 6.3). We might want a different symbol,

“turn” which has the same function as “+” but different re-writing rules.

To achieve this functionality, the equivalent directive is used. The syntax

for use is as follows:

equiv baseSymbol equivalentSymbols …

So, for example:

equiv + turn plus l

Defines three new symbols “turn”, “plus” and “l” that are interpreted by the

turtle as being equivalent in function to that of the “+” symbol (in the actual

computer implementation statements are terminated by a semicolon charac-

ter: “;”). In the case of parametric symbols, each symbol will have its own

unique set of parameters. The usefulness of the equiv directive will become

more apparent in the chapter on developmental models and animation

(Chapters 8 and 9).

6.3 Turtle state

The turtle interpreting the L-system string maintains a set of attributes,

known as a state, which includes the following:

! Turtle position in Cartesian co-ordinates, denoted

!

t = tx , ty , tz() , relative

to a world co-ordinate system,

!

CW (refer Figure 6-3).

! Turtle orientation in space, represented by the orthogonal �unit vector

triplet

!

[
r

H
r

L
r

U], corresponding to heading, left and up directions re-

spectively. Each vector is of unit length and satisfies the equation

106 6.3: Turtle state

!

r

H "
r

L =
r

U . The combined turtle position and orientation thus form a co-

ordinate system,

!

CT (refer Figure 6-3).

! A generalised homogeneous transform,

!

TT represented as a 4 x 4 ma-

trix. Turtle commands may change this matrix, which is then pre-

multiplied with instanced geometry (detailed in Section 6.3.1). This

transform can be used for basic geometric transformations such as

scaling or skewing.

! The current drawing material, a context dependent value determined

by the mode of geometric output. In the case of simple vector based

drawing it is simply a colour, represented by a normalised scalar rgb
triplet

!

cR ,cG ,cB() whose components specify red, green and blue colour

values. For more complex geometric output, the current drawing ma-

terial consists of more detailed material descriptions52, which include

properties such as ambient, diffuse and specular reflections, transpar-

ency, texture and bump mapping parameters.

! Current drawing parameters such as line width (which specifies the

width (line) or radius (cylinder) of the current segment being drawn);

level-of-detail — a normalised scalar value that specifies the output ac-

curacy of all geometric primitives to their ideal forms (Figure 6-2.) This

feature is useful for polygon-based rendering systems, which can suffer

from performance problems when overloaded with too many polygons

in a scene definition.

! A dynamic array of cross-sectional curves (defaulting to the single entry

of a unit circle), these curves are used by the generalised cylinder sys-

tem, described in section 6.6.

52 Actually, references to materials rather than the materials themselves.

Chapter 6: Turtle Interpretation 107

Figure 6-2: A sphere primitive with differing level-of-detail values as shown. The
underlying polygonal structure has been superimposed as a vector drawing over a
rendered image of each sphere.

! A tropism elasticity factor used to model phototropic and geotropic ef-

fects when modelling plant structures (see (Prusinkiewicz & Lin-

denmayer 1990, page 58)).

! Customised state attributes specific to the output device and format.

This permits a generalised form of communication with the render to

set specific options particular to the rendering system being used.

In the case of parametric L-systems, each symbol has a number of associated

parameters. These parameters play an important role in turtle interpretation,

controlling the continuous properties of each command (detailed in the fol-

lowing sections).

6.3.1 Instantiating Geometry

The primary purpose of the turtle when building geometric datasets is to in-

stantiate geometric structures at specific locations in three-dimensional

space. The turtle position and orientation form a co-ordinate system,

!

CT , that

is always defined relative to a world co-ordinate system,

!

CW . Placing ge-

ometry defined relative to the world co-ordinate system at the turtle co-

ordinate system involves a co-ordinate transformation, which can be repre-

sented by a homogeneous 4x4 transformation matrix,

!

MWT , since the trans-

formations are affine. This transformation uses basis vectors to align the ori-

entation of the world coordinate system to that of the turtle coordinate sys-

tem.

108 6.4: Basic Turtle Commands

To transform a homogeneous point,

!

pw = xW yW zW 1[]
T
, defined rela-

tive to

!

CW into its instantiated position at the current turtle co-ordinate sys-

tem, the following transformation is applied

!

pT = xT yT zT 1[]
T

= TTMWTpW

= TT

1 0 0 tx

0 1 0 ty

0 0 1 tz

0 0 0 1

"

$
$
$
$

%

&

'
'
'
'

r

H
r

L
r

U
0 0 0 1[]

"

$
$
$
$
$

%

&

'
'
'
'
'

pw

(6.1)

This transformation is used when instantiating geometry at the current turtle

reference frame.

6.4 Basic Turtle Commands

In order to allow a turtle interpretation, a set of predefined symbols are as-

signed specific commands. These commands modify the turtle state or signal

the construction of geometric structures. In the case of parametric L-systems,

each symbol has associated scalar parameters that often control the amount

or quality of a particular command. For example, the “+” symbol is inter-

preted as “turn left”, the parameter associated with it specifies by how many

degrees to turn. In general, if a parameter is not supplied, a default, globally

defined value is used (which may be modified).

A summary of the basic turtle commands is provided in this section. More

advanced commands are detailed in sections that follow. The symbol and its

associated parameters are shown. Parameters are optional in most cases, so

if they are not specified default values are used.

Position and Orientation modifying commands:

Command Default Description

f(l) l = l* Move forward by l units in the direction of

!

r

H . The new

turtle position

!

" t = " t x , " t y , " t z() is calculated

!

" t = t + l
r

H .

* Globally defined values that can be changed by the user. Defaults to l = 1, and ! = 90° ("/2).

Chapter 6: Turtle Interpretation 109

Position and Orientation modifying commands:

+(#)

!

" = # * Turn left by angle # degrees.

–(#)

!

" = # Turn right by # degrees (equivalent to +(-#))

&(#)

!

" = # Pitch down by # degrees.

^(#)

!

" = # Pitch up by # degrees.

\(#)

!

" = # Roll left by # degrees.

/(#)

!

" = # Roll right by # degrees.

|(n)

!

n = 1 Turn around n times. Equivalent to +(180n).

Table 6–1: Basic turtle commands affecting turtle position and orientation.

Figure 6-3 illustrates these turtle orientation changes.

Figure 6-3: Turtle axis and positioning system.

The bracketing commands save and restore turtle state on a stack. Initially

they were included as the primary mechanism to model branches directly,

since they allow the turtle to return to a parent branch point after a child

branch has been constructed. In addition to this function, a number of new

capabilities will be described in the following sections.

State save, restore and generate commands:

Command Description

[Save the current turtle state onto a first-in, last-out stack. All com-

ponents of the state, as specified in Section 6.3, are saved.

110 6.4: Basic Turtle Commands

State save, restore and generate commands:

] Restore the current turtle state.

% If this is the first time this particular symbol has been encountered:

interpret current derivation string

!

µ up to the position of this sym-

bol without generating any output. Store turtle reference frame

with this symbol.

Subsequent readings of the symbol set the turtle reference frame

to the value stored with the symbol. This command is primarily

used with timed L-systems (Section 8.2).

Table 6–2: Turtle bracket commands.

The “%” symbol is used as a “break” function, breaking the dependency of the

turtle reference frame from any previous interpretations that effect position

and orientation to the point the symbol was encountered. The primary pur-

pose of this symbol is to enable new geometric sets to move and develop inde-

pendently of their parents, such as leaves falling from a tree, or flowers emit-

ting seeds. As this is inherently tied to animation, it is detailed in Section 8.3.

Interpreting the string generated from L-system (5.1), at derivation

!

nµ = 3

gives the image shown in Figure 6-4 below.

Figure 6-4: Turtle interpretation of the L-system (5.1) from Section 5.3.2. Note that even
though this image has a ‘tree-like’ shape, it is only two-dimensional.

Chapter 6: Turtle Interpretation 111

Turtle transform commands provide a mechanism to change geometry —

either built-in or externally defined surfaces. These commands change the

transform matrix

!

TT , which is used to transform instanced geometry (see

Section 6.3.1). These transformations are always applied relative to the turtle

reference frame.

Transformation modification commands:

Command Defaults Description

S(n) n = 1 Uniform scale — scale by n equally in the x, y, and z

axes.

SX(n) n = 1 Scale in the direction of the x axis by n

SY(n) n = 1 Scale in the direction of the y axis by n

SZ(n) n = 1 Scale in the direction of the z axis by n

SH(a,#) a = (0,0,1)

!

" = #
4

Uniform shear by # about a.

RT – Reset the transformation matrix to the unit matrix, i.e.

!

TT = I . This cancels the effect of any transformations.

Table 6–3: Turtle transformation commands.

Turtle instructions can also instance basic geometry that is “built-in” to the

system (drawn from internal algorithms). All the primitives described below

are subject to the transformations described above allowing an even greater

range of geometric shapes to be instanced (for example a scaled sphere will

be an ellipse). With the exception of the “F” command, none of the basic

primitive generation commands change the turtle position or orientation.

Basic Geometric Modelling Commands (Geometric Primitives):

Command Defaults Description

F(l) l = l Draw a line or cylinder beginning at the current

turtle position, with length l units in the direction

of

!

r

H . The new turtle position

!

" t = " t x , " t y , " t z() is cal-

culated

!

" t = t + l
r

H .

112 6.4: Basic Turtle Commands

Basic Geometric Modelling Commands (Geometric Primitives):

of

!

r

H . The new turtle position

!

" t = " t x , " t y , " t z() is cal-

culated

!

" t = t + l
r

H .

!(r) r = l/10 Set the drawing radius to r. A value of 0 means

that the F command will draw lines; non-zero

values will draw cylinders. The radius command

also affects the radius of the default generalised

cylinder cross-section (see Section 6.6.3 for de-

tails).

*(n) n = 0.5 Set the level of detail for generated geometry to n

(where

!

0 " n " 1, see Figure 6-2). This command

affects all instanced geometry generated by the

turtle.

sphere(r) r = l Draw a sphere of radius r, centred at the current

turtle position, and aligned with the turtle co-

ordinate system.

box(h,w,d) h = l

w = l

d = l

Draw a box with dimensions h , w , d (height,

width and depth). The box is centred at the cur-

rent turtle position and aligned with the turtle

co-ordinate system.

torus(i,o) r = l/10

d = l/2

Draw a torus with inner radius i and outer ra-

dius o at the current turtle position.

cone(r,h) r = l/10

h = l

Draw a cone of base radius r and height h. The

base is at the current turtle position and the cone

is aligned with the turtle co-ordinate system.

disc(i,o) i = 0

o = l

Draw a disc with inner radius i and outer radius

o at the current turtle position.

Table 6–4: Turtle commands for generating basic geometric primitives.

Chapter 6: Turtle Interpretation 113

Figure 6-5: Built-in turtle geometric primitive commands and the shapes they produce.

6.5 Surface modelling commands

While the basic built-in primitives described in the previous section give rea-

sonable flexibility in modelling, they are not general enough to cover all pos-

sible shapes. Previously described systems allowed the use of pre-defined

surfaces (usually parametric bicubic patches) to model petals and other

flower elements (Prusinkiewicz & Lindenmayer 1990). Editing of such sur-

faces is usually achieved with some form of external surface editor with the

surface defined relative to a local coordinate reference frame. The surface is

then instantiated by the turtle using the “~” command, e.g. “~P” reads a sur-

face called “P”.

The approach to external surfaces used here is a natural extension to this

system, giving greater flexibility particularly when generating animated se-

quences (described in Chapters 8 and 9). Surfaces created using some form of

external editor can be used by the turtle as long as they are declared in ad-

vance. This is achieved by the surface directive:

surface surfaceName[(n)]

Where surfaceName is the name of the surface to be loaded. This directive

automatically adds a symbol of the same name to the alphabet of the current

L-system. The optional parameter specifies the number of vertex sets to be

loaded for that surface (the default value is one). In the case of two or more

vertex sets, each set is loaded into a surface array. Each surface in the array

has the same number of vertices (i.e. the sets have identical order). Surface

vertex sets form a multidimensional array and are capable of weighted inter-

polation, permitting “morphing” effects between elements of the surface ar-

ray.

114 6.5: Surface modelling commands

A surface is instantiated by the turtle simply by its name (no “~” is neces-

sary). This does present the potential for namespace conflicts, so surfaces

with names the same as any of the built-in turtle commands are not permit-

ted. An optional parameter controls interpolation of the vertex sets within the

surface array.

A surface can be considered an ordered list of vertices,

!

v i , and associated

connectivity and interpolation information. For example, a polygonal mesh is

defined by connectivity between vertices using a piecewise linear interpola-

tion. A Bézier surface may be defined by a natural ordering of vertices,

forming a Bézier net, with bicubic interpolation creating the surface (Böhm,

Farin & Kahmann 1984). For this discussion, only the vertices are of interest.

Consider a list of surfaces,

!

S j , j = 1,K , m , each with exactly n vertices. A

vertex within this list

!

v ij , i = 1,K , n , is the ith vertex of surface

!

S j . For each

surface, we define a scalar weight,

!

wj " 0,1[] , with

!

wj = 1
j =1

m

" (6.2)

When the turtle instantiates a surface, the parameter k controls the blending

of surfaces in the array by affecting the weights. Let

!

S I (k) be the interpolated

surface derived from the list of surfaces,

!

S j . Each vertex,

!

v i
I , i = 1,K , n is cal-

culated:

!

v i
I

= wj v ij
j =1

m

" (6.3)

with the weights calculated using k, where

!

1 " k " m :

!

wj =

1" k " k# $()
k " k# $
0

%

&
' '

(
'
'

if j = k# $
if j = k# $+ 1
otherwise

(6.4)

This simple technique is sufficient for basic transformations and requires the

surfaces to be homeomorphic (topologically equivalent). It does not explicitly

address the correspondence problem. A more general transformation tech-

nique (Kent, Carson & Parent 1992) could be used to address these limita-

tions.

Chapter 6: Turtle Interpretation 115

Surface modelling commands:

Command Default Description

surface(n) n = 0 Instance a pre-defined external surface array, surface,

interpolating to n. The surface is transformed to the

current turtle position and orientation then any other

transformations in the

!

TT matrix are applied.

bP - Begin new polygon — create a new empty polygon and

push it onto the polygon stack.

Pe - End polygon definition — the polygon is drawn and

popped off the polygon stack.

. - Record a vertex for the current polygon at the current

turtle position.

SH(n) n = 1 Uniform shear by n.

RT - Reset the transformation matrix to the unit matrix, i.e.

!

TT = I . This cancels the effect of any transformations.

Table 6–5: Turtle surface modelling commands.

6.6 Advanced Geometric Modelling Commands

As previously noted, a number of authors have studied the morphology and

structure of natural forms in computer graphics. The diversity of such forms

represents a significant challenge for computer graphics in terms of develop-

ing modelling techniques suitable for describing the immense variety of

structures found in nature.

6.6.1 Previous Work

Wainwright suggests that the cylinder has found general application as a

structural element in plants and animals (Wainwright 1988). He sees the cyl-

inder as a logical consequence of the functional morphology of organisms,

seeing the dynamic physiological processes (function) as dependent on form

and structure over time. Wainwright distinguishes the cylinder as a natural

116 6.6: Advanced Geometric Modelling Commands

consequence of evolutionary design based on the physical and mechanical

properties of cylindrical structures.

D’Arcy Thompson examined a vide variety of morphological structures in

nature, looking at structural similarities (such as logarithmic and natural spi-

rals) that cross species (Thompson 1961). In the turtle interpretations devel-

oped by Prusinkiewicz, the cylinder, as a natural extension to the line, is a

fundamental geometric construction primitive, with more complex surfaces

defined by external modelling tools and instanced as required (Prusinkiewicz

1986b, 1987; Prusinkiewicz, Lindenmayer & Hanan 1988). Hanan discusses a

method whereby turtle commands (hence L-system symbols) can be used to

describe the control points in a bicubic surface patch, primarily for modelling

development of leaves (Hanan 1992, pages 78-84).

Holton developed a botanical tree model where branch segments and

joints were modelled by Bézier splines, assuming a circular cross-section

(Holton 1994). Control points of the curves were distorted by simulation of a

number of competing tropisms and a stochastic perturbation known as the

writhe coefficient. The use of this coefficient was to produce a more faithful

simulation of inter-species variation.

The cylinder, represented by the symbol “F” is often the basic geometric

element used in conjunction with the branch-enabling symbols (“[” and “]”)

to model branches and internodes in three-dimensions with L-systems. This

method has its origins in the early days of graphical representations, where

most plant imagery was based on line drawings, the line segment of constant

thickness being an idealisation of a branch distal segment (e.g. the line

drawings based on the results of Hogeweg and Hesper (Hogeweg & Hesper

1974)).

This simple cylindrical method is not sufficient for more complex geomet-

ric modelling. Consider the case of modelling a compound segment, such as a

tentacle or horn. A relatively simple L-system can be used to describe such a

shape, as illustrated in Figure 6-6. The problem in using the cylinder symbol,

F, is that complex segments exhibit discontinuities between segments. This

problem of describing more complex cylindrical shapes can be solved using

generalised cylinders, originally developed by Agin for applications in com-

puter vision (Agin 1972). Generalised cylinders have been used extensively by

Chapter 6: Turtle Interpretation 117

Bloomenthal to model tree limbs (Bloomenthal 1985) and a variety of natural

objects (Bloomenthal 1995).

The xfrog system of Lintermann and Deussen makes basic use of cylindri-

cal structures in stem and branch modelling (Lintermann & Deussen 1998,

1999). However, the cylindrical modelling capabilities are not as general as

the methods described here. In addition, xfrog uses a graphical system for

specifying plant construction, where iconic boxes representing preset con-

struction sequences are connected to form a graph. This graph is then inter-

preted to create the plant model. Direct user specification of L-system gram-

mars is not used; hence the flexibility of integrating generalised cylinder con-

struction commands into the L-system language itself is not possible in the

xfrog system.

In a recent paper, Prusinkiewicz et. al. describe an interactive plant mod-

elling system that makes use of generalised cylinders and is based on L-

systems (Prusinkiewicz et al. 2001). In order to make use of external posi-

tional information, the system modifies the traditional parallel application of

L-system productions and instead uses a sequential rewriting system based

on Chomsky grammars. In this system, generalised cylinders are swept by a

sequence of small turtle movements, controlled by three functions which

specify the rate of turtle rotation around the principle axes of the turtle refer-

ence frame (i.e. about

!

r

H ,
r

L ,
r

U). These three functions, which the authors de-

note

!

"H s(),

!

"L s() and

!

"U s() control the bending, twisting and tapering of the

cylinder as it is swept out over s. Functions can be specified by a smooth

curve

!

r

P s(), s " 0, l[] , usually described via an interactive curve editing pro-

gram that forms part of the plant modelling system. Curves can be applied to

the incremental modification of the turtle reference frame in such a way as to

obtain the Frenet reference frame or the parallel transport frame

(Bloomenthal 1990).

The approach used in (Prusinkiewicz et al. 2001) is similar to that de-

scribed here53, however the method developed in this thesis does not rely on

external functions to draw curves, rather they are specified by an extended

set of turtle commands. Calculation of the Frenet reference frame is achieved

using an incremental method. This method does not eliminate the possibility

53 The method described in this thesis is based on research carried out over the period
1991–1994, prior to the publication of later techniques by other authors.

118 6.6: Advanced Geometric Modelling Commands

of inflection points54 automatically — when inflection points do occur, this is

usually a consequence of inconsistencies in the produced string.

6.6.2 Creating Generalised Cylinders

As discussed, the standard set of turtle commands previously described are

incapable of accurately modelling complex shapes such as horns, limbs,

leaves, stems and tentacles. Generalised cylinders permit a much richer set of

geometric structures to be modelled (Figure 6-6).

!

#define N 10
#define L 10
#define R 5
#define A 10
#define kl 0.8
#define kr 0.8

" : horn(N , L, R, A)
p1 : horn(n, l, r,a)# seg(n, l, r,a)
p2 : seg(n, l, r,a) : n > 0 : #

!(r) F (l) ^ (a)
seg(n $ 1, l * kl , r * kr ,a * 1.1)

!

#define N 10
#define L 10
#define R 5
#define A 10
#define kl 0.8

#define kr 0.8
" : horn(N , L, R, A)
p1 : horn(n, l, r,a)# c(1) cseg(n, l, r,a)
p2 : cseg(n, l, r,a) : n > 0 : #

!(r) C(l) ^ (a)
cseg(n $ 1, l * kl , r * kr ,a * 1.1)

A B

Figure 6-6: A simple horn defined (A) using cylinders, which leaves noticeable gaps where
the radius and angle of the cylinder changes. In B, this problem is fixed with the use of
generalised cylinders. The parametric L-system generating each model is shown below
the image.

The basic principle for creating a generalised cylinder is to define a series of

cross-sections, possibly of varying shape and size, distributed over some con-

tinuous curve, known as the carrier curve. The cross-sections are connected

to form a continuous surface. This is illustrated in Figure 6-7.

54 An inflection point is defined as a point on the carrier curve where the tangent intersects that
curve. This often corresponds to points of zero curvature (Farin 1990).

Chapter 6: Turtle Interpretation 119

A B C

Figure 6-7: Construction of a generalised cylinder. A shows the cross-sectional elements
and how they are oriented according to a Frenet reference frame, which corresponds to
the turtle frame of reference at cross-section instantiations. The path traced out through
the cross sections represents the path taken by the turtle as it moves between cross-
sections, thus creating a carrier curve. B shows the polygonalisation of the cylinder, and C
a rendered version.

In general, construction of generalised cylinders by this method requires the

use of a reference frame to avoid improper twisting of the constructed sur-

face. If the surface twists there may be texturing artefacts associated with the

twist that are unwanted, or in extreme cases, illegal geometry.

Figure 6-8: Twisted cross-sections.

The Frenet reference frame consists of a position p and three orthogonal unit

vectors (Faux & Pratt 1979):

!

r
v , the velocity of the curve, corresponding to the tangent

!

r
n , the principle normal, and

!

r

b , the binormal, equal to

!

r
v "

r
n .

120 6.6: Advanced Geometric Modelling Commands

Figure 6-9: The Frenet Reference Frame.

Notice how this reference frame corresponds to the turtle co-ordinate system,

!

CT , with

!

p " t,
r
v "

r

H ,
r
n "

r

L , and
r

b "
r

U . In the normal construction of a gener-

alised cylinder, the principle normal usually points in the direction of curva-

ture of the curve over which the cross-sectional elements are being swept. In

the case of defining the cylinder using L-systems, it is up to the grammar to

avoid defining cross-sections that cause inflections, hence ensuring a smooth

transition from one cross-section to the next. The reference frame is incre-

mentally interpolated (Klok 1986) to ensure a constant rate of change when

generating the surface from one cross-section to the next (Figure 6-7). Poly-

gons and texture vertices are generated to try to ensure a constant area for

each polygon where possible. The mean area of individual polygons is con-

trolled by the level of detail parameter.

6.6.3 Turtle Commands for Creating Generalised Cylinders

As a natural extension to the simple cylinder, generalised cylinders give a

greater modelling flexibility and accuracy when modelling natural forms.

Turtle commands to construct generalised cylinders are also a natural exten-

sion from the “F” command, which creates a simple cylinder. Table 6–6 sum-

marises the turtle commands related to generalised cylinder construction.

Generalised Cylinder Modelling Commands:

Command Defaults Description

c(s,a) s = 0

a=FALSE

Begin generalised cylinder with tangent multiplier

s . If a is TRUE then generate a cap (the cross-

section is triangulated into a surface).

Chapter 6: Turtle Interpretation 121

Generalised Cylinder Modelling Commands:

C(l,a) l = l*

a=FALSE

Create generalised cylinder segment of length l and

move the turtle to position

!

" t = t + l
r

H (same as “F”

command). Equivalent to the sequence:

f(l) Ct(s0,a)

Where s0 is the value given to the c command. If a

is TRUE then generate a cap.

Ct(s,a) s = 0

a=FALSE

Create generalised cylinder segment at current tur-

tle reference frame using tangent multiplier s. If a

is TRUE then generate a cap.

X(n) n = 0 Select cross-section n.

dX(n) n = 0 Begin definition of cross-section n. (Any existing

definition for this index will be replaced). The cur-

rent turtle reference frame defines the local coordi-

nate system for the cross-section, the

!

r

H vector de-

fining the cross-section plane normal. This com-

mand implicitly saves the turtle state (equivalent to

executing a ‘[‘ command described in Table 6–2).

Xd - End definition of current cross-section. The curve is

automatically closed (beginning and end points of

the cross-section are joined). The turtle state is im-

plicitly restored (equivalent to executing a ‘]’ com-

mand described in Table 6–2).

Xo - End definition of current cross-section. The curve is

left open. This is useful for modelling leaf shapes.

The turtle state is implicitly restored.

. - Record vertex for current cross-section at current

turtle position.

Table 6–6: Turtle commands for the creation of generalised cylinders.

* Globally defined value that defaults to 1, but can be changed by the user.

122 6.6: Advanced Geometric Modelling Commands

Internally, the turtle maintains an array of cross-sections. Commands to con-

struct cross-sections will be detailed shortly. A default circular cross-section is

created upon initialisation. Generalised cylinders begin with the c command,

which starts a new cylinder using the currently selected cross-section. Subse-

quent calls to either the C or Ct commands create segments. Calls to save and

restore turtle state also store the last selected cross-section to permit

branching (Figure 6-13).

Interpolation between segments can follow a linear or Bézier path, with

the tangent values at each point on the spline determined by the tangent

vector (

!

r

H) and the tangent multiplier provided as an optional parameter to

the c, and Ct commands. A value of 0 for the multiplier produces a linear in-

terpolation, 1 gives a natural spline, higher values attenuate the shape of the

curve (Figure 6-10).

Figure 6-10: The effect of the tangent multiplier, passed as the parameter to the c com-
mand. A value of 0 produces a linear interpolation (A), higher values change the shape of
the curve (B and C).

Cross-sections can be defined in a similar way to that of polygons (Section

6.5). For example, the sequence shown in Figure 6-11 instructs the turtle to

create a cross-section to be stored at index 1 in the cross-section array

maintained by the turtle. A square is defined in this case, however no actual

square is drawn until the cross-section is made active and generalised cylin-

der drawing commands are issued. The current turtle reference frame de-

fines the local coordinate reference frame for the cross-section. This frame is

established at the time the dX command is processed, with the

!

r

H vector de-

fining the normal of the plane within which the cross-section typically lies (it

is up to the designer of the L-system productions to ensure that cross-section

definitions are planar — nothing internally in the system enforces this). The

dX and Xd or Xo command pairs have the side effect of pushing and popping

Chapter 6: Turtle Interpretation 123

the turtle state, ensuring that the turtle state is unchanged by any cross-

section definition. The Xo command defines open cross-sections, useful for the

modelling of leaves and other shapes without an interior.

Figure 6-11: Turtle commands to generate a simple cross-section.

Once defined, cross-sections are made active using the X command. Only one

cross-section may be active at any given time. Following activation of a cross-

section, subsequent calls to create generalised cylinder segments will use the

active cross-section. The cross-section is placed by aligning its local reference

frame (established at definition) with the current turtle reference frame (at

the time a c, C or Ct command is processed). The active cross-section may be

changed during construction, some examples of this are shown in Figure

6-12. In each case, the necessary derivation length, n is shown.

124 6.6: Advanced Geometric Modelling Commands

!

" : gs
p1 : gs # X (0) // use default circle

 // as x - section
S(1) c(1,TRUE) // cap, tangent 1
S(0.2) C(0, FALSE) // scale default circle
S(1) C(0,TRUE)

n = 1

!

" : gs
p1 : gs # X (0) // use default circle

 // as x - section
S(1) c(0, FALSE) // no cap, linear interp
S(0.2) C(0, FALSE) // scale default circle
S(1) C(0, FALSE)

n = 1

!

#define R1 1 // inner radius
#define R2 2 // outer radius
#define NP 6 // number of points

" : gs
p1 : gs # dstar dcyl
p2 : dstar # dX (1) star(180 NP,0) Xd
p3 : star($,%) : % < 360 :#

[+(90) f (R1) .] /($)
[+(90) f (R2) .] /($)
star($,% + 2$)

p4 : dcyl # X (0) // select circle
c(1) // begin cylinder
X (1) // select star
C(1) // draw segment
X (0) // select circle
C(1) // draw segment

n = 9

Figure 6-12: Example generalised cylinders and their generating L-systems.

Chapter 6: Turtle Interpretation 125

The use of generalised cylinders provides a more flexible approach to model-

ling than that permitted with simple cylinders. The use of Bézier interpolation

also permits C1 continuity at branching points — a useful feature for organic

modelling (De Leon 1991).

F[+F][–F] c(0)[+C][–C] c(1)[+C][–C]

A B C

Figure 6-13: Three different methods of forming branching segments. In each image, the
geometry is rendered with a slight transparency to better illustrate the underlying struc-
ture. The string below each image is the sequence of turtle commands used to create the
segments shown. In the case of A , branching segments are modelled using individual
cylinders, resulting in discontinuity at the branching points. For B, a generalised cylinder
with linear interpolation between cross-sections is used, resulting in a join at the branch-
ing point. For C, a generalised cylinder with C1 continuity gives a smooth transition at
branching points.

6.6.4 Cylinder Construction and Calculation of Intermediate
Geometry

When using the generalised cylinder turtle commands, the sub-system pro-

cessing those commands must perform a number of tasks in order to output

the geometric representation of the cylinder. We will consider the task of con-

structing a segment of the cylinder between two instantiated cross-sections

(which may be different). This may be decomposed into a series of sub-tasks:

! generation of the carrier curve between the two cross-sections;

! calculation of the reference frame over the carrier curve;

! generation of intermediate cross-sections which smoothly interpolate

between the profiles of the two instantiated cross-sections;

126 6.6: Advanced Geometric Modelling Commands

! linking the instantiated and intermediate cross-sections to form the

complete geometry.

This process is illustrated in Figure 6-14.

Figure 6-14: Stages of construction of a generalised cylinder segment.

Each of these stages will now be explained in more detail. As shown in the

figure, by interpreting the turtle commands there are two cross-sections with

their own coordinate reference frames, subscripted a and b. From these two

reference frames, a polynomial curve can be constructed using Hermite in-

terpolation on the turtle positions and heading vectors, i.e.

!

ta , sa

r

H a ,tb , sb

r

H b(),
where s is the scaling parameter used when the cross-section was instanti-

ated by the c, C or Ct commands (refer to Table 6–6). This carrier curve is

defined

!

Cab t(), t " 0, l[] , where l is the length of the curve.

Hermite interpolation is used for convenience as the turtle reference frame

readily provides the necessary interpolation information. Cubic Hermite in-

terpolation is not, in general, invariant under affine domain transformations

(Farin 1990, section 6.5), however as the tangents are calculated in world co-

ordinate space, they are not subject to any additional transformations before

the curve is generated, so this variance is not a practical problem. It is also

possible to convert to cubic Bézier form, which is invariant if required (Farin

1990).

New cross-sections need to be created over the curve

!

Cab , so it is subdi-

vided according to arc length and rate of curvature (these parameters form

Chapter 6: Turtle Interpretation 127

part of the turtle state properties (Section 6.3)). Intermediate reference

frames are calculated this way.

The cross-sections defined at the endpoints may be different. If this is the

case, intermediate cross-sections must “morph” between the two shapes. This

is achieved using the methods detailed in Section 6.5 to interpolate surfaces.

Finally, each cross-section is connected together to form the complete cyl-

inder by creating triangles between each cross-section.

C1 continuity between sets of generalised cylinders is achieved by matching

tangents between sets of cross-sections. This ensures a continuous curve over

whatever length is required.

6.6.4.1 Convolution Surfaces

An alternate approach to achieving continuity at branching points is to use

the generating L-system as a skeleton and convolve this skeleton to form a

three-dimensional surface. In this case, the skeleton consists of connected and

branching line segments, such as those created by the turtle F command with

a radius of 0. As the name implies, convolution surfaces convolve a geometric

element with a convolution kernel (Bloomenthal & Shoemake 1991). They are

a natural extension to the “blobby” primitives described by Blinn (Blinn 1982)

and Nishimura (Nishimura et al. 1985).

It is possible to apply a convolution kernel to geometric primitives such as

points, lines and polygons and generate an analytic solution suitable for direct

rendering (McCormack & Sherstyuk 1998). Figure 6-15 illustrates a simple

example using the same branching structure illustrated in Figure 6-13. Note

the geometry at the intersection of the branching point and the endpoints of

the lines. In this case, generation is a two-step process — first the L-system

generates a skeletal model, which is then processed by the convolution sur-

face renderer to create a three-dimensional surface representation. This

surface is rendered using the ray-tracing algorithm described in (McCormack

& Sherstyuk 1997).

128 6.7: Texture Mapping

Skeleton Convolved Surface

Figure 6-15: L-system generated skeleton and convolved surface generated by convolving
the skeleton with an exponential kernel.

6.7 Texture Mapping

In addition to the generation of geometric information, texture information is

also needed for image synthesis. Texture mapping is a common technique in

computer graphics that transforms information from one coordinate space to

another. It is used to provide more surface detail, using standard shading

models such as Phong shading. Texture mapping can often give the impres-

sion of increased complexity in models without the need for extra geometry.

There are two basic types of texture mapping: two-dimensional and three-

dimensional. We will consider two-dimensional first.

6.7.1 Generating 2D textures

Two-dimensional (2D) textures map from a two-dimensional space to a three-

dimensional one. This is usually in the form of a raster image, whose chan-

nels can be used to control various surface shading parameters such as ambi-

ent, diffuse, and specular reflections, transparency, and surface normal per-

turbation (known as bump mapping). Not only shading channels can be af-

fected by the texture map — in the case of displacement mapping the texture

displaces geometry, moving the surface from its default position according to

the value in the texture channel.

Two-dimensional texture maps are typically defined

!

T (s, t), where s and t

form an orthogonal Cartesian local co-ordinate system. As shown in Figure

6-16, the input image is usually normalised so that it spans a unit square

(Williams 1983). In the case of parametric surfaces, there is a natural map-

ping between texture and geometric surface. In the case of polygonal models,

Chapter 6: Turtle Interpretation 129

texture vertices must be generated with each corresponding geometric vertex.

For each geometric vertex,

!

v i = (xi , yi , zi)" #3, an associated texture vertex,

!

u i = (si , ti)" #2 is created.

For the generalised cylinder, the generation of texture vertices proceeds as

follows. First, each cross-sectional element is parameterised in s in the inter-

val [0,1]. Texture vertices for each are assigned in direct proportion to the

geometric distance between intermediate points, to minimise distortions in

the mapped texture. Parameterisation in t follows a similar methodology,

starting at 0 when the turtle generates the first element via the “c” command.

To maintain a uniform distribution of texture over the cylinder’s surface, the

values of t at each subsequent cross-section are calculated based on the geo-

metric circumference of that cross-sectional element. For a circle, the cir-

cumference is

!

2"R where R is the radius of the circle. The value of t is calcu-

lated to preserve a 1:1 correspondence between s-distance and t-distance, so

for a straight cylindrical element with a constant radial value, R and length H,

the value of t at the end of the segment is

!

H
2"R

 (see Figure 6-16).

Figure 6-16: Two dimensional texture mapping. An image texture (a chequerboard pattern
in this case), defined in 2D texture space is mapped onto the cylindrical element as
shown. In the case of generalised cylinder generation, mapping is applied to preserve a
uniform texture area over the geometric surface in which the texture is defined.

130 6.8: Special Functions for Parametric L-systems

In more complex cases, textures are calculated by bi-linear or bi-cubic inter-

polation, based on the principle of maintaining minimal distortions in the ap-

plied texture. Figure 6-17 shows this technique on two “tree-like” structures,

with a chequerboard pattern applied.

!

#define N 10
#define R 10
#define L 50

" = # 4
$: tree
p1 : tree % seg(1)
p2 : seg(n) : n < N : %

!(R / n) / F (L / n) [+ seg(n + 1)]
[& seg(n + 1)]

p3 : seg(n) : n ' N % F (L / n)

!

#define N 10
#define R 10
#define L 50

" = # 4
$: tree
p1 : tree % !(R) c seg(1)
p2 : seg(n) : n < N : %

!(R / n) / C(L / n) [+ seg(n + 1)]
[& seg(n + 1)]

p3 : seg(n) : n ' N % C(L / n)

A B

Figure 6-17: Simple tree like structure with texture mapping (the chequerboard pattern as
shown in the previous figure). A constructed with isolated simple cylinders, and B with
generalised cylinders.

6.8 Special Functions for Parametric L-systems

Parametric L-systems, defined in Section 5.3.5, associate a set of scalar pa-

rameters with symbols in the L-system alphabet. A standard set of arithmetic

functions (e.g. +, –, /, *) permit basic mathematical operations to be performed

on parameters. In addition, a number of standard mathematical functions are

provided (in each case it is assumed x, y and c are real numbers):

Chapter 6: Turtle Interpretation 131

! Trigonometric functions: sin(x), cos(x), tan(x); inverse trigono-

metric functions: arcsin(x), arccos(x), arctan(x).

! Power and logarithmic functions: pow(x,y) returning

!

xy , log(x),

ln(x) (base 10 and natural log functions).

! Logical functions and other functions: if(c,x,y) returns x if

!

c " 0 ,

otherwise y; sign(x) returns 1 if x > 0, 0 if x = 0, –1 if x < 0; floor(x)

rounds x to the largest integral value not greater than x; ceil(x) re-

turns the smallest integral value greater than x; abs(x) returns the ab-

solute value of x.

! Other mathematical functions such as Bessel and hyperbolic trigono-

metric functions — these will be described in relation to specific appli-

cations.

The remainder of this section briefly details other functions developed for the

system described in this thesis. These new functions can be divided into three

groups:

! Interpolative functions — perform various types of interpolation.

! Pseudorandom and noise functions — generate sequences of noises

and pseudorandom numbers described by a variety of statistical distri-

butions.

! Environmental functions — functions that query the environment or

provide input data from external sources, such as sound.

These functions are briefly described here. Examples of their use can be

found in the next chapter. Many of these functions have application for gener-

ating animation, the subject of Chapter 8.

6.8.1 Interpolative Functions

Interpolative functions generate intermediate values between two supplied

coordinates. The functions listed here are inspired by those provided in the

RenderMan shading language (Upstil 1990) and those described by Darwin

Peachey in (Peachey 1994) for the purposes of procedural texture synthesis.

As will be demonstrated in latter chapters, they can be effectively applied to

animation synthesis as well.

132 6.8: Special Functions for Parametric L-systems

Interpolative functions

Function Description

step(a,x) Returns 0 if x < a; 1 if x $ a.

pulse(min,max,x) Returns 1 if min % x % max; 0 if x < min or x >

max.

clamp(x,min,max) Returns x if min % x % max; min if x < min; max

if x > max.

linear(min,max,x) Linear interpolation: returns min + (x * (max –

min)), where normally 0 % x % 1.

linearstep(min,max,x) 0 if x < min; 1 if x $ max, otherwise a linear in-

terpolation between 0 and 1.

smooth(min,max,x) Hermite interpolation between min and max

with velocity at the endpoints 0 (often known as

an ‘ease-in, ease-out’ curve).

smoothstep(min,max,x) 0 if x < min; 1 if x $ max, otherwise a Hermite

interpolation between 0 and 1.

spline(v,

!

k0,

!

k1,

!

k2,

...,

!

kn)

Return a point on the curve at v fitted to the

supplied knot values using a one-dimensional

Catmull-Rom spline. The spline function takes a

series of values (either scalar or vector) repre-

senting the equi-distributed knots of the spline

over the [0,1] interval. At least 4 knots are re-

quired (Ebert et al. 2003, p. 34).

Table 6–7: Interpolative functions.

Chapter 6: Turtle Interpretation 133

Figure 6-18: Plots of some of the functions defined in Table 6–7.

6.8.2 Pseudorandom and Noise Basis Functions

Random functions provide for a variety of statistical distributions and noise

like basis functions. Functions come in two “flavours” — keyed and non-

keyed. Keyed functions take a value as a key, which is used to calculate that

function’s resultant value. A function called with the same key will always

return the same value. This is necessary for animation coherence, where the

same “random” number may be required for coherent properties in animated

sequences. Functions can be keyed by numeric value (floating point number

or vector) or by L-system symbol. Keyed functions will be indicated by a sub-

script representing the parameter or symbol to which the function is keyed.

E.g.,

!

random "1,"2() (6.5)

is the non-keyed version of the uniformly distributed random number func-

tion, which returns a pseudorandom number uniformly distributed in the

range

!

"1,"2[] , and

!

randomS "1,"2() (6.6)

is the keyed version of that function, keyed to the symbol S. Successive calls to

!

random "1,"2() will return a possibly different number each time, whereas

successive calls to

!

randomS "1,"2() by the same instance of a symbol S in the

derivation string

!

µi will return the same value at each call. In any given deri-

vation word there may be multiple instances of the same symbol, and the

keying is to a specific symbol, not all instances of that symbol across the deri-

134 6.8: Special Functions for Parametric L-systems

vation word (i.e. the keying takes place when a module in the successor of a

production is bound to an actual module). The function

!

randomp "1,"2() (6.7)

is keyed to a given three-dimensional point,

!

p = px , py , pz() . When called for

two points with identical locations in space, the pseudorandom number re-

turned will be the same. Points with different values will return (potentially)

different pseudorandom numbers.

For clarity, only the non-keyed versions are detailed in Table 6–8, the

keyed versions being identical in function with the exceptions and interpreta-

tions noted above. The use and significance of keyed functions is further dis-

cussed in Section 7.3.

Pseudorandom and Noise functions

Function Description

random(min,max) Returns a uniformly distributed pseudorandom

double precision floating point number between min

and max.

irandom(min,max) Returns a uniformly distributed pseudorandom inte-

ger between min and max.

gaussian(

!

µ,") Returns a normally (Gaussian) distributed pseu-

dorandom number with mean

!

µ , and standard devi-

ation

!

" . The normal distribution density function is

defined as

!

g(x) =
1

" 2#
e

$
1
2

x$ µ

"

%

&
'

(

)
*

2+

,

-
-

.

/

0
0

. This function is cal-

culated using the Box-Muller method (see (Press et al.

1992, Chapter 7)).

poisson(

!

µ) Return a pseudorandom number with Poisson distri-

bution with mean

!

µ . The Poisson distribution func-

tion is

!

p(x) =
µ x

x!
e" µ . Generated using a variation on

the rejection method (Devroye 1986).

Chapter 6: Turtle Interpretation 135

Pseudorandom and Noise functions

noise3D(x,y,z)

noise2D(x,y)

noise1D(x)

A “Perlin” basis noise function (Perlin 1985a). The

noise function used is an approximation to low-pass

filtered white noise, resulting in a smooth, band-

limited and continuous pseudorandom function with a

maximum frequency of approximately 1 (see

(Peachey 1994) for implementation details). The

noise function is stationary (translational invari-

ance) and isotropic (rotational invariance). One- and

two-dimensional versions of the noise function and

its related functions are also provided. All noise func-

tions return a scalar value in the range [-1,1].

dnoise3D(x,y,z) Instantaneous vector differential of the noise3D

function at position (x,y,z).

turbulence(x,y,z,

octaves)

Turbulence function calculated by summing noise

values at different frequencies. E.g.:

turb(x,y,z,octaves) {

double f, value = 0.0;

for (f = 1; f<=octaves; f*=2)

 value += abs(noise3D(x*f,y*f,z*f))/f;

return value;

}

fractalSum(x,y,z,

octaves)

Identical to the turbulence function above with the

exception of summing the explicit (rather than abso-

lute) values of the noise function.

Table 6–8: Pseudorandom and Noise functions.

136 6.8: Special Functions for Parametric L-systems

Figure 6-19: Cylinders with randomly varying heights. Each cylinder is an instance of the
turtle ‘F ’ symbol with parameter value supplied by the random(0,1),
gaussian(1,0.1) and poisson(1) functions described in Table 6–8.

Figure 6-20: Graph of the noise function in one dimension.

Chapter 6: Turtle Interpretation 137

Figure 6-21: Graph of the fractalSum function in one dimension with 3 and 7 octaves.

6.8.3 Environmental Functions

Environmental functions allow L-system symbols to query physical or envi-

ronmental properties that are external to the L-system itself. This allows, for

example: detection of intersection with external geometry; movement and

growth driven by external data, such as sound; specification of development

functions (refer to Section 8.2.1) from external data sources, such as statisti-

cal samples. The reporting of turtle position is similar to that described in

(Mech & Prusinkiewicz 1996).

Environmental functions

Function Description

tPosition() Returns the current geometric position vector of the

turtle, t, at the time the function was called (refer

Section 6.3).

tHeading()

tLeft()

tUp()

Returns the turtle

!

r

H ,
r

L ,
r

U vectors respectively (de-

fined in Section 6.3).

data(filename,pos) Returns the numeric value of the ASCII data stored

in the file filename at line number pos. Typically

such files would have lines of floating point numbers

representing some data vector created by an exter-

nal source (for example motion-capture data or an

external curve editor).

138 6.8: Special Functions for Parametric L-systems

Environmental functions

sound(filename,t) Returns the normalised amplitude (envelope) of the

audio sample file, filename at time t seconds. The

file is assumed to contain digitised audio samples in

the AIFF format. This function can be used to ani-

mate parameters to soundtracks, facilitating for ex-

ample, lip-synced movement to a voice track.

ffta(filename,t,f) Returns the approximate relative amplitude of

sound in an audio file around f hertz about the time

t seconds. In basic terms, this involves taking the

Fourier transform of the audio file and calculating

the relative energy at the supplied frequency at the

requested time. Phase information is not returned.

Relative energy for each frequency is averaged over

a small time quantum, usually a few milliseconds.

See (Roads 1996, Appendix) for details.

Table 6–9: Environmental Functions.

6.8.4 Summary

The use of functions described in this section describes versatile and flexible

methods to permit L-system to be used for a diverse range of modelling prob-

lems. The application of these functions to modelling problems in computer

graphics will be detailed in the next chapter.

Chapter 7: Applications 139

7 Applications

The power of the golden section to create harmony arises from its
unique capacity to unite different parts of the whole so that each
preserves its own identity, and yet blends into the greater pattern
of a single whole.

— György Doczi, The Power of Limits (Doczi 1981)

Having described the key features of a generative modelling system based on

L-systems in the previous chapter, this chapter gives some practical examples

of how the system can be used to model organic form. A generalised method

for generating phyllotaxis on surfaces of revolution extends the work done by

previous authors in using L-systems to model phyllotaxis. This section de-

scribes an area-based phyllotactic model, developed as part of my research.

This model permits placement of small elements in phyllotactic patterns over

surfaces of revolution. The model itself is described in Section 7.2.

This chapter also includes some examples of natural forms modelled using

the generalised cylinder techniques, illustrating the flexibility permitted by

this extension and the broad gamut of modelling possibilities for L-systems.

Finally, the use of stochastic functions is illustrated in modelling organ and

inter-species variation.

7.1 Phyllotaxis

Phyllotaxis is the regular arrangement of plant lateral organs according to an

optimal packing scheme, based on the golden ratio. It is an interesting “self-

organizing” property of plant morphogenesis, demonstrated experimentally

(Douady & Couder 1992) and computationally (Douady & Couder 1996). Ex-

140 7.1: Phyllotaxis

amples include leaves on a stem, cone scales on a cone axis, and florets or

achenes in a composite flower head. Phyllotaxis has been extensively studied

in the literature from a variety of perspectives that include art, architecture,

mathematics, biology and computer graphics (a recent overview can be found

in (Jean & Barabe 1998), and Ball gives an overview from a developmental

morphogenesis perspective (Ball 2001, Chapter 4).

Helmut Vogel was one of the first to develop a planar mathematical model

of phyllotaxis based on florets of equal area (Vogel 1979). The “numbers of

spirals that can be traced through a phyllotactic pattern are predominantly

the integers of the Fibonacci sequence” (Erickson 1983, page 54). Phyllotactic

patterns arrange the lateral organs in ranks or parastichies. In geometric

modelling of phyllotaxis using L-systems, lateral organs are typically distri-

buted over cylindrical or planar surfaces (Prusinkiewicz & Lindenmayer 1990,

Chapter 4). Figure 7-1 shows examples of these placements and the L-systems

that generated them.

Planar Phyllotaxis:

!

#define a 137.5
#define N 400

" : A(0)
p1 : A(n) : n < 400# +(137.5)

[f(n) sphere] A(n + 1)

Cylindrical Phyllotaxis:

!

#define a 137.5
#define h 0.1
#define r 5.0
#define N 200

" : A(0)
p1 : n < N # [&(90) f(r) sphere]

f(h) /(a) A(n + 1)

Figure 7-1: Planar and Cylindrical phyllotaxis using L-systems.

Chapter 7: Applications 141

An extension to the planer model is to change the element’s altitude, size and

orientation as a function of n. Changing the altitude of the elements as they

are placed gives an approximation of placement over a cone or section of a

cone.

While these two models have been successful in modelling a number of

plant species, there exist many examples of phyllotaxis that are not described

by this model (Figure 7-2 for example).

Isopogon formosus Isopogon petiolaris

Figure 7-2: Plants from Isopogon exhibiting phyllotaxis over sections of approximate pro-
late spheroids (from (Greig 1999)).

7.1.1 Related Work

Fowler, Prusinkiewicz and Battjes proposed a collision-based model, distri-

buting primordia (undeveloped organs that eventually grow into florets) on a

surface of revolution whose generating curve is defined by one or more Bézier

curves (Fowler, Prusinkiewicz & Battjes 1992). Their model is “descriptive

and explanatory”, calculating the placement of elements using a collision-

based method. In their model the radial angle, & is incremented by

!

2"#$2 ra-

dians, where

!

" is the golden ratio

!

1+ 5() 2. The placement along the gen-

erating curve at this angle is determined by finding the minimum distance ne-

cessary to avoid collision with any previously placed element. In practice, this

is computed using a binary search technique. Due to the collision-based com-

ponent of the model, the method cannot directly be implemented with stan-

dard DOL-systems.

142 7.1: Phyllotaxis

Lintermann and Deussen describe a technique for phyllotaxis over a

sphere (Lintermann & Deussen 1999). They use an incremental approach

based on area approximation, similar to that presented here. However, their

results are limited to spheres or sub-sections of spheres only.

Prusinkiewicz et. al. present a method which operates on arbitrary sur-

faces of revolution (Prusinkiewicz et al. 2001), based on the model developed

by Ridley (Ridley 1986). This method uses an arc-length parameterisation of

planar curves, which then generate a surface of revolution. They use an in-

cremental method to approximate the integration of the surface area as ele-

ments are placed over the surface. The technique is implemented using a

derivation of Chomsky grammars and the incorporation of C-like55 code

statements into the modelling language itself.

Fleischer et. al. developed a cellular texture model that could “grow” cel-

lular elements over pre-defined surfaces (Fleischer et al. 1995). While not

specifically designed for creating phyllotactic patterns, the system gave each

element (cell) a simple program (time-varying first order differential equa-

tion) that could control its placement over the surface based on (for example)

simulation of chemical reaction-diffusion over the surface. The method could

be considered a generalisation of the collision-based model of Fowler, Prus-

inkiewicz and Battjes, offering additional capabilities such as movement, ad-

hesion and changes in size due to cell-cell interaction.

The concept of simple cells running independent programs will be further

explored in Chapter 9, where the developmental cellular model, based on L-

systems, is presented. Figure 7-3, Homage to Kurt Fleischer, replicates his

“thorny spheres” model, using the cellular developmental model described in

Chapter 9. The figure uses no predefined geometry or external surfaces; ra-

ther the surfaces are grown using a developmental L-system with phyllotactic

placement. This image illustrates that many of the features of the cellular

texture generation system can be achieved using the system described in this

thesis.

55 As in the C programming language (Kernighan & Ritchie 1988).

Chapter 7: Applications 143

Figure 7-3: Varying Thorns in the style of Kurt Fleischer et. al. (cf. (Fleischer et al. 1995,
page 247)). This image was created using the developmental cellular model detailed in
Chapter 9. The placement of the thorns is controlled using the area-based phyllotactic
method described here. The thorns themselves are grown using the generalised cylinder
extensions described in Section 6.6.3. Simulation of reaction-diffusion-like equations de-
termine the size, growth and direction of the bumps and thorns. Note the continuously
varying thorn height and curvature on the spheres.

7.1.2 Features of the Model

The main feature of the model presented here is that it gives an analytic solu-

tion to the placement of elements over a surface of revolution. Hence, it can

be incorporated into any parametric L-system description without the need

for additional software or standalone components, which must be then inte-

grated into the final model. Many of the plant organs and surfaces on which

they develop can be described within the L-system using the generalised cyl-

inder extensions introduced in Section 6.6. Hence the L-system specification is

sufficient to define complete and complex three-dimensional geometric mod-

els without the need for specialised external surface modelling programs or

collision-detection systems required in other approaches.

7.2 The Area-Based Phyllotactic Model

This section describes the area-based phyllotactic model in detail. Examples

over a number of different surfaces are described along with some practical

examples of the application of this technique.

144 7.2: The Area-Based Phyllotactic Model

7.2.1 Surfaces of Revolution

A surface of revolution is generated by rotating a two-dimensional curve
about an axis over the interval

!

0,2"[). For this discussion, it is assumed the

rotation is always about the z-axis, giving the generated surface a radial

symmetry in the xy plane (known as azimuthal symmetry). The generating

curve is assumed to be a continuous, single-valued function

!

fC :"#" , writ-

ten

!

fC z() defined over the domain

!

z " [zmin , zmax] . For example, the generat-

ing curve

!

r2
" z2 over domain

!

z " [#r, r] generates a sphere of radius r.

Figure 7-4: Generating curve for a sphere.

We are interested in placing geometric elements over some section of the

generated surface, S, according to the golden section. The elements will be

placed using turtle commands generated by the production of L-system

strings as described in Chapter 1.

Due to the azimuthal symmetry of the generated surface of revolution, the

area of placement can be defined in terms of the upper and lower limits

!

[zl , zu] of the generating curve (see Figure 7-4). The surface area of this gen-

erated surface,

!

AS is defined:

!

AS = 2" fC (z) 1+ fC
#(z)

$

%
&

'

(
)

2

zl

zu

* dz (7.1)

Chapter 7: Applications 145

Let the projected area56 of element i to be placed on the surface be

!

Aei
, then

the function

!

AE (i) = Aek

k=1

i

" (7.2)

gives the total area required for i elements. There is no requirement for each

element to have an equal projected area, however if this is the case, equation

(7.2) becomes

!

AE (i) = iAe (7.3)

where

!

Ae is the projected area of the individual element. Using equation (7.1)

we can calculate the maximum value of i needed to fill the area required.

Due to the azimuthal symmetry, we can parameterise the surface, S, over

the axis of rotation and azimuth distance

!

S = S(", h) : 0 # " < 2$, zl # h # zu (7.4)

Note that this is different from the conventional parametric form for a sur-

face. This is done for convenience in the calculations that follow. Figure 7-5

shows the parameters for a sphere.

56 The projected area can be calculated by orientating the element so that the xy plane corres-
ponds to the tangential plane of the surface on which the element is to be placed. The projected
area is then defined

!

dxdy
R

""
, where R is the region over which the element is defined.

146 7.2: The Area-Based Phyllotactic Model

Figure 7-5: Sphere generated as a surface of revolution.

As each element, i, is placed on the surface, the parameters

!

"i and hi are re-

quired to determine the location of the element on the surface. The radial

angle,

!

"i is distributed

!

"i = i d"

= i
2# $ % 1()

$

= 3 % 5()# i

(7.5)

where

!

" is the golden ratio (

!

" 1.61803). The numerical value of

!

"i equates to

approximately 137.508°. Using equation (7.1), the surface area of the surface

of revolution at

!

hi can be written:

!

AS (hi) = 2" fC (z) 1+ fC
#(z)

$

%
&

'

(
)

2

zu* hi

zu

+ dz (7.6)

To ensure correct placement, it is required that

!

AE (i) " AS (hi) (7.7)

hence

!

hi = AS
"1 AE (i)() (7.8)

Chapter 7: Applications 147

Depending on the nature of the generating curve, equation (7.8) may not have

an algebraic solution, as finding an inverse function may be impossible. In

this case, numerical methods may be employed. Alternatively, another solu-

tion is to use an approximating polynomial of limited order (< 4), to which an

inverse can usually be found.

The position to place the element on the surface, S, can be expressed in

terms of the turtle commands:

!

/("i)f(zu # hi) (̂90) f(fC (hi)) (7.9)

The interpretation of these turtle commands was detailed in Chapter 1.

7.2.1.1 Orientation of the Element

The positional information described above provides a location to place ele-

ments on the surface of revolution. In addition, a specific orientation may also

be required. If this is the case, the element needs to be aligned to the surface

normal of the surface of revolution,

!

nS .

For surfaces with a parametric representation, the normal is the orthogo-

nal vector to the tangent plane. That is, for a surface

!

r(u,v) the normal vector

is

!

nr =
"r
"u

#
"r
"v

= ru # rv

(7.10)

In the case of a surface of revolution, the normal vector can be found by dif-

ferentiating the generating curve and then rotating this vector to the radial

location in

!

" . In practice, to align the element to the surface normal requires

orienting the turtle’s co-ordinate reference frame to the triplet

!

ru rv nr[] .

Following the turtle commands specified in (7.9), the turtle requires a rota-

tion,

!

" , based on the normal to the generating curve:

!

" = tan#1 fC
$(h)

%

&
'

(

)
* (7.11)

Assuming the turtle is at the correct position on the surface with the heading

vector aligned with the z axis, a turtle command of ^(') will align the turtle

to the surface normal.

148 7.2: The Area-Based Phyllotactic Model

7.2.2 Example: Sphere

A sphere of radius r can be created by revolving the curve

!

fC (z) = fsphere (z) = r2
" z2 , z # "r, r[]

(7.12)

about the z axis over

!

[0,2") (Figure 7-5). By equation (7.6) the area of the

surface defined from the boundaries indicated in Figure 7-5 is

!

Asphere (hi) = 2" r2 # z2 1+ #
z

r2 # z2

$

%
&

'

(
)

2

zu# hi

zu

* dz

= 2" r dz
zu# hi

zu

*
= 2"rhi

(7.13)

Using the equivalence relation of equation (7.7)

!

hi =
AE (i)
2"r (7.14)

If the elements all have the same projected area then

!

hi =
iAe

2"r (7.15)

!

hi can be expressed in terms of

!

"
i
, the azimuth angle between the positive z

axis and the vector formed from the centre of the sphere to the position of

element i on the sphere

!

"i = cos#1 cos"u #
iAe

2$r2

%

&
'

(

)
* (7.16)

where

!

"u is the value of

!

" at

!

zu (i.e.

!

h0). Note that the angle

!

" is equivalent to

a parameter when the sphere is represented as a parametric surface, i.e.,

!

S(",#).

Chapter 7: Applications 149

A B C

Figure 7-6: Phyllotaxis of various geometric elements over the surface of a sphere. Ele-
ments placed are a sphere (A), Cone (B) and hexagon (C).

Figure 7-6 shows some examples. For the examples shown in this figure, each

element is of constant projected area (i.e. all elements are the same size).

Figure 7-6C is reminiscent of some of the skeletal forms of Radiolaria, studied

by Thompson (Thompson 1961, pages 151–159).57

Figure 7-7: Elements arranged on a sphere from

!

"

6
$

"

2
.

Figure 7-7 shows an example where

!

zl < r and

!

zu < r , thus covering only a

section of the entire sphere.

Elements of constant area do not correctly simulate the growth of plant

elements such as florets (Jean 1982). Figure 7-8 shows an example where the

elements placed on the sphere do not have a constant area. In the case of this

57 Thompson was motivated in his study by the work of Ernst Haeckel, who drew Aulonia
hexagona using hexagons. Thompson correctly stated that “no system of hexagons can enclose
space” (Thompson 1961, page 157). This was also acknowledged by Haeckel, who observed
that a few square or pentagonal facets are found among the hexagons. An additional twelve
pentagons are needed to correctly form a closed space, as was demonstrated subsequently in
the architectural constructions of R. Buckminster Fuller.

150 7.2: The Area-Based Phyllotactic Model

figure, the element has an exponential growth function, whereby the radius of

each element (a sphere in the case of Figure 7-8A) grows according to the

function

!

r = c1 1" e" c2k() (7.17)

where

!

c1 and c2 are constants. This function is designed to simulate the

growth of florets from the centre of a floral head, the youngest elements ap-

pearing at the apex of the sphere. For elements with a circular projected area

the value of

!

A
ek

 from equation (7.2) is given by

!

Aek
= "r2

= c1" 1# e# c2k()
2 (7.18)

The figure shows a graph of this function and the cumulative area function

!

AE (i) (figure 7-8B and D). Figure 7-8D also shows the value of this function

for elements of constant area for comparison.

A. Spheres of increasing size placed
over a larger sphere. The growth of the
individual sphere’s radius is as speci-
fied in equation (7.18).

B. Radius (r) and projected area (Aek
) of individ-

ual elements increase as they are placed on the
surface.

Chapter 7: Applications 151

C. Conical elements of increasing size
placed over the surface of a sphere.

D. Cumulative area of elements as their number
increases, shown for elements of constant
projected area (dashed line) and increasing
projected area (solid line) as shown in C.

Figure 7-8: Elements of differing size placed over a sphere.

Figure 7-9: Illustrates the growth and placement of the elements. A ten step sequence of
shades of grey (darkest to lightest) shows the relative age of elements as they are placed
on the surface.

7.2.3 Example: Oblate and Prolate Spheroids

Using the methodology described in Section 7.2.1, as for the sphere we can

define a surface of revolution that describes a spheroid. Two types of sphe-

roids are described here, oblate or “squashed” and prolate or “stretched”

spheroids (Figure 7-10). Both these shapes can be described by rotating an

ellipse about its minor (for oblate) or major (for prolate) axis. The motivation

for using such shapes is the observed profiles of plant organs that were previ-

152 7.2: The Area-Based Phyllotactic Model

ously approximated by cylinders (cf. Figure 7-2). The cylindrical approxima-

tion leads to inconsistencies at the base and top.

Figure 7-10: Oblate and Prolate spheroids.

The implicit form of these spheroids is

!

x2
+ y2

a2
+

z2

c2
" 1 = 0

(7.19)

where a is the equatorial radius and c is the polar radius. For an oblate sphe-

roid

!

a > c , for a prolate spheroid

!

a < c .

Proceeding as for the case of a sphere (Section 7.2.2), the spheroid can be

formed by rotating the elliptical curve

!

fC (z) = fellipse (z) = a 1" z
c

$
%

&

'
(

2

(7.20)

about the z axis over

!

[0,2") (Figure 7-5). By equation (7.6) the area of the

surface defined from the boundaries indicated in Figure 7-5 is

!

Aspheroid (hi) = 2" fellipse (z) 1+ # f ellipse (z)()
2

zu$ hi

zu

% dz

= 2"a 1+
a $ c() a + c()z2

c 4
dz

zu$ hi

zu

%
(7.21)

Evaluating this definite integral gives:

Chapter 7: Applications 153

!

Aspheroid (hi) =

"a

zu 1+ zu
2 a2 # c2

c 4

$

%
&

'

(
) # zu # hi() 1+ zu # hi()

2 a2 # c2

c 4

$

%
&

'

(
) +

c2 sinh#1 zu

a2 # c2

c2

$

%

&
&

'

(

)
) # sinh#1 zu # hi()

a2 # c2

c2

$

%

&
&

'

(

)
)

$

%

&
&

'

(

)
)

a2 # c2

$

%

&
&
&
&
&
&
&

'

(

)
)
)
)
)
)
)

(7.22)

In the case of a prolate spheroid,

!

a < c and so

!

a2
" c2 will have a complex

root. However, due to the nature of the hyperbolic sine function, the equation

evaluates to a real solution that does not involve complex numbers. Figure

7-11 shows a graph of this equation for both oblate and prolate spheroids

with equatorial to polar radius ratios of 0.75:1 and 1.25:1 respectively. Find-

ing the inverse function needed to satisfy equation (7.8) is not possible ana-

lytically in the general case. However, it is possible to approximate the func-

tion using a polynomial, in which case an inverse can be found. Therefore:

!

hi = Pspheroid
"1 AE i()() (7.23)

where

!

Pspheroid " Aspheroid is the polynomial approximation to equation (7.22). A

specialised function that returns the value of

!

hi when supplied the param-

eters

!

a, c, zu and AE i(), can be made available to the generating L-system to

avoid the complex parameter manipulation necessary to incorporate this so-

lution into the L-system rules.

Figure 7-11: Surface area of oblate (solid line) and prolate (dashed line) spheroids as a
function of distance from the polar radius along the z axis.

154 7.2: The Area-Based Phyllotactic Model

Figure 7-12 shows simple conical elements placed over oblate and prolate

spheroids using the method described here.

Oblate Spheroid Prolate Spheroid

Figure 7-12: Oblate and Prolate spheroids with phyllotactic placement of elements over
their surfaces.

The use of such spheroids finds application in the realistic visual modelling of

a variety of different plants. For example, Figure 7-13 and Figure 7-14 il-

lustrate some possibilities. Figure 7-13 is typical of many members of the

Myrtaceae family. The cluster of stamens is modelled using generalised cylin-

ders, with length, size and growth direction subject to modulation using a

normal (Gaussian) distribution.

Figure 7-13: Plant model created using the system described in this thesis. No external
geometry was used to create this model. Textures were defined procedurally or sourced
from real specimens. Variation in the length, size and placement is achieved using the
statistical functions detailed in Section 6.8. The image on the right shows a close-up re-
vealing the model detail.

Chapter 7: Applications 155

High-resolution colour plates of these images can be found in Appendix A.

Figure 7-14: Model created by placing thorn-like elements over a prolate spheroid. The
rate of curvature varies as the elements are placed using the smoothstep function.

7.3 Stochastic Functions

Even within a species, no two individuals are identical. The models presented

thus far represent idealisations of various observed phenomena. For example,

the examples of phyllotaxis presented earlier in this chapter represent the

ideal form, with exact spacings and identical florets placed over idealised

surfaces. While such models may capture the mathematical essence of spe-

cific phenomena, these ideal forms are never observed in nature. There are

always small deviations, damage, mistakes and variation that make each in-

dividual unique.

It is possible to capture a sense of this variation using one, or a combina-

tion of the stochastic and noise based functions presented in Section 6.8.2.

This section will illustrate some practical examples for which these functions

may be used.

156 7.3: Stochastic Functions

7.3.1 A Simple Grass Model

As a simple example, we consider the challenge of modelling a grass field

using L-systems. A basic model features long, thin strips of grass, with pos-

sible bifurcation of stalks based on width. Grasses may be in different states

(juvenile, flowering, seeding). A basic L-system model consists of a number of

segments, connected to form a generalised cylinder. E.g.

!

#define kb

"

20
 // bend

#define kr 5 // radius
#define kl 120 // segment length
#define ks 8 // number of segments
#define #b 1.1 // bend delta
#define #r 0.8 // radius delta
#define #l 0.8 // segment length delta

$: c(1) g(0, kb , kr , kl)
p1 : g(n,b, r, l) : n < ks :% &(b) !(r) C(l) g(n + 1,#bkb ,#r kr ,#lkl)

(7.24)

The constants

!

kb , kr and kl control segment bending, radius, and length re-

spectively, while

!

ks specifies the number of segments that make up the stalk.

The other constants

!

"b ,"r and "l control the change in bend, radius and length

as each segment is produced. An example single stalk produced by this L-

system is shown in Figure 7-15. By defining a more accurate profile based on

the studies by Wainwright (Wainwright 1988, Chapter 2), a more realistic

model is obtained. This can be achieved using the profile definition commands

defined in Section 6.6.2.

A B C

Figure 7-15: Single grass stalk produced by the L-system (7.24) using generalised cylinders
with a circular profile (A). Using the profile (B) results in a more physically accurate model
(C).

Chapter 7: Applications 157

The basic model remains unchanged, but such a profile gives the organ an

uneven relation between twisting (low torsional stiffness) and bending (high

longitudinal stiffness), giving the organ the ability to blow readily in the wind

without breaking off.

It is a relatively simple process to produce many of these stalks to make a

more complex model. However, each stalk will be identical to all the others. A

more realistic model can be obtained by changing the

!

" constants to func-

tions:

!

"b = gaussian(1.1,0.1)
"r = gaussian(0.8,0.067)
"l = gaussian(0.8,0.1)

(7.25)

Now, changes between segments will have a normal distribution with mean

values the same as for the “ideal” stalk of Figure 7-15. An additional function,

based on the noise function can control segment twisting; simulating stalks

blowing in the wind. Changing the variance parameter controls the variation

in how much instanced models differ from the ideal model. Figure 7-16 shows

a sequence of models generated using the distributions of (7.25).

Figure 7-16: A number of grass stalks generated by normally distributing the

!

"b ,

!

"r and

!

"l

constants.

A more complex addition to this simple model adds a normally distributed age

parameter, which triggers the development of flowers. The production

!

p1 of

L-system (7.24) thus becomes:

158 7.3: Stochastic Functions

!

#define "
#

µ

e2

$ = gaussian(ks ,µ)
(s) = poissons ($)

p1 : g(n,b, r, l) : n < # (g) :% &(b) !(r) C(l) g(n +"
#
,"bkb ,"r kr ,"lkl)

p2 : g(n,b, r, l) : n > $:%&

p2 : g(n,b, r, l) : n > # (g) :% flower(r, l)

(7.26)

Here the function

!

" s() is a pseudorandom number with Poisson distribution,

keyed to the symbol s. Keying this function to a particular symbol ensures

consistent values are returned for the same instance of a particular symbol

(in this case, g). The mean of this distribution is normally distributed about

!

ks

— the number of segments in the “ideal” stalk. As the stalk grows, its “age”,

represented by n is checked to see if it exceeds

!

" , if so, the production pro-

ceeds to draw a flower (the flower drawing production is not shown). By

changing the variance,

!

µ , the number of stalks which flower can be changed.

A similar scheme can be used to trigger the development of seeds and other

stalks, based in the phyllotactic model given in Section 7.2.

7.3.2 Distribution over Surfaces

We have now developed a simple model with variation and different growth

stages. However, this currently only defines a single individual. A large popu-

lation of individuals can be distributed over a surface. For this example, we

will use a Poisson distribution, as this is a commonly observed natural distri-

bution pattern (Ripley 1977). Models that are more detailed could simulate

variations in landscape, such as environmental conditions, hydration, or soil

nutrient gradients (Deussen et al. 1998). These models require external soft-

ware to model the distribution of species so they cannot be directly imple-

mented with L-systems.58

The point pattern generation model described here is sufficiently simple as

to be directly implemented as part of the L-system specification. The basic

goal is a random distribution of plants over a surface with a specified mean

density. An added requirement that a minimum distance constraint for near-

est neighbours is not violated. The minimum distance constraint specifies the

minimum distance allowed between any individual plants. Similar techniques

58 Extensions to L-systems have been proposed that take environmental modelling into account,
e.g. (Mech & Prusinkiewicz 1996).

Chapter 7: Applications 159

have been used for point sampling in computer graphics (Cook, R. L. 1986).

To generate the model we begin with a two-dimensional uniform grid spaced

to satisfy the density requirements of the particular model. In a more complex

version of the model, grid spacing varies dynamically based on varying den-

sity constraints. Points on the grid are then randomly shifted to simulate a

distribution of elements over the surface.

The following L-system captures the process:

!

#define N x 10 // points in x
#define Ny 10 // points in y

#define " 100 // spacing (inverse density)

=
$

2
 // default turtle turn angle

% : col(0)
p1 : col(j) : j < Ny & [+ row(0, j)] f (") col(j + 1)

p2 : row(i, j) : i < Ny & [' f (() + f (() ^ element(i, j)] f (") row(i + 1, j)

(7.27)

where

!

" # 0,$[] is a function that controls the shifting or jitter of the position

of elements. The symbol element represents the placement of an element at

the current turtle position and orientation.

Figure 7-17 shows how the use of different functions for

!

" changes the

distribution of elements (represented by dots in this figure). To satisfy the

minimum distance constraint,

!

" and the range returned by the function

!

"

must be chosen appropriately. The choice of function controls the distribution

of plants over the surface. Note that in this case the distribution is over a flat

two-dimensional surface, a simple extension would provide distribution over a

terrain model, either procedurally generated (Musgrave, Kolb & Mace 1989)

or sampled from real data (House et al. 1998). This is described in the next

section.

160 7.3: Stochastic Functions

!

" = 0 [uniform grid]

!

" = poisson(#)

!

" =random(0,#)

!

" =

1+ noise2D(i#
$ x

, i#
$y

)
%

&
' '

(

)
* *

2#

Figure 7-17: Patterns produced by assigning different functions to

!

" created using the L-
system defined in (7.27).

7.3.3 Terrain Generation and Distribution

“Fractal” methods of terrain generation have been extensively studied in

computer graphics, (Carpenter 1980; Fournier, Fussell & Carpenter 1982;

Voss & Clarke 1975) being early examples, good overviews can be found in

(Ebert et al. 1994; Musgrave, Kolb & Mace 1989). In this example, a terrain

model will be generated using L-systems and based around the noise,

fractalSum and turbulence functions described in Section 6.8.2. Somewhat

similar techniques have been proposed by Prusinkiewicz and Hammel who

used midpoint-displacement methods to generate mountains, along with an

integrated squig-curve model for rivers (Prusinkiewicz & Hammel 1993). They

generated their model using context-sensitive re-writing system in order to

share information between edges of the subdivided triangles.

Chapter 7: Applications 161

Two methods of procedural terrain construction using L-systems have been

explored: a recursive subdivision method and uniform subdivision method.

Both models rely only on a function,

!

" :#2 $# , which can return a height-

field value. Height-fields give altitude values at some two-dimensional posi-

tion

!

x, y() . Examples of procedural functions suitable for terrain generation

can be found in (Musgrave 1994). Alternatively, actual sampled data or data

drawn using a form of paint program can be used. One clear disadvantage of

the height-field definition of terrain heights is that only one altitude can exist

for any given two-dimensional position. This means features such as caves,

non-vertical holes, and overhanging cliffs cannot be described using this

technique.

7.3.3.1 Recursive subdivision

The basic method is to recursively sub-divide a regular polygon or tile, until it

reaches the desired resolution. Subdivision stops when the height difference

between points being subdivided falls below some threshold (

!

") or until some

maximum limit in subdivision is reached.

To illustrate the principle let us assume a two-dimensional “mountain”

cross section, drawn with a line. This can be easily extended to draw a sur-

face. The function

!

" p() returns the height of the terrain at the point p. The

constant L determines the maximum number of subdivisions.

!

#define L 8 // maximum recursive depth

" =
#

2
$: bP V pmin() sub pmin ,pmax ,0() V pmax() eP

p1 : sub pa ,pb , i() : i < L&& % pb() & % pa() >' (

[sub pa ,linear(pa ,pb ,0.5), i + 1()] f pb &pa

2

)

*
+

,

-
.

V % linear(pa ,pb ,0.5)()()

[sub linear(pa ,pb ,0.5),pb , i + 1()] f pb &pa

2

)

*
+

,

-
.

p2 : sub pa ,pb() : % pb() & % pa() / ' (0

p3 : V p()([^ f % p()() 1]

(7.28)

162 7.3: Stochastic Functions

Figure 7-18 shows the results of running this L-system with

!

" p() =#m noise # sp() , where

!

"m is a constant scaling factor and

!

"s a constant

determining the average frequency per unit area.

Figure 7-18: Output of L-system (7.28)

To convert to a surface representation, the subdivision productions

!

p1 and

!

p2

are applied to a square (defined by four points) rather than a line (defined by

two points).

Ideally, the subdivision method keeps subdividing until a subdivision would

have minimal effect on the resultant surface. However, in practice, examining

differences between samples (the conditional

!

" pb() # " pa() >$ in production

!

p1) only works accurately on continuous, monotonically increasing functions

over

!

pa ,pb[] . This problem can be circumvented with some explicit know-

ledge of the noise function (specifically that it is usually generated as a Her-

mite polynomial between points on a lattice (Ebert et al. 1994)). The subdivi-

sion method can also be used to create fractal surfaces using the midpoint

displacement technique (Fournier, Fussell & Carpenter 1982), using the func-

tion

!

" p() =randomp #$m ,$m() . Note that this function must be keyed to a par-

ticular location in order to create a continuous surface.

7.3.3.2 Uniform Subdivision

The uniform subdivision method simply increments over the area required for

the terrain, moving to the specified height at each step and creating triangles.

Chapter 7: Applications 163

!

#define N i 100 // subdivisions in x
#define N j 100 // subdivisions in y

" =
#

2
$: col 0()
p1 : col i() : i < Ni % [+ row 0, i()] f &() col i + 1()

p2 : row j, i() : j < N j % bP V &i,&j)(() f &()

[V & i +if odd j(),0,1()(),& j +if odd j(),1,0()()' ()
*
+
,
*

+
,

'

(
)

- " if odd j(),-1,1()() f &() V & i -if odd j(),1,0()(),&j + 1)*
+
,
*
+
,

'
(
)] eP

p4 : V p()% [^ f .p p()() /]

(7.29)

The constant

!

" specifies the sampling interval and the function

!

"p is the

height field function. Figure 7-19 shows the resultant surface with

!

"
p

p() =#
1
#

n
noise

p
p()+#

f
fractalSum

p
$

f
p,%()(), where

!

"1 ,

!

"n ,

!

" f and

!

" f are

all scaling constants.

!

" represents the number of octaves of summed noise.

For the image shown in the figure

!

"1 = 100,

!

"n = 0.7 ,

!

" f = 0.3 ,

!

" f = 2 and

!

" = 3 . This gives a combination of rolling slopes (due to the contribution of the

noise function), with a subtle amount of detail from the fractalSum func-

tion.

Figure 7-19: Fractal terrain generated using the uniform subdivision method of L-system
7.29.

A “water” plane can be added to separate land from water (Figure 7-20). The

plane is arbitrarily defined on the

!

z = 0 plane, meaning any terrain with a

negative z value is underwater. Due to the characteristics of the height-field

164 7.3: Stochastic Functions

function used, this gives approximately a 50% of land to water ratio. Lowering

or raising the water plane increases or decreases this ratio respectively. The

choice of the water height will become important for the distribution model

described in the next section.

Figure 7-20: Landscape with plane at z=0 added, representing the water line. Geometry
below the plane is underwater, above, land.

7.3.4 Element Placement over Terrain

Elements need to be placed over the terrain using the distribution methods

outlined in Section 7.3.2. With the addition of a height-field, placement be-

comes more complex than for a flat surface if we wish to generate at specified

density per unit area. In addition, different species may be distributed over

different altitudes. Some species may require well-drained soil on steep

slopes, others may favour close proximity to water catchment areas such as

streams and lakes.

The simple model presented here allows the distribution of species (or

variation of species generated) based on the altitude. Each species is normally

distributed with different mean and variance values for altitude. Distribution

may also be clamped to prevent any plants that grow at low altitudes from

growing underwater. Figure 7-21 shows such a distribution for a number of

different species. Small clusters of the same species are shown as different

coloured dots on the surface. Notice, for example, how the blue dots only ap-

pear on the highest peaks whereas the dark green dots favour the lower alti-

tudes.

Chapter 7: Applications 165

The model in not intended to be an accurate biological distribution model,

however it is sufficient to generate visually plausible results.

Figure 7-21: Species distribution over the landscape. Clusters of different species are
shown as coloured dots for preview purposes. Different colours represent different spe-
cies, activated as separate L-systems when plants are generated.

7.3.5 Results

Figure 7-22 shows two rendered images of the generic grass model described

in Section 7.3.1. Two different variations are used, based on the productions

defined in (7.26). One model triggers the production of flowers, the other, seed

husks at different stages of development. The mixing of these two models is

controlled by the noise function. The distribution of individual plant elements

follows a Poisson distribution, ensuring minimum spacing between individual

plants. For each image all the geometry is created by application of the L-

system rules — no external geometry or distribution software is required. The

construction of stalks, leaves, husks, florets, etc. is all achieved using gener-

alised cylinder techniques.

Using a similar method to that of introducing variance in stalk growth

(Section 7.3.1), other parameters are also varied using specific distributions

(uniform, Poisson or normal), these include: flower size, leaf angle, twist, and

husk dimensions. In some cases, variance has causal relationships based on

simple observation (e.g. wide stems generate bigger flowers). The resultant

166 7.3: Stochastic Functions

models do not mimic a set species, the grasses have a similar visual appear-

ance to a number of Australian species, e.g. strap grass, Dianella, or some of

the small lilies (Thysannotus sp.), however the flowers are reminiscent of the

Geraldton Wax. This is based on aesthetic choices — the intent is not botani-

cal realism. However, there is no reason that accurate botanical models could

be created by this technique if that was desired.

Chapter 7: Applications 167

Figure 7-22: Grass Field. Two views of the grass model with stochastic distributions.

Figure 7-24 shows some sample images generated using the terrain model

with distribution as outlined in Section 7.3.4. As a comparison, the terrain

without vegetation is illustrated in Figure 7-23. As can be seen, the vegetation

contributes significantly to the complexity of the scene. Render time for each

168 7.3: Stochastic Functions

image was approximately 24 minutes on a dual 500Mhz PowerPC computer.

There are over 100,000 individual plants in the final model, with approxi-

mately 12.2 million polygons. The L-system productions and axioms that

specify the scene require less than 4,000 bytes of storage, but generate in ex-

cess of 1.56Gb of geometric data — an expansion factor of 390,000:1. The use

of the term database amplification seems particularly apt in this situation.

Figure 7-23: Terrain model rendered without vegetation (cf. Figure 7-24). Procedural tex-
tures are used to shade the terrain and water. For the terrain, various maps based on the
height field provide variation of colour, texture and shading based on elevation.

The terrain model uses a relatively simple heterogeneous model based on the

noise and fractalSum functions. Terrains that are more complex could have

been implemented, such as those described in (Musgrave 1994), however

given that much of the terrain is covered in vegetation additional terrain

complexity would largely go unnoticed, as little of the actual terrain is visible.

The given combination of terrain and vegetation is dependent on the specific

requirements of the artist or user. What has been demonstrated in this section

is that such landscape modelling is possible using L-systems and the functions

described in this thesis.

Chapter 7: Applications 169

Figure 7-24: Terrain and plants generated using L-systems as described in this section.

Chapter 8: Animation 171

8 Animation

Time is that by virtue of which everything becomes nothingness in
our hands and loses all real value.

— Arthur Schopenhauer

The previous chapter covered the use of L-systems as a generative modelling

system suited to three–dimensional form, particularly branching structures

and botanical models. This chapter extends the diversity and flexibility of the

generative modelling approach by adding functionality in the animation of

continuous development.

8.1 Animation using L-systems

The L-system formalisms described in the previous chapters (deterministic,

stochastic, context sensitive and parametric) have not considered the conti-

nuity of spatial and temporal development. The formalisms on which they are

based are discrete in both space and time. That is, productions replace strings

simultaneously and at discrete steps. For the modelling of plants and

branching structures for biological applications, this may be acceptable. How-

ever, in applying L-systems to broader domains, continuous development pro-

vides a number of advantages; these will be discussed shortly.

Initially, it appears that visual applications such as animation are in many

senses discrete. Film and video animation is a “trick of the eye”, where the

rapid succession of static individual images or frames gives the illusion of

movement. In many forms of music, notes are discrete events chosen from a

fixed set of pitch values. Discrete models can be applied to these applications,

however as Prusinkiewicz and Lindenmayer (Prusinkiewicz & Lindenmayer

172 8.1: Animation using L-systems

1990, page 133-134) point out, in the case of L-systems, this has a number of

disadvantages:

! Models can be constructed using longer or shorter time intervals, but

this then becomes part of the model and becomes difficult to modify.

Film and video have different sampling rates and interactive graphics

display can have not have a guaranteed display (refresh) rate.

! The smooth animation and generation of shapes is easier to specify in

the continuous time domain as opposed to adding more complexity to

productions to deal specifically with smooth growth and development.

! It is conceptually elegant to separate model development (which is con-

tinuous) from model observation (which is discrete).

The symbolic and discrete nature of an L-system alphabet is inherently suited

to a stepwise topological and structural description, whereas the develop-

mental aspects may be more suited to a continuous model. For a flexible or-

ganic modelling system, continuous components cannot be ignored. In the

creative arts, time-based, developmental, real-time interactive systems have

become increasingly prominent (Paul 2003). As discussed in Section 3.6, the

idea of an artwork as temporal system has a complex and acknowledged his-

tory in contemporary art.

The developmental process of timed L-systems (defined in the next section)

reflects periods of continuous model change punctuated by the instantaneous

changes of module divisions or replacements. Prusinkiewicz and Lindenmayer

see an analogy with the theory of morphogenesis advanced by Thom (Thom

1975) where development is seen as a piecewise continuous process, punctu-

ated by catastrophes.

8.1.1 Related Work

Noser, Thalmann and Turner combined timed L-systems with “vector force

fields” to create an animation system that enables simulation of envi-

ronmental interaction (Noser & Thalmann 1993; Noser, Thalmann & Turner

1992). Their main emphasis was on this environmental interaction rather

than as a general animation system. The RTEvol system of Nguyen is a pro-

cedural modelling system that supports deterministic, stochastic, parametric

Chapter 8: Animation 173

and timed L-systems with output to popular ray-tracing packages (Nguyen

1997).

Work by Prusinkiewicz, Hammel and Mjolsness introduced differential L-

systems where module development is controlled by simulating diffusing

chemicals within a module that trigger rewriting when they reach a certain

concentration (Prusinkiewicz, Hammel & Mjolsness 1993). Elements of this

methodology are integrated into the cellular developmental system described

in the next chapter.

8.2 Timed, Parametric 0L-systems

Timed L-systems were proposed by Prusinkiewicz and Lindenmayer

(Prusinkiewicz & Lindenmayer 1990, Chapter 6) as an extension for achieving

continuous development with D0L-systems. The definition here varies slightly

in a number of respects:

! Parametric L-systems are the basis for developing the timed extension;

! The birth time parameter may be an expression;

! A “growth” function, here termed the development function is used in-

stead of the growth function described in (Prusinkiewicz & Lindenmayer

1990, page 140). This function is used to achieve a more flexible ani-

mation system and is further discussed in Section 8.2.1;

! The original formulation was primarily for modelling cellular develop-

mental processes, whereas here it is used for the more general purpose

of producing generative animation sequences with the L-system models

previously discussed.

Here, parametric 0L-systems (defined in Section 5.3.5.1) are modified to in-

clude continuously variable module ages that permit continuous temporal and

spatial development that is difficult or impossible to achieve with conventional

0L- or nL-systems.

In this case, modules consist of timed symbols with associated parameters.

For each module, the symbol also carries with it an age — a continuous, real

variable, representing the amount of time the module has been active in the

derivation string. Strings of modules form timed, parametric words, which

174 8.2: Timed, Parametric 0L-systems

can be interpreted to represent modelled structures. As with parametric L-

systems, it is important to differentiate between formal modules used in pro-

duction specification, and actual modules that contain real-valued parameters

and a real-valued age. We assume the definitions of formal and actual pa-

rameters, logical and arithmetic expressions described in Section 5.3.5 for

parametric 0L-systems.

Let V be an alphabet,

!

" the set real numbers and

!

"
+
 the set of positive

real numbers, including 0. The triple

!

s,",#()$ V %&* %&+ is referred to as a

timed parametric module (hereafter shortened to module). It consists of the

symbol,

!

s " V , its associated parameters,

!

" = a1,a2 ,K ,an # $ and the age of

s,

!

" # $
+
. A sequence of modules,

!

x = s1,"1,#1()L sn ,"n ,# n()$ V %&* %&+()
*
 is

called a timed, parametric word. A module with symbol

!

S " V , parameters

!

a1,a2 ,...,an " # and age

!

" is denoted by

!

S(a1,a2 ,...an),"() .

A timed, parametric 0L-system (tp0L-system) is an ordered quadruplet

!

G = V ,",#, P where:

! V is the non-empty set of symbols called the alphabet of the L-system;

!

!

" is the set of formal parameters;

!

!

" # V $%* $%+()
+

 is a nonempty timed, parametric word over V, called

the axiom, and

!

!

P " V # $* #%+() # !($) # V # "($)* # "($)()
*
 is a finite set of productions.

A production

!

a,C, "() is denoted

!

a : C " # , where the formal module

!

a " V # $* #%
+
 is the predecessor, the logical expression

!

C " !(#) is the condi-

tion, and the formal timed parametric word

!

" # V $!(%)* $!(%)()
*
 is called the

successor. Let

!

s,",#() be a predecessor module in a production

!

pi " P and

!

s1,"1,#1()L sn ," n ,# n() the successor word of the same production. The pa-

rameter

!

" # $
+
 of the predecessor module represents the terminal age of

!

s.

The expressions,

!

" i # !($), i = 1..n sets the initial or birth age. Birth age ex-

pressions are evaluated when the module is created in the derivation string.

This nomenclature is illustrated in Figure 8-1.

As with parametric 0L-systems, if the condition is empty the production can

be written

!

s " # . Formal and actual parameter counts must be the same for

any given symbol.

Chapter 8: Animation 175

Figure 8-1: Nomenclature for predecessor and successor modules in a timed L-system.

Here are some example productions:

!

A j, k(),3.0() : j < k " B j * k(),0.0() C j + 1, k # 1(),0.5() (8.1)

!

A t(),3.0()" A t + 1(),3.0 / t() (8.2)

It is assumed:

! For each symbol

!

s " V there exists at most one value of

!

" # $
+
 for any

production

!

pi " P where

!

s,",#() is the predecessor in

!

pi . If s does not

appear in any production predecessor then the terminal age of s,

!

"s = #

is used (effectively the module never dies).

! If

!

s,",#() is a production predecessor in

!

pi and

!

s," i ,# i() any module

that appears in a successor word of P for s, then

!

" ># i when

!

" i is ev-

aluated and its value bound to

!

" i (i.e. the lifetime of the module,

!

" #$ i > 0).

Development proceeds according to some global time, t, common to the entire

word under consideration. Local times are maintained by each module’s age

variable,

!

" (providing the relative age of the module). Let

!

s,",#(),C, b1,"1,$1()K bn ," n ,$ n()() be a production in P. To obtain the deriva-

tion string at some global t ime, t , a derivation function,

!

! : V "#* "#+()
+

"#+

$

%
&

'

(
) * V "#* "#+()

*
 is defined:

1.

!

! s1,"1,#1()K sn,"n,# n()(), t() = ! s1,"1,#1(), t()K! sn,"n,# n(), t()

176 8.2: Timed, Parametric 0L-systems

2.

!

! s,",#(), t() = s,",# + t(), if # + t $ %

3.

!

! s,",#(), t() = ! b1,"1,$1()K bn,"n,$n()(), t % & % #()(), if # + t > & and C "() ' 0

The evaluation of conditions is the same as for parametric L-systems (de-

scribed in Section 5.3.5). Parameters are independent of module age (i.e. they

do not change as the module ages). For tOL-systems (Prusinkiewicz & Lin-

denmayer 1990, page 136) show that this derivation and associated condi-

tions guarantees a derivation for any value of t. This scheme also ensures that

observation times are independent of the model development itself.

As an example, consider the following timed parametric L-system:

!

" : A 1(),0()
p1 : A i(),1() : i > 0 :# A $i(),0() B i(),0()
p2 : A i(),1() : i % 0 :# B i(),0() A $i(),0()
p3 : B i(),1()# A i(),0()

(8.3)

The table below shows how the derivation function is used to evaluate the

derivation string at different global times.

Global
Time Derivation Function Derivation String

!

! A,1,0(),0.5() = A,1,0.5() by A2[]

!

A 1(),0.5()

!

! A,1,0(),1.5() = ! A,"1,0.0() B,1,0()(),0.5() by A3[]

= ! A,"1,0.0(),0.5() ! B,1,0.0(),0.5() by A1[]
= A,"1,0.5() B,1,0.5() by A2[]

!

A "1(),0.5() B 1(),0.5()

!

! A,1,0(),2.5() = ! A,"1,0.0() B,1,0()(),1.5() by A3[]

= ! A,"1,0.0(),1.5() ! B,1,0.0(),1.5() by A1[]
= ! B,"1,0.0() A,1,0.0(),0.5()
! A,1,0.0(),0.5() by A3[]

= ! B,"1,0.0(),0.5() ! A,1,0.0(),0.5()
! A,1,0.0(),0.5() by A1[]

= B,"1,0.5() A,1,0.5() A,1,0.5() by A2[]

!

B "1(),0.5() A 1(),0.5() A 1(),0.5()

Table 8–1: Use of the derivation function for the sample L-system.

!

t = 0.5

!

t = 1.5

!

t = 2.5

Chapter 8: Animation 177

8.2.1 Development Functions

The words produced by application of productions can undergo a turtle inter-

pretation as described for parametric L-systems in Chapter 6. What remains

is to specify a relationship between a module’s age, parameters and its inter-

pretation by the turtle system.

Let

!

m = s,",#()$ V %& %&+ be an actual module composed of the symbol,

s, its actual parameters,

!

" and its current relative age,

!

" . A timed symbol

!

s " V may optionally have associated with it a development function,

!

gs : V "#* "#+()$# . This function may involve any of the parameters, cur-

rent age,

!

" , and the terminal age

!

" of s (determined by the predecessor of

the production acting on s). Thus

!

gs is a real valued function that can be

composed of any arithmetic expression

!

E "s ,# s ,$s() . In addition to the formal

parameters supplied, expressions can include the operators, numeric con-

stants, and functions defined in Section 5.3.5. The development function re-

turns a real value, which is then used as a scaling factor for the actual pa-

rameter vector

!

" . That is:

!

" # = gs $ #[] (8.4)

The development function is evaluated whenever a module requires turtle

interpretation, with parameter vector

!

" # sent to the turtle, rather than

!

" as

was the case with parametric L-systems. No constraints are placed on the

range or continuity of

!

gs , however if continuity is required when a production

is applied (such as the accurate modelling of cellular development),

!

gs must

be monotonic and continuous. These constraints extend to the development

functions for those symbols that are related as being part of the successor

definition of s.

The development function is specified in the form:

!

gs parameter_list() =expression (8.5)

Where parameter_list is drawn from the parameters, age and terminal age
of s

!

"s ,# s ,$s{ } and expression is any valid arithmetic expression as dis-

cussed in relation to parametric L-systems (Section 5.3.5).

178 8.2: Timed, Parametric 0L-systems

8.2.1.1 Development Functions and Growth Functions

It is common in the literature to talk of growth functions in association with L-

system derivation. Growth functions relate the size of the derivation string

(number of symbols) with the derivation step n of the string. The growth

function,

!

fG n() for a D0L-system

!

G = V ,", P has been shown (Rozenberg &

Salomaa 1980, pages 33-38) to be:

!

fG n() = Pi (n)"i
n

i=1

s

for n $ n0 (8.6)

where

!

Pi n() is an polynomial with integer coefficients,

!

"i a nonnegative inte-

ger, and

!

n0 = V . Studies have shown that many growth processes observed in

nature cannot be described by equation (8.6).

In the development of timed D0L-systems (tDOL-systems), Prusinkiewicz

and Lindenmayer require growth functions to relate a module’s age with the

shape of the entity it represents. Their growth function:

!

fG a,"() (8.7)

Specifies the length of a cell, a as a function of the module’s age

!

" .

 They impose continuity requirements to ensure smooth animation of cel-

lular development and continuity of cell sizes in the case of using tDOL-

systems to simulate the growth of non-branching filaments. This continuity

extends to higher order derivatives in order to eliminate discontinuities. They

site the studies of morphogenesis by Thom (Thom 1975) who assumes a dif-

ferential model a priori as the basis for studying morphogenesis. This theory

is furthered in the developmental aspects of differential L-systems

(Prusinkiewicz, Hammel & Mjolsness 1993).

The definition of growth functions for D0L-systems as shown in equation

(8.6) and that for timed D0L-systems (equation (8.7)) reflects a subtle change

in that the original formulation (8.6) was for the ordinal length of a derived

string, whereas for timed L-systems it is the relationship between a module’s

size and its age.

The development function, introduced in Section 8.2.1, is not referred to as

a “growth function”, even though there are similarities between the develop-

ment function and the growth function of equation (8.7). This is because the

development functions do not literally describe the length of derived strings

Chapter 8: Animation 179

(or their mapping to cells), rather they provide an association between a

module’s age, its actual parameters, and the interpretation of that module. In

addition, development functions may not necessarily reflect changes in

growth, since they permit a wider degree of control under the extended turtle

interpretation discussed in Chapter 1.

8.2.2 Growth Examples

Here two examples of the use of timed L-systems and their associated devel-

opment functions are shown, highlighting their application in modelling ani-

mated mechanical and organic structures.

8.2.2.1 A Simple Piston System

This example simulates a simple piston and flywheel mechanism. The piston

is connected to the flywheel via an arm of fixed length. The movement of the

piston is constrained to the vertical, which drives the wheel in a circular mo-

tion (Figure 8-2).

Figure 8-2: Diagram of the piston system.

180 8.2: Timed, Parametric 0L-systems

Figure 8-3 is the L-system used to model the above system. The period of the

system is determined by the constant

!

" . In-built turtle geometry commands

are sufficient to construct all the geometry. Production

!

p1 builds the system,

productions

!

p2 " p5 cycle the components in loops of period

!

" . When a symbol

reaches the end of its life, it begins again with age 0 and the cycle continues.

The development functions associated with each timed module provide the

information necessary to drive the animation. Thus, the productions provide

structure and control, while the development functions control the animation

properties of the model.

!

#define WR 50
#define KL 200
#define KR 2
#define PR 10
#define PL 60
#define " 4
#define # 0.04
equiv f mov
equiv + bend
equiv $ turn

% : piston,0()
p1 : piston,#()& mov WR(),0() ! PR() F PL() bend 1(),0() ! KR() F KL()

turn 1(),0() f WR() +
'

2

(

)
*

+

,
- [disc 0,WR()]

p2 : mov x(),"()& mov x(),0()
p3 : bend x(),"()& bend x +1(),0()
p4 : turn x(),"()& turn x(),0()

gmov .mov,/mov() = 1$ cos 2' .mov

/mov

(

)
*

+

,
-

gbend .bend ,/bend() = sin$1

R sin 2' . bend

/bend

(

)
*

+

,
-

L

(

)

*
*
*
*

+

,

-
-
-
-

gturn . turn,/turn() = gbend . turn,/turn() +
2' . turn

/turn

Figure 8-3: tDOL-system to simulate a simple piston mechanism.

Chapter 8: Animation 181

A sequence of animated frames generated by the above L-system is shown

below in Figure 8-4. The global time for each frame is shown underneath.

While this example is not a true physical dynamics simulation, it does demon-

strate how constraints and procedural motion can be specified using the

timed formalisms described in this chapter.

Figure 8-4: Frames from the piston simulation — the geometry and animation is entirely
generated from the timed L-system.

8.2.2.2 Animation of Growth

I now turn to a more “traditional” example using tpDOL-systems to model the

growth in a plant-like object. This example, Twin-headed Boykinia, is taken

from the interactive animation Turbulence, created by the author. In this se-

quence, a number of evolved and imaginary species of plant-like objects grow

on a barren landscape. The sequence required a number of instances of the

same “species”, and every instance was required to look and animate in a

similar fashion, without been identical. This is achieved using timed L-

systems and a number of the functions described in Section 6.8, particularly

the noise and turbulence functions.

182 8.2: Timed, Parametric 0L-systems

The full L-system describing the development is quite complex (approxi-

mately 35 productions), so in the interests of space and clarity only selected

components relevant to the discussion will be detailed here.

There are two main stages in the development of this sequence — (i) de-

velopment of the stem, which after a certain time bifurcates into two seg-

ments; and (ii) the development of the flower head. The animated develop-

ment of an individual model is shown below in Figure 8-5.

Figure 8-5: Sequence of frames showing the development of the Twin-Headed Boykinia.
All components that make up the model are developing continuously. Each model is of
equal spacing in time (increasing from left to right, top to bottom).

8.2.2.2.1 Stem Growth

The timed L-system describing stem growth is shown below in Figure 8-6.

The productions for the module st generate the sequence of stem segments

and control the branching that occurs after a number of stem segments have

developed. The parameters to st specify (respectively): plant id (used when

generating more than one instance, see Section 8.2.2.2.3), stem segment

count, total segment iteration count, segment length, segment radius, and bi-

furcation level. The constant

!

" specifies the time-period between new seg-

ments forming on the stem.

Note the use of random functions that are keyed to particular symbols. In

productions

!

p1 " p3, they control random variation of segment size, orienta-

tion and growth direction.

Chapter 8: Animation 183

!

#define " 1.0
#define Lf 0.97
#define Tf 0.96
#define Bmax 1
equiv + br;

: st n,0,gaussianst 15,5(),gaussianst 5,0.5(),gaussianst 0.6,0.06()(),0()
p1 : st n, i, imax , l, t,b(),"() : i < imax $ / random st -180,180()() ! t() seg l, n % i(),0()

st n, i + 1,b, lLf , tTf ,b(),0()
p2 : st n, i, imax , l, t,b(),"() : i & imax & & b < Bmax $ [br randombr 40,70()(),0()

st n + 1,0,b *random st 0.6,0.9(), lLf , tTf ,b + 1(),0()]

[br randombr %40,%70()(),0()
st n + 1,0,b *random st 0.6,0.9(), lLf , tTf ,b + 1(),0()]

p3 : st n, i, imax , l, t,b(),"() : i & imax & & b > Bmax $ / random st -180,180()() ! t()
fwr t(),0()

Figure 8-6: Fragment of the timed L-system controlling stem development.

The module seg controls the actual construction of stem segment geometry. It

uses generalised cylinders that have animated twisting and bending. The de-

velopment function follows a parameterised exponential growth function.

!

#define tseg 0.5
#define ks 4.2
#define kn 0.1
equiv C seg segb

equiv + bend
equiv / twist

p4 : seg l(), tseg()" bend 4l(),0() twist 4l(),0() segb l(), tseg()

gseg # seg ,$seg() = 1% e
% ks

#seg

$seg

gsegb
segb

,$segb() = gseg # segb
,$segb() +

kn smoothstep tseg ,2tseg ,# segb() noise1Dsegb
segb()()

The module seg grows until maturity (time

!

tseg), whereupon it is replaced by

module

!

segb , representing the mature segment.59 At this stage, the growth

function changes to incorporate a noise component. As

!

segb has no specified

59 Even though the module changes, interpretation of seg and segb are the same. There is no
discontinuity because the growth functions form a continuous function.

184 8.2: Timed, Parametric 0L-systems

production, its terminal age is assumed to be infinite (the timed equivalent of

the identity production). The growth functions for modules bend and twist

(not shown) use a similar noise based methods to animate the bending and

twisting of each segment, both during development and as a mature plant.

Figure 8-7: Graph of development functions gseg and gsegb
. The functions are chosen to

provide continuous growth in animated sequences. The segment reaches maturity at tseg.

8.2.2.2.2 Flower Growth

The module fwr initiates growth of the flower head. It consists of a number of

animated components. The main head uses a set of three pre-defined sur-

faces, which are interpolated by growth functions. Generalised cylinders are

used to model the thorn and spike components. Note how these features ani-

mate in both shape and size.

A Bessel function of the first kind is used to model the scaling and anima-

tion of the flower head (Figure 8-8). Bessel functions are often used to solve

motion equations for physical systems (Kreyszig 1999, p. 218), and here the

use of the function gives the animation a damped-spring-like quality (which

the equation represents), as the head “puffs” up rapidly in size and then pul-

sates in an oscillating rhythm, slowly damping down as the element ages.

Visually similar behaviour is observed in time-lapse sequences of real plants,

as they respond to the rhythms of the day/night cycle.

Chapter 8: Animation 185

Figure 8-8: Development function used for animation of the flower head based on a Bes-
sel function of the first kind.

Figure 8-9: Growth of the flower head. The geometry contains both pre-defined surfaces
and generalised cylinders.

8.2.2.2.3 Multiple Instances of the Same Species

By keying random number generation functions (Section 6.8.2), variation can

be achieved amongst individuals of the same species (i.e. generated by the

same L-system). By associating a unique id with each plant random number

generation keys change with each instance, thus creating variation amongst

the models generated using the same deterministic L-system.

186 8.2: Timed, Parametric 0L-systems

Figure 8-10: Various instances of the Twin-Headed Boykinia model showing how variation
is achieved using the stochastic functions of the L-system model described in this thesis.
Each plant was generated from the same L-system, but with a unique id used to seed the
keyed random number generation functions.

Frames from the final animated sequence generated for Turbulence are

shown below, the L-system animating both geometry and texture information.

The sequence shows approximately 2.5 seconds of animation.

Figure 8-11: Frames showing the development of the Twin-headed Boykinia sequence
from the interactive animation Turbulence.

Chapter 8: Animation 187

8.3 Detaching Turtle State

In Section 6.4, the use of turtle command “%” (break symbol), was intro-

duced. The use of this function is now further described in relation to anima-

tion and timed L-systems.

In some animation sequences, it is necessary to break the inherited de-

pendence of one geometric structure from another, where previously that de-

pendence was required. For example, a seed that grows inside a seed-case

moves with that case, until the time that the case opens and the seed falls out.

From this point in time, its movements are independent of its former parent.

Animating such events using timed L-systems can be difficult, because sym-

bols are interpreted relative to the current turtle state, not at absolute posi-

tions or orientations.

The break turtle command (“%”) facilitates the independent movement of

objects where previously there was dependence. The command works by trig-

gering a turtle interpretation of all modules in the current module list up until

the specific “%” module’s position. This event occurs at the module’s birth

and happens only once in it’s lifetime. This non-standard feature requires

specific testing during the development of modules (see the algorithm in

Figure 8-28).

An example of the use of this break command is shown in the timed L-

system of Figure 8-13. This is a simplified section of a more complex ani-

mated sequence. In the interest of clarity, a number of productions not essen-

tial to this discussion have been removed. Figure 8-14 shows frames from the

animated sequence generated by the complete version of this L-system.

The sequence consists of moving branching structures, which grow and

form “seed-case” structures at the end (Figure 8-12 shows these features).

The decision to form these cases is based on a stochastic rule (not shown).

The cases grow and after a certain time they mature and are able to fire

seeds at intervals.60 Once a seed has been fired, it is no longer geometrically

parented to the case, hence the need for the break module.

60 Although this sequence is not based on any real plant behaviour, in a number of species, seed
dispersal is achieved by pods exploding and seeds being shot out. For example, Leafy Spurge
(Euphorbia esula) can project seeds at distances of up to 4.6 meters!

188 8.3: Detaching Turtle State

Figure 8-12: Still image of the ‘spitter’ sequence from the interactive animation Turbu-
lence showing seeds and seed-cases referred to in this section.

The seed-cases themselves are modelled using generalised cylinders and

undergo a complex animated sequence of “spitting” out a seed. The produc-

tions shown in Figure 8-13 begin at this stage essentially represent the con-

trol mechanism for this “spitting” sequence (animation of the case is not in-

cluded here). Productions

!

p2 " p4 control the growth of the mature seed-case

stem. Productions

!

p5–

!

p7 control the firing of seeds at random intervals, the

module eject triggering the ejection of the seed and a spray of “dust” as the

seed is ejected.

Production

!

p10 shows how the “%” module is used. First, the turtle state is

pushed (note the use of the equiv command for this purpose, giving the push

module its own symbol name but equivalent function to the “[” symbol). The

turtle dependency broken and two key modules, Explode and seed instanti-

ated to begin the development of the particle “dust” and seed respectively.

These two components are ejected from the seed-case and move independ-

ently of their former parent (the actual productions that create the particle

dust explosion and seed are not included in the L-system of Figure 8-13). Pro-

ductions

!

p11 " p15 terminate the symbols at the end of their development (they

are replaced by the null symbol (

!

"), i.e. removed). It is essential all these

modules be removed at the same time to maintain coherence in the animated

sequence.

Chapter 8: Animation 189

!

equiv [push;
equiv] pop;
equiv F jGrow j jDelay;
equiv spit spitDelay;
#define S _ DLY 1.3
#define S _ TIME 1.5
#define R 4.0
#define QUANT 0.02
#define E _ DLY 0.855
#define E _ TIME 6.0
#define N 8

" : spitSeq n(),0()
p1 : spitSeq n(), S _ DLY() : n # 4 :$ F n(),0() sphere 1(),0()
p2 : spitSeq n(), S _ DLY() : n > 4 :$ F n(),0() jGrow R(),0() sphere 1(),0()

diskSeq,0() [spitGrow G(),0() spit 1, n(),0()]

p3 : jGrow l(), S _ TIME()$ jDelay l(),0()
p4 : j l(), S _ TIME()$ jDelay l(),0()
p5 : spit s, n(), S _ TIME()$ spitDelay s, n(),0()

p6 : spitDelay s, n(),QUANT() $
0.03

spit s, n(),0() [eject,0()]

p7 : spitDelay s, n(),QUANT() $
0.97

spitDelay s, n(),0()

p8 : jDelay l(),QUANT() $
0.03

j l(),0()

p9 : jDelay l(),QUANT() $
0.97

jDelay l(),0()
p10 : eject, E _ DLY()$ push,0() %,0() Explode E _ DIST(),0() seed,0() pop,0()
p11 : %, E _ TIME()$%

p12 : push, E _ TIME()$%

p13 : pop, E _ TIME()$%

p14 : Explode n(), E _ TIME()$%

p15 : seed, E _ TIME()$%

Figure 8-13: Timed L-system fragment for the ‘spitter’ sequence shown in Figure 8-14.

190 8.4: Animation of Legged Gaits

Figure 8-14: ‘Spitter sequence’ from the interactive animation Turbulence. A seed-like
object (red) is forcefully emitted from the trumpet-like seed-case structure. The seed then
becomes an independent body, with movement in space independent of its former par-
ent. A shower of particles also accompanies the seed as it is emitted.

8.4 Animation of Legged Gaits

The animation of legged gaits has received considerable attention in robotics

and graphics research (Badler, Barsky & Zeltzer 1991; Featherstone 1988; Gi-

rard & Maciejewski 1985; McKenna & Zeltzer 1990; Raibert & Hodgins 1991).

There are many different methods and applications for the generation of

legged figure gaits. In this section, I show how the developmental L-system

model described in this chapter can be used to model legged gaits. The L-

system encodes both body architecture and control specification, allowing an

extremely flexible and concise method for generating animated sequences of

legged figures.

8.4.1 Techniques for Legged Figure Animation

Apart from general key-framing techniques used in computer animation,

basic goal-directed movements of an articulated figure are generally solved

using inverse kinematics. Using this technique, a set of joint angles are cal-

culated which place the limb at the appropriate position and orientation (the

goal), usually calculated by finding the inverse of the Jacobian matrix of joint

angles. This calculation can be done incrementally from the base segment

(Korein & Badler 1982).

In contrast, forward kinematics are used to find the world space coordi-

nates of the end of the limb, given the set of joint angles (Denavit & Harten-

Chapter 8: Animation 191

berg 1955). The inverse kinematic problem is generally more difficult to solve

than the forward kinematic one, since for an arbitrary configuration the sys-

tem is frequently under-constrained.

Legged gaits may also be driven by forward dynamics where the physical

dynamics of a linked system is calculated from a set of given input torques.

Forward dynamics solvers may be combined with some form of control sys-

tem that simulates the use of muscles to control an animal’s gait. Such a sys-

tem may also include a general physical dynamics solver, to give physically

realistic motion and behaviour. For example, the poda system of Girard opti-

mises limb movement using both kinematics and dynamics based variables

and constraints (Girard 1991). The technique described here creates a control

system for limb animation, but the simulation is not fully physical. The pri-

mary emphasis is on construction and control of the legged motion using the

extensions to L-systems described in this thesis.

8.4.2 Leg and Body Configuration

For the example detailed in this section, we will consider the representation

of an “animal” with multiple rigid body segments, each connected with a 2-

degree of freedom (DOF) articulation (Figure 8-15).

S2

S1

Body
Segment

J1

J2

Body
Segment

C

Body
Segment

B

Body
Segment

A

2-DOF
Articulation

sw su

st
sk

Figure 8-15: Legged animal composed of multiple articulated body segments (left) and de-
tail of an individual segment’s joint configuration (right).

Each body segment has two multi-jointed legs, at opposite sides of the body

segment. The leg detail is also shown in Figure 8-15. A leg is composed of two

rigid limb segments,

!

S1 and

!

S2.

!

S1 is attached to the body segment by a 3-

DOF joint,

!

J1. The joint

!

J2 between

!

S1 and

!

S2 has 1-DOF.

192 8.4: Animation of Legged Gaits

The key advantage of an L-system specification is in the flexibility of body

and limb design and specification. Similar techniques have been used as a

general system to evolve novel designs of articulated figures (Sims 1994a,

1994b). Arbitrary joint, limb, and body segment configurations can be

achieved by modifying the productions that generate these elements. The

generalised cylinder techniques (discussed in Section 6.6) are used to model

the complex limb and body geometries of the creature.

Figure 8-16: Individual body segment showing the geometry created using generalised
cylinders. The spikes at the top and bottom of the body segment are also animated as the
creature moves.

In the simulation described here, the motor control structure is also specified

by the timed L-system, forming a simple finite state machine that drives the

movement of the body segments and legs. Constraints on the movement of in-

dividual limbs are set within the development functions for each joint. The

control system will be the principle focus of the description that follows.

8.4.3 Animation of a Single Leg

To illustrate how this scheme works, I will focus on the construction and ani-

mation of a single leg. The L-system shown in Figure 8-17 captures the es-

sential components. The modules sw, su and st represent the motor control of

!

S1 (3-DOF articulation), while sk represents the joint angle between

!

S1 and

!

S2. The module ls (leg segment) calls a complex set of productions to create

the geometry of the leg using generalised cylinders (these productions are not

Chapter 8: Animation 193

show for the sake of clarity). This module’s parameter specifies the overall

length of the leg segment and the turtle is placed at the position of the next

joint upon completing of the geometric construction of the leg segment. The ls

module is not timed due to the fixed structure of the leg segment itself. This

constraint means that the geometric data can be cached to avoid regeneration

across multiple locations and time steps. The constant

!

RS12 is the ratio of size

between the upper (

!

S1) and lower (

!

S2) leg segments.

!

#define "ls #

#define "sw #

#define "su #

#define "st
#

5
#define "sk #

#define RS12

3
2

equiv + sw
equiv ^ su
equiv / st
equiv & sk

p1 : leg $, l(),"ls()% sw 1,$(),0() su 1,$(),
3"su

4

&

'
(

)

*
+ st 1,$(),0() ls l()

sk 1(),0() ls RS12l()

p2 : sw n,$(),"sw()% sw n,$(),0()
p3 : su n,$(),"su()% su n,$(),0()
p4 : st n,$(),"st()% st2 n,$(),"st()
p5 : sk n,$(),"sk()% sk n,$(),0()
p6 : st2 n,$(),3"st()% st ,n,$(),0()

Figure 8-17: L-system to specify a single leg configuration. The cycle time of a single step
is specified by the variable

!

" .

An individual walk cycle represents the movement of the leg system over a

single gait. The total time for this cycle is represented by the variable

!

" , with

individual controllers using this time or a rational ratio of it to ensure cyclic

animation. For example, the twisting motion of the leg (module st) is sepa-

rated into three distinct components which sum to the gait cycle time.

The parameter

!

" represents the phase of the animation cycle. As each

body segment is added the phase of the walk cycle is shifted to ensure correct

194 8.4: Animation of Legged Gaits

motion relative to the position of the segment. The parameters n and l control

the magnitude of the gait and the leg respectively.

The productions of Figure 8-17 specify a simple state machine that en-

codes the geometric and temporal structure of the leg gait. The remaining

information required is the associated development function for each module,

detailed below.

!

#define Rsw 0
#define Asw 0.378"
#define Rsu 0.056"
#define Asu 0.139"
#define Rst 0
#define Ast 0.056"
#define Rsk 0.389"
#define Ask 0.194"

gsw # sw ,$sw ,%() = Rsw + Asw sin 2"# sw

$sw

+%
&

'
(

)

*
+

gsu # su ,$su ,%() =if # su <
$su

2
,0, Rsu , Asu cos 2" # su

$su

, 0.5
&

'
(

)

*
+ +%

&

'
(

)

*
+ + 1

&

'
((

)

*
+ +

&

'

(
(

)

*

+
+

gst # st ,$st ,%, n() = Rst +sign n()Ast sin2 "# sw

$sw

+%
&

'
(

)

*
+

gsk # sk ,$sk ,%() =if # sk <
$sk

2
,0, Rsk , Ask cos 4" # sk

$sk

, 0.5
&

'
(

)

*
+ +%

&

'
(

)

*
+ + 1

&

'
((

)

*
+ +

&

'

(
(

)

*

+
+

Figure 8-18: Key development functions for the gait of a single leg.

These functions approximate the inverse kinematic solution of the system for

a walking gait. The use of periodic functions ensures that phase and perfect

cycling are easily accommodated, as required for a system that must coordi-

nate a large number of legs in a coherent fashion. In the actual generated se-

quences, noise perturbations based on the age of the creature are used to

introduce variation and a “natural” feel into the walk cycle.

There are no development functions for the leg module, since the life cycle

of this module does not have any interpretation in the derivation string — it

represents the overall gait production for a single leg animation cycle.

Chapter 8: Animation 195

Figure 8-19: Multiple exposure of a single body segment showing the gaits of the legs
from the front, side and top.

Sample frames from the animation of a single body segment are shown in

Figure 8-19. Individual frames are superimposed over each other to show the

range of leg positions over time in a single still image.

196 8.4: Animation of Legged Gaits

8.4.4 Building Multiple Body Segments

The construction of multiple body segments is straightforward. Each segment

is built by modules that repeat the productions for an individual body seg-

ment, shifting the segment position, in addition to the phase of the body and

leg gaits, for each segment. Additional modules and productions control the

generation and animation of the head and tail segments. The kinematic ani-

mation of connected segments is achieved in a similar manner to that of the

individual legs. Figure 8-20 shows a still frame from an animated sequence of

a four-segment creature running. Longer or shorter creatures can be synthe-

sised by changing the number of body segments simply by changing a param-

eter to the module that controls the count of generation of segments.

Figure 8-20: Still frame showing the legged creature running. Both the geometry and ani-
mation are generated using the timed L-system techniques described in this thesis.

Multiple instances of the individual walking creature can be instantiated using

similar techniques to that described in Section 8.2.2.2.3. The figures below

show a herd of walking creatures (Figure 8-21) and a sequence of individual

frames from the animation Turbulence (Figure 8-22). All models were pro-

duced using the techniques described in this chapter.

Chapter 8: Animation 197

Figure 8-21: A herd of walking creatures created using the timed L-system model de-
scribed in this chapter.

Figure 8-22: Individual frames showing the walking creature from the interactive anima-
tion Turbulence (see also the colour plates in the appendix).

8.4.5 Discussion

The animated gait system described here has some limitations. It is not as

general a system as that designed specifically for dynamic animation of

legged figures, since no real physical dynamics are calculated in forming a

198 8.5: The Developmental Algorithm

solution, and the gait phases have been simplified.61 This is why other systems

usually incorporate a physical dynamics solver and only use generative

grammars such as L-systems to specify body architecture (Hornby & Pollack

2001a). In addition, the walk cycle illustrated is fixed to operate on flat ter-

rain. By animating the variable

!

" the gait cycle speed may be adjusted, how-

ever extreme adjustments result in unnatural animation, since at high and

low speeds the gait of a real animal would change significantly.

Nonetheless, what is significant is that developmental systems can be used

for the generative specification of controllers and architectures (mapping to

animation and geometry) under a single, unified representation.

The example here also demonstrates how a single “flat” specification can

become complex and difficult to modify for the artist or animator, since they

must deal with multiple levels of abstraction (animals, bodies, body segments,

legs, limbs, etc) as a series of productions. For complex systems involving

large numbers of modules, productions, and development functions, this can

become a limitation. For example, the body structure of the walking creature

is conveniently specified in a hierarchy. Complex productions generating ge-

ometry such as the legs, require a large number of symbols to be processed in

parallel which is why the system described here allows mixing of timed and

non-timed modules.

This challenge in modelling complex, biologically inspired processes is

further addressed in the next chapter where a hierarchical, developmental

system is presented. This system takes the advantages of the formalisms dis-

cussed thus far as the basis for the design of a more flexible system, one that

addresses the issues briefly touched on here.

8.5 The Developmental Algorithm

This section describes the algorithm used to simulate the rewriting and devel-

opment of modules as time progresses. I will consider the context-free case,

where the decision to rewrite a module will be based only on that module’s

age.

61 For example, stance and swing phases as used in bipedal animation (Calvert 1991).

Chapter 8: Animation 199

This section is primarily of practical interest, explaining how the for-

malisms presented in the first part of this chapter can be implemented as a

computer program.

8.5.1 DOL-System Rewriting

For a discrete DOL-System, as defined in Section 5.3.2.1, rewriting is applied

to a list of symbols,

!

µ . Symbols are examined in parallel and matching pro-

ductions from P are applied at each iteration to create the developmental se-

quence generated by the L-system G. The developmental sequence begins

with the axiom,

!

" = µ0 , and the sequence proceeds

!

µ0 " µ1 "K" µn to a

derivation of length n.

The rewriting process is illustrated graphically in Figure 8-23. Note the

step-wise development of active symbols.

Figure 8-23: Iterative development of a DOL-system. Each grey box represents a symbol,
so the current derivation word list is read vertically. At each iteration, the current word
list is examined and the matched symbols are rewritten. Development proceeds from left
to right, in discrete time steps.

The basic algorithm to implement this development is shown below in Figure

8-24.

/* Rewrite the supplied string – performed at each derivation step
*/

SymbolList RewriteSymbolList(SymbolList mu) {
ModuleList muNew = empty SymbolList;

for each symbol s in mu {

/* check for a production for this symbol */

200 8.5: The Developmental Algorithm

if (RewritingProductionExists(s)) {

/* if so, inset the new symbols into muNew */

append (RewriteProduction(s)) into muNew;

} else {

/* otherwise, copy the symbol into muNew (identity

 production) */

append (s) into muNew;

}

}

return muNew;

}

Figure 8-24: Code fragment for string rewriting DOL-systems.

The algorithm shows the rewriting process for a single derivation step. A new

list of symbols is generated by examining each symbol in turn and performing

the rewriting if a production with predecessor s exists (handled by the

RewriteProduction function). If no rewriting rule exists, the symbol s is

copied into the new list (the identity production). The RewriteSymbolList

function returns a new list, which is the derivation of the input list for a single

iteration.

Normally this function is first called on the axiom and iteratively called for

each derivation step as required. When the required derivation length is

reached, the symbol list can be passed to the turtle interpreter to generate

geometry from the current list of symbols.

8.5.2 Timed L-system Rewriting

In the case of timed L-systems described in Section 8.2, symbol rewriting is

not as straightforward, because each symbol may be active for arbitrary

amounts of time (Figure 8-25). Hence, symbol rewriting cannot proceed in the

simple iterative mode of the previous algorithm. In this section, the algorithm

used for context-free, stochastic, parametric, timed L-system derivation is de-

scribed.

Chapter 8: Animation 201

Figure 8-25: For timed L-system development, modules may be active for an arbitrary
time period. The first rectangle at time 0 represents the axiom. Development proceeds as
symbols age to their terminal age and are then rewritten. The discrete, step-wise devel-
opment of DOL-systems no longer applies. (cf. Figure 8-23).

8.5.2.1 Overview of the Developmental Process

In describing this process, we assume a global time variable that is monotoni-

cally increasing. While development is theoretically a continuous process, in

order to generate an animated sequence the system is sampled at discrete

time intervals to create individual frames. Frames are played in sequence to

give the illusion of animation. Frame sampling is independent of module de-

velopment — the sample rate and time between samples is arbitrary and has

no effect on module development. While the model described in Section 8.2

allows construction of a derivation string at any time, t, considerable practical

savings in computation are possible if the derivation string is forward devel-

oped and information cached between samples, rather than computing the

string from the axiom each time a new time sample is required. Once the

system has developed to a particular global time using this caching scheme, it

is not possible to sample the system at any previous time, without recomput-

ing it from the axiom.

To sample the system, we require the state of the developing system at a

specified future point in time

!

ti+1 = ti + ti+
, ti+

> 0 , given that it has a current

state (list of active modules) corresponding to the current global time,

!

ti . The

active module list (developmental word) begins with instances of the modules

that make up the axiom at their birth ages at a global time of 0.62 Module de-

velopment and the rewriting of modules proceeds as the current value of glo-

bal time increases. This is a typical situation when creating an animated se-

quence.

62 Birth ages may be expressions, and are evaluated for the axiom when global time is 0.

202 8.5: The Developmental Algorithm

8.5.2.2 Mixing Timed and Non-Timed Modules

For practical purposes, not every symbol in the alphabet may need to undergo

timed development. For example, the bracket symbols (“[” and “]”) do not

normally develop63 in any sense and simply provide a mechanism for produc-

ing branching structures. For practical convenience, timed and non-timed

symbols may be intermixed, in which case any rewriting proceeds at the nor-

mal integer derivation step of DOL-systems (the purpose of the iLevel com-

ponent of TimeStruct, see below).

At any time, the active module list may contain modules of various ages.

For context-free timed L-systems, a rewrite (application of a production) will

occur when the current time equates to the terminal age of any symbol in the

current list. If the state of the system is required at any time before the next

rewrite event occurs, only the development functions need to be evaluated for

the particular time the system is sampled. For non-timed modules, rewriting

occurs if necessary each time the active module list is scanned.

8.5.2.3 Representing Time during Development

We assume the definition of a data structure, TimeStruct, which holds the

necessary time information needed to keep track of development times as

modules develop and productions are applied. This is shown as a C structure

in Figure 8-26.

typedef struct {

int ilevel; /* current (integer) derivation length */

S_age curTime; /* current time (elapsed time) */

S_age nextChange; /* time until next production */

S_age totalTime; /* total time at this frame */

S_age maxTime; /* maximum time this system can run */

int totaliLevel; /* total integer level */

} TimeStruct;

Figure 8-26: the TimeStruct data structure.

63 Meaning change their properties or parameter values over the lifetime of an individual mod-
ule instance.

Chapter 8: Animation 203

The S_age type represents the age of a symbol (i.e. the time it has existed —

a floating-point number). The TimeStruct data structure stores relative

times for a given L-system during its development. Its main purpose is to

store the development time data of that particular system as productions are

applied up to a required global time. The integer values are used to accom-

modate the non-timed components of a derivation string, showing the re-

quired (totaliLevel) and current derivation length (ilevel) for non-timed

symbols. A sample scenario of the relationship between elements of

TimeStruct and the developing L-system is shown in Figure 8-27.

8.5.2.4 Forward Prediction

The algorithm running the development of the timed modules needs to “for-

ward predict” the time in the future when the next module rewrite will occur

(which is the nextChange field in TimeStruct). Development between the

time of the previous rewrite and the time of this next rewrite is continuous, in

that (by definition) no rewriting of modules will occur, but the age of modules

that are currently alive will advance (hence parameters affecting the mod-

ule’s turtle interpretation may vary). It is always possible that more than one

module may be considered for rewriting at nextChange, which ensures the

parallel rewriting nature of L-systems is maintained in this scheme.

Figure 8-27: Sample instances of the TimeStruct members and their relation to the de-
veloping L-system modules. The dark grey modules are active at the current time, the
variable nextChange determines the time remaining until the next rewrite occurs from
the current time. The totalTime variable contains the time that development needs to
proceed to, where upon active modules are supplied for turtle interpretation. The integer
values iLevel and totaliLevel correspond to where un-timed symbol development
proceeds from (they correspond to iterations in a DOL-system).

204 8.5: The Developmental Algorithm

8.5.2.5 Developing Modules

The function DevelopModuleList takes a module list, a set of productions,

an initialised TimeStruct and an evalTime and develops modules in the list

from the interval over the current time (in the supplied TimeStruct) to

evalTime. This function is shown below in Figure 8-28.

/* DevelopModuleList: */

ModuleList

DevelopModuleList(ModuleList mu, ProductionList p,
 TimeStruct *ts, S_age evalTime) {

Boolean shouldGen = FALSE; /* used to flag generation */

if (timeStruct–>currentTime > evalTime) {

print

 error “L-system is already developed past requested time”

exit;

}

ts–>totalTime = evalTime;

ts–>totaliLevel = floor(endTime);

while ((ts–>nextChange < 0.0 && ts–>ilevel < ts->totaliLevel) ||

(ts–>nextChange >= 0.0 && ts–>nextChange + ts->curTime <
evalTime)) {

/* ApplyProductionSet controls development up to endTime

 * it also changes the values in ts (passed as a reference)

 * to reflect the state of development in mu when the function

 * returns.

 */

mu = ApplyProductionSet(mu, p, ts, &shouldGen);

if (shouldGen) {

/* during the current application of productions we have

 found a need to interpret the current symbol list at

 this point. This is caused by the ‘%’ symbol which

 stores the turtle reference frame in world coordinates

 at the time it is born.

 To achieve this we interpret the current symbol list

 without outputting any geometry. This is necessary to

 ensure the correct position and orientation of the

 turtle at the time and position the ‘%’ symbol was

 encountered.

*/

Chapter 8: Animation 205

InterpretModuleList(TURTLE_ONLY, mu, ts–>curTime);

}

}

/* update the times to reflect the next symbol change

 and current development time

*/

ts–>nextChange –= (ts–>totalTime — ts–>curTime);

ts–>curTime = ts–>totalTime;

return mu;

}

Figure 8-28: Development of timed L-systems – the DevelopModuleList function.

The operation of DevelopModuleList is reasonably straightforward, the

function returns a list of symbols developed up until the supplied end time,

assuming that they are passed to the function in a state corresponding to

some previous time (specified via the TimeStruct variable ts). In the case of

creating an animation, DevelopModuleList is likely to be called every 25th

or 30th of a second, depending on the frame rate.

The function InterpretModuleList directs the interpretation of the cur-

rent list of modules by the turtle. It is included in the DevelopModuleList

function to support the use of the “%” symbol (refer Section 8.3). No geometry

is output or constructed within DevelopModuleList, only the turtle position,

orientation and state is evaluated (ensured by the TURTLE_ONLY directive ar-

gument). The interpretation of the “%” module will include the saving of this

state information.

Upon exit, DevelopModuleList has updated the TimeStruct variable ts

to reflect the current state of the system’s temporal development. The

nextChange data member is updated by ApplyProductionSet and always

reflects the closest future time that a module rewrite will occur. As produc-

tions are applied over the requested development period within

DevelopModuleList’s while loop, the value of nextChange will update to

indicate the time of the next necessary rewrite. This is possible because the

terminal age of any module is set at its birth (i.e. its death is known in at the

time of its instantiation).

206 8.5: The Developmental Algorithm

8.5.2.6 Formal and Instance Modules

In this implementation, we distinguish between a formal module (Figure 8-1

on page 175), which contains the definition of a module (symbol name, formal

parameters, terminal age) and its instanced module counterpart, which is the

module generated as the system develops the active module list (derivation

string). We will first look at the formal module.

/* Formal Module Definition */

typedef struct FormalModule {

String moduleName; /* text representation of module name */

ParameterType parameters[]; /* list of formal parameters */

Scalar defaults[]; /* default parameter values */

S_var terminalAge; /* terminal age for this module */

Expression developmentFunc; /* development function */

Production productionList[]; /* this module’s productions */

int numProductions; /* number of productions in list */

struct FormalModule * equivs[]; /* list of equivelent modules */

Boolean (*action)(...); /* action to perform when interpreting */

.

.

.

} FormalModule;

Figure 8-29: Data structure showing key elements of a formal module.

As shown in Figure 8-30, the formal module includes the module’s identifier

(symbol name), a list of parameters and default values for each parameter.

The number of defaults may be equal to or less than the number of formal

parameters. Defaults are set for convenience, to allow unspecified parameter

expressions in successor modules to assume defaults. In addition, for prede-

fined symbols (e.g. “F”), it may be convenient to add additional parameters

that are not interpreted by the turtle, but may play a role in the grammar.

This makes productions such as:

!

F l, n(),1() : n > 0 " F l,0(),1() F l 2, n#1(),0()

possible, where both parameters of F are used in the production, but only the

first parameter, l, is used in the turtle interpretation.

Chapter 8: Animation 207

The terminal age of the module is of type S_var, which represents a scalar

variable, capable of being used in expressions (it is commonly used in expres-

sions related to the development function, described in Section 8.2.1). The

formal module also includes data members to store this module’s develop-

ment function, list of productions, list of equivalent modules (Section 6.2), and

the action to be performed by this module when interpreted by the turtle.

Some additional parameters also form part of the formal module specifica-

tion, these have been omitted in this discussion, as they are largely related to

implementation issues and not important for the description here.

Instance modules are used in production successor lists. Each instance of a

module stores a pointer to the corresponding formal definition of that module,

a list of current parameter values, and associated timing information (shown

in Figure 8-30 as a C struct).

/* Instance Module Definition */

typedef struct {

FormalModule * formalModule; /* pointer to the formal module

 definition */

Vector parameterValues; /* current values of this module’s

 parameters */

S_age birthday; /* birth time for this element (real time) */

S_age life; /* how long this instance of the module will live */

} Module;

Figure 8-30: Key elements of the data structure representing an instanced module.

The birthday field of the Module data structure is initialised with the cur-

rent global time when this particular module was instantiated. The life field

stores the relative lifetime of the module, so the terminal age of the module in

terms of global time is birthday + life. The age of a particular module is

calculated by the difference between birthday and the current global time.

8.5.2.7 Successor Modules and Productions

In order for the rewriting process to proceed, a particular production must be

matched, and then the module being rewritten must be replaced with a series

of instanced modules from the matched production. Figure 8-31 below shows

208 8.5: The Developmental Algorithm

the data structures used to represent productions and successor modules. The

successor modules in a matched production are used to create the instanced

modules in the derivation list.

/* Successor Module Definition */

typedef struct {

FormalModule * formalModule; /* pointer to the formal module */

Expression expressionList[]; /* list of expressions to be

evaluated to create actual

parameters for this successor

module */

Expression birthAge; /* expression to evaluate birth age */

} SuccessorModule;

/* Production Definition */

typedef struct {

Scalar probability; /* prob of application for this production */

Expression predicate; /* condition to evaluate in order to apply

 this production */

SuccessorModule successors[]; /* list of successor modules */

} Production;

Figure 8-31: Data structures representing a successor module and production.

As the system permits stochastic matching in addition to logical predicate

conditions, the Production data structure contains data members to allow

matching. In the case of non-stochastic productions, the data member proba-

bility will be 1. For non-conditional productions, the predicate expression is

set to TRUE. In the case where a production has a probability less than 1 and

a predicate condition, the stochastic matching is tested first, if the rule is first

matched stochastically, it is then tested for matching by evaluating the predi-

cate (see Figure 8-32).

The SuccessorModule structure stores a pointer back to the formal mod-

ule along with a list of expressions to be evaluated to calculate the actual pa-

rameters for the module. In addition, the expression birthAge is evaluated to

calculate the module’s birth age when instantiated into the derivation list (ac-

tive module list). The birth age may of course be a constant, commonly 0. The

Chapter 8: Animation 209

members expressionList and birthAge correspond respectively to the ex-

pressions

!

e1,e2,K,en , and the

!

" parameter in Figure 8-1 on page 175.

Formal modules, instanced modules and productions are used by the

ApplyProductionSet function, detailed in the next section.

8.5.2.8 Development between Intervals

The real work in developing the timed L-system is done in the function

ApplyProductionSet, which is detailed below in Figure 8-32. The utility

function ModuleIsDead, which determines if a given Module has reached its

terminal age, is also shown.

/* ModuleIsDead: returns TRUE if the supplied module is dead at

 the current time

*/

Boolean ModuleIsDead(Module * m, TimeStruct * ts) {
return (m->life >= 0.0) &&

 ((ts->curTime — m->birthday) >= m->life);

}

/* AppleProductionSet: apply productions to a given time

 * This function performes timed rewriting and returns an updated

 * list of active modules.

 * It also updates the TimeStruct data structure to reflect the

 * advancement in development that has taken place within the

 * function. The Boolean variable should_gen is set to TRUE if

 * the ‘%’ symbol is encountered.

 */

ModuleList ApplyProductionSet(ModuleList mu,
 ProductionList p,

 TimeStruct * ts,

 Boolean * should_gen) {

ModuleList muNew; // new list of modules created by this function

Scalar rnd, prTotal;

S_age minChange = SCALAR_MAX, d;

Boolean timed, nextTimed = FALSE, matched, shouldFree = FALSE;

int i;

(* should_gen) = FALSE;

if ((timed = (ts->nextChange >= 0.0))) {

210 8.5: The Developmental Algorithm

/* move time forward to point of next change */

ts->curTime += ts->nextChange;

}

repeat for each Module currentModule in mu {

if (currentModule->formalModule->numProductions < 1) {

if (!ModuleIsDead(currentModule, ts)) {

/* there are no productions for this module and it is

 not dead, so the module is kept in the new list of

 current modules

*/

insert currentModule into muNew;

}

} else { /* the current module has productions */

if (!timed ||

 (timed && ts->curTime — currentModule->birthday >=

 (currentModule->life — MIN_CHANGE_EPS))) {

rnd = UniformRandom(); /* generate a random number */

matched = FALSE, prTotal = 0.0;

repeat for all productions associated with this module {

if (rnd — prTotal <= current production’s probability){

/* for non-stochastic productions the probability will

 always be 1, so the above condition will evaluate

 to TRUE

*/

if (current production has a predicate) {

evaluate the current production’s predicate;

if (predicate evaluates to TRUE) {

matched = TRUE;

break;

}

} else {

matched = TRUE;

break;

}

} else

prTotal += current production’s probability;

}

if (!matched) { /* no rules worked */

if (!timed) {

insert currentModule into muNew;

} /* timed */

} else if (current production is not empty) {

/* module has productions */

Chapter 8: Animation 211

repeat for all sucessor modules listed in the current production
{

currentSuccessor = the current successor module;

(* should_gen) =

(*should_gen) || currentSuccessor == ‘%’;

newModule = create a new instance module from
currentSuccessor;

initialise newModule;

if (newModule has parameters) {

evaluate newModule’s parameters from currentSuccessor’s

parameter expressions;

}

if (currentSuccessor->birthAge) {

/* if a birth age expression was supplied then

 * evaluate it, effectively setting a birth in the past

 */

newModule->birthday = ts->curTime —

evaluate(currentSuccessor->birthAge);

} else {

/* no birth age expression so it defaults to 0.0 */

newModule->birthday = ts->currentTime;

}

if ((d = newModule->life) >= 0.0 &&

(d += (newModule->birthday — ts->curTime)) < min_change) {

if (d > MIN_CHANGE_EPSILON) {

min_change = d, next_timed = TRUE;

} else {

newModule->birthday = ts->maxTime — newModule->life;

}

}

should_free = TRUE;

}

} else

should_free = TRUE;

} else {

if ((d = currentModule->life) >= 0.0 &&

(d += (curModule->birthday — ts->curTime)) < minChange) {

if (d > MIN_CHANGE_EPSILON)

minChange = d, nextTimed = TRUE;

else

currentModule->birthday =

ts->maxTime–currentModule->life;

}

if (newModule was created) {

insert newModule into muNew;

212 8.5: The Developmental Algorithm

}

if (should_free) {

delete currentModule

}

if (next_timed) {

/* update the TimeStruct’s nextChange member to reflect the

 * time of the next timed module rewrite and check for

 * consistency (change happens in the future).

 */

if ((ts->nextChange = minChange) <= 0.0) {

print error “Next change has already happened” and exit;

}

} else

ts->nextChange = -1.0;

ts->ilevel++; /* increment integer derivation length */

return muNew;

}

Figure 8-32: The ApplyProductionSet function, which controls the development of
timed L-systems.

The constant MIN_CHANGE_EPSILON is used for both efficiency and accuracy.

In a complex development sequence, many modules may have times for re-

writes that are very close to each other but not at exactly the same time.

Moreover, the limits of accuracy of machine representation of real numbers

and rounding errors may cause small inaccuracies in the calculation of mod-

ule terminal ages. Any modules that the system predicts are due for rewriting

within this small tolerance (MIN_CHANGE_EPSILON) are dealt with as a paral-

lel production (i.e. all rewritten at the same time). This situation is illustrated

below in Figure 8-33. Typically, MIN_CHANGE_EPSILON is kept very small —

within 1–2 orders of machine precision (around 10-7 for 32 bit floating point

representation).

Chapter 8: Animation 213

Figure 8-33: The MIN_CHANGE_EPSILON tolerance constant treats changes within a small
range as being applied in parallel.

8.6 Discussion

The key advantage of the algorithm for animation purposes is the ability to

keep the sample rate and module development separate. This allows the same

L-system to be sampled at any point in time, with the guarantee that the state

of the system will be accurate and consistent, independent of the number of

times, or the intervals between which the system has been sampled previ-

ously. For example, it is often necessary to sample at different frame rates

when creating animation for film (24 fps64) or video (25 fps or 30 fps). This

method permits sampling at any interval greater than the

MIN_CHANGE_EPSILON constant. This is possible due to the constraint that the

only way a module can be rewritten is when it reaches its terminal age —

which is known at the time of the module’s birth. The use of an incremental

development algorithm does not require the recalculation of developmental

words from the axiom at each positive incremental time sample, resulting in

increased efficiency.

However, these advantages can also be limitations, particularly when we

are trying to model other classes of developmental systems, such as reaction-

diffusion systems, which require associated continuous differential develop-

ment, where module terminal ages cannot be fixed at birth. In addition, sys-

tems are required where real-time, environmental, or context information in-

fluences development. In this situation the prediction ability of the algorithm

(described in Section 8.5.2.4), breaks down due to the non-determinacy that

these additional components add.

64 Frames per second — the frame rate.

214 8.6: Discussion

One additional problem comes in designing a system that incorporates

hierarchical organization, complex structure and development. The grammar-

based nature of L-systems makes them suited to capturing hierarchical

structure but by incorporating the timed developmental formalisms described

in this chapter, the distinction between structure and development is blurred,

hence designing very complex models becomes difficult.

The work described in the next section, addresses these limitations by

adding the ability to include environmental and context information. Import-

antly, the system also includes the practical ability to run and respond to envi-

ronmental input in real-time, making it suitable for applications such as

music and interactive animation generation. Modules no longer contain a

fixed terminal age, the decision for a module to terminate or be rewritten

being subject to a wider range of conditions.

Chapter 9: A Developmental System for Generative Media 215

9 A Developmental System

for Generative Media

Growth of one part must affect growth of all parts. The rules are
rigorous, but within those rules variety abounds, and the rules
show through the variations to portray a relatedness of parts that
is aesthetically pleasing and a consistency of purpose that pro-
vides an eternal model for all of man’s creations.

— Peter S. Stevens (Stevens 1974, page 222)

Taking the formalisms described in the previous chapters, I now proceed to

extend the model to include additional developmental components and a full

hierarchical description capability. Here I depart from the traditional L-

systems description, as it is easier to consider the developmental and imple-

mentation details using a slightly different terminology.

This chapter describes a practical system that builds on the theoretical and

practical models described in previous chapters. Fundamentally, this model

incorporates elements from hierarchical, timed, context sensitive, determin-

istic and differential L-systems.

The emphasis of this chapter is on the design and construction of a practi-

cal programming system for modelling organic forms and processes. The goal

of the system described is that of a flexible generative system, capable of gen-

erating dynamic models in a variety of different domains (e.g. graphics and

animation, biological and botanical modelling, music composition, and real-

time, interactive animation).

216 9.2: The Developmental Model

9.1 Related Work

The extensions described in this chapter bring together a number of related

developments in L-systems, morphogenesis modelling, object-oriented pro-

gramming and dynamic media. These include L-systems that incorporate de-

velopment via differential equations (Prusinkiewicz, Hammel & Mjolsness

1993), the sub-L-systems of Hanan (Hanan 1992), the cellular developmental

system of Fleischer et. al. (Fleischer & Barr 1994; Fleischer et al. 1995) and

the MET++ application framework of Ackermann (Ackermann 1996). Rela-

tionships between previous work and the system described here will be ex-

panded in the sections related to those specific areas that draw upon previous

work.

9.2 The Developmental Model

9.2.1 Cell Definitions

In developing this system, we will consider a basic automaton, which is re-

ferred to as a cell. The name is used as a metaphorical interpretation of cells

as found in biological life. The model is “biologically inspired”, but is not de-

signed to reflect a literal interpretation of cellular development. This cellular

abstraction is capable (as a simulation) of functions a biological cell does not

have, and reciprocally, the biological cell is capable of many functions not

possible with the model described here. Cells exist in an abstract entity called

the world. The world is responsible for the creation, removal, and interpreta-

tion of cells that exist within it. Details of these terms and the world itself will

be discussed shortly.

A cell is composed of four principle components (refer Figure 9-1):

! A label,

!

s " VT , where

!

VT is an alphabet that is specific to the cell type

(corresponding to the alphabet of an L-system). The type of a cell is dis-

tinguished by its ability to develop or be interpreted (Section 9.2.4).

! A state,

!

"T # $* %& *() — a set of variables that reflect measurable

properties (both internal and external) that the cell possesses. The state

will change dynamically subject to the mechanisms of the cell (detailed

in Section 9.2.2).

Chapter 9: A Developmental System for Generative Media 217

! A set of predicate rules or productions,

!

PT " V # $*() #C $() # V # E $()
*%

&
'

(
)
*
*

that specify developmental changes to the cell. These productions may

consider the cell state as well as the state of neighbouring cells.

! An interpretation,

!

I " V
I
E $

T()()
*

, which is a set of instructions as to

how the cell is to be realised in the world (

!

V
I
 is the alphabet of a par-

ticular set of interpretative symbols, see Section 9.2.4). The interpreta-

tion can make use of the cell’s state.

Cellular instantiation follows the class/object model used in object-oriented

programming (Wirfs-Brock, Wilkerson & Wiener 1990).65 Cells are instanti-

ated into pools (explained below), and there may be many instances cells with

the same label, but each cell carries its own state, which develops independ-

ently. Conceptually, each cell also carries its own copy of the rules and inter-

pretation defined for a cell of that label, although in most situations these are

references to the rules and interpretation contained in the master cell. Thus,

normally no distinction needs to be made between master cells and instance

cells.

Figure 9-1: Master and Instance cells, and their principle components.

A special type of cell is called a system. A system has a label and contains

state information, but does not have any rules or interpretation. Unlike a

65 Alan Kay, inventor of the Smalltalk programming language, used biological metaphors in its
design, likening the concept of objects to “cells” with walls, with the class providing a well-
defined boundary between co-operating units (Kay 1993).

218 9.2: The Developmental Model

normal cell, a system cell may contain other cells, including other system

cells. Thus, the system cell is capable of forming a hierarchical structure.

Systems contain an initial state (or axiom) that consists of a sequence of in-

stance cells with particular state initialisation information. They also maintain

a pool (spatial data structure) wherein cells may be created, replaced, and

deleted. A root system contains all other cells and systems and is created

automatically by the world upon initialisation. The root system’s age will

automatically reflect the developmental time of the entire system.

Figure 9-2: A system cell may contain other cells which in turn may be system cells. Thus
the cellular hierarchy is formed.

System cells may contain other cells (which may be systems too), but they

cannot contain instances of themselves, nor can sub-systems contain instan-

ces of parent cells. This ensures the cellular hierarchy maintains a tree

structure (rather than a cyclic graph). A hierarchical structure is a good way

of describing many natural patterns and forms (Simon 1996).

Cells within a system develop asynchronously, however cells may synchro-

nise development based on examination of each other’s state. In addition,

cells have access to the state of any parent cells, including the state of the

root system.

Chapter 9: A Developmental System for Generative Media 219

 Specific components of cells will now be described in more detail.

9.2.2 Cell State

Cell state captures the measurable components of a cell. The state is a vector

composed of both user- and system-defined variables. These variables may be

of type integer, real, vector (a scalar triplet) and string. The user may define

the cell state as required by the cell’s particular type. In addition, all cells

maintain a number of internal states that are defined and managed by the

cell itself. Internal states are “read-only” — available as symbols for use in

productions, but they cannot be modified, hence they provide an introspection

of various fixed components of the cell. The internal state includes the cell

age, which is automatically updated to reflect the age of the cell during its

lifetime. An internal status is also maintained, which has four potential values

affecting overall cell behaviour:

1. Dormant: the cell is effectively inactive. There is no dynamic state

management, the cell does not age and no rules are applied. Master

cells are normally kept in the dormant state.

2. Birth: an initialisation status that allows the user defined section of the

state vector to be initialised. Here the age of the cell is also set to its in-

itial value (usually 0). Cells with this status will automatically be added

to the system cell’s pool.

3. Alive: the normal status for an active cell. The cell dynamically man-

ages its state via the application of rules.

4. Dead: the status is set to this value when certain conditions are met,

such as a replacement or delete action (detailed in Section 9.2.3.4).

Dead cells in a system cell’s pool are automatically removed from the

pool.

 The cell status can only change in positive sequence, i.e.

!

1(Dormant)" 2(Birth)"3(Alive)" 4(Dead) , cells always begin with status 1

(dormant) and end with status 4 (dead). Dead cells are removed automatically

(corresponding to a form of automatic garbage collection used in program-

ming languages). The age state variable is reset at birth and continues to in-

crement as long as the cell is in state 3.

220 9.2: The Developmental Model

9.2.2.1 Scope and Access

The individual elements of the state vector may belong to one of two possible

classes: internal and public. Internal class elements are accessible within the

cell only (they are local to the cell). Public elements may be accessed by other

cells within the same parent system and the parent system itself. In addition,

public elements of the parent system’s state can be accessed by child cells (in-

cluding system cells and their child cells). These scope rules are similar to

those for procedural programming languages, such as Pascal, that permit

nested procedure descriptions.

Systems and modules all have a unique identifier depending on their posi-

tion in the hierarchy. Modules from different systems may appear to have the

same name due to scope rules, which allow for modules in different systems

to appear to have the same name. For example:

system s1 {

module A() {

 rules:

: age > timestep : -> A() s2;

}

} A();

system s2 {

module A() {

 rules:

: age > timestep : -> s1;

}

} A();

The fully qualified name of module A in s1 is root::s1::A, where as the

module A in s2 is root::s2::A (recall that the root system is the parent of all

systems). Full qualification of scope is usually unnecessary, as the internal

symbol table searches for matching identifier from the current scope out-

wards. Hence for the rule for s1::A, the A() in the cell action matches the

current module scope where as s2 matches the next level (system) scope.

Chapter 9: A Developmental System for Generative Media 221

9.2.2.2 State Initialisation

When a cells status changes from status 1 (Dormant) to 2 (Birth) its state is

initialised and the cell begins to age incrementally. If the cell is a system cell,

state initialisation includes the instantiation of cells in the systems axiom.

This may propagate initialisation changes further down the hierarchy, since

axiom cells of one system may also be system cells with their own axioms. As

the hierarchical structure is acyclic, the initialisation process is guaranteed to

terminate.

9.2.3 Cell Rules

Cellular rules, denoted

!

ri are ordered sets of predicate-action sequences of

the form:

!

ri : context{ } : predicate :

predicate component
1 2 4 4 4 4 3 4 4 4 4

state calculations | cell actions()
action component

1 2 4 4 4 4 4 4 3 4 4 4 4 4 4
(9.1)

Rules are numbered implicitly in the order of their declaration. While a cell is

in the alive state, its set of rules is evaluated in ascending order. If the predi-

cate component evaluates to TRUE (non-zero), the action component is exe-

cuted. The action component may consist of calculations that change the cell

state, or actions that the cell should perform. The following sections describe

each component in more detail.

9.2.3.1 Context

A context statement involves the position in the pool of the current cell in re-

lation to other cells. A special reserved word, me, is used to represent the cur-

rent cell. This allows cells with the same label to be used in context specifica-

tions. Context statements also specify the public state variables of cells in-

volved in the context specification, and these identifiers may then be used in

state calculations involving the current cell, i.e. a cell may update its state

based on the state of its neighbours. Access to the state of neighbouring cells

is read-only. Changing another cell’s state directly is not permitted.

222 9.2: The Developmental Model

Here is an example context sensitive rule, where a cell maintains a com-

ponent of its state to be the average of its neighbours66, provided it exceeds

some minimum threshold:

!

A(y) me B(z) : y > kmin & & z > kmin : x =
y + z

2

which assumes the cell that owns this rule has a state variable, x. The rule

first checks if the context is satisfied — that cells with labels “A” and “B” are

at the “left” and “right” of the current cell. If that relationship is TRUE, the

state parameters are then checked to see if they exceed some minimum con-

stant value (

!

kmin), if so the current cell’s state variable x is updated to be the

average of the values of it’s neighbours.

9.2.3.1.1 The Meaning of Context Relations

Context relations have a more flexible meaning than with the context sensi-

tive L-systems discussed in Section 5.3.3. In the case of L-systems, the deriva-

tion string is a one-dimensional array, and so context matches are decided on

by matching symbols to the left and right of the current symbol in the deriva-

tion string (a one-dimensional context). The pool in which the cells exist is de-

signed in an abstract way, where the interpretation of neighbour relationships

is flexible. This is achieved using polymorphic functions to match context

based on pool type. It is important to match context dimension to pool dimen-

sion (e.g., a two-dimensional context relation makes no sense to a one-

dimensional array).

!

A() C me D() B()

Context Specification

meC D

A

B

Spatial Configuration

B

C D
E

A

!

A() E C me D()F() B()

Spatial ConfigurationContext Specification

Figure 9-3: Higher dimensional context relations and their specification.

In the cellular developmental system, context may include other spatial rela-

tionships where context relations are satisfied when the spatial position of the

66 This example uses a one-dimensional context relation; higher dimensional relations are de-
fined in the next section.

Chapter 9: A Developmental System for Generative Media 223

cell is less than some Euclidian distance, or topological relationships such as

the Von Neumann neighbourhood (Figure 9-3) used in cellular automata

simulations (Berlekamp, Conway & Guy 1982). The use of parenthesis de-

marks dimensions when specifying context.

As the system described here uses polymorphic objects to represent the

pool (e.g. linear set, multi-dimensional array, spatial structure), the interpre-

tation of context is determined by the way the specific pool interprets the

context statements (refer Section 9.6.1.4). This permits flexibility in the types

of simulations the system can perform. For example, such context relation-

ships can be used in music (see Chapter 11), where context relations work in

two dimensions: pitch and time (hence context matching can be with chords,

rather than notes, see Section 11.6.3).

9.2.3.1.2 Context Example: Reaction-Diffusion Systems

As an example of the use of context sensitivity in higher dimensions, consider

the process of reaction-diffusion, originally proposed by Alan Turing as a

chemical basis for morphogenesis (Turing 1952). Reaction-diffusion systems

have found application in computer graphics research in the simulation of

natural surface textures such as animal spots and stripes (Turk 1991; Witkin

& Kass 1991). A simple, two-chemical system can be modelled with the fol-

lowing equations:

!

"a
"t

= F a,b() + Da#
2a

"b
"t

= G a,b() + Db#
2b

(9.2)

Where a and b are the concentrations of two chemicals, known as the inhibi-

tor and activator, t is time,

!

Da and

!

Db the diffusion rates of a and b respec-

tively. The Laplacian

!

"
2 represents the local concentration gradient, and the

functions F and G are the reaction functions for the two chemicals, determin-

ing the rate of chemical production. Turk (Turk 1991) shows how Turing’s re-

action-diffusion model can be simulated in discrete form on a two-

dimensional cellular grid, using the Von Neumann neighbourhood:

!

"ai, j = s 16 #ai, jbi, j() + Da ai+1, j + ai#1, j + ai, j+1 + ai, j#1 # 4ai, j()
"bi, j = s ai, jbi, j # bi, j # $i, j() + Db bi+1, j + bi#1, j + bi, j+1 + bi, j#1 # 4bi, j()

(9.3)

224 9.2: The Developmental Model

Where s is a scaling coefficient, and

!

" a random variate used to account for

slight irregularities in cellular concentration (giving the texture a more “natu-

ral” feel). Running this model over a two-dimensional cell grid produces

characteristic reaction-diffusion spot patterns. We can simulate the reaction-

diffusion using the cellular developmental model described in this chapter

using context sensitivity.

// simple 2D reaction diffusion cellular system

system ReactionDiffusion(integer x, integer y) {

real DA = 0.125;

real Db = 0.0325;

real s = 0.02;

module R(real a, real b) { // a single r-d cell
real beta = 12 + random(-0.2, 0.2);

a = b = 4.0;

 rules:

(R(a_ij1,b_ij1))

(R(a_i_1j,b_i_1j) me R(a_i1j,b_i1j))

(R(a_ij_1,b_ij_1))

: TRUE : rate a = s*(16-ab)+Da*(a_i1j+a+i_1j+a_ij1+a+ij_1-4*a),

 rate b = s*(a*b-b-beta)+Db*(b_i1j+b_i_1j+b_ij1+b_ij_1-4*b);

geom:

// convert activator and inhibitor concentrations to hsv colour

hsv(180*(linearstep(0,4,a) – linearstep(0,4,b)),0.5,

linearstep(0,8,a+b));

} // module R

.

.

.

Figure 9-4: A 2D reaction diffusion cell system.

The cellular specification shown above needs only a single cell specification

(R) to carry out the reaction-diffusion process (as it operates in the same way

for each cell). For clarity, the modules required to construct the cell grid have

been omitted, the modules construct the cells when the ReactionDiffusion

system’s axiom is run, but then play no further part in the simulation.

Chapter 9: A Developmental System for Generative Media 225

Module R has two public state variables, a and b, representing the con-

centration of inhibitor and activator morphogens in the cell. The differential

rate operator updates the concentrations according to the Turing model,

using the concentrations of neighbouring cells based on the context relation

specified in the cell rule (the implementation details of context matching are

described in Section 9.6.1.4). Finally, the concentrations are converted to col-

our information, modulating hue and brightness of colour based on the

amounts of activator and inhibitor chemicals. The flexibility of the geom

specification means that the chemical concentrations could be used to modu-

late other properties, either geometric (e.g. Figure 7-3) or even musical. The

textural output of the reaction-diffusion simulation is shown below in Figure

9-5.

Figure 9-5: Reaction-diffusion simulation output.

9.2.3.2 Predicates

Predicates are mathematical expressions that evaluate to Boolean outcomes:

TRUE or FALSE. Predicates may be composed of constants, global variables

(such as the current time or frame), state variables of the current cell or pub-

licly accessible state variables of neighbouring cells, in addition to standard

logical and mathematical operators, plus the functions detailed in Section 6.8.

Any expression that evaluates to 0 is assumed FALSE, any other value is

TRUE. Null or empty strings are automatically cast to the integer value of 0.

226 9.2: The Developmental Model

9.2.3.3 State Calculations and the differential operator

State calculations are mathematical expressions that affect a cell’s state. They

are expressed in a similar manner to expressions in the C programming lan-

guage (Kernighan & Ritchie 1988). Functions are the same as those detailed

for parametric L-systems described in Section 6.8. There is one important ad-

dition, the unary differential operator, rate, which performs a specific form

of ordinary differential equation solving with initial values. The operand for

rate is a local cell state variable. Typically, the initial value problem is ex-

pressed,

!

" x =
dx
dt

= f t, x(), 0 # t # $, x 0() = x0 (9.4)

where t represents the relative age of the cell and

!

x0 the initial value of the

state variable x.

For example, consider a cell with state variable x declared,

!

real x = 2.0

specifies the value on birth for the cell (the initial value or boundary condi-

tion). The rule

!

: x > Xmin : rate x = k * x , (9.5)

is equivalent to the differential equation

!

dx
dt

= kx, x 0() = 2, x t() > Xmin (9.6)

where k and

!

X min are constants and t represents the cell’s age relative to its

birth. Such a function could represent the decay of a chemical concentration

within the cell.

Chapter 9: A Developmental System for Generative Media 227

Figure 9-6: Graph of the state variable x over the first 2 time units of the life of the cell.

At the point where

!

x = Xmin an event occurs where the predicate changes

state.

Higher order differential equations can be specified by multiple uses of the

rate operator, e.g.

!

rate rate x = rate y " k

is equivalent to the mathematical expression

!

d2 x
dt2

=
dy
dt

" k

All state variables are assumed independent. Differential equations can be

used to simulate simple processes both within and external to a cell (they can

be based on public states of neighbouring cells for example). The state vector

is updated using numerical integration methods at each time step.

9.2.3.4 Actions

Actions correspond to the re-writing process in L-systems, being similar to the

successor word of L-systems. However, the concept of rewriting can be mis-

leading, due to the way cell actions are handled and cells are placed in the

pool. In the case of L-systems, symbols are always replaced by rewriting pro-

ductions. Whereas, for the cellular developmental model, in addition to re-

placement cells may continue to exist in the pool while their actions cause

new cells to be added (i.e. the cell action does not necessarily replace (re-

228 9.2: The Developmental Model

write) the cell instigating that action). Possible actions are outlined in Table

9–1.

The rules for creation and replacement (2 & 3) permit a context specification

in the action, the syntax being the same as for context sensitive predicates

(Section 9.2.3.1).

Type Description
Example Syntax of the
Action

1. No action (the current cell remains)

!

" me
2. The current cell is replaced

!

" A x, y()
3. New cells are created and the current cell

remains in the pool.

!

" A x, y() me B x + y()

4. The current cell is deleted

!

"# (empty string)

Table 9–1: Rule actions.

Figure 9-7: Graphical representation of cell changes brought about by rule actions.

9.2.4 Cell Interpretation

Thus far, cells have been considered in abstraction, without any method of

realising them in the world. The interpretation component specifies how the

cell will be interpreted as the system develops. In the case of L-systems, de-

velopmental words are interpreted by a turtle, which creates geometry as it

interprets the list of symbols. The case here is similar, with the exception that

Chapter 9: A Developmental System for Generative Media 229

each cell may contain multiple instructions to the turtle, permitting individual

cells to create more complex geometry without polluting the cellular devel-

opmental model with cells used only as part of some complex geometry

building sequence.

The interpretation system is extremely flexible, in the sense that interpre-

tation contains a list of special cells representing instructions. These cells are

of a different type than normal developing cells (they do not develop), but may

have associated parameters. These parameters may be set with expressions

involving the cell’s state. If a cell’s state is changing over the lifetime of that

cell (the age component for example), then the interpretation permits the

ability to animate the parameters of interpretive instructions as the cell state

changes. This is a more flexible and general form of the development func-

tions associated with timed L-systems and described in Section 8.2.1. There is

no direct dependence between cell development and interpretation, so a

number of different interpretative sets can be used on the same develop-

mental system. For example, a musical interpretative set issues musical in-

structions rather than geometric building ones.

 This flexibility allows users of the system to realise their developmental

system in a variety of ways, without the need to completely respecify the

grammar. The use of multiple instruction sequences in a single cell is a differ-

ent solution to a similar problem encountered by Prusinkiewicz and col-

leagues in the development of their interactive system to model plants

(Prusinkiewicz et al. 2001). Here they combined a C-like programming lan-

guage and Chomsky grammars to enable sequential rewriting of strings, ra-

ther than the parallel development specified by L-systems.

9.3 Cell Programming

The configuration of the system can be specified via a human-readable speci-

fication. The basic syntax of this specification is discussed here and is used in

the description of examples in the next section.

Cells are specified using the keywords module and system, representing

normal and system cells respectively. Modules of a particular system may be

forward declared if required.

230 9.3: Cell Programming

9.3.1 A 2-State Oscillator Example

Consider the example of a system that oscillates continuously between two

states. Such a system could be used, for example, as part of a generative

audio system, however for illustrative purposes a graphical interpretation will

be used.

Figure 9-8: Simple program for an oscillator. The pool of the system defined is shown on
the right. It oscillates between two cells representing different stages of the oscillation.
The state variable of each increases or decreases at a constant rate, forming a continu-
ous oscillator.

The example shown above illustrates the key concepts of a specification. A

single system, osc contains two modules a_state and b_state. The publicly

accessible state variables of each module are specified in parenthesis follow-

ing the declaration of the module’s name. Any further information inside the

opening “{” character is considered private state declaration and state initiali-

sation expressions. Statements are terminated with a semicolon (“;”). The

keyword rules: prefixes the definition of rules for the module. Each rule is

likewise terminated with a semicolon and may span multiple lines if neces-

sary. The module’s interpretation commands are prefixed with the geom:

keyword, although there is no reason the interpretation has to be geometric.

The commands alpha and sphere set the drawing transparency and create a

sphere respectively. The supplied parameter controls the amount of transpar-

ency (in the case of alpha) and the radius of the sphere. In this case, the pa-

rameter provides a visual indication of the state of the module.

Chapter 9: A Developmental System for Generative Media 231

When the system osc is instantiated, it loads the pool with the axiom

(a_state), initialising the state to the value specified. The system then begins

development for as long as necessary. Figure 9-9 shows a sequence of frames

outlining the development of the oscillator system.

Figure 9-9: Sequence of frames from the rendered output of the oscillator system.

9.3.2 Hierarchy of Legged Figures

The animation of legged figures was presented in Section 8.4. I will now re-

visit this definition and show how the same system can be defined using the

cell developmental model introduced in this chapter.

Complex structures are often modelled by decomposing them into a hier-

archy. The running animal model presented in the previous chapter used a

single L-system to model the structure and behaviour. By using a hierarchical

description, it is possible to specify structure in a more intuitive way.

Body Segment

Segment Segment Segment

Head Leg Tail

Leg
Segment

Joint

Animal

Figure 9-10: Hierarchical structure of the legged creature. Systems are shaded in grey.

232 9.3: Cell Programming

A skeletal description of this structure using the cellular programming lan-

guage is shown below. Elements that construct the geometry or control the

legged gaits themselves have been omitted for readability (the legged gait

animation system was described in Section 8.4).

system animal(vector position) {

int nSegs = 4;

system bodySegment(int n) {

module segment(int n) {

real kphase = 2 * PI/nSegs;

 rules:

: n <= 0 : -> head segment(n+1);

: n > 0 && n < nSegs : -> leg(n * kphase) (segment(n+1))

 leg((n+0.5) * kphase);

: n >= nSegs : -> tail;

 geom:

// body segment geometry defined here

} // segment

module head() {

... // constructs the head

}

module tail() {

... // constructs the tail

}

system leg(real phase, real ctime) {

module joint(real phase, real ctime, int dof) {

... // joint articulation

}

module legSegment(real scale) {

... // constructs the leg segment (limb)

}

} joint(phase,ctime,3) legSegment(1) joint(phase,ctime,1)

 legSegment(1.5); // axiom for leg system

} segment(n); // axiom for system bodySegment

 geom:

TP(position); // set absolute turtle position

Chapter 9: A Developmental System for Generative Media 233

} bodySegment(0); // axiom for animal system

Figure 9-11: Specification of systems and modules corresponding to the hierarchy il-
lustrated in Figure 9-10.

The rules for the module segment illustrate how specific context relations can

be used in productions. Specifically, the rule

: n > 0 && n < nSegs : -> leg(n * kphase) (segment(n+1))

 leg((n+0.5) * kphase);

places the animated legs at either side of the body segment, giving a bilateral

symmetry, the phase of the gait shifted between legs.

9.3.3 Relation to Sub-L-systems

Sub-L-systems, first proposed by Hanan (Hanan 1992) allow different sets of

rules to be applied to portions of the developmental string. Hanan also in-

corporated the ability to run sub-L-systems at different scales and time steps.

This mechanism was introduced to enable the integration of previously de-

fined components, yielding a hierarchical model with nested sub-L-systems.

This section briefly shows how sub-L-systems can be simulated into the

cellular developmental model introduced in this chapter. Consider the follow-

ing sub-L-system, taken from (Hanan 1992, p. 107). The sub-L-system simu-

lates a simple branching structure.

!

Lsystem : 1 / * Main L - system * /
" : A

p11 : A# I ? 2()A$[]A

endLsystem

Lsystem : 2 / * sub - L - system for the branch * /
" : A

p21 : A# IA
endLsystem

(9.7)

The equivalent cellular model is shown in Figure 9-12.

234 9.3: Cell Programming

module I() { }

system s1() {

module A() {

 rules:

:age % timestep == 0: -> I [s2] me;

}

} A();

system s2() {

module A() {

 rules:

:age % timestep == 0: -> I me;

}

} A();

Figure 9-12: Cellular definition of the sub-L-system.

There are some differences between the two models. Firstly, as the cellular

system is inherently time-based discrete symbol rewrites must be simulated

using module age and the build-in global variable timestep. By varying time

steps (via a parameter for example) other systems can develop at different

rates. Secondly, sub-L-systems operate different replacement rules on the

same symbols, however in this example there are two A modules. Their geom

section could be made the same, giving them the same interpretation how-

ever. The sequence of development over the first five time steps is:

s1::A

I [s2::A] s1::A

I [I s2::A] I [s2::A] s1::A

I [I I s2::A] I [I s2::A] I [s2::A] s1::A

I [I I I s2::A] I [I I s2::A] I [I s2::A] I [s2::A] s1::A

The results mirror that of the sub-L-system derivation using discrete time

steps.

Chapter 9: A Developmental System for Generative Media 235

9.4 Music Generation

Interpretation of cell states is not limited to geometric constructs. Using an

object-oriented approach allows the interpretation of cell states by methods

other than a turtle interpretation. To provide different interpretations a col-

lection of global modules are imported into the namespace of a particular

system (the root system by default). These modules are directly interpreted as

generative commands.

The musical commands use the concept of a state-based player, which is

responsible for converting commands into actual music. The player maintains

a state that includes the current pitch (note) and volume. The player converts

incoming commands into midi67 messages, enabling any midi compatible de-

vice to play music generated by the system. A small subset of the music gen-

eration command set is detailed below.

Module Interpretation Module Interpretation

absN(x) Set the current note to

x, where x corresponds

to the absolute pitch

(the current key).

velN(x) Set the current note on

velocity to x. Velocity is

converted to midi note-

on velocity, in the range

0 to 127.

incN(x) Change the current

note by x semitones (x

may be positive or

negative)

key(n) Set the key signature to

the value specified by n.

N Play the current note. QN A constant rep-

resenting the duration

of a quarter note.

Table 9–2: A selection of modules used to create music.

Figure 9-13 illustrates a simple system that plays a musical scale. The system

scale takes two parameters that specify the starting and ending notes. The

67 Midi is a low-level serial communication protocol for musical instruments and musical con-
trollers — see (Selfridge-Field 1997). Further details can be found in Chapter 11.

236 9.5: Summary

system’s pool contains the developing notes that advance with quarter note

timing. The absN module is used to set the player to the starting note. The N

module actually plays the note, which is converted to midi note-on and note-

off messages that correspond to the birth and death times of the module

note. When note exceeds the value specified by the system parameter end,

the pool becomes empty (recall that a rule’s priority is implicit in its ordering).

After the last note module has died and the system pool has emptied, the

system continues to age, but no further development takes place in its pool.

Figure 9-13: A note playing system, consisting of a single system, ‘scale’ which contains
the module ‘note’, shown as a human-readable programming language (top left), a
graphic representation as per the previous figures (top right); a symbolic developmental
sequence (bottom left); and in music notation (bottom right). The system plays a scale
from the supplied starting pitch for the given number of notes.

Musical applications are discussed in detail in Chapter 11.

9.5 Summary

The developmental system described here unifies a number of previous L-

system models to the application domains of time-based development of aes-

thetic systems. Examples of such systems include generative animation and

music synthesis. The temporal development, based on both discrete cellular

changes and continuous development, successfully integrates these two

modes of development, and permits complex temporal sequences not achiev-

able using DOL-systems (Figure 9-14).

Chapter 9: A Developmental System for Generative Media 237

The hierarchical nature of the cellular developmental system allows man-

agement of complexity from the point of view of the user specifying a system

model. Hierarchical ordering increases the control over structure at variety of

levels, hence reducing the “brittleness”68 of a flat grammar specification. This

permits a more intuitive control over creation of modelled systems, either by

the user (see section on user interface) or when using techniques such as

aesthetic evolution (discussed in Chapter 10).

Figure 9-14: Time-state diagram contrasting the developmental differences between dis-
crete L-systems and the cellular developmental system described in this chapter. The dia-
gram shows the temporal development (from left to right) of each system. Shaded rec-
tangles represent the symbols present (vertical axis) at any given time (horizontal axis).
Both examples start from a single symbol or cell (the axiom). In the case of the DOL-
System (top) each iteration is clearly synchronised and regular as the rewriting process
proceeds in discrete time steps. In the case of the developmental cellular system, the se-
quence quickly becomes irregular and ‘fractal’ due to the individual developmental nature
of cells. A single cell at the top level is shown expanded as a segment of a developing
sub-system, illustrating the complexity that is contained by the hierarchy.

9.6 Implementation Details

The developmental algorithms for timed, parametric (and stochastic) L-

systems, described in Section 8.2 of the previous chapter, cannot be used for

the cellular developmental system described here, due to the indeterminacy of

cell (module & system) ages when the cell is instantiated. The decision for a

cell to split, die or produce additional cells will be based on state changes that

may be determined by:

68 That is, more robust to configuration changes — a change at one level in a hierarchy can
have fewer side effects than for the equivalent description in a non-hierarchical system.

238 9.6: Implementation Details

! external events or conditions generated from outside the system, such

as interactive, real-time input from the human user or users of the sys-

tem;

! context information of other cells that cannot be determined at the cre-

ation of the current cell;

! predicates involving state information influenced by incrementally cal-

culated differential equations.

In addition, for applications such as music generation, real-time output and

possibly synchronisation are required. For these reasons, an incremental al-

gorithm is used to calculate cell states and an event-based framework used to

instantiate and delete cells. Simulation of continuous state changes is

achieved using a variety of numerical integration and interpolation tech-

niques.

9.6.1 Media Synchronisation

As the system described in this chapter is used to generate temporal data ex-

pressed in different media types (sound, image, three-dimensional model,

etc.), the system needs a way to synchronise this multimedia data to ensure

correct timing. This is particularly important in the case of real-time applica-

tions, but is applicable to any temporal based interpretation of data gener-

ated.

Synchronisation defines the occurrence of multiple events at the same

time, or within some small time period. In activities such as real-time anima-

tion or music synthesis, the generation of data needs to be synchronised to

some global timing system, such as the computer’s system clock or an exter-

nal time code source. I will consider two types of temporal information:

! discrete, singular events with no duration that signify some change or

point in the system as a whole;

! temporal segments of information with some duration in time.

Both types may be generated from temporal media sources. Synchronisation

is generally concerned with the temporal ordering and output of events and

segments from multiple sources in relation to some global timing information.

Chapter 9: A Developmental System for Generative Media 239

9.6.1.1 Related Work in Media Synchronisation

Recent surveys of media synchronisation describe a wide variety of schemes

for synchronisation (Bertino & Ferrari 1998; Blakowski & Steinmetz 1996).

The specification and organization of temporal segments and events can be

broadly categorised into a number of different approaches. These include

formal language-based models, where some form of organization is specified

using a programming or scripting language (Ates et al. 1996). In graph-based

methods, events and sources are represented as nodes with edges signifying

constraints between them (Buchanan & Zellweger 1992). Similarly the de-

clarative approach of Little and Ghafoor uses Petri nets which define temporal

organization through places and transitions (Little & Ghafoor 1990). Such a

system can be extended to maintain synchronisation over distributed net-

works (Qazi, Woo & Ghafoor 1993). While these systems provide considerable

flexibility, they are difficult to construct from two perspectives. From a pro-

gramming point-of-view, they require complex constraint solving methods

(such a linear-programming) to be general. From the user perspective, it is

difficult to manipulate graph representations as controllers for temporal se-

quences.

In contrast, time-line approaches place sources in temporal order, often

using the concept of multiple tracks to support parallel event or segment syn-

chronisation (e.g. the Apple QuickTime system (Towner 1999)). Such systems

are popular in video and audio editing applications, since they lend them-

selves to intuitive and familiar graphic user interface paradigms, well estab-

lished for such applications.

Many systems organise temporal elements using a compositional method,

for example binary relationships between segments such as before, starts,

finishes, meets, overlaps, and during (Allen 1983). In addition, hierarchical

ordering or grouping relationships allow the collection of temporally unre-

lated sequences to form a unified sequence, which may be treated as a single

entity in further operations, such as in the Firefly system of Buchanan and

Zellweger (Buchanan & Zellweger 1993).

Ackermann describes an object-oriented framework to support multimedia

application development, known as MET++ (Ackermann 1996). MET++ has a

versatile and extensible organization, particularly for the development and

240 9.6: Implementation Details

synchronisation of time-based media composed in a hierarchy (Ackermann

1993).

Like a number of systems, MET++ distinguishes between intramedia and

intermedia synchronisation. Intramedia synchronisation handles continuity

requirements within a single media source, and is primarily managed within

the domain of the system generating that source. In contrast, intermedia syn-

chronisation deals with the higher-level synchronisation of multiple sources

and the temporal alignment of key events (such as starting and stopping of

generative sequences) and segments (such as sounds or video segments).

MET++ uses object-based event composition, whereby multiple sequences

may be defined in a hierarchy, each with their own temporal structure, in

much the same way as the combination of system and module cells form a

hierarchical structure, allowing parallel and sequential temporal structures.

Relevant strategies for developmental simulation and synchronisation also

come from the simulation community, where an important research goal has

been the integration of discrete event based systems with those designed for

continuous simulation of complex dynamical systems (Zeigler, Kim & Prae-

hofer 2000). In many cases, this involves differential equation solvers with

continuous states and continuous time formalisms being coupled with discrete

state and discrete time simulations systems, such as automata systems. This

is known in the simulation community as multiformalism modelling, where

discrete and continuous formalisms are either combined together, or alterna-

tively one formalism is embedded within another. It has been shown that a

combination of each type of formalism is closed under coupling (Praehofer

1991).

The approach used here is an object-oriented time synchronisation ap-

proach, similar to that described by Ackermann (Ackermann 1996). However,

the level of generality and flexibility provided by frameworks such as MET++

is unnecessary when dealing with the temporal development models required

for the system described here. For example, the full scope of binary relation-

ships is largely unnecessary, although there is no reason why a system could

not include such additional features, particularly if it were to form part of a

full multimedia system incorporating additional media elements.

Chapter 9: A Developmental System for Generative Media 241

9.6.1.2 Temporal Development in the Cellular Model

There are two distinct cases to be dealt with when simulating the develop-

ment of cells:

! internal development of cell state where no new events such as cre-

ation, deletion or replacement of cells occur;

! changes to a system cell’s pool, where cells are added, deleted or re-

placed.

The case of internal development can be further divided into context depend-

ent and context free cases. In context free cases, the cell develops without de-

pendence on surrounding cells. Cell state is determined only by changes to the

internal state, which equates to solving differential or explicit equations to the

point where a predicate changes value (similar to the forward prediction

method detailed in Section 8.5.2.4).

For example, consider the rule of equation 9.4 on page 226. Here the rule

must be integrated to the point where the predicate event occurs, i.e. where

!

x = Xmax . This is equivalent to the root finding problem where we wish to find

the first point

!

tp , 0 > tp " # such that the equation

!

g t, x t(), " x t()() = 0 (9.8)

is satisfied at

!

t = tp . Shampine, Gladwell and Brankin describe a method to

find the algebraic solution of this event location problem (Shampine, Gladwell

& Brankin 1991) provided the solution can be defined as a polynomial in

either x or

!

" x . Such a technique can be integrated into a standard fourth or

fifth-order Runge-Kutta numerical integration algorithm (Horn 1983).

In the context sensitive case, changes in cellular state depend on the states

of neighbouring cells. Potentially, this dependence may cascade across all

cells in the current pool (including system cells). In the general case, it be-

comes impossible to forward predict when a given cell’s predicate state will

change without actually simulating the entire system.

9.6.1.3 Cellular Updates

As discussed in the previous section, cellular updates can be classified as in-

ternal, involving only state changes, or external, involving modification of the

242 9.6: Implementation Details

system pool. As defined in Section 9.2.3 cellular rules are ordered sets of

predicate-action sequences. Each predicate-action sequence is specified in

order of evaluation in the cell’s definition. Typically, predicate-action sequen-

ces specify state changes first followed by any cell actions. Once a cell action

has been performed, no further predicate-action sequences are evaluated for

that cell during the current time step.

The basic algorithm for evaluation of an individual cell’s predicate-action

sequences is shown below. This algorithm is executed at each time step to up-

date the cell.

// Cell update algorithm
// This algorithm executes over a single time step

// All accessible variables are contained in a StackFrame

// We assume access to the module’s pool via its parent system

for each predicate-action sequence

!

ri {

Boolean matched = FALSE;

Boolean contextMatch = FALSE;

ContextReference contextRef; // storage reference for context

// activate (push) the local stack frame

StackFrame.activate();
if (

!

ri.hasContext()) {

// check if the current context matches
contextRef = system.pool.contextMatch(

!

ri.context())

if (contextRef.matched()) { // this rule has a context match

// we need to add the context matched symbols before pro-

// cessing the predicate

StackFrame.add(contextRef.getStackFrame());

contextMatch = TRUE;

} else {

StackFrame.deactivate();

continue; // no context match so move on to next rule

}

// evaluate the predicate. We only get to here if

// (i) there is no context to match, or

// (ii) there is a context, which has matched.
matched = evaluate(

!

ri.predicate(),StackFrame).asBoolean();

if (matched) {
if (

!

ri.isAction()) {

// this sequence is an action, requiring cell updates

Chapter 9: A Developmental System for Generative Media 243

performActions(

!

ri,StackFrame, system);

// end the evaluation of sequences.

StackFrame.deactivate()

return;

} else {

// state update only
evaluate(

!

ri.stateCalculations(),StackFrame);

}

}

// pop off any local variables

StackFrame.deactivate()

}

Figure 9-15: Cellular update algorithm

Access to all variables is via an object known as a stack frame. Stack frames

are hierarchical data structures (stack of ordered lists) created during com-

pilation of cell specifications. Stack frames contain space for storage of vari-

ables (including temporary variables and intermediate results). They can be

activated (pushed) and deactivated (popped) corresponding to changes in

scope. Stack frames are similar to those used internally by compiled impera-

tive programming languages to allocate space for local variables in function

calls.

A successfully matched context may introduce new variables into the scope

of the current predicate-action sequence being processed. This is because the

publicly accessible state of context-matched cells may be used in the current

cell’s own state calculations or actions. A special object, contextRef is re-

turned by the context matching checker checkContext. This contextRef

object contains a local stack frame, which can be added to the current frame,

giving any state calculations or cell actions access to the appropriate context-

matched cell variables. Context matching is discussed in detail in the next

section. Any local frame added to the StackFrame object will be removed

upon call to the deactivate() method.

The function evaluate takes a list of statements (compiled as multiple

parse trees) and evaluates them in the context of the supplied StackFrame.

The result of the final statement is returned by evaluate. evaluate is used

to check the predicate and perform any state calculations as required.

244 9.6: Implementation Details

The function performActions takes the current predicate-action se-

quence, the StackFrame, the parent system and performs the necessary cell

actions (described in Section 9.2.3.4) as dictated by the action component of

the predicate-action sequence. Updating the system’s pool is a two-step pro-

cess — all updates occur in a buffered copy of the system pool. Once all cells

in the pool have been processed (and potentially updated or changed), the

buffered copy replaces the old pool. This method allows all cells to appear to

be updated in parallel, with changes to the pool not taking place until the end

of the current time step.

9.6.1.4 Cell Pools and Context Sensitivity

Cells develop in a pool — a data abstraction used for storing developing cells.

The pool class hierarchy is implemented begins with an abstract base class

with polymorphic functions to access, modify and context match cells (see

Figure 9-16 below).

Figure 9-16: UML diagram of the Pool class hierarchy.

Chapter 9: A Developmental System for Generative Media 245

The pool class forms an abstract interface through which cells can be up-

dated, added and deleted. The pool class has an iterator class to permit

polymorphic iteration over the actual data structure. A series of concrete

classes provide the actual data structures to store cells. The classes

Linear1DPool and Linear2DPool provide one- and two-dimensional arrays.

Other, more specialised classes are also possible, such as the Spatial2DPool

that can store cell spatial location and use Euclidean distance measures in

context relations.

Two additional classes support n-dimensional context sensitivity. The

ContextSpec abstract base class defines an interface for specifying context

relations. Concrete classes are used to store actual context specifications

based on dimension. A context specification, such as:

!

A x()() C z() me D w()() B y()() (9.9)

is a two-dimensional context, and so would be stored using a ContextSpec2D

object. As part of the parsing of cell specifications, text specifications like the

one above are converted to ContextSpec objects.

The ContextReference class is used to support handling of data following

a context match. To test for a context match a ContextSpec object is passed

to the pool object’s checkContext() method. The dimension of the

ContextSpec object must match that of the concrete pool subclass (this can

be checked using the C++ run-time type identification system). It makes no

sense to check for a two-dimensional context match in a one-dimensional

pool, for example. Internally, the checkContext() method of the pool object

checks for a context match and returns a ContextReference object. This

object is returned regardless of the success or failure of the match.

As shown in Figure 9-15, the fist thing usually done to a returned

ContextReference object is to check if it represents a successful match, via

the object’s matched() method, which returns TRUE if the context match was

successful. The ContextReference object creates a local stack frame, which

allows the pubic state of cells used in context relations to be incorporated into

expressions used in either predicate matching or state calculations. As indi-

vidual context cells are matched, they are passed to

ContextReference::addContextMatch() method which extracts the cell’s

state information as it builds the local stack frame. So for example, the con-

246 9.6: Implementation Details

text relation given in (9.7) requires that the state variables x, y, z, w be avail-

able for use in the current predicate-action sequence, as they may be used as

elements of predicate expressions and state calculations. All variables used

from context relations are read-only and cannot be modified.

9.6.1.5 Simulation System Design

The basic building block in the object-oriented approach adopted for this

system is a class representing a time event (class TEvent). This class forms

the basis of a class hierarchy with subclasses inheriting the timing and syn-

chronisation features of TEvent (refer Figure 9-17). The overall representa-

tion of time is handled by the Time class, which is capable of nanosecond ac-

curacy in its representation of time69, and provides various arithmetic and

relations operators. Various utility classes allow the conversion to other time

formats such as smpte time (hours, minutes, seconds, frames, sub-frames).

The TEvent class provides a number of methods to set and access time

and offset values, calculate time positions and generate performance data

over specified time intervals. The class hierarchy follows a compositional de-

sign pattern (Gamma 1995), whereby groups of TEvents can be treated as

composites (class TCompositeEvent). This recursive structure allows collec-

tions of complex event sequences to be composed from collections of more

primitive sequences, with all sequences complying with the TEvent interface.

Two composite sequence classes, TSequence and TSynchro are shown in

the diagram. These classes provide specific temporal management policies,

allowing a variety of temporal arrangements in compositions. For example,

TSequence places multiple TEvent objects in a linear sequence and

TSynchro synchronises groups of events, so that they all occur at the same

time. A collection of support classes manage timing offsets and editing, in

collaboration with the functionality of the TEvent base class.

69 While the accuracy of representation is in nanoseconds, not all operating systems support
such fine granularity in their system clock resolution, so the actual timing accuracy may not be
possible at nanosecond time scales.

Chapter 9: A Developmental System for Generative Media 247

Figure 9-17: UML diagram of the timed event class hierarchy.

The TCellSystem class is the primary object used to control the development

of a cellular system. This class contains references to the root system and

stores the current local and global development time of the system it contains.

All time-based development in client classes is achieved via the TEvent

interface, allowing the integration of developing cellular systems with other

time-based media elements, such as digital video or other generative systems.

9.6.1.6 Controlling Temporal Development

The function:

Perform(Time startTime, Time duration, Time realDuration)

is the primary method for temporal development. Before discussing this func-

tion in detail, the control mechanisms and synchronisation background will

be explained.

248 9.6: Implementation Details

As previously stated, synchronisation requires that temporal events occur

at specific times. For example, in the case of pal television animation genera-

tion a new frame must be generated at exactly every 25th of a second.

The basis of the time synchronisation and control system is managed by

the Conductor class (see Figure 9-18), which provides basic mechanisms for

controlling synchronisation and development of timed events. Conductor pro-

vides a number of standard transport functions, familiar to users of video

tape recorders, for example (stop, rewind, play, pause, step).

The conductor is driven by a low level timing system, encapsulated by the

Ticker class. A ticker is a low-level interface to various forms of timing in-

formation, including real-time information (driven by system interrupts) or

timing information from remote timing sources. A specific Ticker object is

attached to the conductor, repeatedly calling the conductor’s Notify method

at each clock “tick”. The conductor specifies the time interval,

!

" , between

calls to the Notify method. This interval represents the finest quanta of tim-

ing granularity that the system can achieve. This does not mean events can-

not happen inside this interval, just that synchronisation events resolve only

to this interval in terms of accuracy.

It is the responsibility of the ticker to maintain correct interval durations

and translate any internal or external timing information as necessary (for

example an external timing source may interrupt or resolve to a different in-

terval time (

!

") than what the conductor requires, so some internal translation

will be necessary).

The interval,

!

" , does not necessarily represent real or actual time. In a re-

motely driven sync situation, incoming timing information may vary signifi-

cantly from real-time, however the ticker simply maintains a representation

of duration according to either an internal or an external reference.

Ticker is designed to work as a separate thread (light-weight process),

running independently of the Conductor, or alternatively in “blocking” mode

where it may be part of some larger event loop.

Chapter 9: A Developmental System for Generative Media 249

Figure 9-18: UML diagram of time control and synchronisation classes.

The sub-classes of Ticker implement a variety of timing strategies.

RealTimeTicker is a threaded, interrupt driven class that uses system tim-

ing information to provide Notify calls in real time. A typical interval in this

case would be 40ms for generating real-time animations. GUIAppRTTicker, a

sub-class of RealTimeTicker is a special class designed to integrate with gui

event loops, using threads to maintain user-interface responsiveness, but also

ensuring correct synchronisation with frame-buffer redraw events scheduled

to coincide with vertical redraws on a graphics display, such as frame buffer

swaps in double-buffered displays (Angel 2003).

FreeRunTicker is used when maximum performance is required. It sim-

ply calls the Conductor’s Notify function as fast as possible, providing

maximum performance. Notify will block in this mode, ensuring that there

are no Notify calls pending until computation for the specified interval has

been completed. FreeRunTicker is useful in situations where maximum

throughput is required, for example in the generation of off-line animated se-

quences, where models are output to a software renderer that does not oper-

ate in real time.

250 9.6: Implementation Details

Figure 9-19: Conductor GUI, showing transport, timing and synchronisation controls. The
user may set start, end and update (increment) times via text boxes. The time bar (centre)
shows progress from start to end. Current time is displayed at the top (a variety of for-
mats can be selected). Synchronisation can be selected from a number of available sour-
ces, and even changed while the system is running. A status box shows the current sta-
tus, including synchronisation locking if the conductor is locked to an external sync
source.

The calling sequence of Ticker and its sub-classes is shown below in Figure

9-20.

Figure 9-20: Calls of the Ticker::Notify() function at regular intervals. Computation,
controlled by the Conductor, is performed after receiving each Notify event (using the
Perform() function). Further calls from Notify are blocked until the computation for
the current time-step is complete.

As alluded to in the beginning of this section, the Perform function processes

the necessary computation for the specified interval. This involves traversing

the composite TEvent hierarchy, and developing the state of the system from

the current time step until the next. This may involve further sub-divisions of

time, for example when solving the differential equations of a cell’s state

using an adaptive integration technique, such as the Adams-Moulton method

(Kreyszig 1999, Section 19.2).

Chapter 9: A Developmental System for Generative Media 251

Execution of the Perform function is further divided into pre-processing,

inner-processing and post-processing stages. This provides a way to prioritise

processing, for example buffer allocation in the pre-processing stage, actual

generation in the inner stage and buffer flushing in the post-processing stage.

Figure 9-21: The three stages of processing within a single interval. In the example shown
here, the pre-processing stage allocates buffers, the inner stage controls cell develop-
ment, resulting in the generation of MIDI events that are placed in the buffer. The post
stage sends the MIDI events to the appropriate MIDI hardware. The format of an individual
MIDI message is also shown — containing time stamp and note event information.

For example, when generating musical data via the midi protocol, a series of

midi events must be generated and placed into a buffer. Each midi event con-

sists of two components — a time stamp (in bars, beats and fractions of a beat

or smpte time code) and event information (Hewlett & Selfridge-Field 1997),

encoded as byte sequences. A buffer containing these low-level midi events is

then passed to the midi interface system (midi interface hardware with soft-

ware interface), which will output the midi events at the appropriate time. At

each interval, the buffer requires all the events needed for the current inter-

val.

9.6.1.7 Calculations that Exceed the Time Interval

Perform performs the calculations necessary to advance the system to the

next time step. The diagram in Figure 9-20 implies that any necessary com-

putation can be performed within the time interval between Notify calls

from the current Ticker. However, it is possible that a cellular developmental

process cannot be bounded by a given time interval, and that computation

252 9.6: Implementation Details

time will exceed such an interval. In this case, the system tries to adapt by

following a number of strategies:

! System pool growth is monitored and the pool’s owner system develop-

ment is terminated if the pool exceeds a certain size. This stops any

system from unbounded exponential growth. E.g. the simple program:

system grow {

module a {

: age > timestep : -> a a;

}

} a

System grow’s pool doubles in size at each time step. The termination size

can be user specified. If no value is specified then the value is inherited from

the parent system (the root system has a default size, which can be modified).

! The Conductor class operates under an adaptive interval scheme (de-

tailed below).

At each time interval, the total computation time (Figure 9-20) for that time

interval is calculated. The difference between computation and interval time

is also calculated, and stored in the parameter delta. The value of delta is

monitored and the Conductor class tries to adapt based on this value and the

desired time interval.

Figure 9-22: Recalculation of intervals if computation time exceeds Ticker intervals.

If the delta parameter becomes negative (i.e. computation time for the cur-

rent time step has exceeded the real-time required for its calculation), the

ticker is notified to increase the interval

!

" by a factor linearly dependent on

delta. This strategy results in a smaller number of updates than desired,

while attempting to maintain real time performance. If the value of delta ex-

Chapter 9: A Developmental System for Generative Media 253

ceeds the original desired interval time

!

" will revert to its previous value.

Larger values of

!

" may eliminate overheads such as building complex geo-

metric models and allow numerical integration schemes to work more effi-

ciently. Limits are placed on the maximum and minimum values of

!

" to avoid

exponential or unrealistic increments in pathological cases (a system that up-

dates once every ten minutes is not particularly useful in a real-time applica-

tion).

The above method works as a simple optimisation scheme that tries to

balance real time performance with target update intervals and synchronisa-

tion accuracy. However, it is always possible to create developmental systems

that are too complex to be computed in real-time. In this case, the system

cannot maintain real-time performance and deliver an accurate result, so the

value of

!

" remains at its maximum and updates continue as fast as possible

with current resources (essentially mimicking the behaviour of the

FreeRunTicker). In such a situation, any accurate synchronisation with an

external or real time source will be lost. Other media streaming systems that

deliver “pre-computed” media (such as video) usually adopt the strategy of

skipping or dropping frames in order to maintain synchronisation. In the case

of developmental system development, this is not possible because the state of

the system is dependent on its state at the previous time step.

9.6.1.8 Results

Provided the complexity of the system permits realistic computational times

for the chosen interval, the method described in this section is capable of

maintaining real-time performance and accurate synchronisation with an

external time source. This system has been used for real-time musical per-

formance, where even on a modest computer (250Mhz SGI Indigo) the system

can maintain real-time output of complex musical data generated using the

developmental system described in this chapter.

9.6.2 User Interface

The system described here is intended for use in the creation of artistic

works, realised as animations, interactive simulations or musical compo-

sitions. Whatever technical capacity an artistic software system may have, the

254 9.6: Implementation Details

sensuous interaction between human, machine, and software is surely a lim-

iting factor for anything that system produces. This section details the pro-

cedural qualities of the system in terms of how a user might interact with the

system in the process of developing these works.

Cells may be specified using the programming language described in Sec-

tion 9.3. Interpretation of modules is dynamically selected by the inclusion of

a series of modules that determine how the informational properties are in-

terpreted as (for example) geometry, sound, text, and so on.

Writing cell systems using the built-in programming language can be tedi-

ous and difficult for a non-expert. As an attempt to alleviate this problem, two

strategies have been developed:

! using a graphical user interface (gui) that allows graphical manipula-

tion of the cellular hierarchy and editing of the rules of individual mod-

ules;

! using an aesthetic evolution technique whereby the user navigates the

search space of possibilities by selection and mutation (described in

Chapter 10).

Both these strategies borrow from the biological analogy in my definition of

generative art (Section 3.6) — that of genotype and phenotype. With the

genotype being the developmental system specification: a hierarchical specifi-

cation of systems and modules. The phenotype is the animated form or musi-

cal composition generated by the developing genotype.

9.6.2.1 The “gene splicer” editor

In the case of the gui–based system (hereafter referred to as gene splicer), the

software provides a graphic representation of genotype, in the form of a tree,

the nodes of the tree representing cells (refer to Figure 9-23 and Figure 9-24).

A tree structure is used, as it is capable of representing the hierarchical defi-

nition of cells, with system cells at parent nodes and master cells at the

leaves. The root system is always at the base of the tree.

In interaction with the system, one can select various branches of the tree

and perform simple editing operations, such as removal, insertion and re-

placement — a kind of “gene splicing” after which the program is named.

Chapter 9: A Developmental System for Generative Media 255

Double-clicking on a box representing a cell opens up a window that permits

editing of that individual cell (Figure 9-25). A library area holds collections of

systems from which the user may assemble their own new collections.

Figure 9-23: Graphical User Interface for the gene splicer software, showing the key user
interface elements accessible to the user.

Time control uses the common “vcr analogy” providing controls to play,

pause, stop and rewind. No “fast forward” control is currently provided. The

rewind function resets the current root system to its initial state, including its

pool (and hence all sub-systems, their pools and modules).

256 9.6: Implementation Details

Figure 9-24: Editing section of gene splicer, showing the hierarchical structure of a collec-
tion of cells.

Three basic time synchronisation modes can be selected:

 i. real time playback, synchronised to the computer’s internal clock;

 ii. real time playback, synchronised to an external time signal (midi time

code);

 iii. no synchronisation — development proceeds at maximum performance

limited by cpu capabilities.

Details on the internal implementation of these modes were discussed in Sec-

tion 9.6.1. Multiple systems may be running simultaneously. Each system has

its own window with controls for timing offsets allowing certain events to be-

gin at specified times. This is particularly useful when synchronising with ex-

ternal events via midi time code, for example. All time information may be

Chapter 9: A Developmental System for Generative Media 257

specified in smpte format70 (hours:minutes:seconds:frames:sub-frames) see

(Cipher�Digital 1987).

Figure 9-25: Text display/editing of individual cells.

70 American National Standard for television — time and control code ANSI/SMPTE 12M-1986
(Society of Motion Picture and Television Engineers).

258 9.7: Conclusions

9.7 Conclusions

The developmental system presented in this chapter should be seen as a pro-

gressive development that integrates a number of advancements in L-systems

research under a single model. These advancements include parametric and

sub-L-systems (Hanan 1992), differential L-systems (dL-systems)

(Prusinkiewicz, Hammel & Mjolsness 1993), timed L-systems (tL-systems)

(Prusinkiewicz & Lindenmayer 1990) in addition to context sensitivity. The

novel context relations allow the simulation of other developmental tech-

niques such as cellular automata and reaction-diffusion systems.

In addition to this integration, a method for real-time synchronisation has

also been described. Combining this with a flexible architecture for media

generation results in a generative system capable of producing music per-

formance data or 3D geometry in real-time. The use of a graphical user

interface and the ability to splice systems and modules between different

compositions gives the non-expert composer or artist the ability to create

complex models in an intuitive way, without having to learn a complex pro-

gramming language. The system described has been used to generate a num-

ber of successful compositions and animations, many of which are described

in this thesis.

Chapter 10: Interactive Evolution 259

10 Interactive Evolution71

Any “novelty,” … will be tested before all else for its compatibility
with the whole of the system already bound by the innumerable
controls commanding the execution of the organism’s projective
purpose. Hence the only acceptable mutations are those which, at
the very least, do not lessen the coherence of the teleonomic
apparatus, but rather, further strengthen it in its already assumed
orientation or (probably more rarely) open the way to new possi-
bilities.

— Jacques Monod, “Chance and Necessity” (Monod 1971, page
119)

Aesthetic evolution of L-systems provides a powerful method for creating

complex computer graphics and animations. This chapter describes an inter-

active modelling system for computer graphics in which the user is able to ev-

olve grammatical rules and surface equations. Starting from any initial timed,

parametric D0L-system grammar, evolution proceeds via repeated random

mutation and user selection. Sub-classes of the mutation process depend on

the context of the current symbol or rule being mutated and include mutation

of: parametric equations and expressions, development functions, rules, and

productions. As the grammar allows importation of parametric surfaces,

these surfaces can be mutated and selected as well. The mutated rules are

then interpreted to create a three-dimensional, time-dependent model com-

posed of parametric and polygonal geometry. L-system evolution allows a

novice user, with minimal knowledge of L-systems, to create complex, “life-

like” images and animations that would be difficult and far more time-

consuming to achieve by writing rules and equations explicitly.

71 This chapter is based on material first published in (McCormack 1993).

260 10.1: Introduction

10.1 Introduction

Modern computer graphics and computer aided design (cad) systems allow

for the creation of three-dimensional geometric models with a high degree of

user interaction. Such systems provide a reasonable paradigm for modelling

the geometric objects made by humans. Many organic and natural objects,

however, have a great deal of complexity that proves difficult or even impos-

sible to model with surface or csg based modelling systems. Moreover, many

natural objects are statistically self-similar, that is they appear approximately

the same but no two of the same species are identical in their proportions.

As has been shown in previous chapters, L-systems have a demonstrated

ability to model natural objects, particularly branching structures, botanical

and cellular models. However, despite the flexibility and potential of L-

systems for organic modelling, (and procedural models in general), they are

difficult for the non-expert to use and control. To create specific models re-

quires much experimentation and analysis of the object to be modelled. Even

an experienced user can only create models that are understood and designed

based on their knowledge of how the system works. This may be a limitation

if the designer seeks to explore an open-ended design space (as discussed in

Chapter 4). The method presented here gives the artist or designer a way of

exploring the “phase space” of possibilities offered by L-system models.

10.1.1 L-systems

The type of L-system primarily used in this chapter is timed, parametric 0L-

systems, both deterministic and non-deterministic (see Section 8.2 for defini-

tions). Evolution of context sensitive L-systems has not been attempted at this

stage.

10.1.2 Evolution

Natural evolution, first proposed by Charles Darwin (Darwin 1859) and Alfred

Russel Wallace (Wallace 1855) provides a theory for the development of spe-

cies. Through the process of natural selection, a rich and complex diversity of

organic life has evolved. The genetic algorithm, as proposed by Holland

(Holland 1992) follows this evolutionary paradigm and provides a method for

Chapter 10: Interactive Evolution 261

searching very large spaces for an optimal solution. Genetic algorithms have

been used to solve a number of problems in design, optimisation and fitness

(Goldberg 1989; Grenfenstette 1985, 1987; Rawlins 1991).

In his book, The Blind Watchmaker, Richard Dawkins demonstrated simu-

lated evolution by evolving biomorphs — simple two-dimensional structures

resembling organic creatures created from minimal sets of genetic param-

eters (Dawkins 1986). The survival of each generation of biomorphs is selec-

ted by the user who evolves features according to their personal selection.

Other applications of the genetic algorithm to image and object generation

include Todd and Latham who have evolved computer sculptures using csg

techniques (Todd, S. & Latham 1991, 1992). Sims has evolved procedural

models to create branching structures, textures, parametric surfaces and dy-

namic systems (Sims 1991b, 1991a, 1993).

10.1.3 Genetic Terminology

Genetic terminology is also applied in the case of these simulations. The geno-

type is the genetic information that contains the codes for the creation of the

individual. In organic life, this is usually the dna of the organism. In the case

of simulations, the genotype can be a string of digits or parameters. In the

case of L-system grammars, it is the productions, axiom, symbols and their

associated parameters.

The individual, object or system created from the genotype is known as the

phenotype. The process of expression (genome to phoneme) usually generates

the complexity from the relative simplicity of the genotype.

Fitness of phenotypes is determined by selection. In a real world envi-

ronment, the fitness of an organism determines its ability to pass on its genes

from generation to generation — mating for sexual species, and survival. In

the real world, many factors influence an organism’s fitness to the task of

survival. In simulated genetic systems, the fitness either can be determined

automatically, by a defined fitness function, or, as is the case with this work,

selected implicitly by the user.

262 10.1: Introduction

10.1.4 Overview of the Aesthetic Evolution Process

In a natural situation, genetic variation is achieved through two key processes

— mutation of the parent genotype and crossing over of two parental geno-

types in the case of sexual species. In the system described here, “child”

genotypes are created by mutating a single parent genotype. Such mutations

cause different phenotypes to result. Changes may affect structure, size, to-

pology and growth. Through a repeated process of selection by the user and

mutation by the computer, aesthetic characteristics of the resultant forms can

be optimised (the genetic algorithm can be thought of as an optimisation pro-

cess). Figure 10-1 illustrates this process.

Parent Phenotype

Child Phenotype 1

Child Genotype 1

Child Phenotype 2

Child Genotype 2

Child Phenotype n

Child Genotype n

.

.

.

Phenotype generation
(L-system derivation)

selection

mutation

Parent Genotype

Figure 10-1: The mutation and selection process.

Typically, the user of the system begins with an existing L-system that they

wish to evolve. This germinal genotype becomes the first parent from which

offspring are mutated. A library of existing L-systems is available for the user

to select from to begin the evolutionary process. It is also possible to evolve

“from scratch”, i.e. with only implicitly defined identity productions in the

germinal genotype.

Following the evolutionary process, the user has the option of saving the

mutated genotype in the library. Alternatively, the phenotype (three-

dimensional geometric data, shading and lighting information) can be ex-

Chapter 10: Interactive Evolution 263

ported to software or hardware based rendering systems for further visuali-

sation and processing. This process is outlined in Figure 10-2 below.

Initial germinal
genotype

Evolution by
mutation and
selection.

L-system
genotype
library

Select initial genotype

Evolved Model
(genotype)

Genotype may be stored in library

Phenotype
(geometric
model)

Generate 3D model
from genotype

Geometric, lighting &
shading data

External
surfaces
library

Surface Evolution
by mutation and
selection.

Pre-defined surfaces as needed

Implicit references

Software
Renderer

Hardware
Renderer

Images &
Animation

Real time
display

Figure 10-2: The initial genome is selected from an existing library to undergo the evolu-
tionary processes described in this chapter. Following evolution the genotype can be (op-
tionally) saved into the library or output to rendering systems for visualisation.

The next section looks at the syntax and structure of L-systems used. Section

10.3 examines the mutation process, Section 10.4 the interactive evolution

process, and Section 10.4.1 discusses the implementation. Section 10.5 pre-

sents a summary of results and Section 10.6 possibilities for further work.

Finally, Section 10.7 provides an epilogue on the original research presented

in this chapter.

10.2 L-Systems Implementation

This chapter describes the evolutionary components of the modelling system

developed for creating three-dimensional animated models using timed,

parametric context-free L-systems (tp0L-systems). The foundation of the sys-

tem is a parser/generator, which takes a set of rules and parameters and cre-

ates a time dependent geometric model as its output. The state of the system

can be sampled at any chosen interval and a geometric model produced. For

animations, this is typically 25 times per second. The system permits timed,

parametric deterministic (D0L-) and non-deterministic stochastic (0L-) sys-

264 10.3: Mutation of L-system Rules

tems, both of which are context-free. Currently, context sensitive 1L and 2L-

systems are not implemented as part of the evolutionary components of the

program. Many of the results obtained with 1L- and 2L-systems can be

achieved with parametric 0L-systems (Prusinkiewicz, Lindenmayer & Hanan

1988).

10.3 Mutation of L-system Rules

In order for the structure and form of an L-system generated model to

change, its productions and module parameters must be changed. Small

changes in genotype are usually preferred so as not to completely alter the

form on which it is based. However, for radical change larger amounts of

mutation are required.

There are three principal components of an L-system grammar to which

mutation can be applied:

! mutation of rules (productions) and successor sequences (Section

10.3.1);

! mutation of parameters and parametric expressions (Section 10.3.2);

! mutation of development functions and symbol ages (Section 10.3.3).

In addition, pre-defined surfaces, included as part of the turtle interpretation

may themselves be mutated, using, for example, techniques described by

Sims (Sims 1991b). The connection between surface mutation and L-system

mutation is illustrated in Figure 10-2. The two processes proceed independ-

ently of each other, coming together at the generation of the geometric model.

10.3.1 Rule Mutation

For each production, symbols and successors have the possibility of being

mutated. For the moment, we assume a D0L-system

!

G = V ,", P as defined in

Section 5.3.2.1. Mutation of a single production can be represented

!

pn " pn
* ,

where

!

pn " P is the original production and

!

pn
* the mutated version. The

probability of each type of mutation is specified separately. The types of mu-

tations possible are listed below:

Chapter 10: Interactive Evolution 265

A.1) A symbol from a production successor may be removed;
e.g.:

!

pn = a " ab{ }# pn
* = a " b{ }

A.2) A symbol

!

", where " # $ pn
 may be added to a production succes-

sor;

e.g.:

!

a " ab # a " abb , where

!

" is b.

A.3) A symbol

!

", where " # $ pn
 may change to another, different

symbol;

e.g.:

!

a " ab # a " bb , where a has changed to b.

The above three rules work on a previously defined set of symbols, typically a

subset of the L-systems alphabet,

!

" :" # V . This subset can be specified by

the user. In addition:

A.4) A new symbol,

!

", where " # $ may be added to the production;

e.g.:

!

a " ab # a " abc , where

!

" is c in this example.

In addition, it is sometimes necessary to disallow mutation of certain symbols

whose purpose is some kind of control (such as output resolution), or to limit

a search space. Special symbols, such as the brackets (‘[‘ and ‘]’) representing

turtle state push and pop operations, need to be matched to prevent a stack

overflow or underflow. Here there are two options:

! ignore stack underflows and kill any genotypes that reach an upper

limit of stack size when the phenotype is generated;

! execute a bracket balancing operation following the final mutation of a

given production. That is for any given production ensure the number of

“[” and “]” symbols is equal. This can be achieved by adding or deleting

bracket symbols as necessary. This is the preferred option.

10.3.1.1 Production Set Mutation

In addition to individual symbol changes within successors, productions may

be created and deleted. Here we assume a stochastic 0L-system,

!

G
"

= V , P,#," as defined in Section 5.3.4.1.

B.1) A stochastic production

!

pn with probability

!

"(pn) may split into

two stochastic productions,

!

" p n and pn
* , i.e.

!

pn " # p n , # p n
*{ } , where

!

"(# p n) + "(# p n
*) = "(pn).

266 10.3: Mutation of L-system Rules

For example:

!

a"
0.8

ab # a"
0.3

ab, a"
0.5

bb
$
%
&

'
(
)

The successor of

!

" p n is the same as that of

!

pn . The successor of

!

" p n
* is a mutated version of

!

" p n , created using the mutations

A.1–A.4 as specified in the section above.

B.2) A new production can be created. Essentially, this is for identity

productions of the form

!

a " a , which are implicitly assumed for

all members of

!

V with no explicit productions. If all members of

!

V have non-identity productions then this mutation can’t take

place. If an identity production does exist then the successor is

assigned to be a randomly selected element from the set

!

" (de-

fined in the previous section). Note that this may result in the

identity production if the predecessor is an element of

!

" . This

rule is superfluous to a degree, since if we assume the existence

of identity productions they could be subject to the mutations

A.1–A.4 as specified in the previous section. It is introduced as a

convenience due to the internal representation of productions in

the system.

B.3) An existing production may be deleted. If the production is sto-

chastic then the productions with the same predecessor gain in

probability in equal amounts totalling to the probability of the
deleted rule. Let

!

pn = sn , " n()# P be the production selected for

deletion, and

!

P s()" P be the set of stochastic productions with

!

s " V as their production predecessor. Let

!

Q =
�

P sn() " pn{ } be the

set of productions whose probabilities need to be changed. Each

production

!

pk " Q mutates to

!

pk
*, requiring the associated proba-

bility to be changed according to:

!

" pk
*() = " pk() +

" pn()
Q

,#pk : pk $ Q

E.g.:

!

a"
0.4

ab,a"
0.3

bb, a"
0.3

abc

$
%

&
'
(
) a"

0.5

bb, a"
0.5

abc

$
%

&
'
(
,

 where

!

pn = a"
0.4

ab in this example.

B.4) The probability of a stochastic production may change. This
change is selected from the interval

!

"# pn(),1" # pn()(), where

Chapter 10: Interactive Evolution 267

!

pn " P , is the production selected for this mutation. The addition

or difference redistributes probabilities over all the other sto-

chastic productions involving that successor. Assuming the defini-

tions in (B.3) above, and a uniformly distributed random number,

!

" in the interval

!

"# pn(),1" # pn()(), the new probabilities will be:

!

" pn
*() = " pn() +# , and

!

" pk
*() = " pk() #

$

Q
,%pk : pk & Q .

E.g.:

!

a"
0.5

ab, a"
0.5

bb

$
%

&
'
(
) a"

0.2

ab, a"
0.8

bb

$
%

&
'
(

, here

!

pn = a"
0.5

ab and

!

" = #0.3

10.3.2 Parametric Mutation

We now assume parametric 0L-systems,

!

G = V ,", P,# as defined in Section

5.3.5.1. For the sake of efficiency and ease of implementation, symbols may

not gain or loose parameters during mutation. However, new modules72 may

be created with the default number of parameters, or if no default exists, a

random number of parameters up to a fixed limit. Productions involving pre-

decessor parametric module may split as follows:

C.1) Productions involving modules with no conditions may split, and

gain conditions. Some examples:

!

a(l)" a(2l)b(l2)#
a(l) : l $ 10 " a(2l)b(l2),
a(l) : l > 10 " a(2l)c(l 2)

!

d(x1, x2)" d(x1 + x2 , x2 + 1)#
d(x1, x2) : x2 > 8 " d(x1 + x2 , x2 + 1),

d(x1, x2) : x1 $ x2 | x2 % 8 " d(x1 & x2 , x1 + 1)

Conditions are created subject to a specialised subset of the

parametric mutations D, specified in the next section. This subset
consists of a set of binary relational operators

!

",#,<,>,=, &, |{ }.

C.2) For productions involving modules with conditions, the conditions

themselves may mutate according to the rules specified in the

next section.

72 Recall from section 5.3.5 that a module is a symbol and its associated parameters.

268 10.3: Mutation of L-system Rules

10.3.2.1 Mutation of Expressions

Parameters of modules on the successor side of productions are expressions.

They are parsed into a tree structure and executed during the application of

productions. For example, the expression

!

(x1 + x2) / x3 can be represented:

+ x3

x1 x2

/

The mutation operations outlined here equate to manipulation of such tree

structures. Let us assume a predecessor module

!

" from a given production

!

pn " P , is undergoing parametric mutation. We also assume

!

" has a series of

associated parameters

!

x1, x2 ,L xk . We assume the set of binary operators

!

+,", /,#,^{ } and the unary operator {–}. Each node on the expression tree can

be recursively subject to mutation by the following rules.

D.1) If the node is a variable it can mutate to another variable.

!

xi " x j , where

!

1 " j " k and

!

i " j.

The set of possible variables

!

xi and

!

xj are drawn from the set of

parameters associated with the predecessor symbol under con-
sideration (

!

i, j " 1, n[], i # j).

D.2) If the node is a constant, it is adjusted by the addition of some

random amount.

D.3) If the node is an operator it can mutate to another operator. Op-

erators must be of the same “arity” (i.e. unary or binary). E.g.:

!

x1 +5 " x1 #5

A node may mutate to a new expression:

D.4) Nodes may become the arguments to a new expression: e.g.:

!

x1 +5 " x2 # (x1 +5) . This example is illustrated graphically be-

low:

+

x1 5

+

x1 5

!

x2

"

Chapter 10: Interactive Evolution 269

D.5) An expression may reduce to one of its operands: e.g.:

!

x1 +5 " x1

In the current implementation, only simple arithmetic operators are sup-

ported (addition, subtraction, division, multiplication, negation and power).

Other functions (such as trigonometric functions) could be added if required.

Formal parameters on the left side of productions do not mutate, as this

serves no useful purpose.

10.3.3 Development Function and Module Age Mutation

If a module is timed it must have a birth age (

!

") and terminal age (

!

"). Both

these values must be constants.73 Both constants can be mutated by the addi-

tion of a random value. The range of the random value is usually proportional

to the size of the constant.

The development function (defined in Section 8.2.1) for a timed module

controls the behaviour of that module over its growth period. It is expressed

in the form

!

gs "s ,# s ,$s(), where s is the symbol associated with the function,

!

"s the parameter vector for s,

!

" s is the current age and

!

"s is the terminal

age. A development function could be:

!

gs = " # , which is a simple linear

function increasing from

!

" # to 1 from birth to terminal age. Since growth

functions are expressions, their internal and external construction is the same

as for a module’s parameter expressions. Thus the mutations are identical to

those described for expressions in the previous section.

10.3.4 Mutation Probabilities

Different sorts of mutations occur with different probabilities. In this case, the

term mutation probability means the chances at a given time that a particular

mutation will occur. Mutation probabilities are expressed as floating-point

numbers with the interval [0,1]. A probability of 0 for a particular mutation

means that it will never occur; 1 means it will always occur; any value in be-

tween sets the overall frequency of occurrence (e.g. 0.1 means, on average, 1

mutation every 10 times the mutation is considered). Some mutation proba-

bilities are dependent on the size of the genotype being mutated — with fixed

73 In non-evolutionary versions of the system, birth ages can be expressions. See Section 8.2.

270 10.4: The Interactive Process

mutation probabilities, more mutations will occur on larger genotypes than on

shorter ones.

An important consideration for successfully evolving structures is correctly

setting mutation probabilities as the evolution progresses. For example, it is

better to set production mutation probabilities to maintain or slightly shrink

current production size. If rule mutation is biased towards adding productions

and/or modules then genotypes tend to become larger without necessarily

producing phenotypes of greater fitness. Large sets of productions take longer

to parse and in general, take longer to generate.74 This does not stop rules ev-

olving complexity by selection. Rules that take more than a preset amount of

time to complete generation are automatically stopped by the system and re-

moved.

The user can change mutation probabilities interactively during the evolu-

tionary process. A wide variety of mutation probability controls are provided

in the system developed (see Figure 10-3). This affords a useful aid when one

appears to be approaching the desired result and wishes to limit mutations to

specific areas.

Figure 10-3: Detail of the main mutation parameter controls of the system.

Hierarchical controls also permit changing groups of associated parameters

as a whole, while maintaining individual ratios between the associated parts.

10.4 The Interactive Process

To evolve forms interactively we begin with a germinal genotype as described

in Section 10.1.4. This genotype may be drawn from an existing library of L-

systems, defined by the user, or an “empty” L-system consisting only of iden-

tity productions can be used. The subset of the alphabet of the current L-

74 Although a production as simple as a (aa doubles the size of the produced string at each
derivation (assuming an axiom of a).

Chapter 10: Interactive Evolution 271

system suitable for mutation,

!

" , (Section 10.3.1), can be specified at this time.

A list of external surfaces to be used is also supplied. The parent production

set is then mutated according to probabilities specified. The axiom is mutated

in a manner similar to that of productions. After mutation, the L-system is

parsed and derived to a specified level, or time-period in the case of timed

models. The user may interrupt this process at any time. The software will

automatically interrupt the process if the computation time exceeds a speci-

fied limit. In traditional uses of the genetic algorithm, population sizes can be

large as the selection process is automatic, however in the case of this type of

system, selection is based on the subjective notion of aesthetics. This is one

reason why the population size in this case is limited. A much more over-

powering reason is the limitation of space on the screen to display phenotypes

and the computation time involved in generating large populations.

Figure 10-4: Screen shot showing a selection of mutated phenotypes (main area, top) and
a selection of the controls for mutation probabilities, fitness selection and genotype file
operations.

272 10.4: The Interactive Process

Usually around 16 mutations per generation are performed. This provides

a trade off between generation time and variety. With increased computa-

tional power (or more patience) larger populations can be created. The screen

size also limits the number of phenotypes that can be displayed and manipu-

lated simultaneously. The parent phenotype is displayed in the upper left-

hand corner of the screen followed by its mutated children (Figure 10-6).

At the conclusion of the mutation and generation process, the user may

interactively manipulate and examine the phenotypes in space and over time

(playback forward, backward, and loop). At some stage, the user decides

which phenotype is the most suitable and this becomes the new parent. Se-

lecting the existing parent provides more mutations if none of the current

generation are deemed suitable. At any time, the genotype (L-system) for a

particular phenotype may be saved to disk as a text file. This file can later be

used as a parent for further mutations or generated with a higher degree of

accuracy for final output. Sample output in each form is show in Figure 10-5

below.

Figure 10-5: A phenotype evolved using the software system described in this chapter,
shown in vector format (left) and software rendered with extra surface detail (right).

The mutation/generation/selection process is repeated until a satisfactory

form is achieved, or the user runs out of time or patience. A parent phenotype

(top left) and 14 child mutations are shown in Figure 10-6. Note the structural

variety produced from relatively high mutation rates. Models that incorporate

dynamic components (timed L-systems) are played back as animated sequen-

ces.

Chapter 10: Interactive Evolution 273

Figure 10-6: Parent (top left) and 14 mutations.

10.4.1 Implementation

The system has been implemented in the C programming language, on Silicon

Graphics workstations under the irix operating system. The workstation’s

high-speed graphics performance permits real time previewing of interpreted

strings. Since models evolve over time, animation may be previewed as well.

A display sub-system accepts graphics primitives on a per-object/time basis,

that is, a new display list is created for each frame in a sequence. While the

models are defined continuously over time, they are usually sampled at regu-

lar discrete intervals for playback. For the case of video animation this is

either 25 times per second for frame rendered animation or 50 times per sec-

ond for field rendered animations.

The generation of several seconds of animation for 16 or more phenotypes

can be quite time consuming and thus for preview purposes the samples are

taken at wider intervals. For complex geometries, simplified representations

of complex surfaces can be substituted to increase display speed.

Once generated, the models are stored in the workstation’s graphics mem-

ory as display lists. This enables to user to examine the generated models

from any position or angle, play the development either forward or backward.

Once the most suitable phenotype is picked, the display lists are cleared and a

274 10.5: Results

new set of phenotypes are created. At any time, the user can save the L-

system rules for a particular resultant phenotype to a human readable file.

This can be used to regenerate the model at a later time or as a genotype for

further mutation and evolution work.

Even simple rules can produce highly complex models that cannot be dis-

played in real time by the workstation graphics hardware. An option exists to

save geometry to disk for rendering by a software renderer. Integrating with

the animation system was a key goal in development and the system takes

advantage of the features of a powerful existing animation and rendering

system.

10.5 Results

To date the system has been used to produce a variety of successful works,

both still and animated (McCormack 1992b, 1992a, 1994a). Figure 10-7

shows an example of the results achieved with the system. Starting with the

figure shown on the left (A, a common sunflower head), after more than 50

generations of aesthetic selection the resultant form is shown on the right (B).

The key productions that generate each form are shown underneath the cor-

responding image. In the interests of clarity, some control and material sym-

bols have been removed from the productions shown.

The model also includes morphogenic growth, and the resulting animation

is smooth and continuous from birth to the fully developed model (Figure

10-8). The emphasis on the system has been one of a sculptural tool for mod-

elling and evolving growth, form and behaviour.

Further images generated by evolved L-systems using the techniques de-

scribed here can be found in Figure 10-9 at the end of this chapter.

Chapter 10: Interactive Evolution 275

A B
surface stamen;
surface floret;
surface floret2;
surface leaf2;

productions:
A(n) -> +(137.5)[f(n^0.5) C(n)]
 A(n+1);
C(n) : n <= 440 -> floret
 : n > 440 & n <= 565 ->
 floret2
 : n > 565 & n <= 610 ->
 ^(90) S(0.3) leaf2;
axiom:
 stamen A(0);

surface stamen;
surface floret;
surface floret2;
surface ball;

productions:
M1(l,s) : l < 2 ->

 [S(s)[f(-1.0*s)stamen]

 F(1.60*s)&(90)A(0)]!(s*0.07)

 F(4.14*s)M1(l+1,s * 0.67);

 : l >= 2 -> [ballh];

A(n) : n < 1000 -> +(137.5)

 [f(1.10*n^0.5)^(90-(n/1000*90))

 C(n)]A(n+1)

 : n > 1000 -> ;

C(n) : n >= 10 & n < 600 : ->

 floret2

 : n >= 600 & n < 900 : ->

 floret

 : n >= 900 : -> [

 M2(n,0,1.76,90.40,0.05,3)];

M2(p0,p1,p2,p3,p4,p5): p0<8 : ->

/(p5,p0)^(p5,p0)!(p4)

f(-p2/9)F(p2,p0 + 0.07)^(p3,p0)

M2(p0,p1+1,p2/1.4,p3/2.0,p4*0.8*

 p5,p5*1.8);

axiom:

 M1(0,2.11);

Figure 10-7: (A) Original form (a Sunflower) and (B) the form after many generations of
aesthetic evolution using the system described in this chapter. The L-systems generating
each model are shown below the image.

Figure 10-8: Sequence showing the temporal development (left to right) of the evolved
model shown in Figure 10-7B. Each element in the sequence is approximately 1 second
apart.

276 10.7: Epilogue

10.6 Conclusions and Further Work

The interactive evolutionary technique provides advances in two areas: firstly,

it enables a synergy between human and machine. Many of the models and

results created by this technique would be extremely difficult, if not impos-

sible, to have been created by explicit writing of rules.

Secondly, the technique allows novice users to create highly sophisticated

models with little or no knowledge of the underlying processes involved. Users

do not need to learn or understand how L-systems work or write productions,

a simple aesthetic selection is the all that is required.

One current limitation of the technique is the speed of generation of

phenotypes. Sixteen or more animated models must be generated in a rela-

tively short space of time in order to genuinely call the system “interactive”.

Simplified surfaces and wire-frame representation help to minimise display

time. One would expect as workstation hardware performance increases lar-

ger and more complex populations could be generated within realistic time-

frames.

As a modelling language, L-systems have large scope in the type of models

they can represent. However, a fundamental limitation of the current system

is that the representation via L-system symbols is highly topological. Several

extensions to allow greater control over surfaces, geometry and texture are

currently being tested. Greater control over constraints and physical effects

such as light and weather could also improve the system, as would the in-

corporation of context sensitivity into the set of possible mutations.

10.7 Epilogue

Most of the material in this chapter was developed in 1991 and subsequently

published in (McCormack 1993). At that time, the primary work in interactive

evolution had been carried out by Dawkins, who, with his Blind Watchmaker

software evolved two-dimensional, insect-like shapes composed of lines with a

designated bilateral symmetry (Dawkins 1986). Following Dawkins publica-

tion, Todd and Latham interactively evolved csg-based forms with their Muta-

tor software (Todd, S. & Latham 1991).

Chapter 10: Interactive Evolution 277

Sims describes the use of interactive evolution for computer graphics pur-

poses, using it to evolve morphogenic plant-like structures from parameter

sets; images and solid textures generated from mathematical functions and

expressions (Sims 1991b); dynamic systems of cellular automata (Sims

1991a); and procedural surfaces (Sims 1993). In the case of plant-like struc-

tures, a series of parameters describing “fractal limits, branching factors,

scaling, stochastic contributions, etc.” was used to describe the model, in a

similar manner to algorithms described by de Reffye (de Reffye et al. 1988).

These parameters were used to generate three-dimensional tree structures

consisting of connected line segments. More advanced geometry was con-

structed from the segmented models (using cylinders for example) as a post-

processing operation. Growth parameters were also incorporated into the

model, allowing animations to be produced (Sims 1990a).

Chen and Lienhardt describe a system to evolve surface forms based on

combinatorial maps and deformations (Chen & Lienhardt 1992). This work

began with the goal of modelling plant leaves (Lienhardt 1988) and general

developmental models for computer graphics. The work is significant as it al-

lowed the development of structures with varying topology over time (i.e.

temporal development was achieved by switching between a sequence of

modular maps).

The work described in (McCormack 1993) was (to the best of the author’s

knowledge) the first published example where interactive evolution had been

applied to L-system grammars. The evolution of expression trees is similar to

the genetic programming techniques of Koza, who evolved lisp s-expressions,

to solve a variety of programming problems (Koza 1990, 1992).

10.7.1 More Recent Work in Evolving L-systems

Jacob presents an evolutionary technique for parameter-less, bracketed D0L-

systems using a hierarchical, typed, expression system, similar to Koza’s ge-

netic programming method (Jacob 1994, 1995, 1996). An initial population is

created from a pre-defined pool of structures, as opposed to a collection of

terminal nodes and operators. His system does not use aesthetic selection,

rather defines explicit fitness functions to rank phenotypes at each genera-

278 10.7: Epilogue

tion. A fitness function described seeks to maximise the tree end-points to lie

outside a cube of given dimensions.

Ochoa describes a similar technique to evolve parameter-less, bracketed

D0L-systems, using genetic programming techniques (Ochoa 1998). She de-

fines mutation and crossover operations achieved by string manipulation of

rules. The genetic algorithm used a steady-state selection (Mitchell 1996),

with only 1/5 of the population replaced at each generation. The fitness func-

tion in this case was based on previous studies by Niklas, oriented to the

synthesis of realistic tree topologies (Niklas 1982, 1986, 1997). Fitness criteria

included positive phototropism, a balanced bilateral symmetry, light-

gathering ability, structural stability and proportion of branching points. The

results were limited to simple two-dimensional structures composed of lines.

Mock also describes a system to evolve parameter-less D0L-systems using

similar techniques to Ochoa (Mock 1998). He uses interactive evolution tech-

niques to select phenotypes for mutation and crossover operations, with spe-

cial criteria to avoid generating strings with unbalanced bracketing. This is

achieved by selecting groups of strings for crossover within sets of bracket

pairs (“[” and “]”) or without any bracket symbols at all. He also describes ex-

periments with simple automated fitness criteria to evolve simple plant-like

structures to volumetric or proportional criteria.

Extending the techniques of Ochoa and Mock, Kókai, Tóth, and Ványi de-

scribe a procedure for evolving parametric D0L-systems to fit an existing

morphological description (Kókai, Tóth & Ványi 1999). They began with a tree

description and were able to evolve a parametric D0L-system to describe it. In

the case of this method, the object of maximum fitness must exist, although

some attempt can be made to evolve towards a minimal description (i.e. re-

move redundancy) using DOL-systems that still adequately describes the

model under consideration.

Traxler and Gervautz also describe a technique to evolve parametric D0L-

systems, based on a previously developed method that combines csg oper-

ations with parametric D0L-systems. (Gervautz & Traxler 1994; Traxler &

Gervautz 1996). Their technique for evolution of L-systems is based on that of

(Sims 1991b) and restricts genetic operators to the numeric parameters of

symbols. Hence, topological changes cannot be achieved by evolution.

Chapter 10: Interactive Evolution 279

Curry describes a system to evolve parametric L-systems using aesthetic

selection (Curry 1999). The system described uses seven floating-point num-

bers in the genotype, representing parameters to a fixed L-system. These pa-

rameters control qualities such as branch trajectories and child branch

lengths. Mutation and crossover operations are provided, but since the L-

system itself is not evolved (only the parameters to specific symbols), the

range of structures possible is limited to specific tree-like models.

Hornby and Pollack (Hornby & Pollack 2001a) also evolved parametric

D0L-systems to generate “virtual creatures”, similar to those of Sims (Sims

1994a, 1994b). Their models were composed of segments connected together

via fixed and articulated joints. The strings generated by the L-system were

interpreted by turtle commands representing construction operations. These

articulated structures are subject to a “quasi-dynamic simulator” to provide

physical constraints and give some realism to the physical simulation. For the

mutation genetic operators, they use a similar technique to the one described

in this chapter, applying special constraints in string creation and replace-

ment to ensure correct bracket closure. They also define simple crossover op-

erations for symbols with multiple productions. Fitness functions were set to

maximise the distance travelled by the creature’s centre of mass.

Bian Runqiang and colleagues describe a method for automating the infer-

ence of L-systems to particular tree species (Runqiang et al. 2002). To avoid

the problems associated with random mutation and specification of individual

production successors, they use a “repair mechanism” to correct genotypes

before fitness evaluation. The repair mechanism divides symbols into subsets,

largely based on their turtle interpretation. Only certain combinations of suc-

cessor strings from each subset have plausible semantics in the context of

tree generation, hence there is a need for some form of constraint in the or-

dering and number of symbols generated in the successor. Strings are modi-

fied by the repair mechanism to correct strings with inappropriate syntax.

This could be considered as a wider analysis of the bracketing problem, add-

ing the problem of redundancy (i.e. strings such as “[-]” have no effect on the

generated phenotype).

280 10.7: Epilogue

Other applications of evolutionary programming and L-systems include ar-

chitectural structures (Coates, Broughton & Jackson 1999; Jackson 2002), ta-

bles (Hornby & Pollack 2001b) and neural networks (Kitano 1990).

10.7.1.1 Observations Regarding Evolution and L-systems

Surveying the algorithms and applications described in the previous section, a

number of key points can be made regarding the evolution of L-systems.

Most authors limit themselves to evolving D0L-systems, as these are suited

to the most general evolutionary methods. For context sensitive, stochastic

and timed L-systems, it is more difficult to devise evolutionary representations

suited to genetic operations.

Inevitably, due to the operation of bracketed L-systems, measures must be

put in place to ensure mutation or crossover operations maintain the bracket

balance. This is usually achieved by (i) limiting mutations to exclude changing

brackets; (ii) selecting crossover points and sub-string groups of successor

symbols to lie within bracketed pairs; (iii) modifying the string to eliminate

mismatches and redundancy.

Explicit fitness functions seem difficult to define with any degree of gener-

ality. In most cases, the criteria for fitness are simplistic or limited to highly

specific domains (such as trees with certain volumetric or topological proper-

ties). Not surprisingly, most of the evolutionary applications of L-systems are

confined to the application to which L-systems are most commonly deployed

— the description of branching tree structures and herbaceous plants. The

work presented here remains one of the few applications of L-system evolu-

tion to the more general modelling of animated form. Aesthetic selection re-

mains the most general form of fitness criteria, but this generality comes at a

cost. This issue is examined more closely in Section 10.7.4.

10.7.2 Other Work in Aesthetic Evolution

Aesthetic evolution (also known as interactive evolution, artificial evolution,

or aesthetic selection) has now become a popular technique that replaces a

machine evaluated fitness function with the subjective criteria of the human

operator. Since the earlier publications (on which this chapter is based), the

use of aesthetic selection has been adopted for a variety of purposes by vari-

Chapter 10: Interactive Evolution 281

ous authors. These include Rooke, who evolved images generated from math-

ematical expressions, based on the work of Karl Sims (Rooke 2002). Rooke

used a larger set of functions and included a number of “fractal” algorithms

in his set of base functions. Graff and Banzhaf used similar techniques to also

evolve images, extending the domain to include three-dimensional, voxel im-

ages as well (Graf & Banzhaf 1995).

Ventrella generated animated figures by aesthetic evolution using a pre-

determined topology (Ventrella 1995b, 1995a). He used a “qualitative” physics

model as a constraint for the system. Evolved forms had to fit within the con-

straints of this ad-hoc physics system and the topology permitted by the soft-

ware design.

Bullhak evolved musical patterns and structures (Bulhak 1999), presenting

the user with a small selection of beat-based music clips generated using an

evolvable finite state automata (fsa) based system.

Other applications of aesthetic selection include line drawings (Baker &

Seltzer 1994), sculptural “art” formed by distorted surfaces of revolution

(Tabuada et al. 1998), and architectural applications (Rosenman 1997; Soddu

1998).

10.7.3 The Use of Crossover Operators

One popular component of genetic algorithms is in the use of crossover op-

erator75 to combine sections of the genotypes of two or more parents (Holland

1992, page 97). Dawkins’ Blind Watchmaker software did not include a cross-

over operation, but many systems since that time have. The system described

here did not use crossover, although some attempts at incorporating it in sub-

sequent versions of the system were abandoned due to the difficulty of con-

trolling how crossover affects the resultant phenotypes. The system has many

controls to adjust mutation probabilities for each mutable component of the

system (see Figure 10-3). Deft use of these controls allows the operator to

control which components of the phenotype are mutated. This permits a fine

degree of control during latter stages of the evolution, where the form is “al-

most right” and the operator wishes to avoid drastic changes that may be

75 Holland and some other authors refer to this as the “crossing-over operator”, but in much of
the modern literature, both computing and biological, it is simply referred to as “crossover”.

282 10.7: Epilogue

brought about by, for example, structural changes to interdependent rules

(see Section 10.7.4.2 also).

10.7.4 Aesthetic Evolution and Subjectivity

Typically, genetic algorithms evolve towards finding maxima in fitness, where

fitness is some criteria that can be evaluated for each phenotype of the popu-

lation. Many systems define an explicit fitness function that can be machine

evaluated for every phenotype at each generation (Mitchell 1996). In essence,

genetic algorithms are a search technique, seeking to find maxima in the fit-

ness landscape.

Regardless of the system or form being evolved, aesthetic selection relies

on the user to explicitly select phenotypes at each generation. Users typically

evolve to some subjective criteria — often described as “beautiful”, “strange”

or “interesting” — criteria that prove difficult to quantify or express in a ma-

chine representable form (hence the use of the technique in the first place).

Whitelaw looks at modern-day successors to Latham and Sims who use

artificial evolution techniques, principally for creative purposes (Whitelaw

2002). He contrasts the work of Steven Rooke with that of Dutch artists Dri-

essens and Verstappen. He sees the work of Rooke following a direct lineage

from the methods pioneered by Dawkins, Latham and Todd and Sims. Dri-

essens and Verstappen however, subvert the evolutionary process (Section

4.6.1). Typically, genetic algorithms search vast spaces, too large or difficult to

be searched by other techniques. In terms of impetus, the artist must first

construct the potential for such a space to be vast by adding complexity, usu-

ally in the form of a variety of operators and functions (in the case of Rooke’s

images for example).

Rather than looking for this expansive landscape in their art, Driessens

and Verstappen define deliberately simplistic representations and automate

the fitness criteria offering many variations of basic thematic structures, such

as recursive cuboids (Driessens & Verstappen 2001b) or visually organic

tuboid structures, reminiscent of some of Haeckel’s drawings (Haeckel 1998).

Here, the aesthetic selection process becomes one of parody, whereby the ma-

chine-defined fitness function produces phenotypes of endless variety, but

Chapter 10: Interactive Evolution 283

aesthetic banality. The process of evolution itself becomes the primary focus

of artistic exploration, rather than the results that the process produces.

Dorin criticises the concept of aesthetic evolution from a creative perspec-

tive. He argues that the process of selection is limiting, likening it to “pigeon

breeding” and that the real artistic merits lie in the development of the model

that is being mutated, rather than the aesthetic selection of phenotypes gen-

erated by that model (Dorin 2001a).

10.7.4.1 Problems with Aesthetic Evolution

In terms of being an efficient search technique, aesthetic evolution has two

significant problems:

! The number of phenotypes that can be evaluated at each generation is

limited by both screen area (in the case of visual representation) and

the abilities of people to perform subjective comparisons on large num-

bers of objects (simultaneously comparing 16 different phenotypes is

relatively easy, comparing 10,000 would be significantly more difficult,

with O(n2) comparisons to consider).

! The subjective comparison process, even for a small number of pheno-

types, is slow and forms a bottleneck in the evolutionary process. Hu-

man users may take hours to evaluate many successive generations that

in an automated system could be performed in a matter of seconds.

What we would like is a system that combines the ability to subjectively evolve

towards phenotypes that people find “interesting” without the bottleneck and

selection problems inherent in aesthetic evolution. This problem is addressed

(in a certain context) in (McCormack 2002) where the actions of the audience

of the artwork are used to control the evolutionary process implicitly based on

the interest they shown in the artwork.

10.7.4.2 Dependency Relationships

One particular difficulty76 of the system described here is the way sets of rules

may become “hidden” for many generations only to resurface some time later.

This is due to dependency relationships and the dynamic nature of the gram-

76 Or maybe benefit, depending on the results required.

284 10.7: Epilogue

mar. For example, consider the following set of productions in a D0L-system

and the first four derivations:

L-system Derivation

!

" : a
p1 : a # bb
p2 : b # c
p3 : c # ab

!

a
bb
cc

abab
bbcbbc

Now consider the following mutation:

!

p2 " p2
* = b # b{ }

The derivation is now:

!

a
bb
bb
bb
bb

If the current string under derivation,

!

µ , does not contain the symbol c,

!

p3

will not be called upon. Yet the production continues to exist as part of the

system. Some time later, a successor may again mutate to include c, which

means that the particular production (

!

p3 in this case — or a mutated vari-

ation) will again come into effect. More complex dependencies (such as a sin-

gle production that “bridges” two groups of rules) means that a single muta-

tion of the successor in a production can cause major changes in the resultant

phenotype.

10.7.5 The Inference Problem

As was observed by Prusinkiewicz and Lindenmayer et. al.:

Random modification of productions gives little insight into the relation-

ship between L-systems and the figures they generate. (Prusinkiewicz &

Lindenmayer 1990, page 11).

The inference problem — inferring an L-system from the observation of an

existing developmental process — remains difficult. Recent attempts give

some insight into how the problem may be automated by genetic algorithms

(Runqiang et al. 2002), in the application of tree generation. However, as the

system described in this chapter indicates, under limited circumstances the

Chapter 10: Interactive Evolution 285

synthesis of models that could never be observed (or perhaps even explicitly

designed) is possible using the aesthetic evolution techniques described here.

Aesthetic selection is a solution to the problem of creative exploration. Certain

inferences may be implicitly solved by this technique, but this says nothing

about the relationship between representation and model explicitly, other

than that the model generates the representation. That is a problem, it seems,

that needs addressing via other techniques.

Figure 10-9: Rendered images of models created using the evolutionary system described
in this chapter.

Chapter 11: Music Composition 287

11 Music Composition77

With the aid of electronic computers, the composer becomes a
sort of pilot: pressing buttons, introducing coordinates, and
supervising the controls of a cosmic vessel sailing in the space of
sound, across sonic constellations and galaxies that could formally
be glimpsed only in a distant dream.

— Iannis Xenakis, 1971

Thus far, this thesis has primarily focused on the generation of dynamic visual

models. Indeed, L-systems are best known as a popular method for the mod-

elling of space filling curves, biological systems, and morphogenesis. In this

chapter, the L-systems described in Chapters 5 and 8 and the developmental

systems in Chapter 9 are adapted to a system designed for music composition.

Representations of pitch and timbre are encoded as grammar symbols, upon

which a series of re-writing rules are applied. Parametric extensions allow

the specification of continuous data for the purposes of modulation and con-

trol. Such continuous data is also under control of the L-system. The devel-

opmental model provides timing and synchronisation control in an intuitive

way. Using non-deterministic grammars with context sensitivity allows the

simulation of Nth-order Markov models with a more economical representa-

tion than transition matrices and greater flexibility than previous composition

models based on finite state automata or Petri nets. Using symbols in the

grammar to represent relationships between notes, (rather than absolute

notes) in combination with a hierarchical grammar representation, permits

the emergence of complex music compositions from relatively simple gram-

mars.

77 This chapter is based on material first published in (McCormack 1996).

288 11.1: Music

11.1 Music

Music is the organization of sounds in space and time. It is one of those areas

of human activity that, despite its ubiquitous presence in human culture, re-

mains resistant to a detailed analytical understanding. It is an open problem

why something so apparently simple as the succession of changing discrete

tones has the power to move the listener emotionally. Of all the arts, music is

considered “to be open to the purest expression of order and proportion, un-

encumbered as it is by material media” (Loy 1989). It has been often noted

that music bears a close affinity to mathematics, and that notions of math-

ematical and musical aesthetics may have some similarities (Schillinger

1948). Since the advent of computing, many researchers and musicians have

turned to the computer as both a compositional, and synthesis device for

musical expression.

This chapter describes a system for computer music composition. The ma-

jority of this section will focus on the application of computers to the compo-

sition of music. This is not to discount the many other uses of computers in

music, such as sound synthesis, acoustic and physical modelling, automated

notation, score editing and typography. A detailed overview of computer-

based applications to music in all these areas can be found in (Roads 1996).

Software for music composition can be broadly categorised into algorith-

mic composition or computer-aided composition (Miranda 2001, page 9). With

algorithmic composition, the software generates the composition somewhat

autonomously; with computer-aided composition, the software serves as a tool

to assist the composer develop and organise a composition. Generative com-

positional systems, hence the work described here, fall into the algorithmic

composition category.

 A major part of music creation involves the use of certain musical for-

malisms (systematic ordering), in addition to algorithmic and methodic prac-

tices. Many of these were well established before the advent of digital com-

puters. In a substantial survey of computer composition, Loy and Abbott sug-

gest that the application of musical formalisms based on a priori theories of

composition have been largely developed in the twentieth century, originating

with composers such as Schoenberg and Hindemith (Loy & Abbott 1985). Loy

Chapter 11: Music Composition 289

and Abbott also note the contribution of music typographers and instructors

who have found formal systems attractive to their profession.

Supper divides algorithmic music composition into three distinct categories

(Supper 2001):

1. Modelling traditional, non-algorithmic compositional procedures;

2. Modelling new, original compositional procedures, different from those

known before;

3. Selecting algorithms from extra-musical disciplines.

According to these classifications, the system described here is from category

3.

11.1.1 Musical Representation Systems

Representations for notation and programming of music (and thus computer

composition) can be broadly classified into symbolic and iconic (Loy 1989).

Symbolic representations relate a symbolic and sonic event, but have no di-

rect visual resemblance to the sound. Iconic representations on the other

hand, carry some resemblance (usually visual) to the sound the icon repre-

sents. Common music notation combines both forms of representation (time

signature, clefs, bar lines are symbolic; pitch coding, crescendo, diminuendo

are iconic). While this system is not completely adequate, particularly for

some contemporary forms of music, it is an extremely versatile and capable

notation for a diverse range of musical expression in the western tradition.

Many other representation schemes have been used, related to a particular

musicology and musical culture (Copland 1988), or when traditional notation

systems have proved inadequate. For example, Wishart devised a number of

complex notation schemes to describe and articulate compositional works for

the human voice, with an emphasis on the continuous nature of sound over

space, pitch and timbre as opposed to the more discrete and “grid-like”

thinking behind conventional schemes (Wishart 1996).

Iannis Xenakis was a major figure in formalised systems for computer

music composition (Xenakis 1960, 1971, 1992). He developed many repre-

sentational systems unique to his application of stochastic process in compo-

sition. Representation and notation systems particular to generative processes

290 11.1: Music

often mirror the formal structure of programming languages. A number of

composers have developed generative process notation that revolves around

physical actions or instructions that may be open to a wider variety of inter-

pretations than the formal specification of programming languages. Examples

of such systems can be found in (Cardew 1972; Nyman 1999).

A work, which typifies the customisation of notation to generative musical

process, is that of British composer Cornelius Cardew, which was discussed in

Section 3.6.3.

11.1.2 Musical Patterns

It has been observed that almost all forms of music involve repetition (Leach

& Fitch 1995), either of individual sequences of notes or at some higher levels

of structural grouping. Often these repetitions appear at a number of different

levels simultaneously. Some compositions repeat patterns that are slightly

changed at each repetition, or revolve around some musical “theme”,

whereby complex harmonic, timing or key shifts in a basic theme provide a

pleasing musical diversity.

It is also commonly known that what allows us to identify an individual

piece of music is the change in pitch between notes, not the pitch of the notes

themselves. We can change the key of a composition (equivalent to multiply-

ing all frequencies by some fixed amount) and still recognise the melody.

The compositional problem has seen a wide variety of approaches. Loy and

Abbott’s survey paper details many different methods: stochastic and combi-

natorial models; grammar based; algorithmic; process models; and other

models derived from Artificial Intelligence techniques.

The methods used in the system described here are L-system based, devel-

oped on the system and formalisms described in Chapters 5, 8 and 9. While

grammars have been a popular method for algorithmic composition, in most

instances the grammars used are relatively primitive and thus limit the scope

of control and diversity of composition that can be generated. The approach

used in the system described here, is to take developments in grammars used

for modelling of biological morphogenesis and herbaceous plants in computer

graphics, and apply them to music composition. In addition to being able to

Chapter 11: Music Composition 291

represent a variety of both stochastic and deterministic compositional tech-

niques, the system has compositional properties unique to this approach.

The remainder of this chapter is organised thus: Section 11.2 briefly looks

at the problem of computer based musical creativity and explains the ration-

ale behind computer music composition using algorithmic composition meth-

ods. Section 11.3 examines algorithmic representations for music composition

and introduces the basis of the grammar method. Section 11.4 looks at re-

lated work in composition using musical grammars. Section 11.5 details how

grammars can be adapted for music composition, with specific emphasis on

L–Systems and the developmental extensions and models described in this

thesis as the basis for the model. Section 11.6 discusses implementation de-

tails. Section 11.7 outlines the use of developmental models for music gen-

eration. Finally, Section 11.7.2.1 details possible extensions and further work.

11.2 Musical Creativity

Any composition system must work with the human composer. A complete

theory of general creativity, or even musical creativity, remains elusive. While

many attempts have been made to study and document the creative process:

(Barron 1969; Boden 1994; Crutchfield, R. S. 1973; Dartnall 2002; Schillinger

1948) for example, any generality seems difficult to uncover. In many cases,

people do not know how or why they make creative decisions, and much of

the creative process is difficult to repeat in controlled experiments.

The question of whether creativity is computable is an issue of even

greater controversy. Many researchers from Poincaré (Poincaré 1923) to Pen-

rose (Penrose 1989) have argued against a computable model of creativity be-

cause, simply put, the underlying mental processes are not Turing compu-

table. While creativity is clearly an ability of the human mind (and body), to a

large extent practical creativity is deeply related to an individual’s life experi-

ence and of “being in the world” (Dreyfus 1991). A life experience includes

relationships to the environment, interaction with both living and non-living

things, and social and cultural constructions. We all know that these things

have a major effect on a person’s mental states. Much creativity also depends

on serendipitous and chance events in the external world, both conscious and

unconscious. The explicit use of random events in composition is a practice

292 11.2: Musical Creativity

many centuries old. It can be found in the works of many artists – from Mo-

zart and Hayden, to Burroughs and Pollack. Bense’s theory of “generative

aesthetics” used randomness to replace what in art was described as “intui-

tive” (Reichardt 1971). Creativity is not only influenced by external events, it

may also be stimulated by artificially induced internal effects — some artists

claim their best creative work is done under the influence of a large variety of

chemical substances.

Even if some day it may be possible to build a computer with processing

capabilities similar to that of the human brain as some have proposed

(Moravac 1988), computing a simulated life experience would appear to be

impossible (Oreskes, Shrader-Frechette & Belitz 1994). It is feasible that a ro-

bot that has life-experience in the real world may have the potential to exhibit

creative behaviour, but again if life-experience is bound to physicality and

matter (as opposed to mechanisms and processes) any creativity exhibited by

such a robot may not be recognised as human-like creativity, or even recog-

nised as creativity at all.78

11.2.1 Semantics and Meaning

Johnson–Laird, has argued that music is an excellent testing ground for theo-

ries of creativity, because, as opposed to other Artificial Intelligence domains

such as natural language generation, music avoids the problem of semantics

(Johnson-Laird 1993). That is, a musical expression cannot be judged to be

true or false. While this statement may be literally correct, many musicians

would argue that as part of the compositional process, musical expressions do

contain semantics (Roads 1985). For example, some composers associate

emotive, structural or linguistic semantics with individual themes or passages

in a composition. Carl Orff described musical composition as “the raw expres-

sion of human energies and states of being” (Orff 1967). The musical devel-

opment of a composition is driven by the associated development of emotions,

structure or language (Mandler 1975). In this sense, such compositions do

have meaning and there is a semantic association between musical expres-

sions. Such expressions have ordering and denote an emotive symbolic sys-

tem. According to Langer, music, as a symbolic system of emotional arche-

78 An alternative view of connectionism and embodiment can be found in (Globus 1995).

Chapter 11: Music Composition 293

types, conveys a “morphology of feeling,” akin to algebraic notation conveying

a mathematical expression (Langer 1948).

Some composers (Brian Eno, for example) visualise abstract or real envi-

ronments as mental images, and the visual and emotive feeling of these envi-

ronments directly influences the composition. Composition is rarely a one-way

process from mind to finished composition either. It is an iterative feedback

process — hearing the music causes change in the composition. Composers

are rarely interested in one aspect of the composition in isolation, such as

pitch, timing or timbre; rather these things in total — the “surface” of the

music — greatly influence the emotional feeling and thus carry the compo-

sition.

In summary, while music may appear to be an easier domain to test theo-

ries of creativity, it is more difficult to expect a computer program to exhibit a

genuine musical creativity, one approaching that of human composers. A

more achievable approach, one adopted by the system described in this

chapter, is to use the machine as a synergetic partner to the human composer.

The human and computer work in tandem through an interactive feedback

process, the computer presenting new musical possibilities by synthesising

complexity and variation, the human composer directing the overall creative

“quality” of the composition. This human-machine feedback process, known

as computational synergetics has been used to significantly enhance both sci-

entific (Zabusky 1984) and artistic (McCormack 1994c) creativity. The com-

puter, used in heuristic mode can lead the human collaborator to new dis-

coveries that may have been difficult or impossible without the collaboration.

In this way, the machine acts as a kind of “creative amplifier”, enhancing the

creative potential of the composer.

11.3 Representation for Music Composition

This section looks in more detail at the various representations for music

composition. Since the focus of this chapter is on grammar-based techniques,

details on various approaches are deferred to Section 11.4.

294 11.3: Representation for Music Composition

11.3.1 Procedural Models

A grammar-based approach to composition makes heavy use of procedural

models.79 One advantage of procedural methods in general, is that they allow

a terse representation of a complex outcome. Likewise, with generative

grammars, there is the possibility for the emergence of complexity through

the repeated production of simple (and possibly deterministic) rules. One has

to be careful with such analogies however, for biological morphogenesis relies

also on many factors, such as the laws of physics, special properties of carbon

atoms, the self-organisational properties of many molecular and cellular

structures and complex environmental interactions. Certainly, these features

are not built into this music compositional model, though it is possible that

some of these concepts, in an abstract sense, could be incorporated into the

model.

11.3.2 Stochastic Processes

A diverse variety of stochastic processes have been applied to music compo-

sition (Jones 1981, Chapter 5; Moore 1990). Most involve two stages. First,

some existing musical expression or quantity is analysed. Following the an-

alysis, re–synthesis is applied using the selected stochastic technique. Import-

antly, while we can undertake statistical analysis of many musical patterns,

when we attempt to synthesise music based on that analysis, the results

rarely seem to have the clarity or intent of human composition. For example,

Voss (Voss & Clarke 1975) analysed many different types of music and found

that several were statistically similar to 1/f noise, however when one converts

1/f noise to musical notes, the results have little in common musically with

any of the compositions from which the statistical analysis was derived. Given

the discussion in Section 11.1.2 regarding formalisms, it is clear that a more

sophisticated model is required.

79 The term “procedural model” is sometimes associated with music in relation to techniques
that address the issue of rule generation from lower-level phenomena. Used in this sense, the
procedural model simulates a listening process to both use and build knowledge grammars,
which undergo constant transformation (Roads 1985).

Chapter 11: Music Composition 295

11.3.3 Events and Event Spaces

Generally in composition, one primary concern is the notion of temporal

events and event spaces. The general term event is used to represent some

basic building block of composition, in many instances a note or set of notes,

but in other compositional applications, events may refer to sound complexes,

individual sound samples or other basic musical elements. An event space is

an ordered set of events. The number of events contained in a given event

space represents its order.

11.3.4 Markov Models

One popular approach to computer composition is the use of Markov chains,

where the probability of a specific event i, is context dependent on the occur-

rence of a previous event or event space (Jones 1981). Most attempts using

this form of modelling first require some existing composition to be analysed.

For the purposes of explanation, we will restrict this discussion to consider

only the pitch of notes, however there is no reason why the same techniques

cannot be applied to other musical qualities such as duration, volume or tim-

bre. We also consider only discrete–valued (as opposed to continuous–valued)

data. Markov processes are suited to the analysis of conventional musical

pitches. A Markov process is considered stationary if the transition probabili-

ties remain static.

An N–order Markov model can be represented using an N+1 dimensional

transition matrix. Let us assume the process under consideration uses n dis-

tinct events. Elements of the matrix contain probabilities for a new event

based (column) on a given event (row). For example, Figure 11-1 shows a se-

quence of note events, and the corresponding transition matrix. This is a

1st–order model, where the probability of a given event depends only on the

event immediately preceding it. Each element in the transition matrix,

!

Pi, j , i = 1,Kn; j = 1,K , n represents the probability of event j occurring given

that event i has just occurred.

!

Pi, j is calculated by summing the occurrences

of each note j that follows note i in the input melody. Counts in each row are

normalised so the combined probabilities for each row, i, sum to 1, i.e.:

296 11.3: Representation for Music Composition

!

P
i , j

= 1, i

j=1

n

" = 1,K,n

(11.1)

E D C D E E E D D D E G G E D C D E E E E D D E D C

Set of input notes:

C D E F G

C

D

E

F

G

Next Event

Transition Probability Matrix:

2/3 1/3

3/10 3/10 4/10

5/11 5/11 1/11

1/2 1/2

Figure 11-1: A set of input notes (from a popular nursery rhyme), and the corresponding
1st order Markov model, represented as a transition matrix. Each element of the table Pij

is the probability of event j given the previous event i occurred. Empty elements in the
matrix represent a probability of 0.

Jones shows how transition tables can be converted to event–relation dia-

grams, which are essentially equivalent to finite-state automata (Jones 1981).

Lyon has used Petri Nets to extend the finite-state model generated by sta-

tionary N–order Markov models for real–time performance (Lyon 1995).

The Markov process for composition has several problems:

! Unless the transition table is filled with randomly generated probabili-

ties, some existing music must be input into the system. The resulting

Markov model will only generate music of statistically similar patterns

to that of the input. For short sequences, many elements of the transi-

tion table will have a 0 probability. To introduce variety, it is possible to

set these entries to some small probability, provided equation (11.1) is

satisfied.

! For higher order models, transition tables become unmanageably large

for the average computer. While many techniques exist for a more com-

Chapter 11: Music Composition 297

pact representation of sparse matrices (which usually result for higher

order models), these require extra computational effort that can hinder

real-time performance.

! Ergodic80 Markov chains are preferred for composition since their be-

haviour is more predictable and manageable from a compositional point

of view (Grimmet & Stirzaker 1982).

! Most importantly, while such models have been used successfully in

composition, they are limited in the variety of music produced by any

given transition table. They also provide little support for structure at

higher levels (unless multiple layered models are used where each

event represents an entire Markov model in itself).

11.4 Related Work in Grammar Based Composition

This section details related work in grammar-based compositional systems in

general, and L-system based systems in particular. Related (but conceptually

different) systems such as finite state automata are briefly examined.

11.4.1 Related Work in Formal Grammars

It has been noted that many hierarchical music structures are similar to lin-

guistic structures (Miranda 2001, Chapter 1). A number of composers and

programmers have applied grammar formalisms to the synthesis and analy-

sis of syntactic structures in music (Baroni & Callegari 1984; Bell, B. 1992;

Bell, B. & Kippen 1992; Burnstein 1976; Cook, N. 1987; Cope 1991; Holtzman

1980, 1981; Jones 1981; Laske 1975, 1979; Lidov & Gabura 1973; Molino

1975; Roads 1978, 1985). Some of these efforts attempt to relate the work of

Chomsky in linguistics to music (Lerdhal & Jackendoff 1983; Winograd 1968).

Grammar systems include both generative and transformative types. Gen-

erative types create sentences (compositions) from initial axioms, whereas

transformative types translate from one formal language to another. The sys-

tems considered here are primarily generative.

80 An ergodic Markov chain contains exactly one recurrent class and 0 or more transient
classes. See (Miranda 2001, pages 69-70) for details.

298 11.4: Related Work in Grammar Based Composition

Holtzman’s Generative Grammar Definition Language (GGDL) compiler

(Holtzman 1980, 1981) is based on Chomsky grammars of type 1 to 3 (regular,

context-free and context-sensitive) (Chomsky 1957, 1963). Jones discusses

context–free space grammars that can operate across many dimensions,

where each dimension represents a different musical attribute (Jones 1981).

An interesting property of space grammars is that an n–dimensional grammar

can generate an n–dimensional geometric shape, which may provide a higher-

level iconic representation of the music generated by a particular set of rules.

11.4.1.1 Related Algorithmic Composition Techniques

Much development in music composition and synthesis has been performed in

related areas such as finite state machines (automata) — both deterministic

and non-deterministic (Chemillier 1992; Pope 1986); chaos, fractal techniques

(Leach & Fitch 1995; Voss & Clarke 1975); stochastic methods (Hiller, L. A. &

Issacson 1959; Jones 1981; Xenakis 1960); cellular automata (Beyls 1989;

Bowcott 1989; Chareyron 1990; McAlpine 2000; McAlpine, Miranda & Hoggar

1999); neural networks (Dolson 1989; Gjerdingen 1989; Scarborough, Miller

& Jones 1989; Todd, P. M. & Loy 1991); procedure-oriented and recursive

composition. Moore also gives an overview of some of these methods (Moore

1990).

Surveys of grammar-based approaches to algorithmic composition can be

found in (Hiller, L. 1981; Roads 1996) and various algorithmic composition

methodologies are detailed in (Roads 1996, Chapters 18 and 19) and (Miranda

2001). Chapter one of David Cope’s book Computers and Musical Style pro-

vides a comprehensive background and overview of composition systems

based on generative grammars (Cope 1991, Chapter 1).

A number of evolutionary techniques have also been applied to algorithmic

composition systems. See, for example (Bentley & Corne 2002; Horner &

Goldberg 1991; Miranda 2001, Chapter 6; Todd, P. M. & Werner 1998; Wig-

gins et al. 1999) for some overviews.

11.4.2 Other Work in L-systems Composition

A number of other authors have developed generative musical systems based

on L-systems and related techniques. These are most closely related to the

Chapter 11: Music Composition 299

system described here. However, most applications have been kept relatively

simplistic, generally using DOL-systems, with a basic interpretation.

Prusinkiewicz and Hanan describe a simple system whereby an L-system is

used to generate a two-dimensional space-filling curve, which is then tra-

versed to generate pitch sequences (Prusinkiewicz & Hanan 1989). Horizontal

lines are mapped to pitch and the length of the horizontal line maps to dur-

ation. This process is illustrated in Figure 11-2. Similar methods were also

described in (Prusinkiewicz 1986a).

Figure 11-2: Musical interpretation of a Hilbert curve generated by an L-system [from
(Prusinkiewicz & Hanan 1989)]. The curve (A) is traversed in the order shown starting in
the direction of the arrow. The hight of the curve is mapped to pitch, length of horizontal
lines to duration. (B) shows a “piano roll” representation with pitch in the vertical axis and
time on the horizontal. The first three bars of the final score are shown in (C).

Kyburz generated music with L-systems by letting symbols in the derivation

string map to “musical objects” (small sequences or motifs). The derivation

proceeds for a certain number of steps, at which time the resultant string de-

fines the order of musical sequence (Supper 2001).

 Based on ideas from (Mason & Saffle 1994) and the previously published work

described here (McCormack 1996), Soddell and Soddell used an L-systems descrip-

tion of microbe structures as a basis for musical interpretation (Soddell & Soddell

2000). Their technique is used as sonification81 providing an auditory distinction

between different models. Changes in direction of growth (determined by

81 Sonification is the sonic equivalent of visualisation, whereby data is mapped to sound in
order to analyse and explore that data from an aural perspective.

300 11.4: Related Work in Grammar Based Composition

branching angles) were mapped to changes in pitch, and distances between

branches to note duration.

Other examples of L-systems music generation can be found in (Langston

1986, 1990; Nelson 1996; Sharp 1998).

11.4.3 Characterisation of Music Generation with L-systems

Most of the systems described in the literature are relatively simple, relying

primarily on D0L-systems with a limited musical interpretation. Few controls

are provided to address important musical qualities such as timbre, dynam-

ics, and complex timings. The discrete nature of the underlying model makes

it difficult to enhance the compositional flexibility and musical gamut of such

systems. Interestingly, too, is that a number of authors start with specific L-

systems created for non-musical purposes, such as space-filling curves or

biological models, and use these non-musical starting points as the basis for

generating music. This may be one reason why Supper classifies L-system

music generation as coming from “extra-musical disciplines”. However, the

use of non-musical material and influences has often found favour from com-

posers.

In the system developed in this chapter, a number of the limitations of pre-

vious grammar–based models are addressed. These limitations include: the

discrete nature of symbolic grammars; lack of continuous control and modu-

lation of properties; deficiencies in music representation, such as the use of

fixed or simplistic timing and duration specification, lack of polyphony, lack of

timbre control; and the incorporation of semantics into a grammar-based

compositional system. The ways in which these limitations have been ad-

dressed with a number of new developments is described in this chapter. A

multi-player architecture permits multiple parts and timbres within a single

performance (Section 11.6.2). A syntax for polyphonic note specification com-

bined with a novel context interpretation uses past polyphonic and temporal

states to determine rule matching criteria (Section 11.6.3). The use of timing

symbols, indexed duration tables, and interpretative state modification by

produced symbols gives a parametric L-system grammar the ability to modify

and control note timing (Section 11.7.1). The parameterisation of timed mod-

ules permits continuously variable properties to be incorporated into a com-

Chapter 11: Music Composition 301

position alongside the discrete event-based nature of “traditional” D0L-system

models. The use of a hierarchical model (Section 11.5.5) more easily permits

the authoring of complex musical structures, in ways in which music is often

thought of (Buxton et al. 1978, 1985).

A criticism of grammar-based representations is in their fundamental

separation of syntax and semantics (Roads 1996, page 893). These criticisms

relate in particular to using grammar representations for theories of music

cognition. There is some doubt that there exists a musical “deep structure” in

the sense of Chomskian linguistics, and that syntactic structures have no strict

correlation to semantic context (Baroni & Jacoboni 1978). It has been argued

that imposing hierarchical structure neglects the multitude of possible ways

in which non-hierarchical parsing may be applied (Minsky 1965, 1981; Roads

1985). In Minsky’s view, the grammar abstraction is not an appropriate model

for how music is processed in the mind. In relation to the generation of musi-

cal structures described in this chapter, it has already been argued that the

goal is a computationally synergistic system, rather than a cognitive model

capable of explaining or simulating musical creativity (Section 11.2). As com-

puters have permeated the compositional process for many musicians, the in-

dependence of cognitive and purely generative models becomes increasingly

outmoded. Computational processes, such as those described here, may form

an integral part of the compositional process, with semantics determined by

the grammar designer, most often through conscience to feedback relation-

ships with the generative processes. As has been discussed, such processes

may often exhibit emergent properties of their own.

11.4.4 Sequential and Parallel Re-writing

In techniques that use Chomsky grammars, the rewriting is sequential, that

is, symbols are replaced one at a time sequentially across the string (corres-

ponding to the serial nature of the process that the grammar represents). In

the system described in this chapter, parallel rewriting grammars are ad-

apted for composition. Due to constraints discussed in Section 11.5.2, rewrit-

ing is not fully parallel as is traditionally the case with L–systems as defined in

Section 5.3.2.1 (upon which the system is based). Rewriting proceeds on par-

302 11.5: Grammars for Music Composition

allel sets of elements in the string after the events represented by the string

have occurred.

11.5 Grammars for Music Composition

This section details how L-systems may be used to generate musical sequen-

ces. It is based on the L-system models and definitions introduced in Chapter

5.

11.5.1 L–Systems

As previously detailed, L-systems when used in computer graphics applica-

tions adopt a turtle interpretation of the produced string to construct the

geometric description of the geometric model.

L-systems provide a compact way of representing complex patterns that

have some degree of repetition, self-similarity or developmental complexity.

In the case of music generation, a geometric interpretation is unsuitable, so

individual symbols are interpreted as events and components of event spaces.

In a similar way that extensions to DOL-systems, such as parametric and

stochastic L-systems, have benefited the geometric modelling capabilities in

graphics applications, those extensions can also provide greater flexibility in a

musical interpretation. For example, the use of a hierarchical specification,

detailed in Section 11.5.5, allows a more complex sequence of events and

gives the user greater potential for modelling interacting event spaces at dif-

ferent levels.

11.5.2 Music with DOL–Systems

For this section, we assume a D0L-system as defined in Section 5.3.2.1. A

simple method of generating music is to map elements from the alphabet V to

directly represent musical notes. Symbols can represent notes absolutely (e.g.

the symbol C4 represents middle C), or as ordered pairs

!

n, r() , representing

note and register. At each iteration, the generated string can then be inter-

preted as a series of musical events.

For example, given the set of productions and an axiom:

Chapter 11: Music Composition 303

!

" : C
p1 : C # E
p2 : E # CGC
p3 : G #$

(11.2)

The strings produced for the first five iterations are:

ITERATION STRING
0 C (axiom)
1 E
2 C G C
3 E E
4 C G C C G C
5 E E E E

Concatenating the strings together gives the sequence:

C E C G C E E C G C C G C E E E E

If each symbol is interpreted as a musical note (at the default register in this

example), the string can be played as music:

This simple example has no provision for note timing, so each note defaults to

a quarter–note duration. It is of course possible to incorporate symbols in the

grammar that control duration.

11.5.3 Stochastic D0L-systems

A stochastic 0L-system,

!

G
"
, defined in Section 5.3.4.1, associates a set of

probabilities,

!

" , with the set of the productions, P. The probability of an indi-

vidual production being used is usually written above the arrow symbol. For

example the production:

!

p1 : a 1 2" # " " b
1 2" # " " c

means that a has equal probability of being replaced by b or c. It is assumed

that, for all productions with a as the predecessor, that the combined proba-

bilities for that symbol sum to 1, i.e.:

304 11.5: Grammars for Music Composition

!

" pi()
pi #

�
P a()

$ = 1

Stochastic grammars allow the representation of Markov models. For exam-

ple, the transition matrix shown in Figure 11-1 is equivalent to the stochastic

L-system:

!

p1 : C 2 3" # " " D
1 3" # " E

p2 : D 3 10" # " " C
3 10" # " " D
4 10" # " " E

p3 : E 5 11" # " " D
5 11" # " " E
1 11" # " " G

p4 : G 1 2" # " " E
1 2" # " " G

$: E

The choice of axiom is arbitrary. For a correct simulation of the Markov chain

the axiom should select a starting symbol based on the frequency a note ap-

pears in the set of input notes (this could be incorporated into the grammar as

an additional production).

11.5.4 Parametric Extensions

In the case of parametric L-systems (Section 5.3.5) in a musical application,

parameters can be used to control continuous–valued attributes such as note

velocity. The midi82 specification allows for a number of continuous–valued

controllers. These controllers can be affected through parametric association

with the appropriate symbol.

11.5.5 Hierarchical L-systems

As stated, many forms of music involve repeating themes and patterns, often

at a number of different levels in a composition. A classic example of this

hierarchy being the sonata form, popularised by Joseph Haydn in the eight-

eenth century. While it is possible to incorporate many levels in a set of pro-

82 Musical Instrument Digital Interface (midi) is a standard method of control in electronic
music. It allows the connection of various types of computers, synthesisers and keyboard con-
trollers, provided they obey the midi protocol (Rothstein 1992).

Chapter 11: Music Composition 305

ductions, a naturally easier way is to impose a hierarchical containment of

rules in order to better represent the structure of the music.

Hierarchical L-systems in the sense used here, have a similar specification

as a DOL–System grammar, except that on the successor side of a production,

one or more of the successor symbols may be an entire grammar in itself.

These are related to sub-L-systems proposed by Hanan (Hanan 1992), al-

though sub-L-systems apply different sets of rules to different portions of the

string. They are also related to decompositions (Prusinkiewicz et al. 2001)

and the hierarchical model described in Chapter 9. Development of each set

of rules proceeds independently, however rule sets may pass parameters be-

tween sets of grammars. Figure 11-3 shows an example grammar and the re-

sulting strings produced from the rules.

A = {
B(x) = {

): a(x)
p

b1
 : a(y) (a(y+1) c(y/2)

}
): B(1)
p

a1
 : B(x) (a(x) [B(2x) a(x)]

}

B(1) a(1) [B(2) a(1)] a(1) [a(2) [B(4) a(2)] a(1)]

a(1) a(1) [a(2) a(1)]

a(2) c(1)

a(3) c(1.5)

a(1) [a(3) c(1.5) a(1)]

a(1) [a(4) c(2) c(1.5) a(1)]

Iterations of A

Figure 11-3: A simple hierarchical grammar consisting of two rule sets, A and B. Below
the rules the diagram shows the produced strings, with iterations over system A running
horizontally and iterations over system B running vertically (the iteration of B for the third
iteration of A is not shown). Each system’s development proceeds independently, but
they may communicate via parameters.

11.6 Implementation

Thus far, various types of L-systems have been introduced and some simple

interpretation of the strings they produce for musical purposes has been de-

306 11.6: Implementation

scribed. In this section, the implementation of a composition system based on

the systems described in the previous sections is discussed.

The system is implemented on a Silicon Graphics workstation connected to

a digital synthesiser via midi. Once a grammar is parsed, it is capable of gen-

erating note sequences (midi data) in real–time. Very complex grammars

(such as those with many levels of hierarchy, or productions that cause expo-

nential growth in the produced string) may cause noticeable delays in the

system during processing. In this case, sequences can be saved onto disk for

later playback. The goal of the system is real–time performance and in most

cases, this is adequately accommodated.

11.6.1 Data Flow

Essentially, the composition system has three major processing stages, out-

lined in Figure 11-4. The system generates strings that are interpreted as

musical data. Productions are applied to these strings and the results inter-

preted as commands that are output as midi data to various synthesisers con-

nected to the system. midi data can be converted to standard notation, suit-

able for interpretation by real musicians (as opposed to machines) if required.

L-System grammar

iteration

player part1 {
 productions:
 a -> (b c);
 b (a b) | c -> d;

 axiom:
C4;

}

Parse grammar
currentString = axiom

Apply rules on
currentString

Interpret
currentString

MIDI Data/Score File

110100110101
001101010010
010101011110
111101000111
000111111100
010100110101
000110111010
111010110001
000111110110

Figure 11-4: Stages of processing in the system. Input and output data are show and the
processes that connect them. The lines with arrows show the directional flow of informa-
tion. First, a grammar is parsed, and the axiom loaded into the variable currentString.
Rule application is iterative. After rewriting is applied to currentString, the results are
interpreted. The interpretation converts symbols into MIDI data that is then played, or
saved to a file.

Chapter 11: Music Composition 307

11.6.2 Players and Symbol Interpretation

As described in Section 11.5.2, the turtle interpretation used for geometric

model generation is unsuitable for music generation. Hence, the turtle inter-

pretation is replaced with the concept of a virtual player. Like the turtle, the

player is responsible for the interpretation of instructions given to it, which in

the general case means playing notes (sending midi messages or writing score

information) Players always maintain a current state, that consists of:

• pitch (note and register);

• duration;

• timbre;

• control parameters.

Control parameters may be used to specify continuous or discrete controllers

(e.g. pitch bend, filter resonance, etc.).

Symbols in the produced string change the player’s state. The string is

read sequentially, from left to right and the player interprets each symbol,

just like a Turing machine reads instructions from a tape. Different symbols

cause different components of the player to change state, or perform a task.

For example, the dot (“.”) symbol tells the player to play the current note(s), a

“+” increments the current note by a semitone, a “–” decreases it by the same

amount. Players are capable of playing any number of notes simultaneously,

however, in practice this may be limited by output hardware. The square pa-

renthesis symbols (“[” and “]”) push and pop the current player’s state onto a

First–In, Last–Out stack.

Multiple players perform a composition. Any number of players may be in-

volved in a composition, however again hardware limitations may fix an

upper limit on the total number of notes playable simultaneously. Generally,

each player plays a single voice or instrument and each has a different set of

rules.

Each virtual player usually has their own set of generating L-systems (al-

though the same L-system can be shared by more than one player, for exam-

ple when it is desired to have different voicing for the same melody). Each

player’s L-system generates concurrently, with synchronisation between play-

ers achieved by synchronising the derivation steps. It is up to the designer of

308 11.6: Implementation

multiple players’ parts to keep them synchronised in terms of time and key

signatures. Due to the synchronisation of derivation steps, all players must

effectively perform under a master tempo which controls the real-time inter-

pretation of derivation strings into MIDI data (this is achieved collectively for

all players).

Individual notes can be represented by their name. The “#” symbol repre-

sents a sharp, “&” a flat and “@” a natural. Notes in uppercase change the

pitch and play the note. Notes in lowercase change the pitch but don’t play

the note. This means that “C” is equivalent to “c .”. A comma “,” plays a rest

for the current duration. Other symbols change duration, timbre, and so on.

Polyphonic playing of notes is achieved by enclosing the notes to be played

simultaneously in round parenthesis: “(” and “)”. For example the string:

C E G

plays the specified notes, each for the current duration, in temporal sequence

from left to right. The string:

(C E G)

plays the same three notes, for the current duration, simultaneously (a C Ma-

jor chord). Pitch specification can be relative, thus:

c (. + + + . + + + .)

Does the same thing (plays a C Major chord). This would not be recognised in

the same context as the explicit (C E G) chord, however (see next section).

11.6.3 Polyphony and Context

Context sensitivity relates production application to the predecessor’s context

(symbols that appear before the predecessor in an axiom or string). In the

case of music composition, context sensitivity is represented in the grammar

both polyphonically (notes currently being played) and temporally (note(s)

previously played). A vertical bar (“|”) is used to signify temporal context:

symbols to the left of the bar must precede the current symbol for the rule to

apply. Table 11–1 illustrates some examples. The interpretation of context

relationships is also dependent on the broader issue of construction and in-

terpretation of produced strings to produce musical data. For the interpretive

Chapter 11: Music Composition 309

system of Section 11.5.2, derivation strings are concatenated meaning tempo-

ral transformations propagate over the entire composition, not necessarily in

directly adjacent temporal contexts. Using a timed L-system interpretation or

the cellular developmental model of Chapter 9, produces different results as

derivation strings are not concatenated. This is further discussed in Section

11.7.2.

String Interpretation
Musical

Representation

(C E G) ((G B D) Polyphonic context: if current

notes are C, E and G play G B and D

simultaneously.

C E | G (D Temporal context: if current note

is a G preceded by E and C then play

a D.

(C E) | (G C) (

D (C E)

Polyphonic and temporal con-

text: if current notes are G and C

and they were preceded by C and E

played simultaneously then play D

for the current duration followed by

C and E simultaneously.

Table 11–1: Context sensitive strings and their musical interpretation.

The use of context in a grammar allows complex shifting themes to propagate

through a composition, both chromatically and temporally. Context is neces-

sary for a grammar to implement Markov models of order 2 or higher.

11.7 Application of Developmental Systems

Thus far, the symbolic nature of string replacement has been the focus of the

system described. Some symbols are designated to represent pitches or pitch

changes. In the models described in Section 11.5.2, arbitrary note durations

310 11.7: Application of Developmental Systems

were assigned to such symbols (L-system 11.1) hence no direct control of dur-

ation was possible within the grammar.

A number of other systems perform a post-processing step on the pro-

duced string, where timing and other data is added (Supper 2001). The pro-

cess for this stage may be executed by machine or composer. In a similar way

that DOL-systems specify topology in a geometric interpretation, in the musi-

cal context they specify a musical topology — events and the relationship

between events. Further interpretation is required in order to produce a

completed score.

11.7.1 Specification of Timing Information

A natural extension to allow timing data in the L-system model involves

parametric L-systems. A specific parameter can denote a duration, either an

absolute time value or as an index to a pre-defined list of durations. Such a

list could contain timings for the standard note durations from semibreve to

hemidemisemiquaver. Tied or dotted notes could be created with additional

symbols in the alphabet that modify the timing interpretation for the number

of notes specified by the modifier symbol’s parameter. This is illustrated in

Figure 11-5.

Figure 11-5: String interpretation using an indexed table and note parameters to specify
note-based timing. Modifier symbols in the alphabet enable extra note timing such as dot-
ted and triplet notes.

Chapter 11: Music Composition 311

As with plant models and drawing on the formal properties of L-systems

(Frijters & Lindenmayer 1974; Lindenmayer 1974), similar results could be

achieved with context sensitive L-systems. This would require replacing the

parameters with additional symbols to specify timing information, in most

cases resulting in a vast increase in the size of the alphabet. This added com-

plexity would make authoring L-systems to generate compositions more diffi-

cult.

The parametric representation with indexed duration, while adequate for

basic purposes, has a number of limitations. These include:

! timing data is mixed with other parameters making it more difficult to

distinguish the two;

! complex timing is difficult or impossible to achieve, particularly when

the composer wishes to differentiate different parameters and their

musical context;

! each note event requires an explicit timing parameter, possibly resul-

ting in a large amount of redundancy in the specification, particularly at

any level in the hierarchy above the note level.

To address these issues, timed L-systems, introduced in Chapter 8, and the

cellular developmental system, introduced in Chapter 9, are a natural exten-

sion to apply to the generation of musical data. Timed L-systems build tempo-

ral information into the developmental model and so can be used also to gen-

erate timing information for music. The cellular developmental model has

been designed to enable the modelling of complex, hierarchical time-based

systems, again, ideally suited to music generation. The musical interpretation

of cells was discussed in Section 9.4. Additional examples are given in the

following section.

11.7.2 Timed L-systems and Developmental Systems

Timed L-systems associate an age parameter that continuously increments as

development proceeds. This gives individual symbols the ability to carry tim-

ing information. The life of the module can then represent the lifetime of an

individual note or event. For example, this timed L-system:

312 11.7: Application of Developmental Systems

!

" : bar

p1 : bar # K,0() RS ,0() HC 0(),0()
p2 : K,QN()# RK ,0()
p3 : RK ,QN()# K,0()
p4 : S,QN()# RS ,0()
p5 : RS ,QN()# S,0()
p6 : HC n(), EN() : n $ 7 # HC n +1(),0()
p7 : HC n(), EN() : n > 7 # HO,0()

p8 : HO, EN()# HC 0(),0()

(11.3)

generates a simple

!

4 4 rhythm. The constants QN and EN represent quarter-

and eight-notes respectively. Instrumentation is represented by the other

symbols: K represents the kick drum, S the snare, HC the high-hat closed and

HO the high-hat open. After one bar, the generated results are shown in the

score below. Additional parameters to the drum symbols can be used to con-

trol volume, giving the ability to create accents.

Figure 11-6: Simple rhythm generated using the timed L-system (11.3)

For timed symbols that represent structural rather than musical information,

one needs to be careful that the timed derivation of structural symbols does

not conflict with the intended timing of the composition. In the example above

for instance if the symbol bar carried timing information, its timed derivation

would delay the actual musical sequence by its lifetime.

The cellular developmental system, described in Chapter 9, gives further

expressiveness to musical specification. For example, Figure 11-7 below

shows a simple two-chord sequence with both volume and filter control

modulated by cell development (please refer to Appendix B for details on the

music modules used in the geom sections). We assume that these modules are

controlled by a parent system that sets the root note for the chords. The use

Chapter 11: Music Composition 313

of square brackets (“[” and “]”) works as in the geometric case, saving and re-

storing musical state (note, register, volume, pan, etc.).

module triad() {

real filterf = 0;

real volume = 0;

 rules:

: filterf < 1 : rate filterf = 0.35 * filterf + 0.1;

: volume < 1 : rate volume = 1/(WN * 4);

: age > WN * 4 : -> diminished(filterf);

 geom:

[vol(volume) cc(FILTERF,filterf) N incN(3) N incN(2) N];

} // triad

module diminished(real fm) {

real filterf = fm;

real volume = 1.0;

 rules:

: filterf > 1 : rate filterf = –1.35 * filterf;

: volume < 1 : rate volume = –1/(WN * 2);

: age > WN * 2 : -> ;

 geom:

[vol(volume) cc(FILTERF,filterf) N incN(3,-1) N incN(2,-1) N];

} // diminished

Figure 11-7: Two chord pattern with volume and filter control

Volume and filter control are specified as differential equations with boundary

conditions (the variables volume and filterf). This information is sent

using the commands vol and cc respectively as normalised values. The cc

command stands for midi continuous controller and it is assumed that the

FILTERF constant represents the appropriate controller value. A synthesizer

interpreting the midi information output would take the controller value and

use it to adjust the cut-off frequency of a low-pass filter, thus modulating the

timbre of the sound generated. As the filter frequency increases, so does the

volume, the sound building to a crescendo. After four bars (four whole notes,

4*WN), the chord changes to a diminished version of the triad and recedes in

filter frequency and volume, until silence.

314 11.7: Application of Developmental Systems

Figure 11-8: The two chord sequence of Figure 11-7 showing plots of continuous changes
in volume and filter frequency.

11.7.2.1 Song Structure

The hierarchical structure of the cellular system allows the composer to

specify musical semantics as decompositions. Using the cellular develop-

mental model both system cells and module cells can be used to aid in con-

struction of higher-level (non-note playing) compositional structure, with sys-

tems useful for structural decomposition, modules for temporal development

and sequences such as chord progressions (described in the next section).

A classic musical form is the sonata form, which dates from the sixteenth

century. The sonata was designed for instrumental music, corresponding to

Chapter 11: Music Composition 315

rise in importance of instruments (as opposed to voice) at the time. The clas-

sic sonata form is a single movement with three basic divisions: exposition,

development, and recapitulation. The exposition and recapitulation sections

divisions can be further divided, as shown below in Figure 11-9.

melodicrhythmic key change tonic key

recapitulationdevelopmentexposition

sonata

group B
(feminine)

group A
(masculine)

bridge codetta group B
(feminine)

group A
(masculine)

bridge coda

Figure 11-9: Hierarchical decomposition of the sonata form. The lines with arrows show
progression through the sonata.

As the figure shows, the exposition and recapitulation divisions are similar,

but the recapitulation will usually be a modified version of the exposition,

with the second group (B) in the tonic key and the full coda conclusion. The

sonata can be represented by the following cellular system (Figure 11-10).

system sonata() {

system exposition() {

module groupA() {

 rules:

: age > EGA : -> bridge(MINOR);

}

module bridge(integer k) {

 rules:

: age > EB : -> groupB();

 geom:

key(k);

}

module groupB() {

 rules:

: age > EGB : -> codetta();

}

module codetta() {

 rules:

: age > EC : -> sonata::development();

316 11.7: Application of Developmental Systems

}

} groupA();

system development {

module developmentSequence() {

 rules:

: age > DDS : -> sonata::recapitulation();

}

} developmentSequence();

system recapitulation() {

module groupA() {

 rules:

age > RGA : -> bridge(TONIC);

}

module bridge(integer k) {

 rules:

: age > RB : -> groupB();

 geom:

key(k);

}

module groupB() {

 rules:

: age > RGB : -> coda();

}

module coda() {

 rules:

: age > RC : -> ;

}

} groupA();

// axiom for the sonata

} exposition();

Figure 11-10: The sonata form encoded as a cellular developmental system.

For space and clarity, the figure leaves out the actual musical modules —

these would be included in a full realisation of the work. The uppercase con-

stants represent timing information, with the exception of the TONIC and

MINOR constants, representing the appropriate key shifts. Notice also, the use

of scope to instantiate modules or systems outside of the current nesting (e.g.

the call to sonata::development from within the module codetta. The

Chapter 11: Music Composition 317

hierarchical cell specification makes it easy to “decompose” a composition

into structural and temporal units, allowing easy modification of individual

components within the structure. This makes for a more flexible and robust

environment than a more simple flat grammar would provide.

11.7.2.2 Context and Chord Progressions

This example illustrates how chord progressions can be generated. Tradi-

tional musical language specifies harmonies that follow certain logical orders

based on acoustic, aesthetic, and psychological experience (Karolyi 1965, pp.

67-68). In the example below the collection of modules generates chord pro-

gressions based on harmonic rules.

module tonic(real d) {

integer n = random(1,7);

integer rshift = random(-1,1);

 rules:

om(d, r) me: age > d && n == 1 && r > 1: -> om(d,-1) me(d);

om(d, r) me: age > d && n == 1 && r < 1: -> om(d,1) me(d);

om(d, r) me: age > d && n == 1 && r == 0: -> om(d,rshift) me(d);

: age > d && n == 2 : -> supertonic(d/2);

: age > d && n == 3 : -> mediant(d*2);

: age > d && n == 4 : -> subdominant(d*2);

: age > d && n == 5 : -> om(d*2,0) dominant(d*2);

: age > d && n == 6 : -> submediant(d/2);

: age > d && n == 7 : -> seventh(d/2);

 geom:

key(1);

} // tonic

module suptertonic(real d) {

integer n = random(1,5);

 rules:

: age > d && n == 1 : -> om(d/2,1) dominant(d/2);

: age > d && n == 2 : -> mediant(d);

: age > d && n == 3 : -> subdominant(d);

: age > d && n == 4 : -> submediant(d);

: age > d && n == 5 : -> seventh(d/2);

 geom:

key(2);

} // supertonic

318 11.7: Application of Developmental Systems

module mediant(real d) {

integer n = random(1,4);

 rules:

: age > d && n == 1 : -> submediant(d);

: age > d && n == 2 : -> subdominant(d);

: age > d && n == 3 : -> supertonic(d);

: age > d && n == 4 : -> om(d/2,1) dominant(d/2);

 geom:

key(3);

} // mediant

module subdominant(real d) {

integer n = random(1,6);

 rules:

: age > d && n == 1 : -> om(d/2,-1) dominant(d/2);

: age > d && n == 2 : -> tonic(d);

: age > d && n == 3 : -> submediant(d);

: age > d && n == 4 : -> supertonic(d);

: age > d && n == 5 : -> seventh(d/2);

: age > d && n == 6 : -> mediant(d);

 geom:

key(4);

} // subdominant

module dominant(real d) {

integer n = random(1,4);

 rules:

om(d,r) : age > d && n == 1 && r > 0: -> om(d/2,-1) tonic(d/2);

om(d,r) : age > d && n == 1 && r < 0: -> om(d/2,1) tonic(d/2);

om(d,r) : age > d && n == 1: -> om(d/2,r) tonic(d/2);

: age > d && n == 2 : -> submediant(d);

: age > d && n == 3 : -> mediant(d);

: age > d && n == 4 : -> subdominant(d);

 geom:

key(5);

} // dominant

module submediant(real d) {

integer n = random(1,4);

 rules:

: age > d && n == 1 : -> supertonic(d);

: age > d && n == 2 : -> om(d*2,-1) dominant(d*2);

: age > d && n == 3 : -> subdominant(d);

Chapter 11: Music Composition 319

: age > d && n == 4 : -> mediant(d);

 geom:

key(6);

} // submediant

module seventh(real d) {

integer n = random(1,4);

 rules:

: age > d && n == 1 : -> tonic(d*2);

: age > d && n == 2 : -> submediant(d);

: age > d && n == 3 : -> mediant(d);

: age > d && n == 4 : -> om(d*2,-1) dominant(d*2);

 geom:

key(7);

} // seventh

module om(real d, integer r) {

// this module sets the chord register

 rules:

age > d -> ;

 geom:

incR(r); // sets relative register

} // om

Figure 11-11: Harmonic chord progression modules.

Each of the main modules represents a chord (I, II, III, IV, V, VI, VII). The

module om is used a register marker and the temporal context of the main

tonic and dominant chords take this marker into account when deciding how

to switch registers. This results in a register shifting sequence modulated by

the tonic and dominant chords. The d parameter controls duration of each

module and a simple time shifting method favours longer durations for the

tonic, mediant and dominant (I, III, and IV) chords. A sample sequence of

chords output from this collection of modules is shown below, assuming the

system instigating the sequence begins with the tonic as its axiom.

tonic(4) (mediant(8) (om(4,1) dominant(4) (submediant(4) (
supertonic(4) (seventh(2) (om(4,-1) dominant(4) (om(2,1)
tonic(2) (submediant(1) (supertonic(1) (submediant(1) (...

320 11.7: Application of Developmental Systems

Notice how chords progress in timing, register and the chord itself. Selection

of one chord from the next involves an element of chance (a selection from

the allowable next chord given the current one). In this way, the system re-

sembles a kind of Markov model. The chord modules themselves do not play

any notes, they just set the key based on chord. This enables other modules to

sequence actual musical data in that key. In fact, these chord changes can

serve as the guiding harmony for the composition. As a simple example, the

modules listed below for a basic up/down arpeggio.

module arpeggio_u(integer n) {
 rules:

: age > SN && n <= 6 : arpeggio_u(n+1);

: age > SN && n > 6 : arpeggio_d(n-1);

 geom:

[N incN(n)];

} // arpeggio_u

module arpeggio_d(integer n) {

 rules:

: age > SN && n > 0 : arpeggio_d(n-1);

: age > SN && n <= 0 : arpeggio_u(n+1);

 geom:

[N incN(n)];

} // arpeggio_d

Figure 11-12: Up and down arpeggio modules.

Placing the arpeggio_u module after one of the chord shifting modules de-

scribed in Figure 11-11 creates a sequence of chord-shifted arpeggios. The

figure below shows how such a system would work. The system would contain

definitions for the modules described in Figure 11-11 and Figure 11-12.

system shifter(real d, integer startN) {

// module defs here

} absN(startN) tonic(d) arpeggio_u(1);

Figure 11-13: System for harmonic shifting arpeggios.

Chapter 11: Music Composition 321

The tonic and arpeggio_u modules develop in parallel, tonic controlling

chord shifts and arpeggio_u generating arpeggios. There is no specific tim-

ing integration between the two activities, in this case ensuring proper time

quantisation is important. A more complex system could use additional timing

modules to communicate timing information between chord changes and the

arpeggios. Additional modules could be added to control (for example) bass

and melody, their key changes driven by the chord progression modules that

modify the key of the other components, keeping them in all in harmony.

11.7.2.3 Discussion

The examples shown in the preceding sections demonstrate the flexibility and

scope of the developmental systems introduced in this thesis. Previous meth-

ods were mainly confined to simple discrete systems that specified single note

information only. The examples described here show how features such as

continuous modulation control; hierarchical decomposition and temporal se-

quencing; note timing; timbre modification; polyphonic sequencing; and com-

position dynamics can be incorporated within a unified developmental model.

Of course, such a model is more complex than a basic DOL-system specifica-

tion, for example, meaning a longer learning curve for the composer. How-

ever, the additional flexibility gives far greater control and musical possibili-

ties, expanding the creative palette significantly.

11.8 Conclusions and Future Work

This chapter has demonstrated how string re-writing and developmental sys-

tems can be applied as a formalised method for the generation of music. The

use of stochastic grammars allows the compact representation of Markov

chains. The parallel rewriting technique of L–systems has capabilities equal

to, or better than, those of previous grammar based methods. Parametric

numerical parameters allow the control of non–discrete processes such as

attack velocity or volume. Hierarchical and context sensitive grammars allow

the simultaneous development of complex patterns at different levels within a

composition. The developmental system, introduced in Chapter 9, has been

applied to the generation of time-based musical events and event spaces, with

a greater degree of timing control over previous discrete grammar-based

322 11.8: Conclusions and Future Work

methods used for generative music. These extended models have addressed

many of the criticisms of grammar-based methods (detailed in Section 11.4.3).

In the introduction, it was emphasised that this is a computer assisted

composition system, where composer and machine work in a synergetic tan-

dem. Currently this tandem is little better than the way a programmer edits

and debugs source code. Grammars must be written, compiled (removing

syntax errors in the process) before music can be heard. Currently work is

underway to make the system much more interactive from a performance

point of view. A composer will author a grammar, and within the grammar

place areas of discrete and continuous control that can be influenced by ex-

ternal processes or systems. One such example would be the recognition of

hand gestures (gestures have both continuous and discrete information), in

the spirit of the groove system of Mathews and Moore (Mathews & Moore

1970). In this way the composer acts as conductor, instantiating medium–term

changes in the performance through gesture (discrete gestures cause rule

changes) and influencing the short-term quality of the performance (continu-

ous data from hand positions in space). Development of such a system is con-

tinuing.

It is also possible to apply the aesthetic evolutionary processes of the pre-

vious chapter to evolve better sounding compositions interactively. Starting

with a base L-system, a number of different mutated versions of the grammar

can be represented as pictorial icons on the computer screen. By moving the

mouse towards an icon, the contribution to the composition is increasingly

biased towards the associated genotype. If the mouse is completely on the

icon, only that phenotype is heard. Once the user finds the best spatial posi-

tion (and thus the best sounding composition, the phenotype) the selected

grammars (genotypes) are “mated” and become the new parent grammar.

The process is repeated for as long as the user desires, with the hope of ev-

olving the grammar into a better sounding composition.

While this technique sounds appealing, there is a limit to the number of

mutations that can be displayed on the screen at any one time. The number of

generations that can be critically evaluated by a human during any one sitting

is limited in relation to population sizes traditionally employed by genetic al-

Chapter 11: Music Composition 323

gorithms. We are still a long way from allowing the machine to exhibit cre-

ative judgement on its own.

Figure 11-14: Excerpt from a musical score generated using the techniques described in
this chapter.

Chapter 12: Conclusions 325

12 Conclusions

Only something which has a purpose comes to an end, since once
that purpose is achieved, all that remains is for it to disappear.
The human species has survived only because it has no final pur-
pose. Those who have tried to give it one have generally sent it
hurtling to its destruction. And it is perhaps out of some survival
instinct that groups and individuals are gradually abandoning any
precise purpose, abandoning meaning, reason and the Enlight-
enment to retain only the untutored, intuitive understanding of an
imprecise situation.

— Jean Baudrillard (Baudrillard 2003)

12.1 Summary of Results

This thesis has covered a wide variety of territory to illustrate the application

and possibilities for L-system based models in computer graphics, art, anima-

tion and music synthesis.

In summary, my goals in describing the research in this thesis have been:

! the development of a generalised generative system driven by the prac-

tical goal of producing new kinds of creative visual and musical works

that autonomously change and develop over time;

! research into the concept of emergence and how emergence relates to

generative systems, particularly those concerned with novelty and cre-

ativity;

! location of the kinds of creative works produced with the generative

systems described in this thesis, in terms of a general approach by ar-

326 12.1: Summary of Results

tists in representing nature as aesthetic object and as generative sys-

tem.

12.1.1 Artworks Produced

The software developed and informed by the research detailed in this thesis

has been used of the last ten years to produce a number of successful art-

works. The most significant of these is the interactive videodisc work Turbu-

lence: an interactive museum of unnatural history (McCormack 1994b). First

shown at the ACM SIGGRAPH conference in 1994, the work has had more

than 40 international exhibitions since this time. Turbulence has also received

a number of awards for interactive art, animation and multimedia, including

first prize at Images du Futur (Canada), winner of the New Voices/New Visions

award for interactive media (USA), Alias/Wavefront award for computer ani-

mation (Art Category, USA) and Ars Electronica awards (Interactive art and

computer animation categories, Austria). I list these achievements not to

grandstand about my artwork, but as (albeit unscientific) evidence that in ar-

tistic terms the results of my research could be considered successful.

12.1.2 Topics Addressed in this Thesis

Part 1 examined the contextual history and discourses for using scientific de-

velopments, nature and natural systems as a basis for developing creative

processes and artworks. I sought to define generative art and its conceptual

underpinnings as a unique mode of artistic expression. Historical examples

were given that illustrate that the concept of a generative system predates

and extends beyond digital instances. Salient issues involving realism, simu-

lation, botanical art, and emergence were discussed. These discussions aid in

a contextual and critical analysis of generative art and the technical processes

one can exploit in developing such art.

Particular emphasis was given to the concept of emergence and how dif-

ferent categories of emergence can be used to aid critical, developmental, and

technical thinking about generative art and the creative process. The concept

of the computational sublime was presented as a new category of the sublime

made possible by computational processes.

Chapter 12: Conclusions 327

Part 2 described technical research into L-systems and their application to

creative synthesis. The turtle interpretation of L-systems was extended to ac-

commodate a rich variety of geometric modelling, with particular emphasis

on the use of generalised cylinders, motivated by biological research into the

functional morphology of organisms. Further extensions have allowed the

production of synthetic landscapes with detailed vegetation, and a good de-

gree of user control. The use of stochastic basis functions, traditionally ap-

plied to texturing, was adapted for use in generative modelling. The results

illustrated the ability of relatively simple L-systems to model detailed natural

scenes with intricate variation.

A key area addressed in this thesis has also been the emphasis on continu-

ous temporal development as an integral component of the formalisms pre-

sented here: specifically the timed L-systems of Chapter 8 and the cellular de-

velopmental model of Chapter 9. Both these systems allow elaborate and

complex animations to be produced, as evidenced in the sequences produced

for Turbulence. The cellular developmental model combines a number of

variations in L-system development into a single system capable of simulating

a variety of common generative techniques in a hierarchical specification. The

system also combines discrete, continuous and event driven models in a uni-

fied system.

The emphasis on interaction and performance lead to an investigation of

synchronisation and real-time generation methodologies and algorithms for

developmental systems. Real-time development and control of an L-system is

important in applications such as music generation and interactive media,

where development may be influenced by real-time input from a human user.

The synchronisation mechanism presented in Section 9.6.1 gives the benefits

of real-time and external synchronisation driven development, along with the

increased ability to make maximum use of cpu resources for off-line and

software-based rendering applications.

Methods for the aesthetic exploration of the vast space offered by L-system

models were presented in Chapter 10. Aesthetic selection was also used ex-

tensively for the producing the novel geometric models in Turbulence, and in

a number of the figures and colour plates in this thesis.

328 12.2: Computation, Aesthetics and Generative Systems

The interpretation of produced strings and the specification of L-system

grammars was extended to include the generation of music. New interpreta-

tions of context and the use of continuous development to control parameters

exceed any of the previous applications of L-systems in this area.

12.2 Computation, Aesthetics and Generative Systems

Computation represents a vast space of possibilities. What remains illusive is

any kind of detailed map of this space, and any practical systematic way of

exploring it. In a digital computer, patterns of bits (binary digits) are the basic

unit of representation. One pattern being different from another is how repre-

sentations are distinguished. The programmer or hardware designer then

“assigns meaning” to these patterns when developing a program or computer.

Some assignments follow strict rules that mirror the behaviour or the ab-

straction to which the same or similar meaning is assigned in other domains.

For example, a finite set of integers can be represented by a fixed number of

bits. The operation of adding two integers works according to the rules of

mathematics (provided one does not exceed the limits of the representation).

Further, a distinction can be made between iconic and symbolic represen-

tation. An iconic sign is one where there is a “topological similarity between

the signifier (the sign) and its denotata (what it represents)”, whereas a sym-

bol links signifier and denotata by convention only, “without either similarity

or contiguity” between the two (Sebeok 1975). Representation assigned to

patterns is an activity performed and interpreted by people. In theory, a sym-

bolic pattern can represent anything — your income tax, love, a leg — but the

representation says nothing about the quality or accuracy of the mapping.

The way these representations are made, and how their mappings are de-

vised, is a reflection of our cognitive and perceptual underpinnings.

One possibility in exploring computational space is to minimise represen-

tation. A minimal representation, for example could be the presence or ab-

sence of a mark (such as a unary representation used in a Universal Turing

machine). Similarly, the states of a cellular automaton can be represented as

a mark or absence of a mark. The idea being that by minimising the repre-

sentation, the viewer of the work is free to focus on the phenomenological ex-

perience of the process being enacted rather than interpretation of the sym-

Chapter 12: Conclusions 329

bols. One possible approach to the analysis of generative art programs could

be to use this goal of minimizing representation as a basis for investigation.

Hence, an analytic approach to the complete exploration of computation as a

medium might be to first consider an idealized form of computer, such as a

utm (Universal Turing Machine) and systematically examine every possible

program for such a machine (programs can be represented by marks on a

tape and unary coding is sufficient). It might then be possible to classify or

categorize many different types of program and hence gain insight into the

nature of computation in general, and specific types of programs in particular,

such as “the class of programs that perform generative computation” or

“those programs that halt”. Indeed, this is, somewhat implicitly, one of the

goals of computer science.

However, this approach presents a number of difficulties. The search space

a simple analysis reveals that the number of possible programs83, even on the

most basic of practical computers, is vast beyond imagination. So vast in fact,

that any practical systematic analysis would take many more orders of mag-

nitude of time than the universe is old. Such a vastness invokes qualities of

the Kantian sublime, in the sense that we have in the computer a program-

matic “space” of magnitude beyond comprehension, beyond even the limits of

the practical universe in terms of systematic exploration.84

Further difficulties arise specifically to the artist, since much of the history

of art concerns the issue of representation. In addition, minimisation of a rep-

resentation is not removal, so the basic problem remains. Without represen-

tation, interpretation is difficult, hence when using the computer all repre-

sentations must necessarily be symbols subject to interpretation.

Nonetheless, my approach to this art practice is largely a positivist one. In

developing generative software, my goal has been to consider the sensation of

generative systems as the basis of phenomenological experience. It is through

an interactive engagement with systems that we form our representations

about them. By expanding the domain of, and possibilities for these sensa-

tions, we expand the “productive psyche” in the terminology of (Bachelard

83 “Possible program” means any program; regardless of whether it stops or does anything
‘useful’, even in computational terms. In an idealization like a utm there are no “incorrect”
programs.
84 It might be possible to fully explore our own planet, yet to fully explore computation, in the
sense of systematically running every possible program, is currently believed to be impossible.

330 12.2: Computation, Aesthetics and Generative Systems

1958). The software systems I have created are directed towards this goal. I

do not see such systems necessarily as mirrors of nature or natural systems,

and so they are not always designed as scientific models that represent or

simulate known physical phenomena. Hence, they often do not produce the

same results as scientific models. This is often the case with the visual simu-

lations found in computer graphics research.

In writing about seventeenth century Dutch realist painting, Ernst Gom-

brich titled his discussion “The Mirror of Nature”. But he was also keen to

point out that while Dutch realist art had “learned to reproduce nature as

faithfully as a mirror”, he also recognised that “Neither art nor nature is ever

as smooth and cold as glass. Nature reflected in art always reflects the artist’s

own mind, his predictions, his enjoyments and therefore his moods.”

(Gombrich 1984, page 338). In the case of the generative systems described,

the processes open the expression of a new nature and hence, they expand

our experience of the natural.

Thus far, the most common methodology for this expansion is to have con-

scious goals when writing a program. These goals determine the code and to

some extent, its outcomes. I have discussed the exploration of large aesthetic

spaces using biologically inspired search techniques such as aesthetic selec-

tion. However, even in these “open” methodologies there is a teleological goal.

Nature is non-teleological, one thing such investigations have yet to exploit.

Any such search is clouded by the issue of representation, which remains an

open problem, spanning a number of disciplines.

Today, art has many different goals, discourses, and agendas. Generative

process in art, hence generative art itself, has been a mode of artistic investi-

gation that pre-dates the digital computer. It sets historical precedents for

current discussions, precedents that have not received the attention in art

theory that they perhaps deserve. In practical terms, the computer offers an

extraordinary tool for developing generative processes, the significance of

which we are only just beginning to grasp. I hope that the work presented

here gives a glimpse into that significance. As now the nature of computation

is changing, so too is our experience of these systems, mirrored in this

change. However, generative art cannot fall victim to being the “handmaiden

of science”, so generative artworks of significance must offer insights and ex-

Chapter 12: Conclusions 331

periences beyond a scientistic fascination with generative processes. It is

here, in the world of phenomenology and representation, that the possibilities

for the generative artist really do remain endless.

12.3 Future Work

The quest for richer and more complex modelling of natural phenomena con-

tinues unabated.

One key aspect of the modelling system described in this thesis that forms

the basis for future work is the tighter integration of environmental modelling

into the developmental model. For example in the cellular developmental

model of Chapter 9, cell division, replication, growth, etc. happens without

regard for any physical or biological simulation of an environment under

which the processes are occurring. Some basic attempts at including envi-

ronmental input have been included; such as the environmental turtle com-

mands discussed in Section 6.8.3 and the incorporation of tropisms when

modelling plants. A particular problem with incorporating more advanced en-

vironmental relationships into the model is the problem of how they translate

in non-geometric interpretations such as music generation. For these devel-

opments, it seems the development must split, sacrificing generality for do-

main-driven extensions based on specific physical assumptions.

Today, more than thirty years since the original formalism developed by

Lindenmayer, L-systems have found application to a wide variety of domains,

far beyond the cellular developmental simulation for which they were origi-

nally devised. The quality and complexity of realistic plant images generated

using L-systems has made them immensely popular in computer graphics ap-

plications, largely due to the work of Prusinkiewicz, his colleagues and stu-

dents.

In recent years L-systems have found more diverse applications including

the procedural modelling of cities (Parish & Müller 2001), modelling of bio-

logical organs (Durikovic, Kaneda & Yamashita 1998), even in data compres-

sion (Nevill-Manning & Witten 1997). This is in addition to the applications

that form the focus of this thesis — computer art, animation and music syn-

thesis.

332 12.3: Future Work

It is interesting to observe that in biology however, there remain a number

of sceptics on the explanatory power of L-system models and simulations in

explaining how the complexity of plant growth occurs at a developmental

level (Ball 2001, Chapter 5). Philip Ball points to the attempts of Wilhelm

Roux, who at the end of the nineteenth century attempted to specify a series

of rules governing branching growth based on empirical studies of arterial

networks. These rules were further qualified and extended to trees by Cecil

Murray who further applied them to arterial networks and then to trees,

showing the power function relation between circumference and weight of a

branch distal to a given point (Murray 1927). Much recent research draws on

these physiological descriptions, and uses models with cost minimisation cri-

teria (such as surface area, volume and total power losses) as explanatory

models for the branching structure observed in plants (Zhi, Ming & Qi-Xing

2001). It is likely that an interesting area of future work would be to combine

these cost minimisation constraints with some advanced L-system description

to further illuminate the explanation of why particular branching structures

and patterns are observed.

A similar situation exists with the phyllotaxis models discussed in Chapter

7. Here again there are two different approaches to the problem of developing

a general model of phyllotaxis — the analytical mathematical approach such

as that adopted in this thesis where the basic architecture is taken as an em-

pirical given and a model which creates that architecture specified. This cer-

tainly gives good and efficient geometric models, but it does lack explanatory

power in terms of why such patterns form. Here the developmental, causal

and physical models provide better explanatory information (Douady &

Couder 1992).

It is the author’s opinion that both these methodologies have something to

offer, and that they are not opposed, but complementary. Further research

may better integrate a variety of approaches, to achieve models that are rich

in both descriptive and explanatory modes — a combination of historical and

poetic truth, which may lend to the appreciation of a “deeper and richer

sense of life”.

Chapter 12: Conclusions 333

Every work of art aims at showing us life and things as they are in truth,

but cannot be directly discerned by everyone through the mist of subjec-

tive and objective contingencies. Art takes away the mist. (Schopenhauer

1928)

Appendix A 335

Appendix A

Colour Plates

This section contains a number of colour plates. All images were produced

using the techniques described in this thesis. Some figures appeared in the

main body of the text. In this case, the caption matches the figure as it ap-

pears in the main text.

336 Appendix A

Appendix A 337

Model created using the interactive evolution techniques described in Chapter 10.

Figure 7-3.

338 Appendix A

Appendix A 339

Figure 7-13.

Figure 7-14.

340 Appendix A

Appendix A 341

Figure 7-22.

342 Appendix A

Appendix A 343

Figure 7-24.

344 Appendix A

Appendix A 345

Frames from Turbulence.

Figure 10-9 (detail).

346 Appendix A

Appendix A 347

348 Appendix A

Appendix B 349

Appendix B

Music Commands

The table below details the music commands used by the cellular develop-

mental model described in Chapter 9. Parameters are optional and if not sup-

plied assume the defaults listed.

Music generation module commands:

Module Defaults Description

absN(x) x = 1 Set the current note to x, where x corresponds to

the absolute pitch (the current key).

incN(x) x = 1 Change the current note by x semitones (x may be

positive or negative)

incN(x,n) x=1,

n = 0

Change the current note by x in the current key.

The n parameter controls augmented (1), natural

(0), or diminished (-1). For example incN(3,0)

increments by a third, incN(3,-1) by a dimin-

ished third.

N(v,rv) Last

velN

and

velR

Play the current note with attack velocity v and

release velocity rv. These are normalised values

with 0 corresponding to minimum velocity, 1 to

maximum. Velocity is converted to midi note-on

velocity, in the range 0 to 127.

velN(x) x = 1 Set the current note on velocity to x (normalized

value). Velocity is converted to midi note-on ve-

locity, in the range 0 to 127.

VelrN(x) x = 1 Set the current note off (release) velocity to x

(normalized value). Velocity is converted to midi

note-off velocity, in the range 0 to 127.

350 Appendix B

Music generation module commands:

(normalized value). Velocity is converted to midi

note-off velocity, in the range 0 to 127.

R(x) x = 1 Set the current note register to x. Valid register

values range from 0 to 9.

incR(x) x = 1 Increment the current note register by x. The

value of x may be positive or negative.

NR(x) x = 1 Set the current note relative to the current regis-

ter.

key(n) n = 0 Set the key signature to the value specified by n.

keyR(n) n = 0 Set the key signature relative to the value specified

by n.

chan(n) n = 1 Set the current midi channel to n. (

!

1 " n " 16)

vol(x) x = 1 Set midi volume to x (normalised). (midi controller

7)

pan(x) x = 0.5 Set midi pan to x (normalised). 0 = left, 1 = right

(midi controller 10)

expr(x) x = 0 Set midi expression to x (normalised). (midi con-

troller 11).

cc(n,v) n = 1

v = 0

Set continuous controller n to v (normalised). For

example cc(10, 0.5) is equivalent to vol(0.5).

pc(n) n = 1 Send midi program change message to current

channel.

pb(n) n = 0.5 Set midi pitch bend value to n.

at(n) n = 0 Send midi polyphonic aftertouch message on cur-

rent channel. The value of n is normalised.

bpm(x) n = 120 Set the midi tempo to n beats per minute.

systemx(x) – Send midi system exclusive message.

Appendix B 351

The midi sub-system also defines a series of global identifiers corresponding

to note durations. This makes incorporating timing information easier.

Symbol Note time

WN Whole note

HN Half note

QN Quarter note

EN Eighth note

SN Sixteenth note

TN Thirty-second note

XN Sixty-fourth note

References 353

References

Abelson, H. & A.A. DiSessa 1982, Turtle Geometry: The Computer as a Medium for
Exploring Mathematics, The MIT Press Series in Artificial Intelligence, MIT
Press, Cambridge, Mass.

Ackermann, P. 1993, Object-Oriented Modelling of Time Synchronisation in a Multi-
media Application Framework, in Preprints of the 95th AES Convention, Audio
Engineering Society, New York, NY.

Ackermann, P. 1996, Developing Object-Oriented Multimedia Software, dpunkt, Ver-
lag für digitale Technologie, GmbH, Heidelberg, Germany.

Adam, H.-C. & K. Blossfeldt 1999, Karl Blossfeldt, 1865-1932, Taschen, Köln; London.

Adami, C. 1998, Introduction to Artificial Life, Springer, New York.

Agin, G.J. 1972, 'Representation and Description of Curved Objects', Technical Memo,
No. AIM-173, October 1972. Stanford Artificial Intelligence Report, Stanford,
California.

Allen, J. 1983, 'Maintaining Knowledge About Temporal Intervals', Communications
of the ACM, 26(11), pp. 832-843.

Angel, E. 2003, Interactive Computer Graphics: A Top-Down Approach with OpenGL,
(3rd Edition), Addison Wesley, Boston.

Anstis, S. 1999, Illusions, in Wilson, R.A. & F.C. Keil (eds), The MIT Encyclopaedia of
the Cognitive Sciences, The MIT Press, Cambridge, Massachusetts. pp. 385-
386.

Aono, M. & T.L. Kunii 1984, 'Botanical Tree Image Generation', IEEE Computer
Graphics and Applications, 4(5), pp. 10-34.

Ashby, W.R. 1952, Design for a Brain, Chapman & Hall, London.

Ashby, W.R. 1956, An Introduction to Cybernetics, Chapman & Hall, London.

Ates, A.F., M. Bilgic, S. Saito & B. Sarikaya 1996, 'Using Timed CSP for Specification
Verification and Simulation of Multimedia Synchronization', IEEE Journal on
Selected Areas in Communications, 14(1), pp. 126-137.

Audi, R. (ed.) 1999, The Cambridge Dictionary of Philosophy, 2nd edn, Cambridge
University Press, Cambridge.

Bachelard, G. 1958, The Poetics of Space, (1994 Edition, with a forward by John R.
Stilgoe), Beacon Press, Boston, MA.

354

Badler, N.I., B.A. Barsky & D. Zeltzer (eds) 1991, Making Them Move: Mechanics,
Control, and Animation of Articulated Figures, Morgan Kaufmann, San Mateo,
California.

Baker, E. & M.I. Seltzer 1994, Evolving Line Drawings, in Graphics Interface '94,
Banff, Canada. pp. 91-100.

Ball, P. 2001, The Self-Made Tapestry: Pattern Formation in Nature, Oxford Univer-
sity Press, Oxford.

Baroni, M. & C. Jacoboni 1978, Proposal for a Grammar of Melody, Presses de l'Uni-
versité de Montréal, Montréal.

Baroni, M. & L. Callegari (eds) 1984, Musical Grammars and Computer Analysis, L.
Olschki, Florence.

Barr, A.H., J.F. Abel, R. Barzel, D.P. Greenberg, J.C. Platt & C.W. Reynolds 1988, De-
velopments in Physically-Based Modeling, Siggraph '88 Course Notes, vol. 27,
ACM SIGGRAPH, Atlanta, Georgia.

Barron, F.X. 1969, Creative Person and Creative Process, Holt, Rinehart and Winston,
Inc., New York.

Barzel, R. 1992, Physically-Based Modeling for Computer Graphics: A Structured Ap-
proach, Academic Press, Boston.

Baudrillard, J. 1981, Simulacres Et Simulation, Débats, Galilée, Paris.

Baudrillard, J. 1983, Simulations, Foreign Agents Series, Semiotext(e), New York.

Baudrillard, J. 2003, Cool Memories IV 1995-2000, Verso, London.

Beckermann, A. 1992, Reductive and Nonreductive Physicalism, in Beckermann, A.,
H. Flohr & J. Kim (eds), Emergence or Reduction?: Essays on the Prospects of
Nonreductive Physicalism, W. de Gruyter, Berlin; New York. pp. 1-21.

Beckermann, A., H. Flohr & J. Kim 1992, Emergence or Reduction?: Essays on the
Prospects of Nonreductive Physicalism, Foundations of Communication and
Cognition (Grundlagen Der Kommunikation Und Kognition), W. de Gruyter,
Berlin; New York.

Bell, B. 1992, Music Structures: Interleaving the Temporal and Hierarchical Aspects
in Music, in Balaban, M., K. Ebcioglu & O. Laske (eds), Understanding Music
with AI, MIT Press and AAAI Press, Cambridge, MA and Menlo Park, CA. pp.
110-139.

Bell, B. & J. Kippen 1992, Bol Processor Grammars, in Balaban, M., K. Ebcioglu & O.
Laske (eds), Understanding Music with AI, MIT Press and AAAI Press, Cam-
bridge, MA and Menlo Park, CA. pp. 336-401.

Bell, Q. 1976, On Human Finery, (Second Edition), Hogarth Press, London.

Benjamin, W. & H. Arendt 1968, Illuminations, (1st Edition), Harcourt Brace & World,
New York.

Bentley, P.J. & D.W. Corne (eds) 2002, Creative Evolutionary Systems, Academic
Press, London.

References 355

Berger, J. 1972, Ways of Seeing: Based on the BBC Television Series with John
Berger, British Broadcasting Corporation; Penguin, London; Harmondsworth.

Berger, J. 1980, About Looking, Vintage International, New York, NY.

Berlekamp, E.R., J.H. Conway & R.K. Guy 1982, Winning Ways for Your Mathematical
Plays, vol. 2, Academic Press, New York.

Bertalanffy, L.v. 1968, General System Theory : Foundations, Development, Applica-
tions, (Revised Edition), International Library of Systems Theory and Philoso-
phy, G. Braziller, New York.

Bertino, E. & E. Ferrari 1998, 'Temporal Synchronization Models for Multimedia
Data', IEEE TKDE, 10(4), pp. 612-631.

Beyls, P. 1989, The Musical Universe of Cellular Automata, in Wells, T. & D. Butler
(eds), Proceedings of the 1989 International Computer Music Conference,
International Computer Music Association, San Francisco. pp. 34-41.

Birkhoff, G.D. 1933, Aesthetic Measure, Harvard University Press, Cambridge, MA.

Blakowski, G. & R. Steinmetz 1996, 'A Media Synchronization Survey: Reference
Model, Specification and Case Studies', IEEE Journal on Selected Areas in
Communications, 14(1), pp. 5-35.

Blinn, J.F. 1982, 'A Generalization of Algebraic Surface Drawing', ACM Transactions
on Graphics, 1(3), pp. 235-256.

Blitz, D. 1992, Emergent Evolution: Qualitative Novelty and the Levels of Reality,
Kluwer Academic Publishers, Dordrecht.

Bloomenthal, J. 1985, Modeling the Mighty Maple. Proceedings of SIGGRAPH '85 (San
Francisco, California, July 22-26, 1985, Barsky, B.A., ed). In Computer
Graphics 19(3) ACM SIGGRAPH, New York, pp. 305-311.

Bloomenthal, J. 1990, Calculation of Reference Frames Along a Space Curve, in
Glassner, A. (ed) Graphics Gems, Academic Press, Boston. pp. 567-571.

Bloomenthal, J. 1995, Skeletal Design of Natural Forms, Ph.D. thesis, Department of
Computer Science, University of Calgary, Calgary, Alberta.

Bloomenthal, J. & K. Shoemake 1991, Convolution Surfaces. Proceedings of SIG-
GRAPH '91 (Las Vegas, Nevada, July 28 - August 2, 1991). In SIGGRAPH '91
25(4) ACM SIGGRAPH, New York, pp. 251-256.

Blossfeldt, K. & R. Sachsse 1994, Karl Blossfeldt: Photographs 1865-1932, Benedikt
Taschen, Köln.

Boden, M.A. 1994, What Is Creativity?, in Boden, M.A. (ed) Dimensions of Creativity,
MIT Press, Cambridge, MA. pp. 75-117.

Boden, M.A. 1996, The Philosophy of Artificial Life, Oxford Readings in Philosophy,
Oxford University Press, Oxford; New York.

Böhm, W., G. Farin & J. Kahmann 1984, 'A Survey of Curve and Surface Methods in
CAGD', Computer Aided Geometric Design, 1(1), pp. 1-60.

Bolter, J.D. & R. Grusin 1999, Remediation: Understanding New Media, MIT Press,
Cambridge, Mass.

356

Bonabeau, E.W. & G. Theraulaz 1994, 'Why Do We Need Artificial Life?' Artificial
Life, 1(3), pp. 303-325.

Bowcott, P. 1989, Cellular Automata as a Means of High Level Compositional Control
of Granular Synthesis, in Wells, T. & D. Butler (eds), Proceedings of the 1989
International Computer Music Conference, San Francisco. pp. 55-57.

Breidbach, O. 1998, Brief Instructions to Viewing Haeckel's Pictures, in Ashdown, M.
(ed) Art Forms in Nature: The Prints of Ernst Haeckel, Prestel-Verlag, Munich.
pp. 9-18.

Bringhurst, R. 1992, The Elements of Typographic Style, (Second Edition), Hartley &
Marks, Vancouver, BC.

Brown, D.E. 1991, Human Universals, McGraw-Hill, New York.

Brown, R. 2001, Biotica: Art, Emergence and Artificial Life, RCA CRD Research Publi-
cations, Royal College of Art, London.

Brumbaugh, R.S. 1981, The Philosophers of Greece, State University of New York
Press, Albany, N.Y.

Buchanan, M.C. & P.T. Zellweger 1992, 'Specifying Temporal Behaviour in Hyper-
media Documents', European Conference on Hypertext '92 (Proceedings of the
ACM Conference on Hypertext), Milan, Italy, pp. 262-271.

Buchanan, M.C. & P.T. Zellweger 1993, Automatic Temporal Layout Mechanisms, in
Computer Graphics (ACM Multimedia '93 Proceedings), Addison-Wesley pp.
341-350.

Bulhak, A. 1999, Evolving Automata for Dynamic Rearrangement of Sampled Rhythm
Loops, in Dorin, A. & J. McCormack (eds), First Iteration: A Conference on
Generative Systems in the Electronic Arts, CEMA, Melbourne, Australia. pp.
46-54.

Burnham, J. 1968a, Beyond Modern Sculpture: The Effects of Science and Technology
on the Sculpture of This Century, G. Braziller; Allen Lane, The Penguin Press,
New York, London.

Burnham, J. 1968b, 'Systems Esthetics', Artforum, 7(1), pp. 30-35.

Burnham, J. 1986, Art and Technology: The Panacea That Failed, in Hanhardt, J.G.
(ed) Video Culture: A Critical Investigation, G.M. Smith Peregrine Smith Books
in association with Visual Studies Workshop Press, Layton, Utah. pp. 232-248.

Burnstein, L. 1976, The Unanswered Question, Harvard University Press, Cambridge,
MA.

Buxton, W., W. Reeves, R. Baeker & L. Mezei 1978, 'The Use of Hierarchy and In-
stance in a Data Structure for Computer Music', Computer Music Journal,
2(2), pp. 10-20.

Buxton, W., W. Reeves, R. Baeker & L. Mezei 1985, The Use of Hierarchy and In-
stance in a Data Structure for Computer Music, in Roads, C. & J. Strawn (eds),
Foundations of Computer Music, MIT Press, Cambridge, MA. pp. 443-466.

Cahoone, L.E. 1996, From Modernism to Postmodernism: An Anthology, Blackwell
Publishers, Cambridge, Mass.

References 357

Calvert, T. 1991, Composition of Realistic Animation Sequences for Multiple Human
Figures, in Badler, N.I., B.A. Barsky & D. Zeltzer (eds), Making Them Move:
Mechanics, Control, and Animation of Articulated Figures, Morgan Kaufmann,
San Mateo, CA. pp. 35-50.

Cardew, C. 1971, The Great Learning: The First Chapter of the Confucian Classic with
Music in 7 Paragraphs, Experimental Music Catalogue, London.

Cardew, C. (ed.) 1972, Scratch Music, Latimer New Dimensions Ltd., London.

Cariani, P. 1991, Emergence and Artificial Life, in Langton, C.G., C. Taylor, D. Farmer
& S. Rasmussen (eds), Artificial Life II, SFI Studies in the Sciences of Com-
plexity, Vol. 10, Addison-Wesley, Redwood City, CA. pp. 775-797.

Carpenter, L.C. 1980, Computer Rendering of Fractal Curves and Surfaces. (Seattle,
Washington). In 7th Annual conference on Computer Graphics and Interactive
Techniques (SIGGRAPH '80) ACM SIGGRAPH, Seattle, Washington, p. 109.

Chaitin, G.J. 1999, The Unknowable, Springer Series in Discrete Mathematics and
Theoretical Computer Science, Springer, Singapore; New York.

Chaitin, G.J. 2002, Conversations with a Mathematician: Math, Art, Science, and the
Limits of Reason: A Collection of His Most Wide-Ranging and Non-Technical
Lectures and Interviews, Springer, London; New York.

Chareyron, J. 1990, 'Digital Synthesis of Self-Modifying Waveforms by Means of Lin-
ear Automata', Computer Music Journal, 14(4), pp. 25-41.

Chase, L. & R. Goings 1988, Ralph Goings: Essay/Interview, Abrams, New York.

Chemillier, M. 1992, Automata and Music, in Strange, A. (ed) Proceedings of the 1992
International Computer Music Conference, International Computer Music As-
sociation, San Francisco. pp. 370-371.

Chen, X. & P. Lienhardt 1992, 'Modelling and Programming Evolutions of Surfaces',
Computer Graphics Forum, 11(5), pp. 323-341.

Chomsky, N. 1956, 'Three Models for the Description of Language', IRE Transactions
on Information Theory, 2(3), pp. 113-124.

Chomsky, N. 1957, Syntactic Structures, Mouton, The Hague.

Chomsky, N. 1963, Formal Properties of Grammars, in Luce, R.D., R.R. Bush & E.
Galanter (eds), Handbook of Mathematical Psychology, Vol. 2, Wiley, New
York. pp. 323-418.

Cipher�Digital 1987, The Time Code Handbook, (Second Edition), Cipher Digital Inc.,
Frederick, MD, USA.

Clark, T. 2002, Martin Heidegger, Routledge Critical Thinkers, Routledge, New York.

Coates, P., T. Broughton & H. Jackson 1999, Exploring Three-Dimensional Design
Worlds Using Lindenmayer Systems and Genetic Programming, in Bentley,
P.J. (ed) Evolutionary Design by Computers, Morgan Kaufmann, London, UK.
p. Chapter 14.

Collings, M. 2000, This Is Modern Art, Seven Dials, London.

Cook, N. 1987, A Guide to Musical Analysis, J. M. Dent, London.

358

Cook, R.L. 1986, 'Stochastic Sampling in Computer Graphics', ACM Transactions on
Graphics, 5(1), pp. 51-72.

Cook, R.L. & K.E. Torrance 1992, 'A Reflection Model for Computer Graphics', ACM
Transactions on Graphics, 1(1), pp. 7-24.

Cook, R.L., L. Carpenter & E. Catmull 1987, The Reyes Image Rendering Architecture.
Proceedings of SIGGRAPH '87 (Anaheim, California, July 27-31, 1987, Stone,
M.C., ed). In Computer Graphics 21(4) ACM SIGGRAPH, New York, pp. 95-102.

Cope, D. 1991, Computers and Musical Style, The Computer Music and Digital Audio
Series, vol. 6, Oxford University Press, Oxford.

Copland, A. 1988, What to Listen for in Music, Mentor, New York.

Cordle, D. 1999, Postmodern Postures: Literature, Science and the Two Cultures De-
bate, Ashgate, Aldershot.

Coyne, R. 1999, Technoromanticism: Digital Narrative, Holism, and the Romance of
the Real, MIT Press, Cambridge, Mass.; London.

Crutchfield, J.P. 1994, 'The Calculi of Emergence: Computation, Dynamics, and In-
duction', Physica D, (special issue on the Proceedings of the Oji International
Seminar Complex Systems – from Complex Dynamics to Artificial Reality).

Crutchfield, R.S. 1973, The Creative Process, in Bloomberg, M. (ed) Creativity: Theory
and Research, College and University Press pp. 54-74.

Curry, R. 1999, 'On the Evolution of Parametric L-Systems', Technical Report, No.
1999-644-07, 9 November 1999. Department of Computer Science, University
of Calgary, Calgary.

Dartnall, T. (ed.) 2002, Creativity, Cognition, and Knowledge: An Interaction, Per-
spectives on Cognitive Science, Praeger, Westport, Connecticut; London.

Darwin, C.R. 1859, On the Origin of Species, (Reprinted 1968, Edited by J.W. Burrow,
Penguin Classics), John Murray, London.

Dawkins, R. 1982, The Extended Phenotype: The Gene as the Unit of Selection, Free-
man, Oxford [Oxfordshire]; San Francisco.

Dawkins, R. 1986, The Blind Watchmaker, Longman Scientific & Technical, Essex,
UK.

De Leon, M.K. 1990a, 'Visualization of Environmental Effects on Branching Objects',
Resource Technology '90, Washington D.C., pp. 90-99.

De Leon, M.K. 1990b, I Have Never Seen, but I Know... in ACM SIGGRAPH Video Re-
view Issue 66 SIGGRAPH '90 Film & Video Theater, ACM SIGGRAPH, New
York.

De Leon, M.K. 1991, 'Branching Object Generation and Animation System with Cubic
Hermite Interpolation', The Journal of Visualization and Computer Animation,
2(2), pp. 60-67.

De Leon, M.K. 2002, Midori Kitagawa's Gallery (Web page), < http://www.accad.ohio-
state.edu/~midori/gallery.html > (Accessed 31 May 2002).

References 359

de Reffye, P., C. Edelin, J. Françon, M. Jaeger & C. Puech 1988, Plant Models Faithful
to Botanical Structure and Development. Proceedings of SIGGRAPH '88 (At-
lanta, Georgia, August 1-5, 1988). In Computer Graphics 22(4) ACM SIG-
GRAPH, New York, pp. 151-158.

Denavit, J. & R. Hartenberg 1955, 'A Kinematic Notation for Lower-Pair Mechanisms
Based on Matrices', Journal of Applied Mechanics, 77(June), pp. 215-221.

Dennett, D.C. 1984, Elbow Room: The Varieties of Free Will Worth Wanting, MIT
Press, Cambridge, Mass.

Dennett, D.C. 1991, 'Real Patterns', Journal of Philosophy, 88, pp. 27-51.

Deussen, O., P. Hanrahan, B. Lintermann, R. Mech, M. Pharr & P. Prusinkiewicz
1998, Realistic Modeling and Rendering of Plant Ecosystems. Proceedings of
SIGGRAPH 98 (Orlando, Florida, July 19-24, 1998). In Computer Graphics
Proceedings, Annual Conference Series, ACM SIGGRAPH, pp. 275-286.

Devroye, L. 1986, Non-Uniform Random Variate Generation, Springer-Verlag, New
York.

Diamond, J.M. 1992, The Third Chimpanzee: The Evolution and Future of the Human
Animal, (1st Edition), HarperCollins, New York, NY.

Dissanayake, E. 1988, What Is Art For?, University of Washington Press, Seattle.

Dissanayake, E. 1995, Homo Aestheticus: Where Art Comes from and Why, University
of Washington Press, Seattle.

Doczi, G. 1981, The Power of Limits: Proportional Harmonies in Nature, Art and Ar-
chitecture, Shambhala (Distributed by Routledge & Kegan Paul), London.

Döllner, J. & K. Hinrichs 1997, 'Object-Oriented 3D Modelling, Animation and Inter-
action', Journal of Visualization and Computer Animation, 8, pp. 33-64.

Dolson, M. 1989, 'Machine Tongues XII: Neural Networks', Computer Music Journal,
13(4), pp. 28-40.

Dorin, A. 2001a, 'Aesthetic Fitness and Artificial Evolution for the Selection of Im-
agery from the Mythical Infinite Library' in Kelemen, J. & P. Sosík (eds), Ad-
vances in Artificial Life, Proceedings of the 6th European Conference on Artifi-
cial Life, vol. LNAI2159, Springer-Verlag, Prague, pp. 659-668.

Dorin, A. (ed.) 2001b, Second Iteration: Conference on Generative Systems in the Elec-
tronic Arts, Centre for Electronic Media Art (CEMA), Monash University, Mel-
bourne.

Dorin, A. & J. McCormack (eds) 1999, First Iteration: A Conference on Generative Sys-
tems in the Electronic Arts, Centre for Electronic Media Art (CEMA), Monash
University, Melbourne.

Dorin, A. & J. McCormack 2001, 'First Iteration / Generative Systems (Guest Editor's
Introduction)', Leonardo, 34(3), p. 335.

Douady, S. & Y. Couder 1992, 'Phyllotaxis as a Physical Self-Organized Growth Pro-
cess', Phys. Rev. Lett., 68, pp. 2098-2101.

Douady, S. & Y. Couder 1996, 'Phyllotaxis as a Dynamical Self Organizing Process
(Part I, II, III)', Journal of Theoretical Biology, 139, pp. 178-312.

360

Dreyfus, H.L. 1991, Being-in-the-World: A Commentary on Heidegger's Being and
Time, Division I, MIT Press, Cambridge, Mass.

Driessens, E. & M. Verstappen 2001a, Ima Traveller (website),
< http://www.xs4all.nl/%7Enotnot/ima/IMAtraveller.html > (Accessed 7 October
2001).

Driessens, E. & M. Verstappen 2001b, Not Not (Artist's Home Page) (website),
< http://www.xs4all.nl/%7Enotnot/ > (Accessed 7 October 2001).

Duhem, P. 1906, The Aim and Structure of Physical Theory, (1954 edition), Princeton
University Press, Princeton.

Duprat, H. & C. Besson 1998, 'The Wonderful Caddis Worm: Sculptural Work in Col-
laboration with Trichoptera', Leonardo, 31(3), pp. 173-182.

Durikovic, R., K. Kaneda & H. Yamashita 1998, 'Animation of Biological Organ
Growth Based on L-Systems', Computer Graphics Forum (EUROGRAPHICS
'98), 17(3), pp. 1-14.

Ebert, D.S., F.K. Musgrave, D. Peachey & K. Perlin 1993, Procedural Modeling and
Rendering Techniques, Siggraph 93 Course Notes, vol. 44, ACM SIGGRAPH,
Anaheim, California.

Ebert, D.S., F.K. Musgrave, D. Peachey, K. Perlin & S. Worley 1994, Texturing and
Modeling: A Procedural Approach, Academic Press, London.

Ebert, D.S., F.K. Musgrave, D. Peachey, K. Perlin & S. Worley 2003, Texturing &
Modeling: A Procedural Approach, (Third Edition), Morgan Kaufmann, San
Francisco, CA.

Ede, S. (ed.) 2000, Strange and Charmed: Science and the Contemporary Visual Arts,
Calouste Gulbenkian Foundation, London.

Eichhorst, P. & W.J. Savitch 1980, 'Growth Functions of Stochastic Lindenmayer Sys-
tems', Information and Control, 45, pp. 217-228.

Elam, K. 2001, Geometry of Design: Studies in Proportion and Composition, Design
Briefs, Princeton Architectural Press, New York, N.Y.

Ellis, W.D. 1938, A Source Book of Gestalt Psychology, Routledge & K. Paul, London.

Emmeche, C. 1994, The Garden in the Machine, Princeton University Press, Princeton,
NJ.

Emmeche, C., S. Køppe & F. Stjernfelt 1997, 'Explaining Emergence: Towards an
Ontology of Levels', Journal for General Philosophy of Science, 28, pp. 83-119.

Erickson, R.O. 1983, The Geometry of Phyllotaxis, in Dale, J.E. & F.L. Milthorpe (eds),
The Growth and Functioning of Leaves, Cambridge University Press, Cam-
bridge. pp. 53-88.

Faith, J. 2000, Emergent Representations: Dialectical Materalism and the Philosophy
of Mind, D.Phil thesis, COGS, University of Sussex, Sussex.

Farin, G. 1990, Curves and Surfaces for Computer Aided Geometric Design: A Practi-
cal Guide, (Second Edition), Academic Press, London.

References 361

Faux, I.D. & M.J. Pratt 1979, Computational Geometry for Design and Manufacture,
Ellis Horwood, Chichester.

Featherstone, R. 1988, Robot Dynamics Algorithms, Kluwer Academic Publishers,
Norwell, MA.

Fenton, T. 1969, 'Two Contributions to the Art and Science Muddle: 1. Constructivism
and Its Confusions', Artforum, 7(5), pp. 22-27.

Feyerabend, P.K. 1975, Against Method: Outline of an Anarchistic Theory of Know-
ledge, Nlb; Humanities Press, London; Atlantic Highlands.

Feyerabend, P.K. 1985, Attempt at a Realistic Interpretation of Experience, in Feyer-
abend, P.K. (ed) Philosophical Papers, Vol. 1, Cambridge University Press,
Cambridge. pp. 17-36.

Fine, A. 1986a, The Shaky Game: Einstein, Realism, and the Quantum Theory, Sci-
ence and Its Conceptual Foundations, University of Chicago Press, Chicago.

Fine, A. 1986b, 'Unnatural Attitudes: Realist and Instrumentalist Attachments to Sci-
ence', Mind, 95, pp. 149-179.

Fine, A. 1999, Realism and Antirealism, in Wilson, R.A. & F.C. Keil (eds), The MIT
Encyclopaedia of the Cognitive Sciences, MIT Press, Boston, Massachusetts.
pp. 707-709.

Flake, G.W. 1998, The Computational Beauty of Nature: Computer Explorations of
Fractals, Chaos, Complex Systems, and Adaptation, MIT Press, Cambridge,
Mass.

Fleischer, K.W. & A.H. Barr 1994, A Simulation Testbed for the Study of Multicellular
Development: The Multiple Mechanisms of Morphogenesis, in Langton, C.G.
(ed) Artificial Life III, Vol. XVII, Addison-Wesley, Reading, Massachusetts. pp.
389-416.

Fleischer, K.W., D.H. Laidlaw, B.L. Currin & A.H. Barr 1995, Cellular Texture Gen-
eration. Proceedings of SIGGRAPH 95 (Los Angeles, California, August 6-11,
1995). In Computer Graphics Proceedings, Annual Conference Series, ACM
SIGGRAPH, pp. 239-248.

Foley, J.D., A.v. Dam, S.K. Feiner & J.F. Hughes 1990, Computer Graphics: Principles
and Practice, (Second Edition), Addison-Wesley, Reading MA.

Foley, J.D., A. van Dam, S.K. Feiner, J.F. Hughes & R.L. Phillips 1994, Introduction to
Computer Graphics, Addison-Wesley, Reading, Mass.

Forrest, S. 1990, Emergent Computation: Self-Organizing, Collective, and Cooperative
Phenomena in Natural and Artificial Computing Networks, in Forrest, S. (ed)
Emergent Computation, A Special Issue of Physica D, MIT Press, Cambridge,
Mass. pp. 1-11.

Foster, F. 1999, The Story of Computer Graphics in ACM SIGGRAPH Video Review Se-
ries, ACM SIGGRAPH, New York.

Foster, H. 1996, The Return of the Real: The Avant-Garde at the End of the Century,
MIT Press, Cambridge, Mass.

Fournier, A. 1987, Prolegomenon, in The Modeling of Natural Phenomena, Siggraph
'87 Course Notes, Vol. 16, ACM SIGGRAPH, Anaheim, California. pp. 3-37.

362

Fournier, A. & W.T. Reeves 1986, A Simple Model of Ocean Waves. Proceedings of
SIGGRAPH '86 (Dallas, Texas, August 18-22, 1986, Evans, D.C. & R.J. Athay,
eds). In Computer Graphics 20(4) ACM SIGGRAPH, New York, pp. 75-84.

Fournier, A., D. Fussell & L. Carpenter 1982, 'Computer Rendering of Stochastic Mod-
els', Communications of the ACM, 25(6), pp. 371-384.

Fournier, A., J. Bloomenthal, P. Oppenheimer, W.T. Reeves & A.R. Smith 1987, The
Modelling of Natural Phenomena, Siggraph '87 Course Notes, vol. 16, ACM
SIGGRAPH, Anaheim, CA.

Fowler, D.R., P. Prusinkiewicz & J. Battjes 1992, A Collision-Based Model of Spiral
Phyllotaxis. Proceedings of SIGGRAPH '92 (Chicago, Illinois, July 26-31, 1992).
In Computer Graphics 26(2) ACM SIGGRAPH, New York, pp. 361-368.

Fowler, D.R., H. Meinhardt & P. Prusinkiewicz 1992, Modeling Seashells. Proceedings
of SIGGRAPH '92 (Chicago, Illinois, July 26-31, 1992). In Computer Graphics
26(2) ACM SIGGRAPH, New York, pp. 379-387.

Francblin, C. & J. Baudrillard 1991, Art and Philosophy: Baudrillard, Gadamer,
Jameson, Kristeva, Lyotard, Marin, Perniola, Sloterdijk, Sollers, Virilio, West,
New Criticism Series; No. 2, G. Politi, Milan.

Freeland, C.A. 2001, But Is It Art?: An Introduction to Art Theory, Oxford University
Press, Oxford.

Frijters, D. & A. Lindenmayer 1974, A Model for the Growth and Flowering of Aster
Novae-Angliae on the Basis of Table (1,0)L-Systems, in Rozenberg, G. & A.
Salomaa (eds), L Systems, Lecture Notes in Computer Science, Vol. 15,
Springer-Verlag, Berlin. pp. 24-52.

Gamma, E. 1995, Design Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley Professional Computing Series, Addison-Wesley, Reading,
Mass.

Gardner, G.Y. 1984, Simulation of Natural Scenes Using Textured Quadric Surfaces.
Proceedings of SIGGRAPH '84 (Minneapolis, Minnesota, July 23-27, 1984,
Christiansen, H., ed). In Computer Graphics 18(3) ACM SIGGRAPH, New York,
pp. 11-20.

Gardner, G.Y. 1985, Visual Simulation of Clouds. Proceedings of SIGGRAPH '85 (San
Francisco, California, July 22-26, 1985, Barsky, B.A., ed). In Computer
Graphics 19(3) ACM SIGGRAPH, New York, pp. 297-303.

Gardner, G.Y. 1990, 'Forest Fire Simulation', Computer Graphics, 24(4), p. 430.

Gervautz, M. & C. Traxler 1994, 'Representation and Realistic Rendering of Natural
Phenomena with Cyclic CSG-Graphs', Technical Report, No. TR-186-2-94-19,
Institute of Computer Graphics and Algorithms, Vienna University of Technol-
ogy, Wien, Austria.

Giere, R.N. 1999, Using Models to Represent Reality, in Magnani, L., N.J. Nersessian
& P. Thagard (eds), Model-Based Reasoning in Scientific Discovery, Kluwer
Academic/Plenum Publishers, New York. pp. 41-57.

Girard, M. 1991, Constrained Optimization of Articulated Animal Movement, in Bad-
ler, N.I., B.A. Barsky & D. Zeltzer (eds), Making Them Move: Mechanics, Con-
trol, and Animation of Articulated Figures, Morgan Kaufmann, San Mateo,
CA. pp. 209-232.

References 363

Girard, M. & A.A. Maciejewski 1985, Computational Modeling for the Computer Ani-
mation of Legged Figures. Proceedings of SIGGRAPH '85 (San Francisco,
California, July 22-26, Barsky, B.A., ed). In Computer Graphics 19(3) ACM
SIGGRAPH, New York, pp. 263-270.

Gjerdingen, R. 1989, 'Using Connectionist Models to Explore Complex Musical Pat-
terns', Computer Music Journal, 13(3), pp. 67-75.

Globus, G.G. 1995, The Postmodern Brain, Advances in Consciousness Research, vol.
1, J. Benjamins Pub. Co., Amsterdam; Philadelphia.

Goldberg, D.E. 1989, Genetic Algorithms in Search, Optimization, and Machine
Learning, Addison-Wesley, Reading, MA.

Gombrich, E.H. 1984, The Story of Art, (14th Edition), Phaidon, Oxford.

Goodman, N. 1968, Languages of Art; an Approach to a Theory of Symbols, Bobbs-
Merrill, Indianapolis.

Graf, J. & W. Banzhaf 1995, Interactive Evolution of Images, in McDonnell, J.R., R.G.
Reynolds & D.B. Fogel (eds), Evolutionary Programming IV: Proceedings of the
Fourth Annual Conference on Evolutionary Programming, pp. 53-65.

Gray, J. 2002, Straw Dogs: Thoughts on Humans and Other Animals, Granta Books,
London.

Greig, D. 1999, Field Guide to Australian Wildflowers, New Holland Publishers
(Australia) Pty. Ltd., Sydney.

Grenfenstette, J.J. (ed.) 1985, Proceedings of the First International Conference on
Genetic Algorithms and Their Applications, Lawrence Erlbaum Associates,
Hillsdale, New Jersey.

Grenfenstette, J.J. (ed.) 1987, Genetic Algorithms and Their Applications: Proceedings
of the Second International Conference on Genetic Algorithms, Lawrence
Erlbaum Associates, Hillsdale, New Jersey.

Grimmet, G.R. & D.R. Stirzaker 1982, Probability and Random Process, Oxford Uni-
versity Press, Oxford.

Haeckel, E. 1998, Art Forms in Nature: The Prints of Ernst Haeckel, Prestel-Verlag,
Munich.

Hagen, M.A. 1986, Varieties of Realism: Geometries of Representational Art, Cam-
bridge University Press, Cambridge ; New York.

Hanan, J. 1992, Parametric L-Systems and Their Application to the Modelling and
Visualization of Plants, Ph.D. thesis, Computer Science, University of Regina,
Saskatchewan.

Hanrahan, P. 1983, Ray Tracing Algebraic Surfaces. Proceedings of SIGGRAPH '83
(Detroit, Michigan, July 25-29, 1983, Christiansen, H., ed). In Computer
Graphics 17(3) ACM SIGGRAPH, New York, pp. 83-90.

Hansen, N.R. 1958, Patterns of Discovery, Cambridge University Press.

Hart, J.C. 1996, 'On Efficiently Representing Procedural Geometry'.

364

Hayles, N.K. 1996, Narratives of Artificial Life, in Robertson, G., M. Mash, L. Tickner,
J. Bird, B. Curtis & T. Putnam (eds), Futurenatural: Nature, Science, Culture,
Routledge, New York and London. pp. 146-164.

Hayles, N.K. 2001, 'Book Review: Silicon Second Nature: Culturing Artificial Life in a
Digital World.' Artificial Life, 7(4), pp. 425-428.

Heckbert, P.S. 1987, Ray Tracing Jell-O Brand Gelatin. Proceedings of SIGGRAPH '87
(Anaheim, California, 27-31 July, 1997, Stone, M.C., ed). In Computer Graph-
ics 21(4) ACM SIGGRAPH, New York, pp. 73-74.

Helmreich, S. 2000, Silicon Second Nature: Culturing Life in a Digital World, (Up-
dated edition (June 2000)), University of California Press.

Hempel, C.G. & P. Oppenheim 1948, 'Studies in the Logic of Explanation', Philosophy
of Science, 15, pp. 135-175.

Herman, G.T. & G. Rozenberg 1975, Developmental Systems and Languages, North-
Holland, Amsterdam.

Hewlett, W.B. & E. Selfridge-Field 1997, MIDI, in Selfridge-Field, E. (ed) Beyond MIDI:
The Handbook of Musical Codes, MIT Press, Cambridge, Massachusetts. pp.
41-72.

Hiller, L. 1981, 'Composing with Computers: A Progress Report', Computer Music
Journal, 5(4), pp. 7-21.

Hiller, L.A. & L. Issacson 1959, Experimental Music, McGraw-Hill, New York.

Hogeweg, P. & B. Hesper 1974, 'A Model Study on Biomorphological Description', Pat-
tern Recognition, 6, pp. 165-179.

Holland, J.H. 1992, Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control, and Artificial Intelligence, (1st
MIT Press Edition), Complex Adaptive Systems, MIT Press, Cambridge, Mass.

Holland, J.H. 1995, Hidden Order: How Adaptation Builds Complexity, Helix Books,
Addison-Wesley, Reading, Mass.

Holton, M. 1994, 'Strands, Gravity and Botanical Tree Imagery', Computer Graphics
Forum, 13(1), pp. 57-67.

Holtzman, S.R. 1980, 'A Generative Grammar Definition Language for Music', Inter-
face, 9(2), pp. 1-48.

Holtzman, S.R. 1981, 'Using Generative Grammars for Music Composition', Computer
Music Journal, 5(1), pp. 51-64.

Horkheimer, M. 1937, Traditional and Critical Theory, in Critical Theory: Selected Es-
says, Seabury Press, New York, NY. pp. 188-243.

Horn, M.K. 1983, 'Fourth and Fifth-Order Scaled Runge-Kutta Algorithms for Treat-
ing Dense Output', SIAM Journal of Numerical Analysis, 20, pp. 558-568.

Hornby, G.S. & J.B. Pollack 2001a, 'Evolving L-Systems to Generate Virtual Crea-
tures', Computers & Graphics, 26(6), pp. 1041-1048.

References 365

Hornby, G.S. & J.B. Pollack 2001b, The Advantages of Generative Grammatical En-
codings for Physical Design, in Proceedings of the 2001 Congress on Evolu-
tionary Computation, IEEE Press pp. 600-607.

Horner, A. & D.E. Goldberg 1991, 'Genetic Algorithms and Computer-Assisted Music
Composition', Technical Report, No. CCSR-91-20, University of Illinois, Chi-
cago.

House, D.H., G.S. Schmidt, S.A. Arvin & M.K. De Leon 1998, 'Visualizing a Real For-
rest', IEEE Computer Graphics & Applications, 18(1), pp. 12-15.

Humphrey, N.K. 1973, 'The Illusion of Beauty', Perception, 2, pp. 429-439.

Inakage, M., D. Peachey, G.Y. Gardner, A. Fournier & K. Perlin 1988, Functional
Based Modeling, Siggraph '88 Course Notes, vol. 28, ACM SIGGRAPH, Atlanta,
Georgia.

Jackson, H. 2002, Toward a Symbiotic Coevolutionary Approach to Architecture, in
Bentley, P.J. & D.W. Corne (eds), Creative Evolutionary Systems, Academic
Press, London. pp. 299-313.

Jacob, C. 1994, Genetic L-System Programming, in Davidor, Y., H.-P. Schwefel & R.
Männer (eds), Parallel Problem Solving from Nature III, LNCS, Vol. 866,
Springer-Verlag, Berlin. pp. 334-343.

Jacob, C. 1995, 'Genetic L-System Programming: Breeding and Evolving Artificial
Flowers with Mathematica', IMS '95 First International Mathematica Sympo-
sium, Computational Mechanics Publications, Southampton, UK, pp. 215-222.

Jacob, C. 1996, Evolving Evolution Programs: Genetic Programming and L-Systems, in
Koza, J.R., D.E. Goldberg, D.B. Fogel & R.L. Riolo (eds), Genetic Programming
1996: Proceedings of the First Annual Conference, MIT Press, Cambridge, MA.
pp. 28-31.

Jankel, A. & R. Morton 1984, Creative Computer Graphics, Cambridge University
Press, Cambridge.

Jay, M. 1993, Downcast Eyes: The Denigration of Vision in Twentieth-Century French
Thought, University of California Press, Berkeley.

Jean, R.V. 1982, Mathematical Approach to Pattern & Form in Plant Growth, Wiley,
New York.

Jean, R.V. & D. Barabe 1998, Symmetry in Plants, World Scientific Series in Math-
ematical Biology and Medicine, vol. 4, World Scientific.

Johnson-Laird, P.N. 1993, Human and Machine Thinking, Lawrence Eribaum Associ-
ates.

Jones, K. 1981, 'Compositional Applications of Stochastic Processes', Computer Music
Journal, 5(2), pp. 381-397.

Kajiya, J.T. 1983, New Techniques for Ray Tracing Procedurally Defined Surfaces.
Proceedings of SIGGRAPH '83 (Detroit, Michigan, July 25-29, 1983, Christian-
sen, H., ed). In Computer Graphics 17(3) ACM SIGGRAPH, New York, pp. 91-
102.

366

Kajiya, J.T. & B.P. Von Herzen 1984, Ray Tracing Volume Densities. Proceedings of
SIGGRAPH '84 (Minneapolis, Minnesota, July 23-27, 1984, Christiansen, H.,
ed). In Computer Graphics 18(3) ACM SIGGRAPH, New York, pp. 165-175.

Karolyi, O. 1965, Introducing Music, (1991 Reprinted Edition), Penguin, London,
England.

Kawaguchi, Y. 1982, A Morphological Study of the Form of Nature. Proceedings of the
Ninth Annual Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH '82) (Boston, Massachusetts, July 26-30, 1982, Bergeron, R.D.,
ed). In Computer Graphics 16(3) ACM SIGGRAPH, New York, pp. 223-232.

Kawaguchi, Y. 1985, Growth Morphogenesis — a Journey to the Origins of Form, JICC
Publishing Inc., Tokyo, Japan.

Kay, A.C. 1993, 'The Early History of Smalltalk', The second ACM SIGPLAN conference
on History of programming languages, ACM Press, Cambridge, Massachusetts,
pp. 69-95.

Kellman, P.J. & E.S. Spelke 1983, 'Perception of Partly Occluded Objects in Infancy',
Cognitive Psychology, 15, pp. 483-524.

Kent, J.R., W.E. Carson & R.E. Parent 1992, Shape Transformation for Polyhedral
Objects. Proceedings of SIGGRAPH '92 (Chicago, Illinois, July 26-31, 1992). In
Computer Graphics 26(2) ACM SIGGRAPH, New York, pp. 47-54.

Kepes, G. 1944, Language of Vision, P. Theobald, Chicago, IL.

Kernighan, B.W. & D.M. Ritchie 1988, The C Programming Language, (Second Edi-
tion), Prentice Hall, Englewood Cliffs, New Jersey.

Kincaid, H. 1988, 'Supervenience and Explanation', Synthese, 77, pp. 251-281.

Kitano, H. 1990, 'Designing Neural Networks Using Genetic Algorithms with Graph
Generation System', Complex Systems, 4(4), pp. 461-476.

Klok, F. 1986, 'Two Moving Coordinate Frames for Sweeping Along a 3D Trajectory',
Computer Aided Geometric Design, 3(3), pp. 217-229.

Koffka, K. 1935, Principles of Gestalt Psychology, Harcourt Brace, New York.

Kókai, G., Z. Tóth & R. Ványi 1999, Evolving Artificial Trees Described by Parametric
L-Systems, in Proceedings of the First Canadian Workshop on Soft Computing,
Edmonton, Alberta, Canada. pp. 1722-1728.

Korein, J.U. & N.I. Badler 1982, 'Techniques for Generating the Goal-Directed Motion
of Articulated Structures', IEEE Computer Graphics & Applications, 2(9), pp.
71-81.

Koza, J.R. 1990, 'Genetic Programming: A Paradigm for Genetically Breeding Popula-
tions of Computer Programs to Solve Problems', Technical Report, No. STAN-
CS-90-1314, June 1990. Stanford University Computer Science Department.

Koza, J.R. 1992, Genetic Programming: On the Programming of Computers by Means
of Natural Selection, Complex Adaptive Systems, MIT Press, Cambridge, Mass.

Krausse, J. & C. Lichtenstein (eds) 1999, Your Private Sky: R. Buckminster Fuller, the
Art of Design Science, Lars Müller Publishers, Baden, Switzerland.

References 367

Kreyszig, E. 1999, Advanced Engineering Mathematics, (8th Edition), John Wiley &
Sons, New York.

Kuhn, T.S. 1996, The Structure of Scientific Revolutions, (Third Edition), University of
Chicago Press, Chicago, Ill.

Langer, S.K. 1948, Philosophy in a New Key: A Study in the Symbolism of Reason,
Rite, and Art, New American Library, New York.

Langston, P.S. 1986, '201 644-2332 or Eedie & Eddie on the Wire: An Experiment in
Music Generation', USENIX Summer Conference, USENIX Association, Altanta,
GA, USA, pp. 13-27.

Langston, P.S. 1990, 'Little Languages for Music', Computing Systems, 3(2), pp. 193-
288.

Langton, C.G. 1989, Artificial Life, in Langton, C.G. (ed) Artificial Life, SFI Studies in
the Sciences of Complexity, Vol. VI, Addison-Wesley pp. 1-47.

Laposky, B.F. 1975, Oscillons: Electronic Abstractions, in Leavitt, R. (ed) Artist and
Computer, Harmony Books, New York, N.Y. pp. 21-22.

Laske, O. 1975, 'Introduction to a Generative Theory of Music', Sonological Reports,
No. 1(B), Institute of Sonology, Utrecht.

Laske, O. 1979, 'Compositional Theory in Koenig's Project One and Project Two',
Computer Music Journal, 5(4), pp. 54-65.

Latour, B. 1979, Laboratory Life, the Construction of Scientific Facts, Princeton Uni-
versity Press, Princeton.

Leach, J. & J. Fitch 1995, 'Nature, Music, and Algorithmic Composition', Computer
Music Journal, 19(2), pp. 23-33.

Lerdhal, F. & R. Jackendoff 1983, A Generative Theory of Tonal Music, MIT Press,
Cambridge, MA.

Levoy, M. 1990, 'Efficient Ray Tracing of Volume Data', ACM Transactions on Graph-
ics, 9(3), pp. 245-261.

Lewes, G.H. 1879, Problems of Life and Mind, Trubner, London.

Lidov, D. & J. Gabura 1973, 'A Melody-Writing Algorithm Using a Formal Language
Model', Computers and the Humanities, 4(3-4), pp. 138-148.

Lienhardt, P. 1988, 'Free-Form Surfaces Modeling by Evolution Simulation', Pro-
ceedings of Eurographics '88, Nice, France, pp. 327-341.

Lindenmayer, A. 1968, 'Mathematical Models for Cellular Interactions in Develop-
ment, Parts I and II', Journal of Theoretical Biology, 18, pp. 280-315.

Lindenmayer, A. 1974, Adding Continuous Components to L-Systems, in Rozenberg,
G. & A. Salomaa (eds), L Systems, Lecture Notes in Computer Science, Vol. 15,
Springer-Verlag, Berlin. pp. 53-68.

Lindenmayer, A. & G. Rozenberg (eds) 1976, Automata, Languages, Development,
North-Holland, Amsterdam.

368

Lintermann, B. & O. Deussen 1996, 'Interactive Modelling of Branching Structures',
SIGGRAPH '96 (Technical Sketches), New Orleans.

Lintermann, B. & O. Deussen 1998, 'A Modelling Method and Interface for Creating
Plants', Computer Graphics Forum, 17(1), pp. 73-82.

Lintermann, B. & O. Deussen 1999, 'Interactive Modeling of Plants', IEEE Computer
Graphics & Applications, 19(1), pp. 2-11.

Little, T.D.C. & A. Ghafoor 1990, 'Synchronization and Storage Models for Multimedia
Objects', IEEE Journal on Selected Areas in Communications, 8(3), pp. 413-
427.

Lorenz, R. & I. Cunningham 1996, Imogen Cunningham: Flora, Little Brown and Com-
pany, Boston.

Loy, G. 1989, Composing with Computers – a Survey of Some Compositional For-
malisms and Music Programming Languages, in Matthews, M.V. & J.R. Pierce
(eds), Current Directions in Computer Music Research, MIT Press, Cambridge,
MA. pp. 291-396.

Loy, G. & C. Abbott 1985, 'Programming Languages for Computer Music Synthesis,
Performance and Composition', ACM Computing Surveys, 17(2).

Lyon, D. 1995, 'Using Stochastic Petri Nets for Real-Time Nth-Order Stochastic Com-
position', Computer Music Journal, 19(4), pp. 13-22.

Lyotard, J.F. 1984, The Postmodern Condition: A Report on Knowledge, Theory and
History of Literature, vol. 10, University of Minnesota Press, Minneapolis.

Lyotard, J.F. & A. Benjamin 1989, The Lyotard Reader, Blackwell, Oxford, UK; Cam-
bridge, Mass., USA.

Macey, D. 2000, The Penguin Dictionary of Critical Theory, Penguin, London.

Machamer, P. 2002, A Brief Historical Introduction to the Philosophy of Science, in
Machamer, P. & M. Silberstein (eds), The Blackwell Guide to the Philosophy of
Science, Blackwell Philosophical Guides, Blackwell, Oxford, UK. pp. 1-17.

Magee, B. 1982, Popper, (10th impression, with revised postscript and bibliography),
Fontana Modern Masters, Fontana, London.

Mandelbrot, B.B. 1983, The Fractal Geometry of Nature, (Updated and augmented
edition), W.H. Freeman, New York.

Mandler, G. 1975, Mind and Emotion, Wiley, New York.

Mason, S. & M. Saffle 1994, 'L-Systems, Melodies and Musical Structure', Leonardo
Music Journal, 4, pp. 31-38.

Mastin, G.A., P.A. Watterberg & J.F. Mareda 1987, 'Fourier Synthesis of Ocean
Scenes', IEEE Computer Graphics and Applications, (March), pp. 16-23.

Mathews, M.V. & F.R. Moore 1970, 'Groove: A Program to Compose, Store and Edit
Functions of Time', Communications of the ACM, 13(12), pp. 715-721.

Max, N.L. 1981, 'Vectorized Procedural Models for Natural Terrain: Waves and
Islands in the Sunset', Computer Graphics, 15(3), pp. 317-324.

References 369

McAlpine, K. 2000, Applications of Dynamical Systems to Music Composition, Ph.D.
thesis, Department of Mathematics, University of Glasgow, Glasgow.

McAlpine, K., E.R. Miranda & S. Hoggar 1999, 'Making Music with Algorithms: A
Case-Study System', Computer Music Journal, 23(2), pp. 9-30.

McCormack, J. 1992a, Flux in ACM SIGGRAPH Video Review, ACM SIGGRAPH, New
York.

McCormack, J. 1992b, 'Bloom' and 'Shell' in ACM Siggraph Stereoscopic Slide Set,
ACM SIGGRAPH, New York.

McCormack, J. 1993, Interactive Evolution of L-System Grammars for Computer
Graphics Modelling, in Green, D. & T. Bossomaier (eds), Complex Systems:
From Biology to Computation, ISO Press, Amsterdam. pp. 118-130.

McCormack, J. 1994a, Turbulence: An Interactive Museum of Unnatural History, Jon
McCormack/Australian Film Commission, Melbourne.

McCormack, J. 1994b, Turbulence: An Interactive Installation Exploring Artificial
Life. Visual Proceedings: The Art and Interdisciplinary Programs of SIGGRAPH
94 (Orlando, Florida, July 24-29, 1994). In Computer Graphics Annual Confer-
ence Series, ACM SIGGRAPH, New York, pp. 182-183.

McCormack, J. 1994c, Wild: An Interactive Computer Installation, in Sproul, L. (ed)
The 1994 Next Wave Art and Technology Catalogue, Next Wave Festival, Inc.,
Melbourne. pp. 22-25.

McCormack, J. 1996, Grammar-Based Music Composition, in Stocker, R., H. Jelinek,
B. Durnota & T. Bossomaier (eds), Complex Systems 96: From Local Interac-
tions to Global Phenomena, ISO Press, Amsterdam. pp. 321-336.

McCormack, J. 2002, 'Evolving for the Audience', International Journal of Design
Computing, 4(Special Issue on Designing Virtual Worlds).

McCormack, J. & A. Sherstyuk 1997, 'Creating and Rendering Convolution Surfaces',
Technical Report, No. 97/324, October 1997. Monash University, Melbourne.

McCormack, J. & A. Sherstyuk 1998, 'Creating and Rendering Convolution Surfaces',
Computer Graphics Forum, 17(2), pp. 113-121.

McCormack, J. & A. Dorin 2001, 'Art, Emergence and the Computational Sublime' in
Dorin, A. (ed), Second Iteration: a conference on generative systems in the
electronic arts, CEMA, Melbourne, Australia, pp. 67-81.

McDonough, R. 2002, Emergence and Creativity: Five Degrees of Freedom, in Dart-
nall, T. (ed) Creativity, Cognition, and Knowledge, Perspectives on Cognitive
Science, Praeger, Westport, Connecticut; London. pp. 283-320.

McKenna, M. & D. Zeltzer 1990, Dynamic Simulation of Autonomous Legged Locomo-
tion. Proceedings of SIGGRAPH '90 (Dallas, Texas, August 6-10, 1990). In
Computer Graphics 24(4) ACM SIGGRAPH, New York, pp. 29-38.

McLaughlin, B.P. 2001, Emergentism, in Wilson, R.A. & F.C. Keil (eds), The MIT Ency-
clopedia of the Cognitive Sciences, The MIT Press, Cambridge, Massachusetts.
pp. 267-268.

Mech, R. & P. Prusinkiewicz 1996, Visual Models of Plants Interacting with Their En-
vironment. Proceedings of SIGGRAPH 96 (New Orleans, Louisiana, August 4-9,

370

1996). In Computer Graphics Proceedings, Annual Conference Series, ACM
SIGGRAPH, pp. 397-410.

Mill, J.S. 1872, A System of Logic, Ratiocinative and Inductive: Being a Connected
View of the Principles of Evidence and the Methods of Scientific Investigation,
(8th Edition), Longman, London.

Miller, G.F. 2000, The Mating Mind: How Sexual Choice Shaped the Evolution of Hu-
man Nature, William Heinemann, London.

Miller, G.S.P. 1988, The Motion Dynamics of Snakes and Worms. Proceedings of SIG-
GRAPH '88 (Atlanta, Georgia, August 1-5, 1998). In Computer Graphics 22(4)
ACM SIGGRAPH, New York, pp. 169-178.

Minsky, M. (ed.) 1965, Semantic Information Processing, MIT Press, Cambridge, MA.

Minsky, M. 1981, 'Music, Mind and Meaning', Computer Music Journal, 5(3), pp. 28-
44.

Miranda, E.R. 2001, Composing Music with Computers, Music Technology Series, Fo-
cal Press, Oxford ; Boston.

Mitchell, M. 1996, Introduction to Genetic Algorithms, Complex Adaptive Systems,
MIT Press, Cambridge, MA.

Mitter, P. 1999, 'A Short Commentary of 'the Science of Art'', Journal of Conscious-
ness Studies, 6(6-7), pp. 64-65.

Miyata, H. 1986, 'Finite-Difference Simulation of Breaking Waves', Journal of Compu-
tational Physics, 65, pp. 179-214.

Mock, K.J. 1998, 'Wildwood: The Evolution of L-Systems Plants for Virtual Envi-
ronments', International Conference on Evolutionary Computing '98, vol. Pro-
ceedings of the 1998 IEEE World Congress on Computational Intelligence,
IEEE-Press, Anchorage, Alaska, pp. 476-480.

Moholy-Nagy, L. 1967, 'A New Instrument of Vision in "from the Bauhaus"', Camera,
46(4), p. 30.

Molino, J. 1975, 'Fait Musicale Et Sémiologies De La Musique', Musique en jeu, 17,
pp. 37-62.

Monod, J. 1971, Chance and Necessity; an Essay on the Natural Philosophy of Modern
Biology, Penguin, London.

Moore, F.R. 1990, Elements of Computer Music, Prentice Hall, Englewood Cliffs, N.J.

Moravac, H. 1988, Mind Children: The Future of Robot and Human Intelligence, Har-
vard University Press, Cambridge.

Morgan, C.L. 1923, Emergent Evolution: The Gifford Lectures. 1923, Williams and
Norgate, London.

Murray, C.D. 1927, 'A Relationship between Circumstance and Weight in Trees and
Its Bearing on Branching Angles', Journal of General Physiology, 10, pp. 725-
729.

Musgrave, F.K. 1994, Procedural Fractal Terrains, in Ebert, D.S. (ed) Texturing and
Modeling: A Procedural Approach, Academic Press, London. pp. 295-310.

References 371

Musgrave, F.K., C.E. Kolb & R.S. Mace 1989, The Synthesis and Rendering of Eroded
Fractal Terrains. SIGGRAPH '89 Conference Proceedings (Boston, Massachu-
setts, 31 July–4August). In Computer Graphics 23(3) pp. 41-50.

Nagel, E. 1961, The Structure of Science: Problems in the Logic of Scientific Explan-
ation, Routledge, London.

Nake, F. 1998, 'Art in the Time of the Artificial', Leonardo, 31(3), pp. 163-164.

Nake, F. 2002, 'About Generative Aesthetics [Email]', Personal Communication.

Nelson, G.L. 1996, 'Real Time Transformation of Musical Material with Fractal Algor-
ithms', Computers & Mathematics with Applications, 32(1), pp. 109-116.

Nevill-Manning, C.G. & I.H. Witten 1997, 'Compression and Explanation Using Hierar-
chical Grammars', The Computer Journal, 40(2/3), pp. 103-116.

Nguyen, D.C. 1997, Ray Traced Evolution – User's Manual (Web Page),
< http://www.rz.tu-
ilmenau.de/~juhu/GX/RTEvol/DOC/LATEX2HTML/manual.html > (Accessed 11
May 2002).

Niklas, K.J. 1982, 'Computer Simulations of Early Land Plant Branching Morphol-
ogies: Canalization of Patterns During Evolution?' Paleobiology, 8(3), pp. 196-
210.

Niklas, K.J. 1986, 'Computer Simulated Plant Evolution', Scientific American, pp. 55-
64.

Niklas, K.J. 1997, The Evolutionary Biology of Plants, University of Chicago Press,
Chicago, IL.

Nishimura, H., H. Ohno, T. Kawata, I. Shirakawa & K. Omura 1983, Links-1: A Paral-
lel Pipelined Multimicrocomputer System for Image Creation, in Conference
Proceedings of the 10th Annual International Symposium on Computer Archi-
tecture, Sigarch, pp. 387-394.

Nishimura, H., M. Hirai, T. Kawai, T. Kawata, I. Shirakawa & K. Omura 1985, 'Object
Modelling by Distribution Function and a Method of Image Generation',
Transactions of the Institute of Electronics and Communication Engineers of
Japan, J68-D(4), pp. 718-725.

Norman, D.A. & S.W. Draper 1986, User Centered System Design : New Perspectives
on Human-Computer Interaction, Lawrence Erlbaum Associates, Hillsdale,
N.J.

Noser, H. & D. Thalmann 1993, 'L-System Based Behavioural Animation', Pacific
Graphics '93, World Scientific, Seoul, Korea, pp. 133-146.

Noser, H., D. Thalmann & R. Turner 1992, 'Animation Based on the Interaction of L-
Systems with Vector Force Fields', Computer Graphics International,
Springer-Verlag, pp. 747-761.

Nyman, M. 1999, Experimental Music - Cage and Beyond, (Second Edition), Music in
the 20th Century, Cambridge University Press, Cambridge.

Ochoa, G. 1998, 'On Genetic Algorithms and Lindenmayer Systems', PPSN IV, vol.
LNCS 1498, Springer-Verlag, Amsterdam, pp. 335-343.

372

Omura, K., Y. Kawaguchi & S. Noji 1985, CG in Japan, Graphic-sha Publishing,
Tokyo.

Oppenheimer, P.E. 1986, Real Time Design and Animation of Fractal Plants and
Trees. Proceedings of SIGGRAPH '86 (Dallas, Texas, August 18-22, 1986,
Evans, D.C. & R.J. Athay, eds). In Computer Graphics 20(4) ACM SIGGRAPH,
New York, pp. 55-64.

Oppenheimer, P.E. 1988, The Artificial Menagerie, in Langton, C.G. (ed) Artificial Life,
SFI Studies in the Sciences of Complexity, Addison-Wesley, Redwood City,
California. pp. 251-274.

Oreskes, N., K. Shrader-Frechette & K. Belitz 1994, 'Verification, Validation, and
Confirmation of Numerical Models in the Earth Sciences', Science, 263(4 Feb-
ruary 1994), pp. 641-646.

Orff, C. 1967, Gesspräche Mit Komponisten, Zürich.

Parish, Y.I.H. & P. Müller 2001, Procedural Modeling of Cities. Proceedings of SIG-
GRAPH 2001 (Los Angeles, California, August 12-17). In Computer Graphics
Proceedings Annual Conference Series, ACM SIGGRAPH, pp. 301-308.

Pattee, H.H. 1988, Simulations, Realizations, and Theories of Life, in Langton, C.G.
(ed) Artificial Life, SFI Studies in the Sciences of Complexity, Vol. VI, Addison-
Wesley pp. 63-77.

Paul, C. 2003, Digital Art, Thames & Hudson World of Art, Thames and Hudson, Lon-
don.

Peachey, D.R. 1985, Solid Texturing of Complex Surfaces. Proceedings of SIGGRAPH
'85 (San Francisco, California, July 22-26, 1985, Barsky, B.A., ed). In Com-
puter Graphics 19(3) ACM SIGGRAPH, New York, pp. 279-286.

Peachey, D.R. 1986, Modeling Waves and Surf. Proceedings of SIGGRAPH '86 (Dallas,
Texas, August 18-22, 1986, Evans, D.C. & R.J. Athay, eds). In Computer
Graphics 20(4) ACM SIGGRAPH, New York, pp. 65-74.

Peachey, D.R. 1994, Building Procedural Textures, in Ebert, D.S. (ed) Texturing and
Modeling: A Procedural Approach, Academic Press, London. pp. 5-100.

Peitgen, H.-O. & P.H. Richter 1986, The Beauty of Fractals: Images of Complex Dy-
namical Systems, Springer-Verlag, Berlin; New York.

Peitgen, H.-O. & D. Saupe 1988, The Science of Fractal Images, Springer-Verlag, Ber-
lin; New York.

Penny, S. 1996, Artistic Practice, Body Knowledge and the Engineering World View,
in Stocker, G. & C. Schöpf (eds), Ars Electronica '96: Memesis, Springer-
Verlag, Wein. pp. 190-207.

Penny, S. 1999, 'Systems Aesthetics and Cyborg Art: The Legacy of Jack Burnham',
Sculpture, 18(1), pp. 36-41.

Penrose, R. 1989, The Emperor's New Mind: Concerning Computers, Minds, and the
Laws of Physics, Oxford University Press, Oxford, England.

Perlin, K. 1985a, An Image Synthesizer. Proceedings of SIGGRAPH '85 (San Francisco,
California, July 22-26, 1985, Barsky, B.A., ed). In Computer Graphics 19(3)
ACM SIGGRAPH, New York, pp. 287-296.

References 373

Perlin, K. 1985b, 'An Image Synthesizer', Computer Graphics, 19(3), pp. 287-296.

Phong, B.T. 1975, 'Illumination for Computer Generated Pictures', Communications of
the ACM, 18(6), pp. 311-317.

Pinker, S. 1997, How the Mind Works, Penguin Press, Middlesex, England.

Poincaré, H. 1923, The Foundations of Science: Science and Hypothesis, the Value of
Science, Science and Method, The Science Press, New York.

Polanyi, M. 1968, 'Life's Irreducible Structure', Science, 160, pp. 1308-1312.

Pope, S. 1986, 'Music Notations and the Representation of Musical Structure and
Knowledge', Perspectives of New Music, 24(2), pp. 156-189.

Popper, K.R. 1968, The Logic of Scientific Discovery, (3rd edition), Hutchinson, Lon-
don.

Praehofer, H. 1991, 'System Theoretic Formalisms for Combined Discrete-Continuous
System Simulation', International Journal of General Systems, 19(3), pp. 219-
240.

Press, W.H., S.A. Teukolsky, W.T. Vetterling & B.P. Flannery 1992, Numerical Recipes
in C: The Art of Scientific Computing, (Second Edition), Cambridge University
Press, Cambridge.

Prigogine, I. & I. Stengers 1984, Order out of Chaos: Man's New Dialogue with Nature,
(1st Edition), New Science Library: Distributed by Random House, Boulder,
CO.

Prusinkiewicz, P. 1986a, 'Score Generation with L-Systems', Proceedings of the 1986
International Computer Music Conference, Computer Music Association, San
Francisco, CA, pp. 455-457.

Prusinkiewicz, P. 1986b, 'Graphical Applications of L-Systems', Proceedings of
Graphics Interface '86 — Vision Interface, CIPS, pp. 247-253.

Prusinkiewicz, P. 1987, Applications of L-Systems to Computer Imagery, in Ehrig, H.,
M. Nagl, A. Rosenfeld & G. Rozenberg (eds), Graph Grammars and Their Ap-
plication to Computer Science; Third International Workshop, Lecture Notes in
Computer Science, Vol. 291, Springer-Verlag, Berlin. pp. 534-548.

Prusinkiewicz, P. & J. Hanan 1989, Lindenmayer Systems, Fractals and Plants, Lec-
ture Notes in Bio-Mathematics, vol. 79, Springer-Verlag, Berlin.

Prusinkiewicz, P. & A. Lindenmayer 1990, The Algorithmic Beauty of Plants, The
Virtual Laboratory, Springer-Verlag, New York.

Prusinkiewicz, P. & J. Hanan 1990, Visualization of Botanical Structures and Pro-
cesses Using Parametric L-Systems, in Thalmann, D. (ed) Scientific Visualiza-
tion and Graphics Simulation, John Wiley & Sons, Chichester. pp. 183-201.

Prusinkiewicz, P. & M. Hammel 1993, 'A Fractal Model of Mountains with Rivers',
Graphics Interface '93, Toronto, Ontario, pp. 174-180.

Prusinkiewicz, P., A. Lindenmayer & J. Hanan 1988, Developmental Models of Herba-
ceous Plants for Computer Imagery Purposes. Proceedings of SIGGRAPH '88
(Atlanta, Georgia, August 1-5, 1988). In Computer Graphics 22(4) ACM SIG-
GRAPH, New York, pp. 141-150.

374

Prusinkiewicz, P., M. Hammel & E. Mjolsness 1993, Animation of Plant Development.
Proceedings of SIGGRAPH 93 (Anaheim, California, August 1-6, 1993). In
Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH,
New York, pp. 351-360.

Prusinkiewicz, P., M. James & R. Mech 1994, Synthetic Topiary. Proceedings of SIG-
GRAPH 94 (Orlando, Florida, July 24-29, 1994). In Computer Graphics Pro-
ceedings, Annual Conference Series, ACM SIGGRAPH, pp. 351-358.

Prusinkiewicz, P., J. Hanan & R. Mech 2000, An L-System-Based Plant Modeling Lan-
guage, in Nagl, M., A. Schürr & M. Münch (eds), Lecture Notes in Computer
Science, Vol. 1779, Springer-Verlag, Berlin. pp. 395-410.

Prusinkiewicz, P., M. Hammel, R. Mech & J. Hanan 1995, The Artificial Life of Plants.
SIGGRAPH '95 Course Notes). In Artificial Life for Graphics, Animation, and
Virtual Reality 7 ACM SIGGRAPH, pp. 1-1 - 1-38.

Prusinkiewicz, P., R. Karwowski, R. Mech & J. Hanan 2000, L-Studio/Cpfg: A Software
System for Modelling Plants, in Nagl, M., A. Schürr & M. Münch (eds), Lecture
Notes in Computer Science, Vol. 1779, Springer-Verlag, Berlin. pp. 457-464.

Prusinkiewicz, P., L. Mündermann, R. Karwowski & B. Lane 2001, The Use of Posi-
tional Information in the Modeling of Plants. Proceedings of SIGGRAPH 2001
(Los Angeles, California, August 12-17). In Computer Graphics Proceedings
Annual Conference Series, ACM SIGGRAPH, pp. 289-300.

Putman, H. 1975, Mathematics, Matter and Method, vol. 1, Cambridge University
Press, Cambridge.

Qazi, N.U., M. Woo & A. Ghafoor 1993, 'A Synchronization and Communication Model
for Distributed Multimedia Objects', ACM Multimedia 93, ACM, Anaheim, CA,
pp. 147-155.

Quammen, D. 1996, Song of the Dodo: Island Biogeography in an Age of Extinctions,
Scribner, New York, NY.

Raibert, M.H. & J.K. Hodgins 1991, Animation of Dynamic Legged Locomotion. Pro-
ceedings of SIGGRAPH '91 (Las Vegas, Nevada, July 28 - August 2, 1991). In
Computer Graphics 25(4) ACM SIGGRAPH, New York, pp. 349-358.

Ramachandran, V.S. & W. Hirstein 1999, 'A Neurological Theory of Aesthetic Experi-
ence', Journal of Consciousness Studies, 6(6-7), pp. 15-51.

Rawlins, G.J.E. (ed.) 1991, Foundations of Genetic Algorithms, Workshop on the
Foundations of Genetic Algorithms and Classifier Systems, Morgan Kaufmann
Publishers, San Mateo, Calif.

Reeves, W.T. 1983, Particle Systems — a Technique for Modeling a Class of Fuzzy
Objects. Proceedings of SIGGRAPH '83 (Detroit, Michigan, July 25-29, 1983,
Tanner, P., ed). In Computer Graphics 17(3) ACM SIGGRAPH, New York, pp.
359-376.

Reeves, W.T. & R. Blau 1985, Approximate and Probabilistic Algorithms for Shading
and Rendering Structured Particle Systems. Proceedings of SIGGRAPH '85
(San Francisco, California, July 22-26, 1985, Barsky, B.A., ed). In Computer
Graphics 19(3) ACM SIGGRAPH, New York, pp. 313-322.

Reichardt, J. 1971, The Computer in Art, Studio Vista; Van Nostrand Reinhold, Lon-
don; New York.

References 375

Reynolds, C.W. 1987, Flocks, Herds, Schools: A Distributed Behavioral Model. Pro-
ceedings of SIGGRAPH '87 (Anaheim, California, July 27-31, 1987, Stone,
M.C., ed). In Computer Graphics 21(4) ACM SIGGRAPH, New York, pp. 25-34.

Ridley, J.N. 1986, 'Ideal Phyllotaxis on General Surfaces of Revolution', Mathematical
Biosciences, 79, pp. 1-24.

Ripley, B.D. 1977, 'Modelling Spatial Patterns', Journal of the Royal Statistical Soci-
ety. Series B (Methodological), 39(2), pp. 172-212.

Risan, L.C. 1997, Artificial Life: A Technoscience Leaving Modernity? An Anthropol-
ogy of Subjects and Objects, < http://www.anthrobase.com/txt/Risan_L_05.htm >
(Accessed 13 August 2001).

Roads, C. 1978, Composing Grammars, International Computer Music Association,
San Francisco, CA.

Roads, C. 1985, Grammars as Representations for Music, in Roads, C. & J. Strawn
(eds), Foundations of Computer Music, MIT Press, Cambridge, MA. pp. 403-
442.

Roads, C. 1996, The Computer Music Tutorial, MIT Press, Cambridge, Mass.

Rooke, S. 2002, Eons of Genetically Evolved Algorithmic Images, in Bentley, P.J. &
D.W. Corne (eds), Creative Evolutionary Systems, Academic Press, London.
pp. 339-365.

Rosenberg, M.J. 1983, The Cybernetics of Art: Reason and the Rainbow, Studies in
Cybernetics, vol. 4, Gordon and Breach Science, New York.

Rosenman, M.A. 1997, The Generation of Form Using an Evolutionary Approach, in
Dasgupta, D. & Z. Michalewicz (eds), Evolutionary Algorithms in Engineering
Applications, Springer-Verlag, Southampton and Berlin. pp. 69-85.

Rothstein, J. 1992, MIDI : A Comprehensive Introduction, Oxford University Press,
Oxford.

Rozenberg, G. & A. Salomaa 1980, The Mathematical Theory of L-Systems, Academic
Press, New York.

Rubin, E. 1921, Visuell Wahrgenommene Figuren, Glydendalske, Copenhagen.

Runqiang, B., P. Chen, K. Burrage, J. Hanan, P.M. Room & J. Belward 2002, Deriva-
tion of L-System Models from Measurements of Biological Branching Struc-
tures Using Genetic Algorithms, in Hendtlass, T. & M. Ali (eds), IEA/AIE 2002,
Lecture Notes in Artificial Intelligence 2358, Springer-Verlag, Berlin.

Salomaa, A. 1973, Formal Languages, Academic Press, New York, NY.

Saunders, R. 1999, A Computational Model of Simple Creativity Using Emergence
(web page),
< http://www.arch.usyd.edu.au/~rob/study/publications/proposal/1999Saunders
ThesisProposal.html > (Accessed 21 November 2001).

Scarborough, D., B. Miller & J. Jones 1989, 'Connectionist Models for Tonal Analysis',
Computer Music Journal, 13(3), pp. 49-55.

Schillinger, J. 1948, The Mathematical Basis of the Arts, The Philosophical Library,
New York.

376

Schopenhauer, A. 1928, The Works of Schopenhauer, (With an Introduction by
Thomas Mann), Frederick Ungar Publishing Co., New York.

Sebeok, T. 1975, 'Six Species of Signs: Some Propositions and Strictures', Semiotica,
13(3), pp. 233-260.

Selfridge-Field, E. (ed.) 1997, Beyond MIDI: The Handbook of Musical Codes, MIT
Press, Cambridge, Massachusetts.

Shampine, L.F., I. Gladwell & R.W. Brankin 1991, 'Reliable Solution of Special Event
Location Problems for ODEs', ACM Transactions on Mathematical Software,
17(1), pp. 11-25.

Shapin, S., T. Hobbes & S. Schaffer 1985, Leviathan and the Air-Pump: Hobbes, Boyle,
and the Experimental Life: Including a Translation of Thomas Hobbes, Dia-
logus Physicus De Natura Aeris by Simon Schaffer, Princeton University Press,
Princeton, N.J.

Sharp, D.H. 1998, LMUSe Software Web Site (Web Page),
< http://www.geocities.com/Athens/Academy/8764/lmuse/lmuse.html > (Ac-
cessed 3 August 2002).

Simon, H.A. 1996, The Sciences of the Artificial, (3rd Edition), MIT Press, Cambridge,
Mass.

Sims, K. 1990a, Panspermia in SIGGRAPH Video Review, ACM SIGGRAPH, New York.

Sims, K. 1990b, Particle Animation and Rendering Using Data Parallel Computation.
Proceedings of SIGGRAPH '90 (Dallas, Texas, August 6-10, 1990). In Computer
Graphics 24(4) ACM SIGGRAPH, New York, pp. 405-413.

Sims, K. 1991a, 'Interactive Evolution of Dynamical Systems', First European Confer-
ence on Artificial Life, MIT Press, Paris, pp. 171-178.

Sims, K. 1991b, Artificial Evolution for Computer Graphics. Proceedings of SIGGRAPH
'91 (Las Vegas, Nevada, July 28 - August 2, 1991). In Computer Graphics 25(4)
ACM SIGGRAPH, New York, pp. 319-328.

Sims, K. 1993, 'Interactive Evolution of Equations for Procedural Models', The Visual
Computer, 9, pp. 466-476.

Sims, K. 1994a, 'Evolving 3D Morphology and Behavior by Competition' in Brooks, R.
& P. Maes (eds), Proceedings of Artificial Life IV, MIT Press, pp. 28-39.

Sims, K. 1994b, Evolving Virtual Creatures. Proceedings of SIGGRAPH 94 (Orlando,
Florida, July 24-29, 1994). In Computer Graphics Proceedings, Annual Confer-
ence Series, ACM SIGGRAPH, pp. 15-22.

Smart, J.J.C. 1963, Philosophy and Scientific Realism, Routledge and Kegan Paul,
London.

Smith, A.R. 1984, Plants, Fractals and Formal Languages. Proceedings of SIGGRAPH
'84 (Minneapolis, Minnesota, July 23-27, 1984, Christiansen, H., ed). In Com-
puter Graphics 18(3) Proceedings of SIGGRAPH '84, Minneapolis, Minnesota,
July 22-27, ACM SIGGRAPH, New York, pp. 1-10.

Snow, C.P. 1959, The Two Cultures and the Scientific Revolution, Rede Lectures:
1959, Cambridge University Press, London.

References 377

Soddell, F. & J. Soddell 2000, 'Microbes and Music' in Mizoguchi, R. & J.K. Slaney
(eds), PRICAI 2000, Topics in Artificial Intelligence, The Sixth Pacific Rim
International Conference on Artificial Intelligence, vol. 1886, Springer-Verlag,
Melbourne, Australia, pp. 767-777.

Soddu, C. 1998, 'Argenia, a Natural Generative Design' in Soddu, C. (ed), Generative
Art '98, Milano, Italy.

Sokal, A. 1996a, 'Transgressing the Boundaries: Toward a Transformative Herme-
neutics of Quantum Gravity', Social Text, 46/47, pp. 217-252.

Sokal, A. 1996b, 'A Physicist Experiments with Cultural Studies', Lingua Franca,
May/June, pp. 62-64.

Sommerer, C. & L. Mignonneau 1998, Art as a Living System, in Sommerer, C. & L.
Mignonneau (eds), Art@Science, Springer, Wein. pp. 148-161.

Soper, K. 1995, What Is Nature? Culture, Politics and the Non-Human, Blackwell
Publishers Ltd, Oxford, UK.

Stam, J. & E. Fiume 1995, Depicting Fire and Other Gaseous Phenomena Using Diffu-
sion Processes. Proceedings of SIGGRAPH 95 (Los Angeles, California, August
6-11, 1995). In Computer Graphics Proceedings, Annual Conference Series,
ACM SIGGRAPH, pp. 129-136.

Stevens, P.S. 1974, Patterns in Nature, Little Brown, Boston, Mass.

Stiny, G. 1975, Pictorial and Formal Aspects of Shape and Shape Grammars, Isr,
Interdisciplinary Systems Research ; 13., Birkhäuser, Basel ; Stuttgart.

Stiny, G. & J. Gips 1978, Algorithmic Aesthetics: Computer Models for Criticism and
Design in the Arts, University of California Press, Berkeley; Los Angeles, CA.

Stocker, G. & C. Schöpf (eds) 2001, Ars Electronica 2001: Takeover - Who's Doing the
Art of Tomorrow?, Springer, Wein.

Supper, M. 2001, 'A Few Remarks on Algorithmic Composition', Computer Music
Journal, 25(1), pp. 48-53.

Suppes, P. 1960, 'A Comparison of the Meaning and Uses of Models in Mathematics
and the Empirical Sciences', Synthese, 12, pp. 287-301.

Szilard, A.L. & R.E. Quinton 1979, 'An Interpretation for DOL System by Computer
Graphics', The Science Terrapin, 4, pp. 8-13.

Tabuada, P., P. Alves, P. Gomes & P. Rosa 1998, '3D Artificial Art by Genetic Algor-
ithms', Workshop on Evolutionary Design at Artificial Intelligence in Design -
AID' 98, pp. 18-21.

Tasi´c, V. 2001, Mathematics and the Roots of Postmodern Thought, Oxford University
Press, Oxford.

Taylor, T. 2002, Creativity in Evolution: Individuals, Interactions, and Environments,
in Bentley, P.J. & D.W. Corne (eds), Creative Evolutionary Systems, Academic
Press, London. pp. 79-108.

Thom, R. 1975, Structural Stability and Morphogenesis: An Outline of a General
Theory of Models, (1st ed. English), W. A. Benjamin, Reading, Mass.

378

Thompson, D.A.W. 1942, On Growth and Form, (2nd Edition), Cambridge University
Press, Cambridge.

Thompson, D.A.W. 1961, On Growth and Form, (Abridged Edition), Cambridge Uni-
versity Press, Cambridge.

Todd, P.M. & D.G. Loy 1991, Music and Connectionism, MIT Press, Cambridge, Mass.

Todd, P.M. & G.M. Werner 1998, Frankensteinian Methods for Evolutionary Music
Composition, in Griffith, N. & P.M. Todd (eds), Musical Networks: Parallel Dis-
tributed Perception and Performance, MIT Press/Bradford Books, Cambridge,
MA.

Todd, S. & W. Latham 1991, 'Mutator: A Subjective Human Interface for Evolution of
Computer Sculptures', Technical Report, No. 248, IBM United Kingdom Scien-
tific Centre.

Todd, S. & W. Latham 1992, Evolutionary Art and Computers, Academic Press, Lon-
don.

Tonkin, J. 2001, John Tonkin's Web Site (web page), < http://www.johnt.org > (Ac-
cessed October 10 2001).

Towner, G. 1999, Discovering Quicktime: An Introduction for Windows and Macintosh
Programmers, Morgan Kaufmann, San Diego, CA.

Traxler, C. & M. Gervautz 1996, 'Using Genetic Algorithms to Improve the Visual
Quality of Fractal Plants Generated with CSG-Pl-Systems', Research Report,
No. TR-186-2-96-04, Institute of Computer Graphics and Algorithms, Vienna
University of Technology, Vienna, Austria.

Tu, X. & D. Terzopoulos 1994, Artificial Fishes: Physics, Locomotion, Perception, Be-
havior. Proceedings of SIGGRAPH 94 (Orlando, Florida, July 24-29, 1994). In
Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH,
pp. 43-50.

Turing, A.M. 1952, 'The Chemical Basis of Morphogenesis', Philosophical Transac-
tions of the Royal Society, 237, pp. 37-72.

Turk, G. 1991, Generating Textures for Arbitrary Surfaces Using Reaction-Diffusion.
Proceedings of SIGGRAPH '91 (Las Vegas, Nevada, July 28 - August 2, 1991).
In Computer Graphics 25(4) ACM SIGGRAPH, New York, pp. 289-298.

Tymoczko, T. 1986, New Directions in the Philosophy of Mathematics: An Anthology,
Birkhäuser, Boston.

Upstil, S. 1990, The Renderman Companion, a Programmer's Guide to Realistic Com-
puter Graphics, Addison-Wesley, Reading, Massachusetts.

Van Fraassen, B.C. 1980, The Scientific Image, Clarendon Library of Logic and Phi-
losophy, Clarendon Press; Oxford University Press, Oxford; New York.

Ventrella, J. 1995a, 'Eukaryotic Virtual Reality', ISEA '95: International Symposium
on Electronic Art, Montréal, Canada, p. 10.

Ventrella, J. 1995b, 'Disney Meets Darwin — the Evolution of Funny Animated Fig-
ures' in Thalmann, N.M. & D. Thalmann (eds), Computer Animation '95, IEEE,
Montréal, pp. 35-43.

References 379

Vogel, H. 1979, 'A Better Way to Construct the Sunflower Head', Mathematical Bio-
sciences, 44, pp. 179-189.

Voss, R.F. & J. Clarke 1975, '1/F Noise in Music and Speech', Nature, 258, pp. 317-
318.

Wainwright, S.A. 1988, Axis and Circumference: The Cylindrical Shape of Plants and
Animals, Harvard University Press, Cambridge, Mass.

Wallace, A.R. 1855, 'On the Law Which Has Regulated the Introduction of New Spe-
cies', Annals and Magazine of Natural History, 16(September 1855).

Waller, D.M. & D.A. Steingraeber 1985, Branching and Molecular Growth: Theoretical
Models and Empirical Patterns, in Jackson, J.B.C., L.W. Buss & R.E. Cook
(eds), Population Biology and Evolution of Clonal Organisms, Yale University
Press pp. 225-257.

Watt, A. & M. Watt 1993, Advanced Animation and Rendering Techniques: Theory
and Practice, Addison-Wesley, New York.

Weber, M. & S.N. Eisenstadt 1968, Max Weber on Charisma and Institution Building;
Selected Papers, The Heritage of Sociology, University of Chicago Press, Chi-
cago.

Wertheimer, M. 1938, Laws of Organization in Perceptual Forms, in Ellis, W.D. (ed) A
Sourcebook of Gestalt Psychology, Harcourt Brace, New York. pp. 71-88.

Weston, E. 1973, The Daybooks of Edward Weston, Aperture, Millerton, N.Y.

Whitelaw, M. 1998, Rethinking a Systems Aesthetic (MS Word file),
< http://comedu.canberra.edu.au/~mitchellw/papers/systems.msw.hqx > (Ac-
cessed 10 October 2001).

Whitelaw, M. 1999, 'The Abstract Organism: Towards a Prehistory for a-Life Art' in
Dorin, A. & J. McCormack (eds), First Iteration: a conference on generative
systems in the electronic arts, CEMA, Melbourne, Australia, pp. 176-184.

Whitelaw, M. 2000, Artificial Life in New Media Art, Ph.D. thesis, UTS, Sydney.

Whitelaw, M. 2002, Breeding Aesthetic Objects: Art and Artificial Evolution, in Bent-
ley, P.J. & D.W. Corne (eds), Creative Evolutionary Systems, Academic Press,
London. pp. 129-145.

Whitted, T. 1980, 'An Improved Illumination Model for Shaded Display', Communica-
tions of the ACM, 23(6), pp. 343-349.

Wiener, N. 1961, Cybernetics: Or Control and Communication in the Animal and the
Machine, (2nd Edition), MIT Press, Cambridge, Mass.

Wiggins, G., G. Papadopoulos, S. Phon-Amnuaisuk & A. Tuson 1999, 'Evolutionary
Methods for Musical Composition', Proceedings of the CASYS98 Workshop on
Anticipation, Music & Cognition.

Williams, L. 1983, Pyramidal Parametrics. Proceedings of SIGGRAPH '83 (Detroit,
Michigan, July 25-29, 1983, Christiansen, H., ed). In Computer Graphics 17(3)
ACM SIGGRAPH, New York, pp. 1-11.

Wilson, R.A. & F.C. Keil (eds) 1999, The MIT Encyclopaedia of the Cognitive Sciences,
MIT Press, Cambridge, Massachusetts.

380

Wilson, S. 2002, Information Arts: A Survey of Art and Research at the Intersection of
Art, Science, and Technology, Leonardo, MIT Press, Cambridge, Mass.

Wimsatt, W. 1980, 'Randomness and Perceived-Randomness in Evolutionary Biology',
Synthese, 43, pp. 287-329.

Winograd, T. 1968, 'Linguistics and the Computer Analysis of Tonal Harmony', Jour-
nal of Music Theory, 12(1), pp. 2-49.

Wirfs-Brock, R., B. Wilkerson & L. Wiener 1990, Designing Object-Oriented Software,
Prentice Hall, Englewood Cliffs, N.J.

Wishart, T. 1996, On Sonic Art, (New and Revised Edition edited by Simon Emmer-
son), Contemporary Music Series, vol. 12, Harwood Academic Publishers
GmbH, Amsterdam.

Witkin, A. & M. Kass 1991, Reaction-Diffusion Textures. Proceedings of SIGGRAPH
'91 (Las Vegas, Nevada, July 28 - August 2, 1991). In Computer Graphics 25(4)
ACM SIGGRAPH, New York, pp. 299-308.

Wittgenstein, L. & G.H.v. Wright 1980, Culture and Value, (2nd edition), B. Blackwell,
Oxford.

Wolfe, T. 1975, The Painted Word, Farrar Straus and Giroux, New York.

Wolpert, L. 1993, The Unnatural Nature of Science, Faber and Faber Limited, Lon-
don.

Woo, M., J. Neider, T. Davis & D. Shreiner 1997, The Open GL Programming Guide,
(Third Edition), Addison-Wesley, Boston.

Worrall, J. 2002, Philosophy of Science: Classic Debates, Standard Problems, Future
Prospects, in Machamer, P. & M. Silberstein (eds), The Blackwell Guide to the
Philosophy of Science, Blackwell Philosophical Guides, Blackwell, Oxford, UK.
pp. 18-36.

Xenakis, I. 1960, 'Elements of Stochastic Music', Gravesaner Blätter, 18, pp. 84-105.

Xenakis, I. 1971, Formalized Music: Thought and Mathematics in Composition, Indi-
ana University Press.

Xenakis, I. 1992, Formalized Music, (Revised Edition), Pendragan Press, New York.

Yokomori, T. 1980, 'Stochastic Characterizations of EOL Languages', Information and
Control, 45, pp. 26-33.

Zabusky, N.J. 1984, 'Computational Synergetics', Physics Today, (July), pp. 36-46.

Zeigler, B.P., T.G. Kim & H. Praehofer 2000, Theory of Modeling and Simulation:
Integrating Discrete Event and Continuous Complex Dynamic Systems, (2nd
edition), Academic, San Diego, California; London.

Zhi, W., Z. Ming & Y. Qi-Xing 2001, 'Modeling of Branching Structures of Plants',
Journal of Theoretical Biology, 209, pp. 383-394.

