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Abstract. This paper proves explicit bilipschitz bounds on the change in metric between the thick

part of a cusped hyperbolic 3–manifold N and the thick part of any of its long Dehn fillings. Given
a bilipschitz constant J > 1 and a thickness constant ε > 0, we quantify how long a Dehn filling

suffices to guarantee a J–bilipschitz map on ε–thick parts. A similar theorem without quantitative

control was previously proved by Brock and Bromberg, applying Hodgson and Kerckhoff’s theory
of cone deformations. We achieve quantitative control by bounding the analytic quantities that

control the infinitesimal change in metric during the cone deformation.

Our quantitative results have two immediate applications. First, we relate the Margulis number
of N to the Margulis numbers of its Dehn fillings. In particular, we give a lower bound on the
systole of any closed 3–manifold M whose Margulis number is less than 0.29. Combined with
Shalen’s upper bound on the volume of such a manifold, this gives a procedure to compute the

finite list of 3–manifolds whose Margulis numbers are below 0.29.
Our second application is to the cosmetic surgery conjecture. Given the systole of a one-cusped

hyperbolic manifold N , we produce an explicit upper bound on the length of a slope involved in a

cosmetic surgery on N . This reduces the cosmetic surgery conjecture on N to an explicit finite
search.
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1. Introduction

Dehn filling is the process of changing a compact 3–manifold by attaching solid tori to some number
of its torus boundary components. For each boundary torus T , the choice of filling is determined by a
slope: that is, an isotopy class of simple closed curve on T that will bound a disk in the attached solid
torus. In the 1960s, Wallace and Lickorish showed that any closed, orientable 3–manifold is obtained
by Dehn filling a link complement in S3 [60, 42]. This established Dehn filling as an important
technique in the study of 3–manifold topology.

Thurston pioneered the geometric study of Dehn surgery. When a compact 3–manifold with torus
boundary has interior admitting a complete hyperbolic structure, the non-compact ends become
cusps with torus cross-sections. The boundary torus of a cusp neighborhood inherits a Euclidean
metric, and each slope inherits a Euclidean length. Thurston showed that complete hyperbolic
structure on the interior of a manifold with torus boundary components can always be deformed to
incomplete hyperbolic structures [59]. The space of such structures is called hyperbolic Dehn surgery
space. The completions of such deformed structures are often not manifolds, but sometimes they
are diffeomorphic to Dehn fillings of the original. When this happens, the completion is called a
hyperbolic Dehn filling. Thurston also showed that as the Euclidean lengths of Dehn filling slopes
approach infinity, the corresponding hyperbolic Dehn fillings approach the original manifold in the
Gromov–Hausdorff topology. It follows that hyperbolic Dehn filling is an important technique in the
study of 3–manifold geometry.

We are particularly interested in uniform and effective geometric estimates for Dehn filling. Here,
uniform means that constants appearing in the estimates are independent of the underlying 3–
manifold, while effective means that these constants are explicitly given. Many uniform estimates
controlling fine-scale geometry under Dehn filling have previously been developed [11, 14, 33]. These
estimates have played an important role in proving theorems about spaces of Kleinian groups
[11, 12, 15, 43]; see Section 1.1 for more details. However, apart from theorems establishing the
existence of hyperbolic structures [2, 33, 41] and bounding volume [22, 34], the previous results
have not been effective. Explicit estimates are needed to apply Dehn filling techniques to the study
of individual manifolds. In particular, where a computer algorithm depends on some theoretical
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bound in order to know when to stop searching, only an explicit bound can make the algorithm
implementable. Such explicit bounds on fine-scale geometry are provided for the first time in this
paper.

The difference between effective and ineffective results can be illustrated as follows. Thurston’s
Dehn surgery theorem [59], which says that all but finitely many surgeries on a hyperbolic manifold
yield closed hyperbolic manifolds, is powerful but not effective or uniform. It does not say which
slopes one needs to exclude, or even how the number of excluded slopes depends on the manifold.
By contrast, the 6–theorem proved by Agol [2] and Lackenby [41] in 2000, which says that all
surgeries of length greater than 6 yield hyperbolic manifolds, is more powerful precisely because
it is effective. (The conclusion that the filled manifold is hyperbolic depends on Perelman’s proof
of the geometrization conjecture, which occurred several years later.) In many applications, the
6–theorem is used to break a problem into cases: hyperbolic geometry handles the “generic” scenario,
while ad-hoc methods handle the small, concrete list of exceptions. Our results have a similar effect,
enabling computer-assisted proofs for all fillings of a manifold.

We present two applications. First, for any hyperbolic knot complement S3 −K, we prove an
effective upper bound on the length of a cosmetic surgery on K. This means that if two different Dehn
fillings on K yield the same closed 3–manifold, the pair of fillings must come from an explicit finite
list. See Corollary 1.10 in Section 1.5 for a precise statement. Thus a finite computer check establishes
that knots up to 16 crossings have no cosmetic surgeries (Corollary 1.11). Second, Theorems 9.25
and 9.29 stated in Section 1.4 provide explicit control on the Margulis numbers of closed hyperbolic
3–manifolds.

1.1. Prior work on cone deformations. In 2002, just before the resolution of the geometrization
conjecture, Hodgson and Kerckhoff proved the first effective, uniform version of Thurston’s Dehn
surgery theorem [33]. They showed that, for all but 60 choices of slope s on a one-cusped hyperbolic
manifold N , the filled manifold N(s) is also hyperbolic. The slopes excluded by their theorem are the
ones that have shortest normalized length; see Definition 1.3. Their method was to obtain a hyperbolic
metric on N(s) at the end of a one-parameter family of singular metrics, with cone-singularities of
angle 0 ≤ α ≤ 2π along the core of the Dehn filling solid torus. (See Section 2 for a careful definition
of cone-manifolds and related notions.) When the cone angle starts at 0, the core is not present,
and one obtains the complete hyperbolic metric on the cusped manifold N . When the cone angle
becomes 2π, the singular solid torus becomes non-singular, and one has a complete hyperbolic metric
on N(s). Thus one has succeeded in performing hyperbolic Dehn filling.

The technique of deformation through cone structures, initiated by Hodgson and Kerckhoff [31],
has been highly useful. In addition to proving uniform bounds on Dehn filling, Hodgson and Kerckhoff
also gave bounds on volume change under Dehn filling, on the lengths of core geodesics [33], and on
the shape of hyperbolic Dehn surgery space [34]. Purcell extended their techniques to give bounds on
the change of cusp shape under cone deformation, applying the result to the geometry of knots in S3

[53, 52]. Bromberg applied their methods to study deformations that run from cone angle 2π to 0, a
process called drilling. Bromberg also extended their results from finite-volume to infinite-volume
manifolds, and gave bounds on the change in length of a short, nonsingular geodesic [14]. We remark
that the above-mentioned results bounding the change in length of a closed geodesic [14, 33] are
uniform (independent of manifold) but not effective. We prove and apply effective versions of these
results; see Corollary 6.13 and Corollary 7.20, which are also stated later in the introduction.

The application of cone deformations most relevant to this paper is the bilipschitz drilling theorem
of Brock and Bromberg [11]. Building on Hodgson and Kerckhoff’s methods, Brock and Bromberg
obtained uniform bilipschitz bounds relating the hyperbolic metrics at the two ends of the deformation.
In the following theorem, µ3 is the 3–dimensional Margulis constant. See Definition 1.4 for a review
of the thick-thin decomposition and Definition 2.7 for a review of rank-one and rank-two cusps. The
hypothesis that M is geometrically finite means that the convex core of M has finite volume. In
particular, finite-volume manifolds are geometrically finite and have no rank one cusps.
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Theorem 1.1 (Drilling theorem, [11]). Fix 0 < ε ≤ µ3 and J > 1. Then there is a number
`0 = `0(ε, J) > 0 such that the following holds for every geometrically finite hyperbolic 3–manifold
M without rank-one cusps. Suppose that Σ ⊂M is a link composed of closed geodesics, whose total
length is less than `0. Then the inclusion

ι : (M − Σ) ↪→M

restricts to a J–bilipschitz diffeomorphism on the complement of ε–thin tubes about Σ.

Theorem 1.1 has had several important applications. Using earlier work of Bromberg [15], Brock
and Bromberg used this result to prove the Bers–Sullivan–Thurston density conjecture for freely
indecomposable Kleinian groups without parabolics [11]. (The proof of the full density conjecture
relies upon the Ending Lamination Theorem, as in Ohshika [51] and Namazi–Souto [47].) In further
applications, Bromberg [16] and Magid [43] used the drilling theorem to show that deformation spaces
of Kleinian surface groups are not locally connected. Purcell and Souto used the drilling theorem to
show that a large class of hyperbolic manifolds occurs as geometric limits of knot complements in
S3 [54]. Cooper, Futer, and Purcell used it to show that there are knots in S3 with long, geodesic
unknotting tunnels [18]. For each of these applications, it was important that the length cutoff `0 is
independent of the manifold M .

However, the drilling theorem also has limitations. In particular, the constants are not effective:
the dependence of the length cutoff `0(ε, J) on the thickness constant ε and the bilipschitz constant
J is not quantified. This means that, while Theorem 1.1 can be used in geometric limit arguments as
in the previous paragraph, it is less suitable for studying individual manifolds. This is because it is
never clear whether a given M satisfies the hypotheses. Furthermore, the ineffective form cannot be
used in algorithms.

1.2. Effective bilipschitz bounds. One of the most important results of this paper is Theorem 9.30,
which effectivizes Theorem 1.1. In the following corollary, M≥ε denotes the ε–thick part of M ; that
is, all points of injectivity radius at least ε/2. See Definition 2.14 for full details.

Theorem 1.2. Fix 0 < ε ≤ log 3 and J > 1. Let M be a finite-volume hyperbolic 3–manifold and Σ
a geodesic link in M whose total length ` satisfies

` ≤ min

{
ε5

6771 cosh5(0.6ε+ 0.1475)
,
ε5/2 log(J)

11.35

}
.

Then, setting N = M − Σ, and equipping it with its complete hyperbolic metric, there are natural
J–bilipschitz inclusions

ϕ : M≥ε ↪→ N≥ε/1.2, ψ : N≥ε ↪→M≥ε/1.2.

Here M≥ε and N≥ε are the ε–thick parts of M and N , respectively. The compositions ϕ ◦ ψ and
ψ ◦ ϕ are the identity wherever both maps are defined. Furthermore, ϕ and ψ are equivariant with
respect to the symmetry group of the pair (M,Σ).

Comparing the statements of Theorems 1.1 and 1.2 reveals several differences. Most notably,
Theorem 1.2 is stronger, in that it gives looser hypotheses on ε as well as quantified hypotheses
on ` = len(Σ) that ensure a J–bilipschitz map. However, Theorem 1.2 is slightly weaker in two
respects. First, it assumes that M has finite volume. This assumption is convenient for our line of
argument, but is not crucial: using algebraic and geometric limits, we have extended Theorem 1.2 to
all hyperbolic 3–manifolds with finitely generated fundamental groups [26]. Second, Theorem 1.2
provides bilipschitz control on a smaller submanifold of M . While Theorem 1.1 excludes the ε–thin
tubes about Σ, Theorem 1.2 excludes all the ε–thin regions of M , including all cusps as well as
ε–thin tubes about geodesics that are not involved in the cone deformation.

While we do not know how to extend Theorem 1.2 into the ε–thin regions of M , we do have
quantitative control over the change in complex length of a sufficiently short geodesic. Consider a
closed geodesic γ ⊂ M , which corresponds to a loxodromic isometry ϕ = ϕ(γ) ∈ Isom+H3. This
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loxodromic isometry ϕ has an invariant axis in H3, which it translates by distance λ and rotates by
angle τ . We define the complex length of γ to be L(γ) = λ+ iτ . The tubular neighborhood of γ of
some radius r, is determined up to isometry by r and L(γ); compare Definition 2.3. Thus controlling
the change in complex length is the first step to controlling the geometry of an entire tube about γ.

We prove the following effective version of a result of Bromberg [14, Proposition 4.3].

Corollary 7.20. Let M be a complete, finite volume hyperbolic 3–manifold. Let Σ ∪ γ be a geodesic
link in M , where γ is connected. Let LM (γ) = lenM (γ) + iτM (γ) be the complex length of γ in the
complete metric on M , and suppose that max(lenM (Σ), lenM (γ)) ≤ 0.0735. Then γ is also a geodesic
in the complete metric on N = M − Σ, of complex length LN (γ). Furthermore,

1.9793−1 ≤ lenN (γ)

lenM (γ)
≤ 1.9793 and |τN (γ)− τM (γ)| ≤ 0.05417.

When either Σ or γ is much shorter than 0.0735, the quantitative control over L(γ) improves
dramatically. See Theorem 7.19 for the exact statement. We note that Corollary 7.20 also has an
extension to all hyperbolic 3-manifolds with finitely generated fundamental groups [26].

1.3. How to prove bilipschitz bounds. Next, we outline some top-level steps in the proofs of
Theorem 1.2 and Corollary 7.20. We begin by showing the existence of a one-parameter family
of cone-manifolds interpolating between the complete hyperbolic metric on M and the complete
hyperbolic metric on N = M − Σ.

Theorem 5.1. Let M be a finite volume hyperbolic 3–manifold. Suppose that Σ = σ1 ∪ · · · ∪ σn is a
geodesic link in M , whose components have lengths satisfying

`j = lenM (σj) ≤ 0.0996 and ` =

n∑
j=1

`j ≤ 0.15601.

Then the hyperbolic structure on M can be deformed to a complete hyperbolic structure on M − Σ by
decreasing the cone angle αj along σj from 2π to 0. The cone angles on all components of Σ change
in unison.

Theorem 5.1 is due to Hodgson and Kerckhoff [33, Corollary 6.3] in the special case where Σ
is connected. We extend the result to a link Σ with an arbitrary number of components. The
cone-manifolds along the deformation are denoted Mt, where t ∈ [0, (2π)2]. Every component of Σ in
Mt has cone angle α =

√
t. Thus t = 0 corresponds to the complete metric on N = M − Σ, while

t = (2π)2 corresponds to the complete metric on M .
In fact, we show more: when ` = lenM (Σ) is small, every cone-manifold Mt has a large embedded

tube about Σ. See Theorem 5.14 for the full statement. In the work of Hodgson and Kerckhoff
[33, 34], the radius of this tube is the key ingredient in a number of analytic estimates that control
the change in geometry. We work out effective versions of these estimates in Section 6.

These analytic estimates allow us to prove Theorem 8.3, which provides bilipschitz control on
submanifolds of M that stay thick throughout the deformation. In the following corollary of

Theorem 8.3, the submanifold M≥δt is the δ–thick part of the cone-manifold Mt in its singular metric
gt. See Definitions 1.4 and 2.14.

Corollary 8.16. Fix 0 < δ ≤ 0.938 and J > 1. Let M be a complete, finite volume hyperbolic
3–manifold. Let Σ ⊂M be a geodesic link whose total length ` satisfies

` ≤ min

{
δ2

17.11
,
δ5/2 log(J)

7.193

}
.

Let W ⊂ M be any submanifold such that W ⊂ M≥δt for all t. Then, for all a, b ∈ [0, (2π)2], the
identity map id : (W, ga)→ (W, gb) is J–bilipschitz.

We also prove a version of Corollary 8.16 whose hypotheses are on the cusped manifold N = M−Σ
instead of the filled manifold M . Stating this version requires a definition.
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Definition 1.3. Let N be a hyperbolic 3–manifold with rank-two cusps C1, . . . , Cn. Choose a slope
sj for each cusp torus ∂Cj . The normalized length of sj is

Lj = L(sj) =
len(sj)√
area(∂Cj)

,

where len(sj) is the length of a geodesic representative of sj on ∂Cj .
Let s = (s1, . . . , sn) be the vector of all the slopes. We define the total normalized length L = L(s)

via the formula
1

L2
=

n∑
j=1

1

L2
j

.

Observe that each normalized length Lj is scale-invariant, hence does not depend on the choice of
horospherical neighborhood of a cusp Cj .

Hodgson and Kerckhoff [34] proved that if s is a vector of slopes in N whose total normalized
length is L(s) ≥ 7.5832, then there is a family of cone-manifolds Mt interpolating from the complete
metric on N = M0 to the complete metric on N(s1, . . . , sn) = M(2π)2 . See Theorem 5.17.

Neumann and Zagier [48, Proposition 4.3] showed that (asymptotically, for very long fillings) the
normalized length of a slope sj ⊂ N closely predicts the length of the corresponding core curve in
the filled manifold N(s1, . . . , sn). Using the work of Hodgson–Kerckhoff [33, 34] and Magid [43], we
make this relationship completely quantitative.

Corollary 6.13. Suppose that M is a complete, finite volume hyperbolic 3–manifold and Σ ⊂M is
a geodesic link such that one of the following hypotheses holds.

(1) In the complete structure on N = M − Σ, the total normalized length of the meridians of Σ
is L ≥ 7.823.

(2) In the complete structure on M , each component of Σ has length at most 0.0996 and the
total length of Σ is ` ≤ 0.1396.

Then
2π

L2 + 16.17
< ` <

2π

L2 − 28.78
.

Using an estimate closely related to Corollary 6.13, we can prove an analogue of Corollary 8.16
with hypotheses on the cusped manifold N = M − Σ.

Corollary 8.17. Fix 0 < δ ≤ 0.938 and J > 1. Let M be a complete, finite volume hyperbolic
3–manifold and Σ a geodesic link in M . Suppose that in the complete structure on N = M − Σ, the
total normalized length L of the meridians of Σ satisfies

L2 ≥ max

{
107.6

δ2
+ 14.41,

45.20

δ5/2 log(J)
+ 14.41

}
.

Let W ⊂ M be any submanifold such that W ⊂ M≥δt for all t. Then, for all a, b ∈ [0, (2π)2], the
identity map id : (W, ga)→ (W, gb) is J–bilipschitz.

Now, to derive Theorem 1.2 from Corollary 8.16, we need a way to ensure (using only hypotheses
on M or only hypotheses on N = M −Σ) that a given submanifold W remains in the thick part of a
cone-manifold throughout a cone deformation. We do so via the following result.

Theorem 9.15. Fix 0 < ε ≤ log 3 and 1 < J ≤ e1/5. Let M be a complete, finite volume hyperbolic
3–manifold and Σ ⊂M a geodesic link. Suppose that ` = len(Σ) is bounded as follows:

` ≤ ε5 log J

496.1 J5 cosh5(Jε/2 + 0.1475)

Then, for every a, t ∈ [0, (2π)2], the manifolds Ma and Mt in the deformation from M − Σ to M
satisfy

M≥εa ⊂M>ε/J
t .
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The proof of Theorem 9.15 combines our previous work [25] with a close analogue of Corollary 8.16
(which provides stronger estimates under stronger hypotheses) to control the injectivity radius at a
point x ∈Mt for a sub-interval of time. Then, it uses a delicate crawling argument (a continuous
analogue of induction) to show that this sub-interval must be the entire time interval [0, (2π)2].

Setting J0 = 1.2 < e1/5 in Theorem 9.15, we learn that under appropriate hypotheses on `, the

containment M≥ε ⊂ M
≥ε/1.2
t holds for all t. Thus, on the submanifold W = M≥ε, Corollary 8.16

gives bilipschitz control for all t. This proves Theorem 1.2.
A similar crawling argument, using the analytic estimates of Section 6, also proves Corollary 7.20.

See also Corollary 7.24 for a very similar statement with hypotheses on N = M − Σ rather than M .

1.4. Application to Margulis numbers. Observe that Brock and Bromberg’s Theorem 1.1 requires
the thickness constant ε to be less than the Margulis constant µ3, whose value is currently unknown.
(See Theorem 1.5 for the current state of knowledge.) By contrast, Theorem 1.2 makes no hypotheses
regarding the Margulis constant. In fact, information flows in the opposite direction: we are able to
use Corollary 8.16 and Theorem 9.15 to control the topology of the thin parts of the cone-manifolds
Mt occurring during the deformation. This provides a strong application to Margulis numbers of
(complete, non-singular) hyperbolic manifolds.

Definition 1.4. Let M be a hyperbolic 3–manifold. The ε–thin part of M is M<ε, which consists of
all points of M lying on essential loops of length less than ε. We say that ε > 0 is a Margulis number
for M if every component of M<ε is isometric to either a horocusp or an equidistant tube about a
closed geodesic.

Note that that if ε is a Margulis number for M , then so is every δ < ε, although M<δ may have
fewer components than M<ε. The optimal Margulis number of M is

µ(M) = sup{ε : ε is a Margulis number for M}.

The (3–dimensional) Margulis constant is

µ3 = inf{µ(M) : M is a hyperbolic 3–manifold}.

Margulis proved that µ3 > 0, but the exact value is unknown. The following theorem summarizes
current knowledge about Margulis numbers and the Margulis constant.

Theorem 1.5. Suppose that M is a non-singular hyperbolic 3–manifold.

(1) µ(M) ≥ 0.104 for every M , hence µ3 ≥ 0.104.
(2) µ(MW ) ≤ 0.776 for the Weeks manifold MW , hence µ3 ≤ 0.776.
(3) µ(M) ≥ log 3 = 1.098 . . . for every M that has infinite volume, and for every M such that

dimH1(M,Q) ≥ 3.
(4) µ(M) ≥ 0.292 for every M such that dimH1(M,Q) ≥ 1. This includes all non-closed

hyperbolic 3–manifolds.
(5) µ(M) ≥ 0.29 for every M with vol(M) ≥ 52.78.
(6) µ(M) ≥ 0.29 for all but finitely many hyperbolic 3–manifolds M .

Proof by references. Conclusion (1) is a theorem of Meyerhoff [44, Section 9]. Conclusion (2) is the
result of a computation by Yarmola.

Conclusion (3) is a consequence of the “log 3 theorem” of Culler and Shalen [19, Theorem 9.1],
combined with the Tameness and Density theorems for Kleinian groups [4, 17, 47, 50]. See Shalen
[57, Proposition 3.12] for the derivation.

Conclusion (4) is a theorem of Culler and Shalen [20]. Conclusion (5) is a special case of a theorem
of Shalen [57, Theorem 7.1], substituting λ = 0.29. Finally, (6) is a theorem of Shalen [56], proved
using (4) and an algebraic limit argument. �

Observe that Theorem 1.5.(6) is an ineffective statement: the algebraic limit argument does not
give any way to find the finite list of manifolds with µ(M) < 0.29. On the other hand, combining
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Theorem 1.5.(5) with our results gives the following effective theorem. In this theorem, sys(M)
denotes the systole of M , namely the length of the shortest closed geodesic in M .

Theorem 9.29. Let M be a non-singular hyperbolic 3–manifold.

(1) If µ(M) ≤ 0.2408, then M is closed and vol(M) ≤ 36.12. Furthermore, sys(M) ≥ 2.93×10−7.
(2) If µ(M) ≤ 0.29, then M is closed and vol(M) ≤ 52.78. Furthermore, sys(M) ≥ 2.73× 10−8.
(3) If µ(M) ≤ 0.9536, then M has finite volume and k ∈ {0, 1, 2} cusps. The (3− k) shortest

geodesics in M have total length at least 5.561× 10−5.

We emphasize that parts (1) and (2) of the above statement are completely effective, because
there exist algorithms to produce the finite list of manifolds with volume bounded above and systole
bounded below by the given numbers. See Kobayashi and Rieck [40] for the details.

The proof of Theorem 9.29 uses many of the ingredients that were mentioned above. We will prove
the contrapositive. For example, in the second case, suppose M contains a geodesic σ whose length is
` < 2.73× 10−8. Then there is a cone-deformation between M and N = M − σ. Theorem 9.15 says
that for every t, the thin part M<0.29

t must be contained in the thin part N<0.292, which is a union
of tubes and cusps by Theorem 1.5.(4). Then, a somewhat delicate argument using immersed tubes
(see Theorem 9.1) shows that M<0.29

t is also a union of tubes and cusps. In particular, µ(M) ≥ 0.29.
By a similar argument, we can show that long Dehn fillings of a cusped 3–manifold N have

Margulis numbers similar to those of N .

Theorem 9.25. Fix 0 < ε ≤ log 3 and 1 < J ≤ e1/5. Let N be a cusped hyperbolic 3–manifold such
that ε is a Margulis number of N . Let s be a tuple of slopes on cusps of N whose normalized length
L = L(s) satisfies

L(s)2 ≥ 2π · 496.1 J5 cosh5(Jε/2 + 0.1475)

ε5 log J
+ 11.7.

Then δ = min{ε/J, 0.962} is a Margulis number for M = N(s).

1.5. Application to cosmetic surgeries. The next application of our results is topological: we
control cosmetic surgeries on 3–manifolds.

Definition 1.6. Let N be a compact oriented 3–manifold whose boundary is a single torus. Let
s1, s2 be distinct slopes on ∂N . We call (s1, s2) a cosmetic surgery pair if there is a homeomorphism
ϕ : N(s1) → N(s2). The pair is called chirally cosmetic if ϕ is orientation-reversing, and is called
purely cosmetic if ϕ is orientation-preserving.

There are many examples of chirally cosmetic surgeries where N is Seifert fibered. See Bleiler–
Hodgson–Weeks [6] for a survey, and Ni–Wu [49] for more examples. There is also one known example
of a chirally cosmetic surgery pair where N and N(si) are hyperbolic, discovered by Ichihara and
Jong [36]. By contrast, no purely cosmetic surgeries are known apart from the case where N is a
solid torus. This has led Gordon [29] to propose

Conjecture 1.7 (Cosmetic surgery conjecture). Let N be a compact, oriented 3–manifold such that
∂N is an incompressible torus. If s1, s2 are a purely cosmetic pair of slopes on ∂N , then s1 = s2.

A well-known classical argument, recorded by Bleiler, Hodgson, and Weeks [6], implies that
Conjecture 1.7 holds for long fillings on a hyperbolic manifold.

Theorem 1.8 (Bleiler–Hodgson–Weeks [6]). Let N be a one-cusped hyperbolic 3–manifold. Then
there is a number E > 0, such that Conjecture 1.7 holds for all pairs of slopes longer than E.

This useful but ineffective result is a fairly direct application of Thurston’s Dehn surgery theorem
and Mostow rigidity. By contrast, we prove the following effective result.
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Theorem 7.30. Let N be a one-cusped hyperbolic 3–manifold. Suppose that s1 and s2 are distinct
slopes, such that the normalized length of each si satisfies

L(si) ≥ max

{
10.1,

√
2π

sys(N)
+ 58

}
.

Then (s1, s2) cannot be a purely cosmetic pair. If (s1, s2) is a chirally cosmetic pair, then there is a
homeomorphism of N sending s1 to s2. In particular, Conjecture 1.7 holds if sys(N) ≥ 0.1428 and
L(si) ≥ 10.1 for i = 1, 2.

In fact, Theorem 7.30 is a special case of a theorem that also holds for tuples of slopes. Our result
addresses the following generalization of Conjecture 1.7.

Conjecture 1.9 (Hyperbolic cosmetic surgery conjecture). Let N be a finite-volume hyperbolic
3–manifold with one or more cusps. Let s1 and s2 be tuples of slopes on the cusps of N . If there is
an orientation-preserving homeomorphism ϕ : N(s1)→ N(s2), and this manifold is hyperbolic, then
ϕ restricts (after an isotopy) to a homeomorphism N → N sending s1 to s2.

Compare Kirby [39, Problem 1.81(B)] and Jeon [38, Section 1.1 and Theorem 1.6] for related
statements. The above-mentioned result of Ichihara and Jong [36] shows that restricting to purely
cosmetic surgeries is necessary, even when N has a single cusp.

We prove Conjecture 1.9 for sufficiently long tuples of slopes, where “long” is explicitly quantified.
For these long tuples of slopes, the only purely or chirally cosmetic surgeries come from symmetries
of N itself.

Theorem 7.29. Let N be a hyperbolic 3–manifold with cusps. Suppose that s1, s2 are distinct tuples
of slopes on the cusps of N , whose normalized length satisfies

L(si) ≥ max

{
10.1,

√
2π

sys(N)
+ 58

}
.

Then any homeomorphism ϕ : N(s1)→ N(s2) restricts (after an isotopy) to a self-homeomorphism
of N sending s1 to s2.

Given any lower bound on the systole of N , Theorems 7.29 and 7.30 provide an effective estimate
on the normalized length after which the cosmetic surgery conjecture holds. However, even if N has
just one cusp, there could hypothetically be infinitely many purely cosmetic pairs, where s1 is short
but s2 is arbitrarily long. This possibility is ruled out in Theorem 1.13 below. Before setting up that
result, we treat the special case where N is the complement of a knot in S3. The following result
follows by combining Theorem 7.30 with the work of Ni and Wu [49].

Corollary 1.10. Let K ⊂ S3 be a hyperbolic knot. Let µ, λ be the meridian and longitude of K.
Suppose that s, s′ are a purely cosmetic pair on the cusp of S3 −K. Then, after possibly swapping s
and s′, the following holds.

(1) L(s) < max

{
10.1,

√
2π

sys(S3 −K)
+ 58

}
.

(2) If s = pµ+ qλ, then s′ = pµ− qλ, and furthermore p divides q2 + 1.

Proof. Conclusion (1) is a restatement of Theorem 7.30. Meanwhile, Conclusion (2) is part of the
statement of [49, Theorem 1.2]. �

To verify Conjecture 1.7 for a given manifold N = S3 −K, it suffices to check the finitely many
pairs (s,−s) where L(s) satisfies (1). This is a practical computational task [24]. In practice, the
vast majority of knot complements enumerated by Hoste, Thistlethwaite, and Weeks [35] have systole
greater than 0.15, which means that the normalized length cutoff in the corollary is 10.1. By work of
Agol [2, Lemma 8.2], there are at most 104 slopes on ∂N of normalized length less than 10.1. Among
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those short slopes, there are typically at most 8 slopes that have the form s = pµ+ qλ where p divides
q2 + 1. Thus checking the cosmetic surgery conjecture for a typical knot K amounts to distinguishing
8 or fewer pairs of closed manifolds. We ran a computer program to show the following:

Corollary 1.11. The cosmetic surgery Conjecture 1.7 holds for all prime knots with at most 16
crossings.

Contemporaneously with our work, Hanselman has obtained an independent proof of Corollary 1.11
[30]. To do this, he proved a finiteness theorem in the same spirit as Corollary 1.10, constraining the
slopes to check to a short (and frequently empty) list that depends on the knot genus g(K) and the
thickness of the knot Floer homology of K. For knots up to 16 crossings, his criterion only requires
checking slopes ±1 and ±2 for 337 knots.

Very recently, Detcherry discovered a criterion on the Jones polynomial at the fifth root of unity
that severely constrains the slopes involved in cosmetic surgeries [21]. By combining his criterion
with Hanselman’s results, he verified Conjecture 1.7 for knots up to 17 crossings.

Sketch proof of Corollary 1.11. For each of the 1,701,935 prime knots with at most 16 crossings, we
begin by computing the (symmetrized) Alexander polynomial ∆K(t) and its second derivative. By a
theorem of Boyer and Lines [9, Proposition 5.1], any knot K such that ∆′′K(1) 6= 0 has no purely
cosmetic surgery. This criterion eliminates 1,513,776 knots, roughly 89% of the total.

For the remaining knots, we compute the Jones polynomial VK(t) and its third derivative. By
a theorem of Ichihara and Wu [37, Theorem 1.1], any knot K such that V ′′′K (1) 6= 0 has no purely
cosmetic surgery. This criterion eliminates another 152,740 knots, roughly 9% of the total.

The remaining 35,419 knots are all hyperbolic. For each knot K on the remaining list, we compute
sys(N) = sys(S3−K) and calculate the list of short slopes satisfying the conclusion of Corollary 1.10.
For each short slope s, we compute the hyperbolic structures on N(s) and N(−s) using SnapPy and
compare the verified volume and verified Chern–Simons invariants. In each case, these invariants
distinguish the pair. Code will be included with [24]. �

Returning to the setting of a general one-cusped hyperbolic manifold, we describe a practical
finiteness theorem that can be used to verify whether N has any cosmetic surgeries at all. We need
the following definition.

Definition 1.12. Let N be a one-cusped hyperbolic 3–manifold. Define the finite set of slopes

S1(N) =

{
s

∣∣∣∣ L(s) < max

(
10.1,

√
2π

sys(N)
+ 58

)}
.

Next, define

V (N) = max
{

vol(N(s)) | s ∈ S1(N)
}
.

Here, we employ the convention that the volume of any non-hyperbolic manifold is 0, hence will
not realize the maximum. Using the theorem of Gromov and Thurston [59, Theorem 6.5.6] that
V (N) < vol(N), define the finite set of slopes

S2(N) =

s
∣∣∣∣ len(s) ≤ 2π

(
1−

(
V (N)

vol(N)

)2/3
)−1/2

 .

Here, len(s) is ordinary Euclidean length on the boundary of the maximal cusp in N .

Theorem 1.13. Let N be a one-cusped hyperbolic 3–manifold. Then each of Conjecture 1.7 and
Conjecture 1.9 holds for N if and only if it holds for all pairs of slopes in the finite set S1(N)×S2(N).

Proof. The “only if” direction is obvious. For the “if” direction, suppose that (s1, s2) are a (purely
or chirally) cosmetic pair for N . Assume, without loss of generality, that L(s1) ≤ L(s2). Then
Theorem 7.30 implies s1 ∈ S1(N). With V (N) as above, Futer, Kalfagianni, and Purcell proved [22,
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Theorem 1.1] that if some Dehn filling N(s) satisfies vol(N(s)) ≤ V (N), then s ∈ S2(N). Thus any
potential counterexample to Conjectures 1.7 or 1.9 must lie in S1(N)× S2(N). �

For manifolds with reasonable systole, the set S1(N)×S2(N) is practical to compute using SnapPy,
and not too large in size. In forthcoming work [24], we use Theorem 1.13 to verify Conjecture 1.7
for all one-cusped manifolds in the SnapPy census. We also use the work of Detcherry [21] and
Hanselman [30] to verify the conjecture for all knots up to 19 crossings.

1.6. Organization. In Section 2, we review background on cone-manifolds and their properties.
Section 3 reviews a number of results on tubes in cone-manifolds, as well as distances between nested
tubes; many of these results were proved in [25]. In Section 4, we control the areas of embedded
multi-tubes, analogous to similar results in [33, 34], which will ensure that cone deformations exist.
We also prove Theorem 4.26, which controls the injectivity radius on the tube boundary and may be
of independent interest.

The above results are combined in Section 5 to produce cone deformations that maintain a large
embedded tube about the singular locus Σ. The technical Section 6 presents results (phrased as
bounds on so-called boundary terms) that will be needed in future sections to control the change in
geometry during the cone deformation.

Section 7 contains the first pair of our main results: Theorem 7.19 and Theorem 7.21, which
bound the change in length of short geodesics under cone deformation. At the end of Section 7, we
apply these results to the cosmetic surgery conjecture, proving Theorems 7.29 and 7.30.

Section 8 proves Theorem 8.3, which provides effective bilipschitz bounds on submanifolds of M
that stay thick throughout the cone deformation.

Section 9 contains results related to the thick-thin decomposition and Margulis numbers. A main
result, Theorem 9.15, ensures that submanifolds of M stay thick throughout the deformation. This
result is applied to show Theorem 9.29 about Margulis numbers, as well as Theorem 9.30, which
provides bilipschitz bounds without any hypotheses on cone-manifolds.

Finally, there is a short appendix, on hyperbolic trigonometry, that we use throughout the paper.

1.7. Acknowledgements. As should be clear, this paper owes an enormous debt to the ideas of
Jeff Brock, Ken Bromberg, Craig Hodgson, and Steve Kerckhoff. We thank all four of them for
sharing their insights and explaining many technical points.

We thank Steve Boyer, Jonathan Hanselman, Kazuhiro Ichihara, Tye Lidman, Tim Morris, and
Matthew Stover for many enlightening suggestions regarding cosmetic surgeries. We thank Marc
Culler, David Gabai, Peter Shalen, and Andrew Yarmola for helpful input about Margulis numbers.
Finally, we thank the intrepid referee for carefully reading the paper and making a number of
suggestions that improved our exposition.

During this project, Futer was supported by the NSF and the Simons Foundation. Purcell was
supported by the NSF and the ARC. Schleimer was supported by EPSRC. All three authors were
able to gather in a common location on a few occasions, thanks to support from MSRI and the
Institute for Advanced Study, as well as support from NSF grants DMS–1107452, 1107263, 1107367,
“RNMS: Geometric Structures and Representation Varieties” (the GEAR Network).

2. Cone-manifold basics

In this section we set up notation and definitions about cone-manifolds, geodesics, and injectivity
radii.

Definition 2.1. Let σ ⊂ H3 be a bi-infinite geodesic. Let Ĥ3 denote the metric completion of the
universal cover of (H3 − σ). Let σ̂ be the set of points added in the completion.

The space Ĥ3 can be regarded as an infinite cyclic branched cover of H3, branched over σ. The
branch set σ̂ ⊂ Ĥ3 is a singular geodesic of cone angle ∞.

There is a natural action of C (thought of as an additive group) on Ĥ3, where z = ζ + iθ ∈ C
translates σ̂ by distance ζ and rotates by angle θ. Since σ̂ has cone angle ∞, angles of rotation are
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indeed real-valued. Conversely, every isometry ϕ of Ĥ3 that preserves orientation on both Ĥ3 and σ̂
comes from this action, and has a well-defined complex length z = ζ + iθ. We can therefore write
ϕ = ϕζ+iθ.

We endow Ĥ3 with a system of cylindrical coordinates (r, ζ, θ), as follows. Choose a ray perpen-
dicular to σ̂, and let the points of this ray have coordinates (r, 0, 0), where r ≥ 0 measures distance
from σ̂. Then, let (r, ζ, θ) be the image of (r, 0, 0) under the isometry ϕζ+iθ. The distance element in
these coordinates is

(2.2) ds2 = dr2 + cosh2 r dζ2 + sinh2 r dθ2.

Definition 2.3. Consider a group G = Z×Z of isometries of Ĥ3, generated by an elliptic ψiα and a
loxodromic ϕ = ϕλ+iτ , where α > 0 and λ > 0. The quotient space Nα,λ,τ is an open solid torus
whose core curve is a closed geodesic of length λ, and with a cone singularity of angle α at the core.
We call N = Nα,λ,τ a model solid torus.

For r > 0, a model tube Uα,λ,τ is the open r–neighborhood of the core curve of Nα,λ,τ . We note

that the closure Uα,λ,τ is compact.

Definition 2.4. A hyperbolic cone-manifold (M,Σ) is a metric space where every point has a
neighborhood isometric to a ball in a model solid torus. More precisely, M is a topological 3–manifold
and Σ is a link in M , such that every component of Σ has a neighborhood isometric to a model tube
Uα,λ,τ . Meanwhile, every point x ∈M − Σ has a neighborhood isometric to a ball in H3.

We allow components of Σ to be non-singular, i.e. have cone angle 2π. When the link Σ is clear
from context, we will often suppress it from the notation.

2.1. Covers and deck transformations.

Definition 2.5. Let (M,Σ) be a hyperbolic cone-manifold. Then the universal branched cover of

(M,Σ), denoted M̂ , is the metric completion of X̃, where X̃ is the universal cover of X = M − Σ.

Every component of Σ lifts to a disjoint union of singular geodesics in M̂ , with cone angle ∞. Thus
M̂ is locally modeled on Ĥ3, as in Definition 2.1. The deck transformation group for M̂ is isomorphic
to π1(M − Σ).

Let σ̃ ⊂ M̂ be a lift of σ ⊂ Σ. Then there is a map

D : M̂ → Ĥ3,

which shares some features of an exponential map based on the normal bundle to a geodesic. Let

Ũ ⊂ M̂ be a regular r–neighborhood of σ̃, and let D : Ũ ↪→ Ĥ3 be an isometric embedding sending σ̃
to σ̂ ⊂ Ĥ3. Then, extend the map along geodesic rays: if γ ⊂ M̂ is a geodesic ray orthogonal to σ̃,
then D|γ is an isometry to a geodesic ray orthogonal to σ̂.

In the special case where M is a model solid torus with core curve Σ, we have M̂ = Ĥ3 by
Definition 2.3, hence D is a global isometry. On the other hand, if (M,Σ) is non-elementary, hence a

singular geodesic σ ⊂M has multiple preimages in M̂ , the map D will fail to be even a local isometry
outside a neighborhood of σ̃. Indeed, given a geodesic segment γ0 ⊂ M̂ that runs from σ̃ to another
singular geodesic, there is a one-parameter family of distinct geodesic rays in M̂ that all contain γ0

and then separate; these rays will be mapped to the unique ray in Ĥ3 containing D(γ0).

An important property of the universal branched cover is

Proposition 2.6. Let (M,Σ) be a hyperbolic cone-manifold. Then M̂ is a complete CAT(−1) space.

Proof. This is a consequence of the Cartan–Hadamard theorem [10, Chapter II.4, Theorem 4.1(2)].
See Soma [58, Lemma 1.2] for the derivation. �

If M is a finite-volume hyperbolic manifold and Σ ⊂M is a geodesic link, Kerckhoff showed that
M −Σ admits a complete metric of negative sectional curvature. (See Agol [3] for a summary and for
more details of the construction.) The same construction applies if (M,Σ) is a cone-manifold of finite
volume. By Thurston’s hyperbolization, this implies M − Σ admits a complete hyperbolic metric.
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Definition 2.7. Let G ⊂ Isom+(H3) be a discrete, free abelian group of parabolic isometries of
H3. The quotient H3/G is called a model cusp. If H ⊂ H3 is an open horoball stabilized by G, the
quotient U = H/G is called a horocusp. A horocusp or model cusp is called rank one if G ∼= Z and
rank two if G ∼= Z2.

Definition 2.8. Let (M,Σ) be a complete, finite volume hyperbolic cone-manifold. Let ϕ ∈ π1(M−Σ)
be a non-trivial element. We say that ϕ is peripheral if a loop representing ϕ is freely homotopic into
a horocusp of M − Σ.

Lemma 2.9. Let (M,Σ) be a complete, finite volume hyperbolic cone-manifold, with universal

branched cover M̂ . Let ϕ ∈ π1(M −Σ) be a non-trivial deck transformation of M̂ . Then the following
are equivalent:

(1) ϕ corresponds to a peripheral homotopy class.

(2) ϕ stabilizes either a horoball in M̂ or a singular geodesic covering a component of Σ.

(3) ϕ does not act by translation on any non-singular geodesic in M̂ .

Proof. (1) ⇒ (2): Suppose ϕ is peripheral. Then a loop representing ϕ is homotopic into the
neighborhood of some cusp of M − Σ. In the cone-metric on (M,Σ), this cusp of M − Σ either
stays a cusp or becomes a neighborhood of some component σi ⊂ Σ. In the first case, the deck
transformation ϕ stabilizes the universal cover of a horocusp in M̂ . In the second case, the deck
transformation ϕ stabilizes some preimage of σi in M̂ .

(2) ⇒ (1): Suppose that the deck transformation ϕ stabilizes a horoball H ⊂ M̂ that covers a
horocusp in (M,Σ). Then, for an appropriate choice of basepoint, a path-lift ϕ̃ of the loop ϕ starts
and ends in H. After a free homotopy of ϕ, we may assume that the entire path-lift ϕ̃ lies in a
sub-horoball of H that covers a horocusp of (M,Σ), hence ϕ is peripheral. The case of tubes is
similar.

(2)⇔ (3): The deck transformation ϕ must act on M̂ by isometry. This isometry is either elliptic
(meaning it has fixed points), parabolic (meaning it has no fixed points, but the infimal translation
is 0), or hyperbolic (meaning that the infimal translation distance is d > 0 and is realized). If ϕ is
elliptic, then recalling that it is a deck transformation implies that it must rotate about a singular
axis; hence (2) and (3) both hold. If ϕ is parabolic, then it stabilizes a horoball, hence (2) and (3)
both hold.

Finally, suppose ϕ is hyperbolic. Since M̂ is a complete CAT(−1) space by Proposition 2.6, ϕ
must translate along a unique geodesic axis. If this axis is singular, then (2) and (3) both hold. If
the geodesic is non-singular, then (2) and (3) both fail. �

2.2. Injectivity radii, cusps, and tubes. We will be looking at tubes with injectivity radius less
than some value ε > 0 or δ > 0. At times we will need to discuss the injectivity radius over an
entire cone-manifold. At other times we only need to consider injectivity radius within a tube. We
encapsulate these separate notions in Definition 2.10 and Definition 2.17.

Definition 2.10. Let (M,Σ) be a hyperbolic cone-manifold and x ∈M . Then the injectivity radius,
denoted injrad(x), is the supremal radius r such that a metric r–ball about x is isometric to a ball
Br(y) ⊂ H3. (Since we are using open balls, the supremal radius is attained, unless M = H3, in
which case injrad(x) =∞.) If x lies on the singular set of M , we set injrad(x) = 0.

Lemma 2.11. Let (M,Σ) be a hyperbolic cone-manifold, where every component of Σ is singular.

Choose a point x ∈M − Σ and a lift x̃ ∈ M̂ . Then injrad(x) can be characterized as follows:

2 injrad(x) = inf{len(γ) : γ is a non-trivial loop in M − Σ based at x}(2.12)

= min{d(x̃, ϕx̃) : 1 6= ϕ ∈ π1(M − Σ)}.(2.13)

Furthermore, the infimum in (2.12) is realized by a pointed geodesic, unless d(x,Σ) = injrad(x) and
the isometry ϕ in (2.13) is elliptic.
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In the case where M is a non-singular hyperbolic manifold, hence Σ = ∅, the result of Lemma 2.11
is well-known. In the case where M is a model solid torus, the result is contained in [25, Lemma 2.5].
Thus Lemma 2.11 generalizes those previously known cases to general cone-manifolds.

Proof of Lemma 2.11. Let ε = 2injradΣ(x). Then, for an arbitrary y ∈ H3, there is an isometric
embedding f : Bε/2(y)→M , such that f(y) = x. It follows that any non-trivial loop through x must
have length at least ε. Similarly, any non-trivial element ϕ ∈ π1(M − Σ) must translate Bε/2(x̃) by
distance at least ε. Thus both (2.12) and (2.13) give lower bounds on ε.

Next, we show that these expressions give upper bounds on ε. Since injrad(x) = ε/2, the continuous

extension of f to Bε/2(y) either hits Σ or fails to be 1–1. We consider these cases in turn.

First, suppose that the image ball f(Bε/2(y)) has a point of self-tangency in M − Σ. This means

that two distinct lifts of this ball, namely Bε/2(x̃) and Bε/2(ϕx̃), are tangent in M̂ , which means that
d(x̃, ϕx̃) = ε. The geodesic γ̃ connecting x̃ to ϕx̃ projects to a geodesic loop γ ⊂M − Σ of length
exactly ε. This means that (2.12) is an equality, hence the infimum is realized in this case.

Next, suppose there is a point z ∈ f(Bε/2(y)) ∩ Σ. Then we construct a closed loop γ of length
ε+ δ, for arbitrarily small δ. This closed loop has the form of an “eyeglass”: walk from x to a point
near z, walk around a loop of length δ about Σ, and then return to back to x. Thus (2.12) is an

upper bound on ε. The homotopy class [γ] ∈ π1(M − Σ, x) corresponds to an elliptic isometry of M̂ ,
which fixes a lift z̃ of z. This elliptic isometry must move the ball Bε/2(x̃) to a disjoint ball Bε/2(ϕx̃),
with the two balls tangent at z̃. Thus d(x̃, ϕx̃) = ε. �

Definition 2.14. Let (M,Σ) be a hyperbolic cone-manifold. For ε > 0, the ε–thick part of M is

M≥ε = {x ∈M : injrad(x) ≥ ε/2}.

The ε–thin part is M<ε = M −M≥ε. We define M≤ε and M>ε similarly.
We emphasize that our definition of the ε–thick part corresponds to injectivity radius ε/2 (hence,

translation length ε) rather than injectivity radius ε. Both choices seem to be common in the
literature on Kleinian groups. Our convention agrees with that of Minsky [45, 46] and Brock–
Canary–Minsky [13], while differing from the convention of Brock–Bromberg [11] and Namazi–Souto
[47].

Definition 2.15. Let (M,Σ) be a hyperbolic cone-manifold. We say that ε > 0 is a Margulis number
for M if every component of the ε–thin part M<ε is isometric to either a model tube (Definition 2.3)
or a horocusp (Definition 2.7). The optimal Margulis number µ(M) is the supremum of all Margulis
numbers for M .

In Theorem 9.27, we will prove an effective Margulis lemma for cone-manifolds: 0.29 is a Margulis
number for all cone-manifolds satisfying certain hypotheses. See also Theorem 9.26.

In addition to studying embedded tubes and cusps in a cone-manifold M , we will study their
immersed analogues.

Definition 2.16. Let (M,Σ) be a hyperbolic cone-manifold. An immersed tube in M is a local
isometry f : U →M , where U is a model tube, and furthermore f−1(Σ) is either the core of U or ∅.
(The “furthermore” condition is automatic when each component of Σ is singular.) Similarly, an
immersed horocusp in M is a local isometry f : U →M , where U is a horocusp.

If f is an embedding, we refer to the image f(U) as an embedded tube in M . In this case, we will
often conflate the domain U with the image f(U).

Definition 2.17. Let (M,Σ) be a hyperbolic cone-manifold. Let U ⊂M be an embedded tube or

horocusp in M . Let π : Û → U be the universal covering map. Thus π is an ordinary cover with
deck group G ∼= Z if U ∩Σ = ∅, and a branched cover with deck group G ∼= Z×Z if U ∩Σ 6= ∅. If U
is a horocusp, then Û is the usual universal cover with deck group G ∈ {Z,Z2}.
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Let x ∈ U . Let x̂ be a lift of x in Û , and consider all translates of x̂ under the action of G. Define

(2.18) injrad(x, U) =
1

2
min{d(x̂, ϕ(x̂)) : 1 6= ϕ ∈ G}.

For x ∈ ∂U , we may define injrad(x, U) by extending (2.18) by continuity.

When every component of Σ is singular, the injectivity radius is well-behaved under immersions of
tubes or cusps.

Lemma 2.19. Let (M,Σ) be a hyperbolic cone-manifold, where every component of Σ is presumed
to be singular. Let f : U →M be an immersed tube or horocusp. Then, for all x ∈ U ,

injrad(f(x)) ≤ injrad(x, U).

Proof. By continuity, it suffices to assume that x ∈ U . As in Definition 2.17, let Û be the universal
cover of U , which is branched if U is singular. Let G be the group of deck transformations of Û .

The local isometry f : U → M gives an elevation, a local isometry f̂ : Û → M̂ . We claim that

f̂ must be one-to-one: since Û is convex, any pair of points are connected by a geodesic segment.
The image of this segment is a geodesic segment in M̂ , which necessarily has distinct endpoints by

Proposition 2.6. Since f̂ is one-to-one, we get an inclusion f∗ : G ↪→ π1(M − Σ). (Compare Baker
and Cooper [5, Propositions 2.1 and 2.2].) Thus the minimum in (2.18) is taken over a smaller set
than the minimum in (2.13), hence injrad(f(x)) ≤ injrad(x, U). �

3. Distance estimates in tubes and cusps

This section contains several estimates about tubes and cusps that will be needed in subsequent
arguments. Most of the results listed here are proved in [25]. We begin with a general estimate that
applies to all cone-manifolds.

Lemma 3.1. Let M be a hyperbolic cone-manifold. Let x, y be points of M such that 2injrad(x) =
δ > 0 and 2injrad(y) = ε > δ. Then

d(x, y) ≥ ε− δ
2

.

Proof. This was observed in [25, Lemma 5.1] in the case where M is a model tube. The same proof
works in general.

Let h = d(x, y). If h ≥ ε/2, there is nothing to prove. Thus we may assume that h < ε/2. By
Definition 2.10, there is an embedded ball B = Bε/2(y) that is isometric to a ball in H3. Since
h < ε/2, we have x ∈ B. By the triangle inequality, there is an embedded ball Bε/2−h(x) contained
in B, implying

injrad(x) = δ/2 ≥ ε/2− h. �

3.1. Tube radii.

Definition 3.2. Let N = Nα,λ,τ be a model solid torus, as in Definition 2.3. For ε > λ, let U ε be a
component of N<ε. Then U ε is a tube about a core geodesic γ, and T ε = ∂U ε is a torus consisting
of points whose injectivity radius is exactly ε/2. All of the points of T ε lie at the same radius from γ.
We denote this radius

r(ε) = rα,λ,τ (ε).

We let Tr denote the equidistant torus at radius r from the core of N . Subscripts denote radius,
while superscripts denote thinness. Thus

T ε = Tr(ε).

If N is a model solid torus, modeling a neighborhood of σi, a component of Σ in M , we will often
write r(ε, σi), T

ε(σi), U
ε(σi) to refer to the radius, equidistant torus, and tube (respectively) about

a particular component of Σ.
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Lemma 3.3. Let T ε = ∂U ε, where U ε is a tube about a singular geodesic σ with cone angle α < 2π.
Then

area(T ε) ≥
√

3

2
ε2.

Proof. This follows by a standard packing argument, because T ε contains an embedded disk of radius
ε/2. See [25, Equation (7.4)]. Compare Proposition 4.3 and Theorem 4.16 for a much more involved
packing argument. �

Lemma 3.4. Let N = Nα,λ,τ be a model solid torus whose core has cone angle α < 2π. Then

sinh 2rα,λ,τ (ε) ≥
√

3 ε2

αλ
>

√
3 ε2

2πλ
.

Proof. This follows from Lemma 3.3 and (2.2). See also [25, Lemma 7.2]. �

3.2. Distances between tori of fixed injectivity radius.

Definition 3.5. Let 0 < δ ≤ ε. For a model solid torus N = Nα,λ,τ with λ ≤ δ, the distance between
equidistant tori T δ = Tr(δ) and T ε = Tr(ε) is

dα,λ,τ (δ, ε) = d(N≤δ, N≥ε) = rα,λ,τ (ε)− rα,λ,τ (δ).

For a model horocusp N , we similarly define

dN (δ, ε) = d(N≤δ, N≥ε).

If N is a tube, the distance dα,λ,τ (δ, ε) depends on the parameters of the tube. Nevertheless, we
have upper and lower bounds on dα,λ,τ (δ, ε) that hold independent of the parameters α, λ, τ .

Theorem 3.6. Suppose that 0 < δ < ε ≤ log 3. Let N = Nα,λ,τ be a model solid torus with cone
angle α ≤ 2π and core geodesic of length λ ≤ δ, or a model horocusp whose ε–thick part is not empty.
Then

max

{
ε− δ

2
, arccosh

(
ε√

7.256 δ

)
− 0.1475

}
≤ dα,λ,τ (δ, ε) ≤ arccosh

√
cosh ε− 1

cosh δ − 1
.

We remark that the argument of arccosh in the lower bound of Theorem 3.6 may be less than 1,
making arccosh(·) undefined. To remedy this, we employ the convention that an undefined value
does not realize the maximum. Observe that the lower bound ε−δ

2 follows by Lemma 3.1.

Proof. If N is a model solid torus, this is a special case of [25, Theorem 8.8]. In the notation of
that theorem, substituting εmax = log(3) implies a value jmax = 0.14798 . . ., which gives an additive
constant arcsinh(jmax) ≤ 0.1475 in the lower bound on dα,λ,τ (δ, ε).

If N is a horocusp, the estimate follows by taking a geometric limit of model solid tori converging
to N . �

Under stronger hypotheses on ε, we obtain a stronger lower bound on dα,λ,τ (δ, ε).

Theorem 3.7. Suppose that 0 < δ < ε ≤ 0.3. Let N = Nα,λ,τ be a model solid torus with cone angle
α ≤ 2π and core geodesic of length λ ≤ δ, or a model horocusp whose ε–thick part is not empty. Then

max

{
ε− δ

2
, arccosh

(
ε√

7.256 δ

)
− 0.0424

}
≤ dα,λ,τ (δ, ε) ≤ arccosh

√
cosh ε− 1

cosh δ − 1
.

Proof. If N is a model solid torus, this is [25, Theorem 1.1]. If N is a cusp, take a geometric limit of
tubes. �
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3.3. Euclidean bounds. Consider an equidistant torus Tr = ∂Ur. Then the Euclidean path-metric

on Tr lifts to a Euclidean metric on T̃r, which we denote dE .

Lemma 3.8. Let T̃r ⊂ Ĥ3 be a plane at fixed distance r > 0 from the singular geodesic σ̂. Let

p, q ∈ T̃r be points whose θ–coordinates differ by at most A ≤ π and whose ζ–coordinates differ by at
most B. Then

1− cosA

A2
dE(p, q)2 ≤ cosh d(p, q)− 1 ≤ coshB − 1

B2
dE(p, q)2.

Proof. See [25, Lemma 6.2]. �

If an equidistant plane in Ĥ3 is replaced by a horosphere in H3, Lemma 3.8 becomes the following
(well-known) statement.

Lemma 3.9. Let T̃ ⊂ H3 be a horosphere, and let p, q ∈ T̃ . Let dE(p, q) be the distance between p

and q in the Euclidean metric on T̃ . Then

2 sinh
d(p, q)

2
= dE(p, q), or equivalently cosh d(p, q)− 1 =

1

2
dE(p, q)2.

Proof. See [18, Lemma A.2]. �

We observe that as A,B → 0, the upper and lower bounds in Lemma 3.8 both approach 1
2dE(p, q)2.

Thus Lemma 3.9 realizes this limiting value.

4. Maximal tubes and multi-tubes

The goal of this section is to control the area and injectivity radius of maximal tubes in cone-
manifolds. The main results are Theorem 4.16, giving a lower bound on area, and Theorem 4.26,
giving a lower bound on injectivity radius. Theorem 4.16 is essentially due to Hodgson and Kerckhoff
[33, Theorem 4.4], while Theorem 4.26 is new. Before getting to those results, we must carefully
construct maximal tubes of many components.

Definition 4.1. Let (M,Σ) be a hyperbolic cone-manifold. Let Σ+ be a geodesic link in M , such
that Σ ⊂ Σ+. Let σ1, . . . , σn be the components of Σ+. For a positive vector r = (r1, . . . , rn), let
Ui = Uri(σi) be the set of all points whose distance to σi is less than ri. Let

Ur = ∪ni=1Uri(σi).

We say that Ur is a multi-tube if every Ui is isometric to a model tube as in Definition 2.3, and
the Ui are pairwise disjoint.

We choose a particular construction of maximal tubes.

Definition 4.2. Let M be a non-elementary hyperbolic cone-manifold, and Σ+ a geodesic link
containing the singular locus. We construct a maximal multi-tube about Σ+, as follows:

1. For a sufficiently small r > 0, choosing a constant vector r = (r, . . . , r) produces an embedded
multi-tube Ur. Let R1 be the largest value of r for which this holds. The hypothesis that M is
non-elementary ensures that such an R1 exists.

Setting r = R1, we have an (open) multi-tube Ur whose closure Ur is not a disjointly embedded
union of closed tubes. In other words, either some tube has bumped into itself, or some number
of tubes have bumped into one another. Any tube Ui that cannot be expanded further without
intersecting itself or another tube is declared maximal, and its radius will remain fixed for the rest
of the construction.

2. Suppose, after relabeling, that U1, . . . , Uk are maximal, but Uk+1, . . . , Un are not. We expand the
radii rk+1, . . . , rn at a uniform rate until some tube Ui for i ≥ k + 1 bumps into some other tube
Uj (it may happen that i = j or j ≤ k). We then declare the tubes that have just bumped to be
maximal, and freeze their radii.
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3. Repeat step 2 as needed until no tube can be expanded further. We call the resulting union of
maximal tubes the maximal multi-tube, and denote it Umax(Σ+) or Umax for short. We order the
components of Σ+ so that the vector of radii r = (R1, . . . , Rn) appears in non-decreasing order,
with R1 the smallest radius.

Proposition 4.3. Let M be a non-elementary hyperbolic cone-manifold, and Σ+ a geodesic link
containing the singular locus Σ. Let Umax(Σ+) be the maximal multi-tube about Σ+, with smallest
tube radius R = R1. Suppose that a component Ui ⊂ Umax that becomes maximal by bumping into
a component Uj. Then the radii of these tubes satisfy R1 ≤ Rj ≤ Ri and Ti = ∂Ui contains an
embedded ellipse whose semi-major axes are

(4.4) a(Ri, Rj) =
coshRi sinhRj

S(Rj) cosh(Ri +Rj)
and b(Ri, Rj) =

sinhRi sinhRj
sinh(Ri +Rj)

.

Here S(Rj) is defined via

(4.5) S(r) =


√

2/4

arcsinh(
√

2/4)
= 1.02013 . . . , if sinh r ≤ 1√

2
,

sinh r/ cosh(2r)

arcsinh (sinh r/ cosh(2r))
, if sinh r ≥ 1√

2
.

Furthermore, if the tube Ui became maximal by bumping into itself, Ti = ∂Ui contains two disjoint
ellipses as in (4.4), with parallel major axes.

Proof. This result is essentially due to Hodgson and Kerckhoff [33, Section 4]. They prove an identical
statement when Σ+ is connected, and briefly mention that the argument extends to multiple tubes.
We make small modifications to their argument in order to handle maximal multi-tubes of disparate
radii. It is worth noting that our construction of maximal multi-tubes differs somewhat from that of
Hodgson and Kerckhoff.

As in Definition 2.5, let M̂ be the universal branched cover of M , branched over Σ+. Every
component of Σ+ lifts to a singular geodesic in M̂ , with cone angle ∞, and the space is locally
modeled on Ĥ3, as in Definition 2.1. For any singular basepoint in M̂ , we have the exponential-like
map D : M̂ → Ĥ3.

Consider the tube Ui ⊂ Umax. Since Ui is maximal, the expansion of Ui came to a halt because Ui
bumped into some other tube Uj , which became maximal no later than Ui did. By the construction
of Definition 4.2, we have

(4.6) Ri ≥ Rj ≥ R1 = R.

Since ∂Ui is tangent to ∂Uj , there is a geodesic arc γ of length Ri + Rj that travels radially
outward from the core circle σi, enters into Uj at a point of tangency, and meets the core circle σj
perpendicularly at its endpoint. This arc γ lifts to an arc γ̃ ⊂ M̂ from a lift σ̃i of σi to a lift σ̃j of

σj . By construction, γ̃ is a shortest geodesic from σ̃i to any other singular geodesic in M̂ . In other
words, we have:

Claim 4.7. The geodesic σ̃i ⊂ M̂ has an embedded neighborhood Ṽi of radius Ri +Rj . If we choose

a basepoint on σ̃i, the map D : Ṽi → Ĥ3 is an isometric embedding. �

Let Γ be the set of all lifts of γ starting at σ̃i, oriented outward from σ̃i. Let Q be the set of their
forward endpoints. As in Definition 2.4, there is a Z× Z group of deck transformations of M̂ acting
effectively and transitively on Γ, hence on Q.

Claim 4.8. Let q, q′ ∈ Q be endpoints of distinct lifts of γ. Then

d(D(q), D(q′)) = d(q, q′) ≥ 2Rj .
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The equality of distances holds by Claim 4.7. The inequality holds because q and q′ lie on distinct
lifts of σj , and σj has an embedded tube of radius Rj . See [33, Lemma 4.1] for more details.

For each q ∈ Q, let B(q) ⊂ Ĥ3 be a ball of radius Rj centered at D(q) ∈ Ĥ3. By Claim 4.8, these

balls are disjointly embedded in Ĥ3. In other words, each B(q) is disjoint from its translates under
Z× Z.

Let (r, θ, ζ) be cylindrical coordinates on Ĥ3, as in Definition 2.1. We normalize things so that
the geodesic arc D(γ̃) lies on the geodesic ray {(r, 0, 0) : r > 0}. Let B(q) be the ball of radius Rj
centered at (Ri +Rj , 0, 0). By [33, Lemma 4.3], the projection of B(q) to the (θ, ζ)-plane consists of
all points (θ, ζ) that satisfy

(4.9) sinh2 ζ cosh2(Ri +Rj) + sin2 θ sinh2(Ri +Rj) ≤ sinh2Rj .

Claim 4.10. Let (θ, ζ) be a point in the projection of B(q) to the (θ, ζ)-plane. Setting S(Rj) is as
in (4.5), we have |sinh ζ| ≤ S(Rj) |ζ|. Furthermore, S(Rj) is a decreasing function of Rj.

To see this, observe that (4.9), combined with (4.6), implies

(4.11) | sinh ζ| ≤ sinhRj
cosh(Ri +Rj)

≤ sinhRj
cosh(2Rj)

.

Now, setting x = sinh r, observe that the function

sinh r

cosh(2r)
=

x

2x2 + 1

reaches a global maximum value of
√

2/4 when x = 1/
√

2, and declines to 0 thereafter. Since
|sinh ζ/ζ| is increasing in |ζ|, we have∣∣∣∣ sinh ζ

ζ

∣∣∣∣ ≤ sinh
(
arcsinh(

√
2/4)

)
arcsinh(

√
2/4)

= S(0) = 1.02013 . . . for all values of Rj ,

as observed by Hodgson–Kerckhoff [33, Pages 401–402]. Furthermore, when x = sinhRj ≥ 1/
√

2, we
have ∣∣∣∣ sinh ζ

ζ

∣∣∣∣ ≤ sinhRj/ cosh(2Rj)

arcsinh (sinhRj/ cosh(2Rj))
= S(Rj),

which is increasing in sinhRj/ cosh(2Rj), hence decreasing in Rj . This proves the claim.
Combining (4.9), Claim 4.10, and the standard fact |sin θ| ≤ |θ| gives:

Claim 4.12. Let B(q) be the ball of radius Rj centered at (Ri + Rj , 0, 0). Then the projection of
B(q) to the (θ, ζ)-plane contains the elliptical region consisting of points (θ, ζ) that satisfy

(4.13) ζ2 S(Rj)
2 cosh2(Ri +Rj) + θ2 sinh2(Ri +Rj) ≤ sinh2Rj .

Now, recall the tube Ui about σi, with radius Ri. This tube lifts to a tube Ũi about σ̃i, which
isometrically embeds in Ĥ3 by Claim 4.7. We consider the shadow of B(q) on the Euclidean plane

D(∂Ũi). Since (ζ coshRi) and (θ sinhRi) are Euclidean coordinates on the plane at radius Ri from

the singular geodesic of Ĥ3, the elliptical region of (4.13) can be rewritten in coordinates as(
S(Rj) cosh(Ri +Rj)

coshRi sinhRj

)2

(ζ coshRi)
2 +

(
sinh(Ri +Rj)

sinhRi sinhRj

)2

(θ sinhRi)
2 ≤ 1.

Since the elliptical region is disjoint from its translates under Z×Z, it follows that the quotient torus
Ti = ∂Ui contains an embedded ellipse whose semi-major axes are

a(Ri, Rj) =
coshRi sinhRj

S(Rj) cosh(Ri +Rj)
and b(Ri, Rj) =

sinhRi sinhRj
sinh(Ri +Rj)

,

as required in (4.4).
If the tube Ui became maximal by bumping into itself, the arc γ must have both of its endpoints

on σi. This means there are two distinct Z × Z orbits of lifts of γ with an endpoint on σ̃i, giving
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rise to two orbits of balls B(q) and two disjoint ellipses on ∂Ui. This is the case that Hodgson and
Kerckhoff analyze in [33, Theorem 4.4]. �

Remark 4.14. It follows from Equations (4.13) and (4.6) that the ellipse constructed in the last
proof has θ–coordinate bounded as follows:

|θ| ≤ sinhRj
sinh(Ri +Rj)

≤ sinhRj
sinh(2Rj)

=
1

2 coshRj
<

1

2
.

4.1. Areas of maximal tubes. We present two applications of Proposition 4.3 that will be crucial
in the sequel. The first application, developed by Hodgson and Kerckhoff [33, 34], concerns the area
of maximal multi-tubes. We will use the area of the ellipse constructed in Proposition 4.3 to get a
lower bound on area(Ti). To do this, we need to remove the dependence on the tube Tj .

Lemma 4.15. Let a(Ri, Rj) and b(Ri, Rj) be as in Equation (4.4). Then the function that is their
product

ab(Ri, Rj) =
sinhRi coshRi sinh2Rj

S(Rj) sinh(Ri +Rj) cosh(Ri +Rj)

is increasing in both variables.

Proof. Since S(Rj)
−1 is increasing in Rj by Claim 4.10, it suffices to show that S(Rj)ab(Ri, Rj) is

increasing. To that end, we substitute the variable names x = Ri and y = Rj , and simplify:

Sab(x, y) =
(sinhx coshx) sinh2 y

sinh(x+ y) cosh(x+ y)
=

sinh(2x) · 1
2 (cosh(2y)− 1)

sinh(2x+ 2y)
.

Now, we can compute the partial derivatives:

∂Sab

∂x
=

2 sinh(2x+ 2y) cosh(2x)− 2 sinh(2x) cosh(2x+ 2y)

sinh2(2x+ 2y)
· 1

2
(cosh(2y)− 1)

=
sinh(2y)

sinh2(2x+ 2y)
· (cosh(2y)− 1) > 0

when y > 0. Similarly,

∂Sab

∂y
=

sinh(2x+ 2y) sinh(2y)− (cosh(2y)− 1) cosh(2x+ 2y)

sinh2(2x+ 2y)
· sinh(2x)

=
[sinh(2x+ 2y) sinh(2y)− cosh(2y) cosh(2x+ 2y)] + cosh(2x+ 2y)

sinh2(2x+ 2y)
· sinh(2x)

=
cosh(2x+ 2y)− cosh(2y)

sinh2(2x+ 2y)
· sinh(2x) > 0.

when x > 0 and y > 0. �

We can now show the following.

Theorem 4.16. Let M be a non-elementary hyperbolic cone-manifold, and Σ+ a geodesic link
containing the singular locus Σ. Let Umax(Σ+) be the maximal multi-tube about Σ+, with smallest
tube radius R. Let Ti = ∂Ui be the boundary torus of any component of Umax. Then

(4.17) area(Ti) ≥
√

3 sinh2R

S(R) cosh(2R)
≥ 1.69785

sinh2R

cosh(2R)
.

If the tube Ui became maximal by bumping into itself (for instance, if Σ+ is connected), then area(Ti)
is bounded below by twice the estimate of (4.17).
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Proof. This result is essentially [33, Theorem 4.4]. To derive the theorem from Proposition 4.3,
perform an area-preserving affine transformation on Ti that turns the ellipse of Proposition 4.3 into
a circle. The area of this circle is

πab(Ri, Rj) ≥ πab(R,R) =
π sinhR coshR sinh2R

S(R) sinh(2R) cosh(2R)
=

π sinh2R

2S(R) cosh(2R)
,

where the inequality is Lemma 4.15. By a theorem of Böröczky [8], the maximal density of a circle
packing in the torus is π

2
√

3
. Therefore,

area(Ti) ≥
2
√

3

π
πab(R,R) = 2

√
3 ab(R,R) =

√
3 sinh2R

S(R) cosh(2R)
.

Recall from Claim 4.10 that S(R) ≤ S(0) = 1.02013 . . ., hence
√

3/S(R) ≥ 1.69785.
If the tube U1 became maximal by bumping into itself, the two ellipses guaranteed by Proposition 4.3

become two circles of identical radius. Thus the estimate of (4.17) becomes doubled. This is the case
that Hodgson and Kerckhoff analyze in [33, Theorem 4.4]. �

We apply Theorem 4.16 to bound the visual area of Σ+.

Definition 4.18. Let M be a non-elementary hyperbolic cone-manifold, and let Σ+ = σ1∪. . .∪σn be
a geodesic link containing the singular locus. Let αj be the cone angle along σj , and let λj = len(σj)
be the length of σj . We define the visual area of σj to be

Aj = αjλj .

The visual area of Σ+ is defined by summation: A =
∑
j Aj . Note that if Tj is the boundary of some

tube Uj ⊂ Umax, then (2.2) implies

(4.19) area(Tj) = Aj sinhRj coshRj = Aj sinh(2Rj)/2.

Definition 4.20. Define a function

h(r) = 3.3957
tanh(r)

cosh(2r)
= 3.3957

z(1− z2)

1 + z2
,

where z = tanh r.

Theorem 4.21. Let M be a non-elementary hyperbolic cone-manifold, and Σ+ a geodesic link
containing the singular locus. Let Umax(Σ+) be the maximal multi-tube about Σ+, with smallest tube
radius R. Then

A ≥ h(R).

Proof. This result is due to Hodgson and Kerckhoff [34, Theorem 5.6]. We repeat the short proof for
completeness. If Ti is a boundary torus of some component of Umax, equation (4.19) gives

area(Ti) = Ai sinhRi coshRi.

If U1 became maximal by bumping into itself, Theorem 4.16 guarantees

A ≥ A1 =
area(T1)

sinhR coshR
≥ 3.3957

sinh2R/ cosh(2R)

sinhR coshR
= h(R),

as desired. Meanwhile, if U1 became maximal by bumping into another tube U2, then R1 = R2 = R,
and Theorem 4.16 bounds the area of each of T1 = ∂U1 and T2 = ∂U2. Therefore,

A ≥ A1 +A2 =
area(T1) + area(T2)

sinhR coshR
≥ 3.3957

sinh2R/ cosh(2R)

sinhR coshR
= h(R). �

In Section 5, we will apply Theorem 4.21 to prove the existence of cone deformations maintaining a
given tube radius about Σ. To set up this application, we need to establish some important properties
of h(r).
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Lemma 4.22 (Lemma 5.2 of [33]). For r > 0, the function h(r) of Definition 4.20 has a unique

critical point at r0 = arctanh
√√

5− 2 ≈ 0.5306375. This critical point is a global maximum, hence
h(r) is strictly decreasing when r ≥ 0.531. �

Remark 4.23. Recall from Definition 4.20 that h(r) can be expressed as a rational function of
z = tanh r. This leads us to define

haze(z) = h(tanh−1(z)) = 3.3957
z(1− z2)

1 + z2
.

By Lemma 4.22, haze(z) is decreasing and invertible in the range z ∈
[√√

5− 2, 1
)
. The functions

haze and haze−1 will play an important role in Section 6 and Section 7. Because inverting haze(z)
amounts to solving a cubic equation, Cardano’s Formula can be used to obtain a closed-form
expression for haze−1(h):

(4.24) haze−1(3.3957x) =
2
√
x2 + 3

3
cos

(
π

3
+

1

3
tan−1

(
−3
√
−3x4 − 33x2 + 3

x3 + 18x

))
− x

3
.

Returning to the function h(r), we define hmax = h(0.531) ≈ 1.01967. By Lemma 4.22, this
is slightly less than the true maximal value of h. Now, Theorem 4.21 and Lemma 4.22 have the
following immediate corollary.

Corollary 4.25. The function h of Definition 4.20 has a well-defined inverse

h−1 : (0, hmax]→ [0.531,∞),

which can be computed via (4.24). Furthermore, h−1 is a decreasing function such that the maximal
tube radius satisfies

R ≥ h−1(A),

provided R ≥ 0.531. �

4.2. Injectivity radii. Recall the definition of injrad(x, Ui) from Definition 2.17.

Theorem 4.26. Let M be a non-elementary hyperbolic cone-manifold, and Σ+ a geodesic link
containing the singular locus. Let Umax(Σ+) be the maximal multi-tube about Σ+, with smallest tube
radius R.

Then, for every tube Ui ⊂ Umax and every x ∈ ∂Ui,

2 injrad(x, Ui) ≥ 1.361

√
1− cos

(
1

cosh(R)

)
· sinhR

S(R)
(4.27)

> 1.1227 tanhR− 0.1604.(4.28)

where S(R) is defined in (4.5). The functions on the right-hand side of (4.27) and (4.28) are
increasing in R.

Proof. First, we check that the function expressing the lower bound in (4.27) is increasing in R, and
calculate its limit as R→∞. We define

f1(R) =

√
1− cos

(
1

cosh(R)

)
· cosh(R), f2(R) =

1

S(R)
, f3(R) = tanhR,

so that the lower-bound function in (4.27) becomes f(R) = 1.361 f1(R) f2(R) f3(R). The first
non-constant term in the product can be written as

f1(R) =

√
1− cos

(
1

cosh(R)

)
· cosh(R) =

√
1− cos(A)

A2
for A =

1

cosh(R)
.

For A between 0 and 1, the function f1(R) is decreasing in A, hence increasing in R. It satisfies
lim
R→∞

f1(R) = 1√
2
. The second term is f2(R) = S(R)−1, which is increasing by Claim 4.10 and
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approaches 1 as R → ∞. Finally, the third term is f3(R) = tanhR, which is also increasing in R
and approaches 1 as R → ∞. Thus f(R) = 1.361 f1(R) f2(R) f3(R) increases at least as fast as
Z = tanhR, and satisfies

(4.29) lim
R→∞

f(R) = 1.361 lim
R→∞

f1(R) f2(R) f3(R) =
1.361√

2
= 0.96237 . . .

Next, we check that the function in (4.27) is larger than the one (4.28). Set Z = tanhR, as
above. When Z ∈ [0.99995, 1), the increasing function in (4.27) is bounded below by 0.9623,
whereas 1.1227Z − 0.1604 is bounded above by 0.9623. Meanwhile, when Z ∈ [0, 0.99995], we check
using interval arithmetic in Sage that the function in (4.27) is larger than 1.1227Z − 0.1604. This
is established by breaking the domain [0, 0.99995] into small intervals and checking the desired
inequality on each sub-interval. See the ancillary files [23] for details.

Now, we proceed to the main portion of the proof: the lower bound on injrad(x, Ui) expressed in
(4.27). Consider the torus Ti = ∂Ui. Proposition 4.3 has the following consequence.

Claim 4.30. The torus Ti = ∂Ui contains an embedded open disk of radius

b(R,R)

S(R)
=

sinh2R

S(R) sinh(2R)
=

tanhR

2S(R)
,

where b(·, ·) is a semi-major axis as in (4.4), and S(·) is as in (4.5).

This can be seen as follows. By Proposition 4.3, torus Ti contains an embedded ellipse, whose
semi-major axes are

a(Ri, Rj) =
coshRi sinhRj

S(Rj) cosh(Ri +Rj)
and b(Ri, Rj) =

sinhRi sinhRj
sinh(Ri +Rj)

.

This ellipse contains a disk of radius min{a, b}. We would like to determine this minimum. By
Lemma A.2,

coshRi
cosh(Ri +Rj)

>
sinhRi

sinh(Ri +Rj)
, hence S(Rj)a(Ri, Rj) > b(Ri, Rj).

Since S(Rj) > 1, it follows that

min {a(Ri, Rj), b(Ri, Rj)} ≥ min

{
a(Ri, Rj),

b(Ri, Rj)

S(Rj)

}
=
b(Ri, Rj)

S(Rj)
≥ b(R,R)

S(R)
.

Here, the last inequality follows because b(Ri, Rj) is monotonically increasing in both variables, by
a calculation similar to Lemma 4.15. Meanwhile, S(R) is monotonically decreasing by Claim 4.10,
hence the quotient is increasing. This proves the claim.

Proceeding toward the main proof, let M̂ be the universal branched cover of M , branched over

Σ+. Choose a preimage Ũi of Ui. Then T̃i = ∂Ũi is a Euclidean plane that covers Ti. Our goal,
following Definition 2.17, is to give a lower bound on the distance between a lift x̃ of x and any of its
translates under π1(Ti) = Z× Z.

By Claim 4.30, T̃i contains a Z× Z–equivariant family of disjoint disks, of radius b(R,R)/S(R).
Fix p = x̃, and let q = ϕ(x̃) be the closest translate of p. Since injrad(x, Ui) is constant over points of
Ti, we may assume that p and q lie at centers of disks in this family. Thus dE(p, q) ≥ 2b(R,R)/S(R),

where dE denotes the Euclidean distance on T̃i, as in Section 3.3.

Claim 4.31. We have d(p, q) ≥ f(R) = 1.361

√
1− cos

(
1

cosh(R)

)
· sinhR

S(R)
.

Before proving this claim, we make some quick reductions. First, as we computed in (4.29), the
function f(R) is bounded above by 0.9625. Thus it suffices to assume d(p, q) ≤ 0.9625. Second, it
suffices to assume that the disks of radius b/S centered at p and q are tangent, because any lower
bound on distance for tangent disks will still apply as p, q are moved further apart.
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Our lower bound on d(p, q) will come from Lemma 3.8. In preparation for applying that lemma,
we note that since d(p, q) ≤ 0.9625, we have

(4.32)
cosh d(p, q)− 1

d(p, q)2
≤ cosh 0.9625− 1

0.96252
= 0.53981 . . . .

By Remark 4.14, the θ–coordinates of an ellipse centered at (r, 0, 0) must satisfy

(4.33) |θ| ≤ 1

2 cosh(Rj)
≤ 1

2 cosh(R)
=
A

2
,

where recall that we defined A = 1/ cosh(R). This means that the θ–coordinates of p and q, whose
disks are assumed to be tangent, must differ by at most A, which is at most 1 < π. Finally, if the
disks centered at p, q are tangent, Claim 4.30 implies

(4.34) dE(p, q) =
2b(R,R)

S(R)
=

tanhR

S(R)
.

Now, we may plug (4.32) and (4.34) into the lower bound of Lemma 3.8. Using the upper bound
from (4.32), we obtain

0.53982 d(p, q)2 ≥ cosh d(p, q)− 1 ≥ 1− cosA

A2
dE(p, q)2 =

1− cosA

A2
· tanh2R

S(R)2
.

Using the value A = 1/ coshR from (4.33), this simplifies to

d(p, q) ≥
√

1

0.53982
·
√

1− cosA

A
· tanhR

S(R)

= 1.36105 . . .

√
1− cos

(
1

cosh(R)

)
· coshR · tanhR

S(R)
,

proving the claim. Since q was assumed to be the closest translate of p = x̃, Claim 4.31 proves the
theorem. �

Remark 4.35. If the cone manifold M has cusps, the constructions and results of this section also
apply to a maximal neighborhood consisting of tubes and horocusps in M . To extend Definition 4.2,
first construct a maximal multi-tube as in that definition. Then, choose any ordering on the cusps
and expand each cusp neighborhood until it bumps into a tube or a previously expanded cusp.

After such a construction, Theorems 4.16 and 4.26 hold for the boundary tori of both tubes and
horocusps. One way to see this is to view horocusps as limiting cases of tubes with radius Ri →∞.
A key point in the proofs of both Theorem 4.16 and Theorem 4.26 is that the relevant estimates are
monotonically increasing in Ri. Thus they will also hold if Ri is replaced by ∞.

If there are no compact tubes at all, but only a union of maximal cusps, both theorems become
well-known statements from the literature. Theorem 4.16 becomes the well-known estimate due to
Meyerhoff [44, Section 5] that every cusp torus Ti = ∂Ui satisfies

area(Ti) ≥
√

3

2
= lim
R→∞

√
3 sinh2R

S(R) cosh(2R)
.

Meanwhile, Theorem 4.26 becomes a well-known estimate observed by Adams [1, Lemma 2.4]: every
non-trivial element ϕ ∈ π1(Ti) corresponds to a horocycle of length ≥ 1. In other words, for every

x̃ ∈ T̃i and every 1 6= ϕ ∈ π1(Ti), we have dE(x̃, ϕx̃) ≥ 1. By Lemma 3.9, this implies

2injrad(x, Ui) = min{d(x̃, ϕ(x̃)) : ϕ 6= 1} ≥ 2 arcsinh(1/2) = 0.96242 . . . ,

which is nearly the same as the asymptotic limit computed in (4.29).
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5. Existence of cone deformations

This section proves that if M is a hyperbolic manifold and Σ ⊂ M is a geodesic link that is
sufficiently short, then there exists a cone deformation interpolating between M and M − Σ. See
Theorem 5.1 for a precise statement. This result is closely related to theorems of Hodgson and
Kerckhoff [33] and Bromberg [14] showing that cone deformations exist under certain conditions.
However, we need a version that has explicitly quantified hypotheses, allows for multiple components
of Σ, and allows M to be a cusped manifold. Such a version did not previously appear in the
literature. Still, our proof in this section relies heavily on the cone deformation theory developed
by Hodgson and Kerckhoff [31, 33, 34]. In order to explain the statement and set up the proof, we
review necessary background material from their work. Reviewing background from cone deformation
theory will also allow us to define several important quantities and set up notation that will be used
in the subsequent sections.

On the way to proving Theorem 5.1, we will establish Theorem 5.14, which provides quantitative
control on the radius of a maximal multi-tube about Σ. This result will be used repeatedly in the
sequel.

A related theorem of Hodgson and Kerckhoff [34, Theorem 1.2] provides an interpolation by
cone manifolds from M − Σ to M (i.e. in the opposite direction of Theorem 5.1), provided that all
meridians on the cusps of M − Σ are sufficiently long. We recall their result below, in Theorem 5.17,
again adding quantitative control over the radius of a multi-tube about Σ.

In this section, and in the sequel, Σ = σ1 ∪ . . . ∪ σn is a geodesic link. We use the notation
`j = len(σj) to denote the initial length of σj in a non-singular metric, and λj = λj(t) = lent(σj) to
denote the length of σj in a changing metric gt.

Theorem 5.1. Let M be a finite volume hyperbolic 3–manifold. Suppose that Σ = σ1 ∪ · · · ∪ σn is a
geodesic link in M , whose components have lengths satisfying

`j = len(σj) ≤ 0.0996 for all j and ` =

n∑
j=1

`j ≤ 0.15601.

Then the hyperbolic structure on M can be deformed to a complete hyperbolic structure on M − Σ
by decreasing the cone angle αj along σj from 2π to 0. The cone angles on all components of Σ
change in unison.

Hodgson and Kerckhoff have shown this result in the setting where M is a closed hyperbolic
3–manifold and Σ is connected [33, Corollary 6.3]. In this special case, it suffices to assume that
` = len(Σ) ≤ 0.11058. Bromberg extended their result to geometrically finite manifolds without rank
one cusps [14, Theorem 1.2]. However, his hypotheses are not explicitly quantified, while we need
explicit bounds under explicit hypotheses.

5.1. Background on cone deformations. Hodgson and Kerckhoff [31] show that an infinitesimal
deformation of a cone manifold structure on M , with singular locus Σ, can be represented as a
harmonic 1–form ω with values in the bundle E of infinitesimal isometries of X = M − Σ. Explicit
information about ω is used to determine the effect of the deformation on the singular locus.

Since X is a hyperbolic 3–manifold, its bundle of infinitesimal isometries can be identified with
TX ⊗ C ∼= TX ⊕ i TX. Here (v, iw) ∈ TX ⊕ i TX corresponds to an infinitesimal translation in the
direction of v and an infinitesimal rotation about an axis in the direction of w. In [34], Hodgson and
Kerckhoff show that ω can be taken to be harmonic, which means it will have the form

(5.2) ω = η + i ∗Dη
where η is a TX–valued 1–form on X, and ∗ is the Hodge star operator on forms on X that takes
the vector-valued 2–form Dη to a vector-valued 1–form. The forms η and ∗Dη are both symmetric
and traceless. Under an appropriate L2 integrability condition, ω is the unique closed and co-closed
harmonic form in its cohomology class; see Remark 5.18 for details.
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Given any component σj of the singular locus Σ, Hodgson and Kerckhoff use cylindrical coordinates
about σj to compute two explicit closed and co-closed forms. The first, ωm = ηm+ i∗Dηm, represents
an infinitesimal deformation which decreases the cone angle but does not affect the real part of the
complex length of the meridian. The second, ω` = η` + i ∗Dη`, stretches the singular locus but leaves
the holonomy of the meridian unchanged. The effects of ωm and ω` on the complex length of any
peripheral curve were computed in [31, pages 32–33] and recorded in [33, Lemma 2.1].

In the following lemma, t is a dummy variable expressing the “direction” of an infinitesimal change
of metric. Part of the content of Theorem 5.6 will be that infinitesimal deformations can actually be
promoted to local deformations, parametrized by t.

Lemma 5.3 (Lemma 2.1 of [33]). The effects of ωm and ω` on the complex length L of any peripheral
curve are as follows.

(1) If ω = ωm, then d
dt (L) = −2L.

(2) If ω = ω`, then d
dt (L) = 2Re(L).

Any harmonic infinitesimal deformation affecting σj alone can be written in terms of these forms:

ω = sj ωm + (xj + i yj)ω` + ωc,(5.4)

where sj , xj , and yj are real constants, and ωc is an infinitesimal deformation that does not affect
the holonomy of the meridian and longitude on the torus Tj of distance R from σj . We define ω0 to
be ω − ωc.

Because only ωm affects the cone angle, the coefficient sj determines the change in cone angle at
σj for our given parametrization.

Lemma 5.3 implies that the effect of ω0 on the complex length Lj of σj is given by

d

dt
(Lj) = −2sjLj + 2(xj + iyj)Re(Lj)(5.5)

A central result of Hodgson and Kerckhoff [31] is that there always exists a local cone deformation
that changes the cone angle on each component of Σ at the desired rate. In fact, we may let
the deformation preserve some number of closed geodesics whose cone angle is not changing. The
following is a special case of [31, Theorem 4.8], with parametrization information added as in [34,
Page 1073].

Theorem 5.6. Let M be a finite volume hyperbolic cone manifold with singular locus Σ = σ1∪. . .∪σn,
such that each component of Σ has cone angle αj ≤ 2π. Let Σ+ = σ1 ∪ . . . ∪ σm be a geodesic link
containing Σ. Pick a vector (s1, . . . , sm) ∈ Rm, where sj = 0 for j > n. Then there is a local cone
deformation (M,Σ+, gt), parametrized by t, such that

(5.7)
dαj
dt

= −2αjsj .

Furthermore, the metric gt is determined up to isometry by the vector (α1(t), . . . , αn(t), αn+1, . . . , αm).

In our setting, we will consider deformations where each component of Σ has the same cone angle.
As in [34], we choose the parametrization t = α2 for 0 ≤ α ≤ 2π, and insist that αj = α for every
j ≤ n. When α > 0, equation (5.7) becomes

sj = − 1

2α

dα

dt
=
−1

4α2
for all j ≤ n.(5.8)

5.2. Visual area and maximal tubes. Recall from Definition 4.18 that the visual area of the jth

component of Σ is Aj = αjλj , and the total visual area is A =
∑
Aj . Recall as well the notion

of a maximal multi-tube from Definition 4.2. Our goal is to ensure that the radius of Umax does
not degenerate to 0 during the course of the cone deformation. We do this by showing that A is
monotonic in α (Lemma 5.9) and that small visual area implies deep tubes (Corollary 4.25).
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Lemma 5.9. Consider a local cone deformation (M,Σ, gt), parametrized by t = α2. Let Umax(Σ)
be the maximal multi-tube about Σ, and let R be the smallest radius of the tubes in Umax. Let
lent(Σ) =

∑
j λj denote the total length of Σ in the cone-metric gt. If Z = tanhR ≥ 1/

√
3, and

t > 0, then

(5.10)
d

dt
lent(Σ) ≥ lent(Σ)

2t
· 3Z2 − 1

Z2(3− Z2)
≥ 0.

Furthermore,

(5.11)
dA
dt
≥ A

2t

(
3Z2 − 1

Z2(3− Z2)
+ 1

)
≥ A

2t
> 0.

Proof. In our setting, every component of Σ has the same angle αj = α. Define v = A/α2 = len(Σ)/α.
Then

len(Σ) =
∑

λj =
A
α

= α v =
√
t v.

Consequently,

d len(Σ)

dt
=
d(
√
t v)

dt
=
√
t
dv

dt
+

v

2
√
t

=
v

2
√
t

(
2t

v

dv

dt
+ 1

)
=

len(Σ)

2t

(
2t

v

dv

dt
+ 1

)
.

By [34, Proposition 5.5], the hypothesis R ≥ arctanh(1/
√

3) implies

1

v

dv

dt
≥ − 1

sinh2R

(
2 cosh2R− 1

2 cosh2R+ 1

)
1

α

dα

dt
= −

(
1− Z4

Z2(3− Z2)

)
1

2t
,

where the last equality uses Z = tanhR and t = α2. Then

2t

v

dv

dt
+ 1 ≥ − 1− Z4

Z2(3− Z2)
+ 1 =

3Z2 − 1

Z2(3− Z2)
.(5.12)

Since Z = tanhR < 1, the denominator of the last expression is always positive. The numerator will
be non-negative whenever Z ≥ 1/

√
3, hence the whole expression in (5.12) is non-negative. Thus

d len(Σ)

dt
=

len(Σ)

2t

(
2t

v

dv

dt
+ 1

)
≥ lent(Σ)

2t
· 3Z2 − 1

Z2(3− Z2)
≥ 0,

establishing (5.10). For (5.11), we recall that A = α2v = tv. Thus

dA
dt

= t
dv

dt
+ v =

v

2

(
2t

v

dv

dt
+ 2

)
=
A
2t

(
2t

v

dv

dt
+ 2

)
≥ A

2t

(
3Z2 − 1

Z2(3− Z2)
+ 1

)
.

Since the expression in (5.12) is non-negative, (5.11) follows. �

Our goal is to bound the tube radius throughout a cone deformation. Following Hodgson and
Kerckhoff, we do this by using Corollary 4.25, which can be rephrased as follows: if the tube radius
at some initial time t is larger than 0.531, and A(t) remains smaller than hmax ≈ 1.0196 throughout
the cone deformation, then the tube radius will remain large.

To apply Lemma 5.9, we need to ensure that the cone-locus Σ has a tube of radius R ≥
arctanh(1/

√
3) > 0.531. This minimal assumption on tube radius will appear in many results below.

5.3. Decreasing cone angles to 0. Recall that by Theorem 5.6, there always exists a local cone
deformation on (M,Σ) that decreases the cone angle on each component of Σ from α to α− ε, for
some small ε > 0. To show that the cone deformation can be continued, we apply a result of Hodgson
and Kerckhoff.
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Theorem 5.13 (Theorem 3.12 of [33]). Suppose Mt for t ∈ [0, t∞) is a smooth path of finite volume
hyperbolic cone manifold structures on (M,Σ) with cone angle αj(t) along the jth component of the
singular locus Σ. Suppose αj(t) ∈ [0, 2π] for all t, and αj(t) → aj as t → t∞. Suppose there is a
constant Rmin > 0 such that there is an embedded tube of radius at least Rmin around Σ for all t.
Then the path extends continuously to t = t∞ so that as t → t∞, Mt converges in the bilipschitz
topology to a cone manifold structure M∞ on M with cone angle aj along the jth component of Σ.

Proof. This theorem is exactly [33, Theorem 3.12], except for three minor differences in the statement:

(1) The result [33, Theorem 3.12] is stated for closed manifolds rather than finite-volume
manifolds.

(2) It is stated for cone structures where all cone angles around the singular locus agree. In fact,
we can be more flexible with parametrizing the deformation.

(3) It is stated for cone-manifolds satisfying a uniform upper volume bound, independent of t.

Hypothesis (3) can be omitted because it holds automatically. This follows from a construction
of Agol [3], as follows. Agol uses the cone-metric gt (which is non-singular outside a tube about
Σ) to construct a complete metric of pinched negative curvature on M − Σ, which we denote ht.
The sectional curvatures of this metric are bounded in terms of the constant Rmin > 0, while vol(ht)
differs from vol(gt) by a multiplicative factor that depends only on Rmin. Furthermore, by a result of
Boland, Connell, and Souto [7], vol(ht) differs by a bounded multiplicative factor from the volume of
the complete hyperbolic metric, denoted vol(M − Σ). Consequently, Agol’s work gives a uniform
upper bound on vol(Mt) as a function of Rmin and vol(M − Σ).1

Hypothesis (2) can be omitted because it is never used in the proof of [33, Theorem 3.12]. The
proof goes through verbatim without this assumption.

Issue (1) can now be resolved by an appeal to (2). Let Σ+ consist of geodesics and cusps, where
the cusps have cone angle 0. Now apply [33, Theorem 3.12] to Σ+, so that the cone angle remains 0
on all cusps that remain unfilled. This immediately gives the result for finite volume manifolds. �

Theorem 5.14. Suppose M is a finite volume hyperbolic 3–manifold, and Σ = σ1 ∪ · · · ∪ σn is a
geodesic link in M , of total length ` = len(Σ) ≤ 0.15601 ≈ h(arctanh(1/

√
3))/(2π). Let R be the

radius of a maximal embedded tube about Σ, and assume R ≥ 0.531. Define Rmin = h−1(2π`), and
note that this value exists by Corollary 4.25.

Then the hyperbolic structure on M can be deformed to the complete hyperbolic structure on M −Σ
by decreasing the cone angles on Σ from 2π to 0 in such a way that at any time t,

(1) Every component of Σ has cone angle α =
√
t,

(2) The tube radius in Mt about Σ is R(t) ≥ Rmin ≥ arctanh(1/
√

3),
(3) If t > 0, we have A′(t) > 0.

Proof. By Theorem 5.6, there exists a cone deformation with cone angles near 2π, parametrized by
t = α2. At the maximal value of t, namely t = (2π)2, we have

A(t) = 2π` = h(Rmin) ≤ h(arctanh(1/
√

3)) < hmax,

hence R ≥ Rmin ≥ arctanh(1/
√

3) by Corollary 4.25. By Lemma 5.9, we have A′((2π)2) > 0.
Let I ⊂ [0, (2π)2] be the maximal subinterval containing (2π)2, such that conclusions (1), (2), and

(3) all hold for t ∈ I. In the previous paragraph, we checked that I contains (2π)2, so is not empty.
Next, we show that I is open. Suppose t0 ∈ I, so there exists a hyperbolic cone manifold

structure on M with cone angles α0 =
√
t0. On a small neighborhood of t0, condition (1) holds

as a consequence of Theorem 5.6: there exists a local cone deformation with cone angles near α0,
parametrized by t = α2 for t near t0. Condition (3) is an open condition, hence A′(t) > 0 in a small
neighborhood of t0 in [0, (2π)2]. Therefore, in the union of I and this small neighborhood, we have

1The main result of Agol’s paper [3, Theorem 2.1] uses this construction to bound the ratio vol(M − Σ)/ vol(Mt)
from above. However the same ingredients also suffice to bound vol(M − Σ)/ vol(Mt) from below.
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A(t) ≤ A((2π)2) ≤ h(Rmin), hence R ≥ Rmin ≥ arctanh(1/
√

3) by Corollary 4.25. So condition (2)
is satisfied as well in this neighborhood, and I is open.

Now, we show that I is closed. Let t∞ = inf I. By Theorem 5.13, the assumption that R(t) ≥
arctanh(1/

√
3) for t ∈ I implies that the cone deformation extends to time t∞, hence (1) holds.

Second, note that (2) is a closed condition, hence R(t∞) ≥ Rmin by continuity. Third, by Lemma 5.9,

R(t∞) ≥ arctanh(1/
√

3) implies that if t∞ > 0, then A′(t∞) > 0, hence condition (3) holds. Finally,
if t∞ = 0, then condition (3) holds vacuously. Therefore, I is closed.

Since I is open, closed, and non-empty, it follows that I = [0, (2π)2], hence the desired cone
deformation interpolates all the way between cone angle 2π and 0. �

The style of argument in the above proof will be employed several more times in the paper.
Conditions (1)–(3) are mutually reinforcing, with the property that if they hold on an interval I,
then they also hold on a slightly larger interval. If I is closed, the conclusions hold on a neighborhood
of the endpoint; if I is open, they hold on the closure. This continuous analogue of induction will be
called a crawling argument.

We will prove Theorem 5.1 by applying Theorem 5.14. Theorem 5.14 needs a hypothesis on the
length ` and a hypothesis on the radius of the maximal tube. Meanwhile, Theorem 5.1 only has
hypotheses on length. It turns out that for non-singular manifolds, the tube radius can be estimated
from length alone.

Lemma 5.15. Let M be a hyperbolic 3–manifold. Let Σ ⊂M be a geodesic link with components
σ1, . . . , σn, such that len(σj) ≤ 0.0996 for every j. Then the maximal embedded tube about Σ has
radius R > 0.531.

See [28, Proposition 1.10] for a very similar statement, with slightly different numbers in the
hypotheses and the conclusion. Our proof, using results of Meyerhoff [44], is based on the proof of
that proposition.

Proof of Lemma 5.15. This follows from a theorem of Meyerhoff [44, Section 3]. For each j, let
Lj = `j + iτj be the complex length of σj . For each j, Meyerhoff constructs an embedded tube about
σj whose radius rj satisfies

sinh2 rj =

√
1− 2k(Lj)
2k(Lj)

− 1

2
, where k(Lj) = min

m∈N
{cosh(m`j)− cos(mτj)}.

Furthermore, the tubes about different components are disjoint [44, Section 7].

Observe that
√

1−2k
2k is a decreasing function of k when k ∈ (0,

√
2 − 1), and that rj = 0.531

when k(Lj) = 0.34932 . . .. Thus it remains to show that k(Lj) ≤ 0.34932 for all `j ∈ [0, 0.0996] and
τj ∈ [0, 2π]. Since cosh(m`j) is an increasing function of `j , it suffices to set `j = 0.0996. Since
cos(mτj) is an even function of τj , it suffices to consider values τj ∈ [0, π].

Finally, we claim that for every τj ∈ [0, π], there is an integer m ∈ {1, . . . , 8} such that cosh(m ·
0.0996)− cos(mτj) ≤ 0.34932. This is verified using interval arithmetic in Sage; see the ancillary files
[23] for details. �

Proof of Theorem 5.1. Suppose that Σ = σ1 ∪ · · · ∪ σn is a geodesic link in M , such that each
component has length len(σj) ≤ 0.0996 and

∑
len(σj) ≤ 0.15601. Since len(σj) ≤ 0.0996 for

each j, Lemma 5.15 says the maximal tubular neighborhood of Σ has radius R > 0.531. Since
` =

∑
len(σj) ≤ 0.15601, Theorem 5.14 implies that we may deform the cone angles on σj downward

from 2π to 0. �

5.4. Increasing cone angles from 0. Next, we present a companion result to Theorem 5.14, whose
hypotheses are on the drilled manifold M − Σ rather than the on the filled manifold M where Σ is
non-singular. Recall that normalized length was defined in Definition 1.3. If the total normalized
length of all meridians in M − Σ is sufficiently large, one obtains a cone deformation from M − Σ to
M , with control on tube radii.
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Definition 5.16. Define a function I : (0, 1)→ R by

I(z) =
(2π)2

3.3957 (1− z)
exp

(∫ 1

z

1 + 4w + 6w2 + w4

(1 + w)(1 + w2)2
dw

)
,

where z = tanh r as usual. This function has a unique critical point: a global minimum when

z =
√√

5− 2, with minimum value 56.469 . . .. The function is monotonically increasing for larger z,
hence for r ≥ 0.531. It blows up as z → 1. See [33, Pages 409–410].

Hodgson and Kerckhoff proved the following result.

Theorem 5.17. Let M be a 3–manifold with empty or toroidal boundary, and Σ a smoothly embedded
link in M . Suppose that M − Σ is a cusped hyperbolic manifold such that the total normalized length
of the meridians of Σ satisfies

L2 ≥ I(Zmin), where Zmin = tanh(Rmin) ≥ 1/
√

3.

Then M admits a hyperbolic metric in which Σ is isotopic to a union of geodesics. Furthermore,
the hyperbolic structure on M − Σ can be deformed to that of M via a family of cone-manifolds Mt,
while maintaining the following properties.

(1) Every component of Σ has the same cone angle in Mt,

(2) The tube radius in Mt about Σ is R(t) ≥ Rmin ≥ arctanh(1/
√

3),
(3) A(t) < hmax.

Proof. This is essentially [34, Theorem 5.11], with information about tube radius extracted from
the proof. By the remark following [31, Theorem 4.8], there is a family of cone-manifolds (M,Σ, gt)
for t ∈ [0, ε), in which the cone angles on Σ agree for each t. In [34, Theorem 5.8], Hodgson

and Kerckhoff prove that the deformation can be continued so long as R(t) ≥ arctanh(1/
√

3).
Meanwhile, in [34, Theorem 5.7] and the discussion preceding the theorem, they show that so long as
L2 ≥ I(Zmin), and the cone angles are at most 2π, the tube radius R(t) will stay bounded below

by Rmin ≥ arctanh(1/
√

3). Thus the deformation can be continued all the way up to cone angle 2π,
where we reach the complete hyperbolic metric on M . The link Σ is geodesic in each cone metric gt,
hence is also geodesic in the non-singular metric at cone angle 2π. �

We conclude this section with a particularly natural choice of the harmonic form ω.

Remark 5.18. Recall from Section 5.1 that an infinitesimal deformation of the cone-metric gt is
determined by a harmonic 1–form ω defined on X = M−Σ, with values in the bundle E ∼= TX⊕iTX
of infinitesimal isometries of X. By Theorem 5.6, the local family of cone-metrics gt is determined
up to isometry by its cone-angles, but different choices of ω within the same cohomology class in
H1(X,E) lead to different choices of cone-metric within the same isometry class. In our bilipschitz
theorem in Section 8, it will be important to have a natural way to identify points of (M,Σ, ga) with
points of (M,Σ, gb), for the purpose of comparing the metrics ga and gb at a point p ∈ X. To that
end, we pin down a canonical choice of ω.

Suppose ω̃ is a smooth E–valued 1–form on X = M − Σ. In [31, Theorem 2.7], Hodgson and
Kerckhoff prove that so long as all cone angles are at most 2π, which is always the case in our
setting, there is a unique closed and co-closed harmonic form ω such that [ω̃] = [ω] ∈ H1(X,E),
and furthermore ω̃ − ω = ds, where s is a globally defined L2 section of E. This choice of ω
determines the one-parameter family of cone-metrics gt on the nose, and defines a natural identity
map id : (M−Σ, ga)→ (M−Σ, gb) that allows us to compare the metrics at any given point. Because
of the canonical way in which ω is chosen, the identity map conjugates every isometry of (M,Σ, ga)
to an isometry of (M,Σ, gb). We will say, for short, that the identity map is equivariant with respect
to the symmetry group of (M,Σ).

In Sections 8 and 9, we will always use this 1–form ω and the accompanying identity map. In
Section 7, where we will need the flexibility to enlarge Σ to a larger link Σ+ containing a non-singular
geodesic, we will accordingly choose a harmonic form ω with reference to Σ+.
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6. Bounding the boundary terms

In this section, we will find explicit bounds on certain boundary terms that arise in the cone
deformation. These boundary terms were used in [31] to prove that there are no infinitesimal
deformations of hyperbolic cone manifolds fixing the cone angles. They have been used in many
other applications of cone deformations to obtain geometric control. We will use boundary terms in
Section 7 to bound the change in length of a non-singular geodesic, and in Section 8 to get bilipschitz
estimates in the thick part of a manifold.

This section is quite technical, reviewing definitions and results from [31, 33, 34] that require
significant work from analysis and differential geometry to state and to prove. For our applications,
we need only the results (technical though they are), and not the analysis. Therefore we will skim
over some of the definitions and results quickly, sweeping the complicated work of [31, 33, 34] into
the references, pointing the reader to statements in those papers for careful definitions and details.
Our goal in being brief is to attempt to avoid unnecessary complications that are peripheral to our
applications. The reader interested only in the applications can view this section as a black-box,
while the reader with more interest in cone deformations can still turn to the references for details.

6.1. Definitions and setup. Throughout, (M,Σ) will be a hyperbolic cone manifold. We will also
consider a submanifold X ⊂M with tubular boundary : This means that X is either a model tube, or
the complement of some number of model tubes. We orient the boundary of X by inward normal
vectors. This orientation will be important, as it affects the signs of our results.

Recall from Section 5.1 that an infinitesimal deformation of a cone manifold structure can be
represented by a harmonic 1–form ω, and that we made a canonical choice of ω in Remark 5.18. The
harmonic form ω decomposes as ω = η + i ∗Dη, as in (5.2). In [31, Proposition 1.3 and page 36],
Hodgson and Kerckhoff show that integrating by parts over the submanifold X, again oriented by
inward normal, gives

(6.1)

∫
X

‖ω‖2dV =

∫
X

||Dη||2 + ||η||2 dV =

∫
∂X

∗Dη ∧ η.

See also [33, Lemma 2.3] for a formulation of the result in notation that better matches ours.
The term on the far right of (6.1) is important. Thus Hodgson and Kerckhoff define the boundary

term bX on TX–valued 1–forms µ and ν as follows.

(6.2) bX(µ, ν) =

∫
∂X

∗Dµ ∧ ν.

Thus the term on the far right of (6.1) becomes bX(η, η).
Next, recall from (5.4) and the ensuing discussion that ω can be written as a sum ω = ω0 + ωc

where ω0 is written in terms of the explicit forms ωm and ω` that affect meridian and longitude, and
ωc is a correction term. We may write ω0 = η0 + i ∗Dη0 and ωc = ηc + i ∗Dηc. Then (6.1) becomes

(6.3)

∫
X

‖ω‖2dV = bX(η, η) = bX(η0, η0) + bX(ηc, ηc),

using [33, Lemma 2.5] (the cross terms vanish). See [34, Equation (6) and (7)], where integration is
implicit in their definition of the L2 norm.

We emphasize that the above formulas (6.1)–(6.3) hold both when X is a model tube and when
X is the complement of some number of model tubes. This flexibility will be important in Section 7.

For the rest of this section, and in Section 8, boundary terms will appear in the following specific
context. Let r = (r1, . . . , rn) be a vector of positive radii. Suppose that Ur = Ur(Σ) is an embedded
multi-tube about the singular locus Σ, as in Definition 4.1, and let Xr = M −Ur. The inward normal
vectors that orient ∂Xr point away from Σ. For any TXr–valued 1–forms µ and ν, define

br(µ, ν) = bXr(µ, ν) =

∫
∂Xr

∗Dµ ∧ ν.
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Lemma 6.4. Let r = (r1, . . . , rn), where tanh(rj) ≥ 1/
√

3 for all j. Then

br(ηc, ηc) ≤ 0.

Proof. Let U be a solid torus of radius r. Then the principal curvatures of ∂U are k1 = tanh r
and k2 = coth r. See, for instance, [34, Page 1066]. Thus, under the hypotheses of the lemma, the

principal curvatures along every component ∂X satisfy 1/
√

3 ≤ k1 ≤ k2 ≤
√

3.
Under this hypothesis on principal curvatures, Hodgson and Kerckhoff prove in [34, Theorem 4.2]

that br(ηc, ηc) ≤ 0. �

We remark that the hypotheses of Lemma 6.4 also imply br(η0, η0) > 0. See [34, Corollary 4.3].
We will need an upper bound on br(η, η). By Lemma 6.4, this amounts to finding an upper bound

on br(η0, η0).

Lemma 6.5. With the parametrization t = α2, the boundary term br(η0, η0) satisfies

br(η0, η0) ≤
n∑
j=1

4(1− z2
j )

z2
j (3− z2

j )
· 1

16α4
· Aj

where zj = tanh(rj), and α is the cone angle, and Aj is the visual area.

Proof. This result is contained in the proof of [34, Proposition 5.4]. On the bottom of page 1074 and
the top of page 1075, it is shown that

br(η0, η0) ≤
n∑
j=1

4ajcj − b2j
4aj

s2Aj

where s = −1
2α

dα
dt , and where aj , bj , and cj are as in [34, equation (32)]:

aj =
− sinh2 rj

cosh2 rj
(2 cosh2 rj + 1), bj =

−2

cosh2 rj
, cj =

2 cosh2 rj − 1

sinh2 rj cosh2 rj
.

As in [34, page 1079], we let t = α2. Thus, as in (5.8), we have s = −1/(4α2). Rewriting aj , bj , and
cj in terms of zj , using Lemma A.1, gives the result. �

6.2. Controlling length and visual area. The next several lemmas prove estimates relating how
visual area changes under cone deformations. These results culminate in an estimate relating the
normalized length L, measured on cusps in the complete metric on M−Σ, to the length ` = len4π2(Σ)
in the complete metric on M . This will feed into the bound on boundary terms later in this section.

Remark 6.6. We recall notation that will be used below. As usual, we are assuming that a cone
deformation Mt is parameterized by t = α2 where α is the cone angle along each component of the
singular locus Σ. We let R denote the smallest radius in a maximal multi-tube U about Σ in Mt. If
σj is a component of the singular locus, with length `j , recall from Definition 4.18 that the visual
area of the tube component Uj of U about σj is defined to be Aj = α`j . The visual area of the union
of all tubes is A =

∑
Aj .

In the proof of Lemma 5.9, we introduced the variable v = A/α2. We now let u = 1/v. As above,
we set Z = tanh(R).

Lemma 6.7. Suppose that Z = tanhR ≥ 1/
√

3. Let u(t) = u(α2) = α2/A. Then du/dt satisfies

−G(Z) ≤ du

dt
≤ G̃(Z)

where

G(z) =
1 + z2

6.7914 z3
and G̃(z) =

(1 + z2)2

6.7914 z3 (3− z2)
.

Furthermore, G(z) and G̃(Z) are strictly decreasing on the interval (0, 1).



EFFECTIVE BILIPSCHITZ BOUNDS ON DRILLING AND FILLING 33

Proof. The bound on du/dt is proved on page 1079 of [34]. The behavior of G(z) and G̃(z) can be
checked by differentiation. �

Lemma 6.8. Suppose we have a cone deformation from cone angle 0 to α > 0, so that throughout the
deformation, the maximal multi-tube about Σ has radius R ≥ Rmin, where Zmin = tanhRmin ≥ 1/

√
3.

Then the function u(α2) = u(t) = α2/A satisfies:

L2 −G(Zmin)α2 < u(α2) < L2 + G̃(Zmin)α2.

Here L is the total normalized length of the meridians of the drilled manifold M − Σ, as in Defini-
tion 1.3. In particular, for 0 < α ≤ 2π,

L2 −G(Zmin)(2π)2 < u(α2) < L2 + G̃(Zmin)(2π)2.

Proof. Hodgson and Kerckhoff showed that as cone angle decreases to 0, we have

u(0) = lim
t→0

u(t) = L2.

See [34, page 1076]. Then at time α2, we have

u(t) = u(0) +

∫ α2

0

du

dτ
dτ

≥ L2 −
∫ α2

0

G(Z(τ)) dτ by Lemma 6.7

> L2 −
∫ α2

0

G(Zmin) dτ using strict monotonicity of G

= L2 −G(Zmin)α2.

The upper bound is obtained similarly, using the strict monotonicity of G̃. �

A very similar argument gives the following.

Lemma 6.9. Suppose we have a cone deformation from cone angle 2π to α, so that throughout the
cone deformation, the maximal multi-tube about Σ has radius R ≥ Rmin, where Zmin = tanhRmin ≥
1/
√

3. Then for α < 2π, the function u(α2) = u(t) = α2/A satisfies:

2π

`
− G̃(Zmin)((2π)2 − α2) < u(α2) <

2π

`
+G(Zmin)((2π)2 − α2)

where ` denotes the total length of Σ at cone angle 2π. In particular,

2π

`
− G̃(Zmin)(2π)2 < u(α2) <

2π

`
+G(Zmin)(2π)2.

Proof. At cone angle 2π, we have t = (2π)2, hence

u((2π)2) =
α2

A
=

α2∑
α len(σj)

=
2π

`
.

Now, we can set up an integral, as above:

u(t) = u((2π)2)−
∫ (2π)2

α2

du

dτ
dτ

≥ 2π

`
−
∫ (2π)2

α2

G̃(Z(τ)) dτ by Lemma 6.7

>
2π

`
−
∫ (2π)2

α2

G̃(Zmin) dτ using strict monotonicity of G̃

=
2π

`
− G̃(Zmin) ((2π)2 − α2).
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The upper bound is obtained similarly, using the monotonicity of G. �

We can now relate the total normalized length L to the total length ` = `(Σ) at cone angle
2π. This result generalizes a lemma of Magid [43, Lemma 4.7] to cone deformations with multiple
components, while sharpening the estimate and making hypotheses explicit. It also converts the
asymptotic formula of Neumann and Zagier [48, Proposition 4.3] into a two-sided inequality.

Lemma 6.10. Suppose that M is a complete finite volume hyperbolic 3–manifold. Fix a constant
Rmin > 0 such that Zmin = tanhRmin ≥ 0.6622; note this is strictly larger than 1/

√
3. Suppose that

Σ ⊂M is a geodesic link such that one of the following hypotheses holds.

(1) In the complete structure on M−Σ, the total normalized length of the meridians of Σ satisfies
L2 ≥ I(Zmin), where I is the function of Definition 5.16.

(2) In the complete structure on M , each component of Σ has length at most 0.0996, while the
total length of Σ is ` ≤ haze(Zmin)/(2π), where haze is the function of Remark 4.23.

Then we have the double-sided inequality

2π

L2 + G̃(Zmin)(2π)2
< ` <

2π

L2 −G(Zmin)(2π)2
,

where G and G̃ are defined in Lemma 6.7.
Furthermore, M − Σ and M are connected by a cone deformation maintaining a multi-tube about

Σ of radius R, where tanhR = Z > Zmin throughout.

Proof. If (1) holds, Theorem 5.17 proves the existence of a cone deformation from M −Σ to M that
maintains Z > Zmin throughout.

If (2) holds, then Lemma 5.15 implies that the maximal tube about Σ has radius R > 0.531.
Furthermore, since ` ≤ haze(Zmin)/(2π) = h(Rmin)/(2π), Theorem 5.14 proves the existence of a
cone deformation from M to M − Σ that maintains Z > Zmin throughout.

Applying Lemma 6.8 with α ≤ 2π gives

(6.11) L2 −G(Zmin)(2π)2 < u < L2 + G̃(Zmin)(2π)2.

Now, we substitute u = α/` and α = 2π, obtaining

(6.12) L2 −G(Zmin)(2π)2 <
2π

`
< L2 + G̃(Zmin)(2π)2.

We need to make sure that the lower bound on 2π/` is strictly positive, to invert the three
quantities in (6.12).

If L2 ≥ I(Zmin) with Zmin ≥ 1/
√

3, then L2 ≥ I(1/
√

3) > 57.504 by the monotonicity of I; see

Definition 5.16. Meanwhile, G(Zmin)(2π)2 ≤ G(1/
√

3) < 40.274, hence the lower bound is positive in
this case.

If ` ≤ haze(Zmin)/(2π), the second inequality in (6.12) ensures that

L2 > (2π)2

(
1

haze(Zmin)
− G̃(Zmin)

)
,

hence

L2 −G(Zmin)(2π)2 > (2π)2

(
1

haze(Zmin)
− G̃(Zmin)−G(Zmin)

)
.

The right hand side is positive when Zmin = 0.6622. Using the fact that the functions haze, G, and

G̃ are all strictly decreasing for Z > Zmin (Remark 4.23 and Lemma 6.7), it follows that the left
hand side is also positive for Z ≥ Zmin ≥ 0.6622.

Thus all terms in (6.12) are positive, and we can take the reciprocal of each term. Solving for `
completes the proof. �

We will apply Lemma 6.10 to obtain relations between L and `. The following is the simplest and
most exportable version of the lemma, using Zmin = 0.6624.
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Corollary 6.13. Suppose that M is a complete, finite volume hyperbolic 3–manifold and Σ ⊂M is
a geodesic link such that one of the following hypotheses holds.

(1) In the complete structure on M − Σ, the total normalized length of the meridians of Σ is
L ≥ 7.823.

(2) In the complete structure on M , each component of Σ has length at most 0.0996 and the
total length of Σ is ` ≤ 0.1396.

Then
2π

L2 + 16.17
< ` <

2π

L2 − 28.78
.

6.3. Boundary terms for general tubes. The following proposition gives an explicit bound on
boundary terms along a general tube about Σ. This bound will be used in Section 7 to control
the change in length of a short non-singular geodesic. Versions of Proposition 6.14 with stronger
hypotheses (see Theorem 6.20) will also be used in the bilipschitz estimates of Section 8.

Proposition 6.14. Let M be a complete, finite volume hyperbolic 3–manifold, and Σ a geodesic
link in M . Let Mt be a cone-manifold occurring along a deformation between M − Σ and M , as in
Theorem 5.1.

Let Ur(Σ) be an embedded (not necessarily maximal) multi-tube about the cone locus Σ. Suppose
the smallest radius of a tube is r, and let z = tanh r. Suppose that the area of each tube boundary is
at least A.

Suppose that in the complete structure on M , each component of M has length at most 0.0996
and the total length of Σ is ` ≤ haze(Zmin)/(2π), where Zmin ≥ 0.6622 and haze is the function of
Remark 4.23. Then

br(η0, η0) ≤ 1

4Az(3− z2)
·

(
`

2π − 4π2G̃(Zmin)`

)2

,

where G̃ is as in Lemma 6.7. In particular, if ` ≤ 0.075, then

br(η0, η0) ≤ 1

4Az(3− z2)
·
(

`

2π − 12.355`

)2

.

Proof. We compute as follows:

br(η0, η0) ≤
∑ 4(1− z2

j )

z2
j (3− z2

j )
· 1

16α4
Aj by Lemma 6.5

=
∑ 1

4Aj
·

1− z2
j

z2
j (3− z2

j )
A2
j · 16 · 1

16α4
· sinh rj cosh rj

sinh rj cosh rj

=
∑ 1

4 area(∂Uj)
·

1− z2
j

z2
j (3− z2

j )
·
A2
j

α4
· zj

1− z2
j

by (4.19) and Lemma A.1

=
∑ 1

4 area(∂Uj)
· 1

zj(3− z2
j )
· v2
j where vj = Aj/α2

≤
∑ 1

4A
· 1

z(3− z2)
· v2
j using monotonicity of (z(3− z2))−1

≤ 1

4A
· 1

z(3− z2)
· v2 where v =

∑
vj

=
1

4A
· 1

z(3− z2)
·
(

1

u

)2

where u = 1/v.

Now, observe that under our hypotheses, Lemma 6.10 ensures a cone deformation between
cone angle α and cone angle 2π for which the tanh of the maximal tube stays bounded below by
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Zmin ≥ 0.6622. Thus, by Lemma 6.9,

u ≥ 2π

`
− G̃(Zmin) · (2π)2 =

2π − 4π2 G̃(Zmin) `

`
.

Note that the right hand side is positive, because ` ≤ h(Zmin)/(2π) and Zmin > 0.6622 implies

2π/`− G̃(Zmin)(2π)2 ≥ 28.8 > 0. Now, we may invert the lower bound on u to obtain the desired
upper bound on br(η0, η0).

In the specific case ` < 0.075 ≤ h(0.8477)/(2π), Lemma 6.10 ensures the cone deformation exists

with Zmin > 0.8477. Substituting that value into G̃(z) gives the bound. �

6.4. Boundary terms along thin tubes. We close this section by establishing certain versions of
Proposition 6.14 in the specific situation where the multi-tube Ur is defined by a small injectivity
radius. See Theorem 6.20 for a detailed statement.

This result will be used to prove bilipschitz estimates; see Theorem 8.3 and Theorem 8.18 in
Section 8. The conclusion that a multi-tube Ur has a certain depth will also prove crucial in controlling
Margulis numbers in Section 9. On the other hand, the results of this subsection are not needed in
Section 7. Thus, a reader who is mainly interested in the application to cosmetic surgeries can skip
ahead to Section 7.

Definition 6.15. Let U be a tube about a component of σj ⊂ Σ. For δ > 0, we say that U is a
δ–thin tube if injrad(x, U) = δ/2 for a point x ∈ ∂U . (Recall Definition 2.17.) We emphasize that
the term δ–thin tube refers only to injectivity radius in U , not in all of M .

Lemma 6.16. Fix 0 < δ < 0.9623. Supppose M is a complete, finite volume hyperbolic 3–manifold
and Σ = σ1 ∪ . . . ∪ σn is a geodesic link in M . Suppose that len(σj) ≤ 0.0996 for every j, while the
total length of Σ is

(6.17) ` = len(Σ) ≤ min

{
0.261δ,

1

2π
haze

(
δ + 0.1604

1.1227

)}
,

where haze is defined in Remark 4.23. Then M − Σ is connected to M via a cone deformation Mt,
while maintaining a multi-tube of radius R ≥ h−1(2π`) ≥ 0.7555.

Fix a cone-manifold Mt in the interior of the deformation. For each component σj, let rj(δ) =
rα,λ,τ (δ) be the tube radius of the δ–thin tube about σj in the metric gt. Set r(δ) = (r1(δ), . . . , rn(δ)).
Then

(1) For every j, we have rj(δ) > 1.001(δ/2).
(2) The multi-tube Ur(δ) is embedded in Mt. Furthermore, each δ-thin tube of radius rj(δ) is

properly contained in a component of the maximal tube Umax.

Conclusion (1) can be interpreted as follows: injrad(x, U) is realized by a ball B = Bδ/2(x̃)
bumping into another translate of B, and furthermore the bumping does not occur along the singular
locus. The translate is somewhere else.

See Figure 6.1 for a graph of the upper bound on ` = len(Σ). Roughly speaking, the first hypothesis
` ≤ 0.261δ corresponds to conclusion (1), while the second hypothesis 2π` ≤ haze

(
δ+0.1604

1.1227

)
corre-

sponds to conclusion (2). Both conclusions also require ` ≤ 0.1453, where 0.1453 is (approximately)
the peak of the graph in Figure 6.1.

Proof of Lemma 6.16. We begin by analyzing the two functions whose minimum is the bound on `
in (6.17). Recall from Lemma 4.22 that 1

2πh(r) = 1
2πhaze(tanh r) has a single critical point for r > 0,

and that this critical point is a global maximum. As a consequence, it is an easy exercise to check
that the two functions of (6.17) intersect exactly once, at

δ = δcut = 0.556369 . . .

Define

Rcut = h−1(2π · 0.261δcut) = arctanh

(
δcut + 0.1604

1.1227

)
= 0.75552 . . . ,
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0.261δ
1

2π
haze

(
δ + 0.1604

1.1227

)

δ

`

• (δcut, 0.261δcut)

Figure 6.1. The function of δ that provides an upper bound on ` in Equation (6.17).

and note that tanhRcut > 1/
√

3 = 0.57735 . . .. This helps us analyze the two functions.
If 0 < δ < δcut, then the minimum in (6.17) is achieved by 0.261δ, an increasing linear function.

See Figure 6.1, left. On the other hand, if δcut ≤ δ < 0.9623, then the minimum is achieved by
1

2πhaze(z), where

z =
δ + 0.1604

1.1227
≥ δcut + 0.1604

1.1227
>

√√
5− 2.

In particular, z is large enough that the function 1
2πhaze(z) is decreasing in z by Lemma 4.22 and

Remark 4.23, hence decreasing in δ. See Figure 6.1, right. Thus the largest possible upper bound on
` occurs at δ = δcut.

We conclude that for all values 0 < δ < 0.9623, Equation (6.17) requires the visual area of Σ to
satisfy

A = 2π` ≤ 2π · 0.261δcut = h(Rcut) ≤ 2π · 0.14522.

Furthermore, under our hypotheses on len(σj), Lemma 5.15 implies that the maximal tube about
Σ has radius R > 0.531. It follows that Theorem 5.14 guarantees a cone deformation from M to
M − Σ, maintaining a multi-tube Umax of radius

R ≥ Rmin = h−1(2π`) ≥ Rcut.

where the last inequality uses the decreasing property of h−1.
We are now ready to prove conclusion (2). Consider a component Uj ⊂ Umax, of radius Rj , and

recall that Rj ≥ Rmin ≥ Rcut > arctanh(1/
√

3). Define Zmin = tanhRmin, and Zcut = tanhRcut, as
usual. Theorem 4.26 says that for every x ∈ ∂Uj , we have

2 injrad(x, Uj) > 1.1227Zmin − 0.1604.

If 0 < δ ≤ δcut, we have

1.1227Zmin − 0.1604 ≥ 1.1227Zcut − 0.1604 = δcut ≥ δ,
Meanwhile, if δcut ≤ δ < 0.9623, Equation (6.17) and the decreasing property of haze−1 imply

1.1227Zmin − 0.1604 = 1.1227 haze−1(2π`)− 0.1604 ≥ δ.
Thus, in either case, we can combine the above equations to conclude

(6.18) 2 injrad(x, Uj) > 1.1227Zmin − 0.1604 ≥ δ,
which implies rj(δ) < Rmin ≤ Rj . This means each component of Ur(δ) is properly contained in the
corresponding component of Umax.

To prove conclusion (1), let Aj = αλj be the visual area of σj , as in Definition 4.18. Recall that
by Lemma 5.9, A =

∑
Aj increases as the cone angle increases. At the complete structure, we have

A = 2π` ≤ 2π · 0.261δ ≤ 1.64 δ.
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Thus, for every intermediate cone-manifold Mt, we also have Aj ≤ A ≤ 1.64 δ. Since α < 2π,
Lemma 3.4 applies to give

(6.19) rj(δ) ≥
1

2
arcsinh

(√
3 δ2

Aj

)
≥ 1

2
arcsinh

(√
3 δ2

1.64 δ

)
≥ 1

2
arcsinh (1.056 δ) .

Now suppose that 0 < δ ≤ δcut. Consider the secant line for arcsinh(1.056 δ) between δ = 0 and
δ = δcut; this line has slope arcsinh(1.056δcut)/δcut > 1.002. By calculus, arcsinh(1.056 δ) is strictly
increasing and concave down for δ > 0, hence it lies over its secant line when 0 < δ ≤ δcut. Thus, in
this range we have

rj(δ) ≥
1

2
arcsinh (1.056 δ) ≥ 1.002

(
δ

2

)
.

Meanwhile, if δcut ≤ δ ≤ 0.9623, then we still have A ≤ 1.64 δcut at the complete structure, hence
Aj ≤ A ≤ 1.64 δcut at every intermediate cone-manifold. Thus we have the following analogue of
(6.19):

rj(δcut) ≥
1

2
arcsinh

(√
3 δ2

cut

Aj

)
≥ 1

2
arcsinh

( √
3 δ2

cut

1.64 δcut

)
≥ 1

2
(1.002 δcut) .

Thus by Lemma 3.1,

rj(δ) ≥ rj(δcut) +
δ − δcut

2
≥ 1

2

(
1.002 δcut + (δ − δcut)

)
>

1

2
(1.001 δ) ,

where the second inequality is the above lower bound on rj(δcut), and the third inequality holds
because δ is less than twice as big as δcut. �

Now, we can combine Proposition 6.14 and Lemma 6.16 to control the boundary terms along
certain thin tubes.

Theorem 6.20. Let M be a complete, finite volume hyperbolic 3–manifold and Σ a geodesic link in
M . Let ` denote the length of Σ in the complete structure on M .

Fix 0 < δ ≤ δmax ≤ 0.938, and suppose that ` ≤ δ2B(δ), where B(δ) is a nondecreasing function
of δ, with B(δ) ≤ 1/17.11. (In particular, this assumption implies ` ≤ 0.05143.)

Fix a cone-manifold Mt in the interior of the cone deformation from M −Σ to M , with associated
cone-metric gt. For each component σj of Σ, let rj(δ) = rα,λ,τ (δ) be the tube radius of the δ–thin
tube about σj in the metric gt. Define r− = r−(δ) = (r1(δ)− δ/2, . . . , rn(δ)− δ/2). Then

(1) For all j = 1, . . . , n,

rj(δ)− δ/2 ≥
1

2
arcsinh

( √
3

2πB(δmax)

)
− δmax

2
≥ arctanh(1/

√
3).

(2) The multi-tube Ur− is embedded in Mt.
(3) The boundary term along the tube Ur− satisfies

br−(η, η) ≤
(

`

7.935 δ

)2

.

Proof. We start by proving (2). We will do this by applying Lemma 6.16 to a multi-tube Ur(γ) for a
certain value γ < δ. Specifically, define γ > 0 so that

cosh γ − 1 =
cosh δ − 1

cosh2(δ/2)
, i.e. γ = arccosh

(
cosh δ − 1

cosh2(δ/2)
+ 1

)
.

Observe that γ is strictly increasing in δ on (0, 0.938), and that γ < δ in this range. Moreover, as δ
approaches 0, γ approaches 0, and as δ approaches 0.938, γ approaches γmax = 0.84904 . . ..
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Consider a model solid torus Nj = Nα,λ,τ such that a neighborhood of σj is modeled on Nj
(compare Definition 2.4). By Theorem 3.6, the radii of γ–thin and δ–thin tori in Nj satisfy

rj(δ)− rj(γ) ≤ arccosh

√
cosh δ − 1

cosh γ − 1
=
δ

2
,

where the equality holds by the definition of γ.
With an eye toward Lemma 6.16, we claim that our hypotheses imply

(6.21) ` ≤ δ2

17.11
≤ min

{
0.261γ,

1

2π
haze

(
γ + 0.1604

1.1227

)}
.

The first inequality holds by hypothesis. For the next inequality δ2/17.11 ≤ 0.261γ, consider the
function g(δ) = (0.261 · 17.11)γ − δ2. One can show by calculus2 that g is strictly increasing for
0 < δ < δmax. The minimum value of g thus occurs as δ → 0, and we have g(δ) > g(0) = 0 on this
domain.

As in the proof of Lemma 6.16, we need to verify the remaining inequality only for δcut < γ < γmax.
On this domain, δ2 is strictly increasing whereas haze(·) is strictly decreasing, by Lemma 4.22. Thus
it suffices to plug in the maximal δ-value 0.938, which corresponds to γmax = 0.84904 . . .. Plugging
in these values of δ and γ gives

(0.938)2

17.11
= 0.05142 . . . < 0.05147 . . . =

1

2π
haze

(
γmax + 0.1604

1.1227

)
,

hence (6.21) holds for all δ ≤ δmax ≤ 0.938. Thus, by Lemma 6.16, the multi-tube Ur(γ) of radius
r(γ) is embedded. Since rj(δ) − δ/2 ≤ rj(γ) for every j, it follows that the multi-tube Ur−(δ) is
embedded as well.

The proof of condition (1) is similar to the corresponding argument in Lemma 6.16. Let Aj = αλj
be the visual area of σj . By Lemma 5.9, A =

∑
Aj increases as the cone angle increases. Since

A = 2π` ≤ 2πδ2B(δ) at the complete structure on M , we also have Aj ≤ 2πδ2B(δ) at every
intermediate cone-manifold Mt. Since α < 2π, Lemma 3.4 applies to give

(6.22) rj(δ) ≥
1

2
arcsinh

(√
3 δ2

Aj

)
≥ 1

2
arcsinh

( √
3

2πB(δ)

)
≥ 1.1276 . . . .

Since δ ≤ δmax and B(δ)−1 ≥ 17.11, we conclude that

rj(δ)− δ/2 ≥
1

2
arcsinh

( √
3

2πB(δ)

)
− δmax

2
> 0.65847 . . . = arctanh(1/

√
3),

proving (1).
It remains to bound br−(η, η), establishing conclusion (3). Since the smallest coordinate of r− is

larger than arctanh(1/
√

3), Lemma 6.4 and (6.3) tell us that br−(η, η) ≤ br−(η0, η0).

We will bound br−(η0, η0) using Proposition 6.14. By (4.19) and Lemma 3.3, the torus T δ = Trj(δ)
has area

area(Trj(δ)) =
Aj
2

sinh(2rj(δ)) ≥
√

3δ2/2.

To apply Proposition 6.14, we need a lower bound on the area of each boundary torus of Ur− ,
where the j-th torus has radius rj(δ)− δ/2. This can be computed using Lemma 3.3 and Lemma A.3.
Note that by hypothesis, δ ≤ δmax ≤ 0.938. By (6.22), we have

tanh(2rj(δ)) ≥ tanh

(
arcsinh

( √
3

2πB(δmax)

))
=

√
3√

3 + 4π2B(δmax)2
=: zmin.

2The second derivative of γ is negative, so the same is true for the second derivative of g. Thus the minimum of g′

occurs at δmax, and this minimum is positive.
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Observe that tanh(δmax) = 0.7343 . . . and zmin ≥ 0.9782 . . ., hence tanh(δmax) ≤ zmin ≤ tanh(2rj(δ)),
and Lemma A.3 applies with r = 2rj(δ), s = δ, and zmin as above. Therefore,

area(Trj(δ)−δ/2) =
Aj
2

sinh(2rj(δ)− δ) by (4.19)

≥ Aj
2

sinh(2rj(δ))

(
cosh(δmax)− sinh(δmax)

zmin

)
by Lemma A.3

= area(Trj(δ))

(
cosh(δmax)− sinh(δmax)

zmin

)
by (4.19)

≥ δ2

√
3

2

(
cosh(δmax)−

sinh(δmax)
√

3 + 4π2B(δmax)2

√
3

)
=: δ2ABd(δmax, B(δmax)).(6.23)

We may now finish the proof using Proposition 6.14. Recall that the function (z(3 − z2))−1 is
monotonically decreasing on (0, 1), where z = tanh(rj(δ)− δ/2) in our setting. By conclusion (1), we
obtain

(6.24) z ≥ tanh

(
1

2
arcsinh

( √
3

2πB(δmax)

)
− δmax

2

)
=: zBd(δmax, B(δmax)) ≥ 1√

3
.

Recall that ` ≤ δmax
2B(δmax) ≤ δmax

2/17.11 < 0.05143. Thus we also have ` ≤ haze(Zmin)/(2π) for
Zmin = haze−1(2πδmax

2B(δmax)) ≥ 0.8992. By Proposition 6.14,

br−(η, η) ≤ br−(η0, η0)

≤ 1

4A
· 1

z(3− z2)
·

(
`

2π − 4π2G̃(Zmin) `

)2

≤ 1

4 δ2ABd
· 1

zBd(3− zBd
2)
·

(
`

2π − 4π2G̃(Zmin) δmax
2B(δmax)

)2

.

In the particular case that δmax = 0.938 and B(δ) = 1/17.11, we obtain

br−(η, η) ≤ 1

4 δ2 · 0.3181
· 1

(1/
√

3)(3− 1/3)
·

(
`

2π − 4π2G̃(0.8992) · (0.05143)

)2

≤
(

`

7.935 δ

)2

. �

Remark 6.25. In the course of proving Theorem 6.20, we actually proved something more general.
We showed that

br−(η, η) ≤ 1

4 · δ2ABd
· 1

zBd (3− zBd
2)
·

(
`

2π − 4π2G̃ (Zmin) δmax
2B(δmax)

)2

,

where ABd(δmax, B(δmax)) is defined in (6.23), and zBd(δmax, B(δmax)) is defined in (6.24), and G̃ is
the function of Lemma 6.7 with Zmin = haze−1(2πδmax

2B(δmax)).

Our applications often require much stronger bounds on δ and B(δ) than the maximum values
allowed in Theorem 6.20. As a consequence, we can obtain better bounds on br−(η, η). For example,
the following two stronger estimates will be useful in Section 9.

Proposition 6.26. Let M be a complete, finite volume hyperbolic 3–manifold and Σ a geodesic
link in M , with ` the length of Σ in the complete structure on M . Fix 0 < δ ≤ 0.106. Suppose
` ≤ δ5/2/17.49.
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Fix a cone-manifold Mt in the interior of the cone deformation from M − Σ to M . Define
r− = (rj(δ)− δ/2), and construct the multi-tube Ur− about Σ exactly as in Theorem 6.20. Then

(1) rj(δ)− δ/2 ≥ arctanh(0.9277) for all j.
(2) The multi-tube Ur− is embedded in Mt.

(3) The boundary term along the tube Ur− satisfies br−(η, η) ≤ (`/(15.616 δ))
2
.

Proof. This follows immediately from Theorem 6.20 and Remark 6.25, letting δmax = 0.106 and
B(δ) =

√
δ/17.49. �

Proposition 6.27. Let M be a complete, finite volume hyperbolic 3–manifold and Σ a geodesic
link in M , with ` the length of Σ in the complete structure on M . Fix 0 < δ ≤ 0.012. Suppose
` ≤ δ5/2/16.62.

Fix a cone-manifold Mt in the interior of the cone deformation from M − Σ to M . Define
r− = (rj(δ)− δ/2), and construct the multi-tube Ur− about Σ exactly as in Theorem 6.20. Then

(1) rj(δ)− δ/2 ≥ arctanh(0.9760) for all j.
(2) The multi-tube Ur− is embedded in Mt.

(3) The boundary term along the tube Ur− satisfies br−(η, η) ≤ (`/(16.432 δ))
2
.

Proof. This follows immediately from Theorem 6.20 and Remark 6.25, letting δmax = 0.012 and
B(δ) =

√
δ/16.62. �

7. Short geodesics in a cone-manifold

The primary goal of this section is to control the complex length of a short geodesic during a cone
deformation. Ineffective control of this type was previously shown by Bromberg [14, Theorem 1.4].
Following the theme of this paper, we combine some ideas in Bromberg’s argument (specifically, [14,
Proposition 4.3]) with our estimates from earlier sections in order to obtain an effective estimate
on the change in length under explicit hypotheses. Our results in this vein are incorporated in
Theorem 7.19 (which provides control under hypotheses in the filled manifold) and Theorem 7.21
(which provides control under hypotheses in the cusped manifold).

One particular consequence of Theorem 7.19 is that for (explicitly quantified) long Dehn fillings
of a cusped manifold N , the union of cores of the filling solid tori is shorter than any other closed
geodesic in the filled manifold M = N(s). See Theorem 7.28. This tuple of shortest closed geodesics
must be permuted by any isometry of M , providing an effective upper bound on the length of
cosmetic fillings of a cusped N . As a consequence, we can prove the cosmetic surgery results that
were stated in the introduction.

7.1. Hyperbolic distance between lengths. The following notation will be valid throughout the
section. As above, we have a one-parameter family of cone manifolds denoted (M,Σ, gt) or Mt

for short. Let γ be a closed geodesic disjoint from Σ. We denote the complex length of γ in the
cone-metric gt by

Lt(γ) = lent(γ) + iτt(γ),

where lent is the real length and τt is the rotational component of γ. When the choice of metric gt
is clear from context, we may drop the subscript t. All derivatives of L are presumed to be with
respect to the cone deformation parameter t.

Since lent(γ) > 0, the “rotated” complex length iL(γ) is an element of the upper half-plane H2,
which we identify with the hyperbolic plane. As we will see in Lemma 7.4, it is natural to control the
change in complex length using the hyperbolic metric on H2.

Definition 7.1. Given complex numbers v and w with positive real part, define the hyperbolic
distance

dhyp(v, w) = dH2(iv, iw).
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The distance dhyp has the following interpretation. Consider a closed geodesic γ lying at the
core curve of a (non-singular) model solid torus N = N2π,λ,τ = H3/〈ϕ〉. The cyclic group 〈ϕ〉 has
two fixed points p+, p− ∈ ∂H3, and acts by conformal covering transformations on S2 − {p±}. The
quotient torus (S2 −{p±})/〈ϕ〉 inherits a conformal structure, which can be viewed as the conformal
boundary at infinity, denoted ∂∞N . In the Teichmüller space T (T 2) of conformal structures on a
torus, the conformal boundary ∂∞N is the limit of the conformal structures on equidistant tori
Tr ⊂ N .

The Teichmüller metric dT on T (T 2) is isometric to H2. Thus, given a pair of closed geodesics γ
and γ′, with complex lengths L(γ) = λ+ iτ and L(γ′) = λ′ + iτ ′, we have

dT (∂∞N2π,λ,τ , ∂∞N2π,λ′,τ ′) = dH2(iλ− τ, iλ′ − τ ′) = dhyp(L(γ),L(γ′)).

See Minsky [45, Section 6.2], where this perspective is fleshed out further.

Definition 7.2. For z ∈ (0, 1) and ` ∈ (0, 0.5085), define a function

(7.3) F (z, `) =
(1 + z2)

z3(3− z2)
· `

10.667− 20.977`
.

Note that F is positive everywhere on its domain, decreasing in z, and increasing in `.

The following is an effective version of a result of Bromberg [14, Proposition 4.3]. Our proof
follows Bromberg’s line of argument while inserting the explicit estimates of Section 6.

Lemma 7.4. Suppose (M,Σ, gt) is a cone deformation from M − Σ to M , parametrized by t ∈
[0, (2π)2]. Let γ ⊂M be a simple closed curve disjoint from Σ, and let Σ+ = Σ ∪ γ. Let [a, b] be a
sub-interval of [0, (2π)2]. Suppose that the following hold:

(1) In the complete structure on M , the total length of Σ is ` ≤ 0.075.
(2) For t ∈ [a, b], the curve γ is a geodesic in the cone metric gt.
(3) For all t ∈ [a, b], there is an embedded maximal multi-tube Umax(Σ+) in the gt metric, such

that all constituent tubes have radius at least Rmin, where Ẑmin = tanhRmin ≥ 1/
√

3.

Then, for t ∈ [a, b], the time derivative of the complex length Lt(γ) satisfies

|L′t(γ)|
lent(γ)

≤ F (Ẑmin, `),

where F is the function of Definition 7.2. Consequently,

(7.5) dhyp(La(γ), Lb(γ)) ≤ |b− a|F (Ẑmin, `).

Proof. Let Uγ be the tube about γ in the maximal multi-tube Umax(Σ+). By Theorem 5.6, there is
a local cone deformation on M that treats Σ+ as its singular locus but does not change the cone
angle on γ. By the rigidity statement in Theorem 5.6, the cone metric g+

t on (M,Σ+) is entirely
determined by the angles on Σ, hence it is isometric to the cone metric gt in the statement of the
lemma. For the rest of the proof, we will not distinguish between gt and g+

t .
As in Section 5.1, we may parametrize the infinitesimal deformation in Uγ by cylindrical coordinates.

By equation (5.4), we find that the infinitesimal cone deformation in Uγ is given by

ω = s(γ)ωm + (x+ iy)ω` + ωc,

where ωm = ηm + i ∗ Dηm and ω` = η` + i ∗ Dη` are standard harmonic forms, with ωm giving
infinitesimal change in cone angle, and ω` giving infinitesimal change in holonomy of the boundary of
the tube Uγ but leaving the cone angle unchanged. The harmonic form ωc is a correction term, with
real part ηc. The terms s, x, and y are real-valued functions of t. Moreover, recall from Theorem 5.6
that sn+1 = s(γ) determines the local change in cone angle at time t; since the cone angle about γ
remains unchanged throughout the deformation, s(γ) = 0. Thus, by (5.5), the function x+ iy can be
calculated to be:

x+ iy =
L′(γ)

2 lent(γ)
,
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where Lt(γ) is the complex length of γ, L′(γ) is its time derivative, and lent(γ) is the real length of
γ at time t.

As in Section 6, we integrate over the submanifold Uγ . Recall the definition of boundary terms
from (6.2). By (6.3), we have

(7.6)

∫
Uγ

‖ω‖2 dV = bUγ (η, η) = bUγ (η0, η0) + bUγ (ηc, ηc).

Here, η is the real part of ω and η0 is the real part of (x+ iy)ω`. Meanwhile, [33, Lemma 2.6] implies
that bUγ (ηc, ηc) ≥ 0. (This conclusion is the reverse of Lemma 6.4 because ∂Uγ is oriented by the
inward normal, pointing toward γ.) Therefore, (7.6) implies

(7.7)

∫
Uγ

‖ω‖2 dV ≥ bUγ (η0, η0).

Since s(γ) = 0, the formulas in [33, page 382] imply

(7.8) bUγ (η0, η0) = |x+ iy|2bUγ (η`, η`) =

(
|L′(γ)|

2 len(γ)

)2

bUγ (η`, η`).

An explicit formula for bUγ (η`, η`) was computed in [33, equation (13)]:

bUγ (η`, η`) =
sinhRγ
coshRγ

(
2 +

1

cosh2Rγ

)
area(∂Uγ)(7.9)

= Zγ(3− Z2
γ) area(∂Uγ)

≥ Zmin(3− Zmin
2) area(∂Uγ).(7.10)

Here, Rγ is the tube radius of Uγ , and Zγ = tanhRγ as usual. Note that (7.9) differs from the
formula in [33] by a negative sign, again because ∂Uγ is oriented inward. Thus, putting together
equations (7.7), (7.8), and (7.10), we obtain

(7.11) Zmin(3− Zmin
2) area(∂Uγ) ·

(
|L′(γ)|
2 len(γ)

)2

≤ bUγ (η0, η0) ≤
∫
Uγ

‖ω‖2 dV.

Next, we will bound
∫
‖ω‖2 dV using Proposition 6.14. Let U1, . . . , Un be the components of Umax

whose cores are the geodesics of Σ. Let R = (R1, . . . , Rn) be the vector of radii of these tubes.
Since Umax(Σ+) = UR(Σ) ∪ Uγ is an embedded multi-tube, we know that UR is also an embedded
multi-tube, and Uγ is embedded in M − UR.

Since tanhRi ≥ Zmin ≥ 1/
√

3 by hypothesis, we have the following estimate:∫
Uγ

‖ω‖2 dV ≤
∫
M−UR

‖ω‖2 dV

= bR(η, η)

≤ bR(η0, η0)

≤ 1

4AZmin(3− Zmin
2)

(
`

2π − 12.355 `

)2

.(7.12)

Here, the first inequality uses the set containment Uγ ⊂M − UR, the equality uses (6.3), the next
inequality uses Lemma 6.4, and the final inequality uses Proposition 6.14. In (7.12), recall that
` = `(Σ) is the sum of the lengths of all components of Σ in the non-singular metric on M . Meanwhile,
A is any lower bound on the area of each torus ∂Ui. This area can be estimated using Theorem 4.16:

(7.13) area(∂Ui) ≥ A := 1.69785
sinh2Rmin

cosh(2Rmin)
= 1.69785

Zmin
2

1 + Zmin
2 .

Furthermore, Theorem 4.16 also implies that ∂Uγ satisfies the same lower bound.
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Combining (7.11), (7.12), and (7.13) gives(
|L′(γ)|
2 len(γ)

)2

≤ 1

4A2 Zmin
2
(
3− Zmin

2
)2 ( `

2π − 12.355 `

)2

=
(1 + Zmin

2)2

22 Zmin
6
(
3− Zmin

2
)2 ( `

1.69785 (2π − 12.355 `)

)2

,

which simplifies to the desired bound on |L′t(γ)|/ lent(γ).
It remains to prove (7.5). To that end, we offer the following interpretation. The one-parameter

family iLt(γ) is a curve in H2. The speed with which this curve travels through H2 (in the hyperbolic
metric) is precisely |L′t(γ)|/ lent(γ). Since this speed is bounded by F (Zmin, `), integrating from a to
b shows that the hyperbolic distance between La(γ) and Lb(γ) is at most |b− a|F (Zmin, `). �

Lemma 7.14. Let L(γ) = len(γ) + iτ(γ) and L(δ) = len(δ) + iτ(δ) be complex lengths of geodesics
satisfying dhyp(L(γ), L(δ)) ≤ K for some K > 0. Then we have the following control on the real and
imaginary parts of length:

(7.15) e−K ≤ len(γ)

len(δ)
≤ eK ,

(7.16) |τ(γ)− τ(δ)| ≤ sinh(K) ·min{len(γ), len(δ)}.

Proof. Let BK be the closed ball of hyperbolic radius K about iL(γ). The top and bottom of this ball
lie at Euclidean height e±K len(γ) from ∂H2. Since the highest possible value of len(δ) = =(iL(δ))
occurs at the highest point of BK , and similarly for the lowest, we conclude that

e−K len(γ) ≤ len(δ) ≤ eK len(γ),

which is equivalent to (7.15).
To derive (7.16), observe that |τ(δ) − τ(γ)| is at most the Euclidean radius of BK . Since the

highest and lowest points of BK lie at height e±K len(γ), it follows that

|τ(δ)− τ(γ)| ≤ eK + e−K

2
len(γ) = sinhK · len(γ).

An identical argument, interchanging the roles of γ and δ, yields |τ(δ)− τ(γ)| ≤ sinhK · len(δ) and
completes the proof of (7.16). �

7.2. The change in length. We can now show that the complex length of a short geodesic does
not change too much under a cone deformation connecting M − Σ to M . We handle upward and
downward cone deformations in two separate theorems.

To handle downward cone deformations, we need a lemma about the visual area of Σ.

Lemma 7.17. Let M be a complete, finite volume hyperbolic manifold and Σ a geodesic link in M .
Suppose that there is a cone deformation from M −Σ to M , parametrized by t = α2 and maintaining
an embedded tube about Σ of radius at least R0, where Z0 = tanhR0 ≥ 1/

√
3. Then the visual area

of Σ in the gt metric, denoted At(Σ), satisfies

At(Σ)

A4π2(Σ)
≤
(√

t

2π

)q(Z0)

where q(z) =

(
3z2 − 1

z2(3− z2)
+ 1

)
≥ 1.

Proof. By Lemma 5.9, At = At(Σ) satisfies the differential inequality

dAt
dt
≥ At

2t

(
3Z2

0 − 1

Z2
0 (3− Z2

0 )
+ 1

)
=
At
2t
q(Z0),

and furthermore q(z) ≥ 1 for z ≥ 1/
√

3. The above inequality can be rewritten

dAt
At
≥ q(Z0)

2

dt

t
.
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Integration over the interval [a, 4π2] gives

log

(
A4π2

Aa

)
≥ q(Z0)

2
log

(
4π2

a

)
= log

((
4π2

a

)q(Z0)/2
)
,

which simplifies to the statement in the lemma after substituting t = a. �

In fact, we will actually need a bound on the visual area of Σ ∪ γ, for γ a closed geodesic disjoint
from Σ. The previous lemma and the following lemma together will give us the bound we need.

Lemma 7.18. Let M be a complete, finite volume hyperbolic manifold, Σ+ = Σ∪γ a geodesic link in
M , ` = len4π2(Σ) and m = len4π2(γ) the lengths of Σ and γ in the complete metric on M . Suppose
0 ≤ ` ≤ 0.0735 and 0 ≤ m ≤ 0.0996− 0.352 · `. Let

Z0 = haze−1(2π`) and Zmin = haze−1(2π(`+m+ 10−5)),

where haze−1 is defined as in (4.24), and recall the functions F of Definition 7.2 and q of Lemma 7.17.
Then the function

f(t) = f`,m(t) = 2π`

(√
t

2π

)q(Z0)

+ 2πm exp((4π2 − t)F (Zmin, `))

satisfies

f`,m(t) < f`,m(4π2) + 2π · 10−5 = 2π(`+m+ 10−5).

In the proof of Theorem 7.19, we will see that f`,m(t) serves as an upper bound on the total
visual area A(Σ ∪ γ) in the gt metric. Thus Lemma 7.18 will allow us to bound the visual area
A(Σ ∪ γ) at time t in terms of the visual area at time 4π2. Graphing suggests that the inequality
f`,m(t) ≤ f`,m(4π2) holds without any error term, but the computer-assisted proof requires a (tiny)
error term.

Proof of Lemma 7.18. Define an auxiliary function

g`,m(t) = f`,m(4π2)− f`,m(t) =

∫ 4π2

t

f ′`,m(x) dx.

Then the conclusion of the lemma can be phrased as g`,m(t) > −2π · 10−5 for all values of `,m, t.
We claim that g`,m(t) is smallest when m is largest. This can be seen from the derivative

f ′(t) = 2π`
q(Z0)

2
· t
q(Z0)/2−1

(2π)q(Z0)
− 2πmF (Zmin, `) exp

(
(4π2 − t)F (Zmin, `)

)
.

Observe that Zmin is a decreasing function of m, while F (z, `) is a decreasing function of z. Thus
F (Zmin, `) is largest when m is largest. Hence the subtracted term in f ′(t) is largest when m is
largest. Thus f ′(t) is smallest when m is largest, and the claim follows.

Now, we set m = 0.0996− 0.352 · ` and claim that g`,m(t) > −2π · 10−5 for all `, t with this value
of m. This is established using interval arithmetic in Sage; see the ancillary files [23]. �

Theorem 7.19. Let M be a complete, finite volume hyperbolic 3–manifold. Let Σ be a geodesic link
in M , and γ a closed geodesic disjoint from Σ. Let ` = len4π2(Σ) and m = len4π2(γ) be the lengths
of Σ and γ in the complete metric on M . Suppose ` ≤ 0.0735 and m ≤ 0.0996− 0.352 · `. Let

Rmin = h−1(2π(`+m+ 10−5)) ≥ arctanh(0.6288).

Then M − Σ is connected to M via a cone deformation parametrized by t = α2, so that for all t,

(1) The curve γ is a geodesic in the cone metric gt. Furthermore, the cone deformation preserves
γ setwise.

(2) There is an embedded multi-tube about Σ ∪ γ of radius greater than Rmin.
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(3) The complex length of γ satisfies

dhyp(Lt(γ), L4π2(γ)) ≤ (4π2 − t)F (Zmin, `),

where Zmin = tanhRmin and F (z, `) is the function of Definition 7.2.

In particular, the length of γ in the M and M − Σ satisfies dhyp(L0(γ), L4π2(γ)) ≤ 4π2 F (Zmin, `).

Proof. The proof is a crawling argument in the spirit of Theorem 5.14. By that theorem, there
is a cone deformation connecting M − Σ to M , parametrized by t = α2. Furthermore, this cone
deformation maintains an embedded tube about Σ of radius at least R0 = h−1(2π`). (Note that for
this proof, the lower bound on tube radius about Σ is denoted R0 rather than Rmin.)

Let I be the maximal sub-interval of [0, (2π)2] containing (2π)2, such that conclusions (1), (2) and
(3) hold for t ∈ I.

First, we show that (2π)2 ∈ I, hence I is non-empty. Note that (1) holds by hypothesis, while (3)
is vacuous for t = (2π)2. Let Umax be the maximal multi-tube about Σ+ in the complete metric on
M , and let R be the smallest radius of a tube in Umax. By Lemma 5.15, we know R > 0.531. Now,
Corollary 4.25 says that

R ≥ h−1(A(4π2)) = h−1(2π(`+m)) > Rmin

where the strict inequality is by definition of Rmin. Thus (2) holds for t = (2π)2, implying that I 6= ∅.
To see that I is open, let 0 < t0 ∈ I. By Theorem 5.6, there is a local cone deformation on M

that treats Σ+ as its singular locus but does not change the cone angle on γ. Hence (1) holds in an
open neighborhood of t0, as does (2) because it is an open condition. Now, Lemma 7.4 implies that
(3) holds on the union of I and this open neighborhood. Hence I is open.

To see that I is closed, let a = inf I. Since the tube radius about Σ+ must remain at least Rmin

by continuity, and in particular does not degenerate, Theorem 5.13 implies that the cone deformation
preserving γ setwise can be extended to t = a. Since (3) is a closed condition, it holds at t = a by
continuity. Thus, for t ∈ [a, (2π)2], Lemma 7.14 gives

2π lent(γ) ≤ 2π len4π2(γ) · exp((4π2 − t)F (Zmin, `))

= 2πm exp((4π2 − t)F (Zmin, `)).

Similarly, by Lemma 7.17, the visual area of Σ satisfies

At(Σ) ≤ A4π2(Σ)

(√
t

2π

)q(Z0)

= 2π`

(√
t

2π

)q(Z0)

where Z0 = tanhR0 and the function q(z) is given in Lemma 7.17. Combining the last two equations,
we conclude that the total visual area of Σ+ = Σ ∪ γ satisfies

At(Σ+) ≤ 2π`

(√
t

2π

)q(Z0)

+ 2πm exp((4π2 − t)F (Zmin, `)) = f`,m(t).

By Lemma 7.18, the function f`,m(t) is bounded above in terms of f`,m(4π2). In symbols,

At(Σ+) ≤ f`,m(t) < 2π(`+m+ 10−5) = h(Rmin).

Thus Corollary 4.25 implies that at t = a, the maximal tube Umax has smallest radius R > Rmin.
This means condition (2) holds at a = inf I, hence I is closed. Thus (1), (2) and (3) hold for all
t ∈ [0, (2π)2]. �

Corollary 7.20. Let M be a complete, finite volume hyperbolic 3–manifold. Let Σ be a geodesic link
in M , and γ a closed geodesic disjoint from Σ. Let ` = len4π2(Σ) and m = len4π2(γ) be the lengths
of Σ and γ in the complete metric on M . Suppose that max(`,m) ≤ 0.0735. Then γ is isotopic to a
geodesic in the complete metric g0 on M − Σ, and furthermore

1.9793−1 ≤ len0(γ)

len4π2(γ)
≤ 1.9793 and |τ0(γ)− τ4π2(γ)| ≤ 0.05417.



EFFECTIVE BILIPSCHITZ BOUNDS ON DRILLING AND FILLING 47

Proof. First, observe that the hypothesis m ≤ 0.0735 implies m ≤ 0.0996− 0.352 · ` when 0 ≤ ` ≤
0.0735. Thus our hypotheses are stronger than those of Theorem 7.19. Now, by Theorem 7.19,

dhyp(L0(γ), L4π2(γ)) ≤ (4π2)F (Zmin, `),

where Zmin = tanhRmin = haze−1(2π(`+m+ 10−5)) ≥ 0.6299. Now, substitute

K = (2π)2F (Zmin, `) ≤ 0.6827

into Lemma 7.14, with the given bounds on ` and Zmin, and the given bound on m. �

We also have a version of Theorem 7.19 for upward cone deformations.

Theorem 7.21. Let M be a complete, finite volume hyperbolic 3–manifold and Σ a geodesic link in
M . Suppose that, in the complete hyperbolic structure on M − Σ, the total normalized length of the
meridians of Σ satisfies L2 ≥ 128. Let γ ⊂M −Σ be a closed geodesic of length m = len0(γ) ≤ 0.056.
Define

Rmin = h−1

(
(2π)2

L2 − 14.7
+ 2π · 1.656m

)
> arctanh(0.624).

Then M − Σ is connected to M via a cone deformation parametrized by t = α2, so that for all t,

(1) The curve γ is a geodesic in the cone metric gt. Furthermore, the cone deformation preserves
γ setwise.

(2) There is an embedded multi-tube about Σ ∪ γ of radius greater than Rmin.
(3) The complex length of γ satisfies

dhyp(L0(γ), Lt(γ)) ≤ t F (Zmin, `),

where ` ≤ 2π
L2−14.7 and F (z, `) is as in Definition 7.2.

In particular, the length of γ in the complete structures on M and M−Σ satisfies dhyp(L0(γ), L4π2(γ)) ≤
4π2 F

(
Zmin,

2π
L2−14.7

)
.

As usual, ` denotes the length of Σ in the hyperbolic metric on M . However, to apply the theorem,
one only needs geometric hypotheses on M − Σ and the inequality ` ≤ 2π

L2−14.7 .

Proof. We begin by noting that L2 ≥ 128 ≥ I(Z0), where I(z) is the function of Definition 5.16

and Z0 ≥ 0.8925 > 1/
√

3. Thus, by Theorem 5.17, there is a cone deformation from M − Σ to M ,
parametrized by t = α2, for which the tube radius about Σ stays bounded below by R0. (We denote
this quantity by R0 rather than Rmin because Rmin has a different meaning in the present theorem.)
Now, Lemma 6.10, using Z0 ≥ 0.8925, shows that the length of Σ in the complete metric on M is

(7.22) ` ≤ 2π

L2 − (2π)2G(Z0)
≤ 2π

L2 − 14.7
≤ 0.05546.

We will use this bound on ` in applying Lemma 7.4.
The rest of the proof is a crawling argument analogous to Theorem 7.19. By Theorem 5.6 and

Theorem 5.13, the cone deformation on (M,Σ) can be thought of as a cone deformation on (M,Σ+),
provided the tube radius about Σ+ = Σ ∪ γ does not degenerate. Thus conclusion (1) will be
immediate once we establish (2).

Let J be the maximal sub-interval of [0, (2π)2], containing 0, such that (2) and (3) both hold on
J . By Lemma 5.15 and Corollary 4.25, there is an embedded tube about γ in M − Σ of radius

R ≥ h−1(2πm) > Rmin.

Meanwhile, the horospherical cusp neighborhoods can be thought of as tubes of infinite radius about
Σ. Thus (2) holds at t = 0. Since (3) is vacuous at t = 0, we conclude that J is non-empty.

The interval J is open for the same reason as in Theorem 7.19. Let t0 ∈ J . Since (2) is an open
condition, it holds on an open neighborhood about t0. Now, Lemma 7.4, combined with the estimate
(7.22), implies that (3) holds on the union of J and this open neighborhood. Hence J is open.
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To see that J is closed, let a = sup J . Since (3) is a closed condition, it holds at t = a by continuity.
Thus, by Lemma 7.14, we have

(7.23) lena(γ) ≤ exp(aF (Zmin, `)) · len0(γ) < 1.656m,

where the second inequality uses (7.22) and Zmin > 0.624, the fact that F is decreasing in z and
increasing in ` (since ` < 0.056), and the fact that a ≤ (2π)2. Recall that m = len0(γ). Meanwhile,
Lemma 5.9 implies that lent(Σ) is increasing in t. Thus, at time t = a,

A(a) =
√
a · lena(Σ) + 2π lena(γ) < 2π · 2π

L2 − 14.7
+ 2π · 1.656m = h(Rmin).

Here, the first equality is by the definition of visual area, the inequality is by (7.22) and (7.23), and
the second equality is by the definition of Rmin. Now, Corollary 4.25 implies R ≥ h−1A(a) > Rmin,
hence (2) holds at t = a as desired. Therefore, J is closed, hence J = [0, (2π)2]. �

Corollary 7.24. Let M be a complete, finite volume hyperbolic 3–manifold and Σ a geodesic link in
M . Suppose that, in the complete hyperbolic structure on M − Σ, the total normalized length of the
meridians of Σ satisfies L2 ≥ 128. Let γ ⊂ M − Σ be a closed geodesic of length len0(γ) ≤ 0.056.
Then γ is isotopic to a closed geodesic in M , and furthermore

1.657−1 ≤ len0(γ)

len4π2(γ)
≤ 1.657 and |τ0(γ)− τ4π2(γ)| ≤ 0.0295.

Proof. Plug in t = (2π)2, ` ≤ 2π
L2−14.7 ≤

2π
113.3 , m ≤ 0.056 and Zmin > 0.624 into Lemma 7.14 to

obtain the result. �

7.3. Application to cosmetic surgery. We now present the main application of this section:
effective control on cosmetic surgeries.

Definition 7.25. Choose a real number L ≥ 10.1. Let F be the function of Definition 7.2. Define

`max = `max(L) =
2π

L2 − 16.03

and
sysmin(L) = `max exp(4π2F (haze−1(4π `max + 2π 10−5), `max)).

Lemma 7.26. The function sysmin(L) is strictly decreasing in L. Furthermore, for L ≥ 10.1,

2π

L2
< sysmin(L) <

2π

L2 − 58
.

Proof. To see that sysmin(L) is decreasing, we examine the ingredients of its definition. By Corol-
lary 4.25, and Remark 4.23, haze−1(4π`max +2π10−5) is a decreasing function of `max. By a derivative
computation, the function

F (z, `)

`
=

(1 + z2)

z3(3− z2)
· 1

10.667− 20.977`

is decreasing in z and increasing in `. Thus the combined function F (haze−1(4π`max +2π10−5), `max)
is increasing in `max. Since `max = `max(L) is strictly decreasing in L, we conclude that sysmin(L) is
strictly decreasing.

The lower bound on sysmin(L) holds because sysmin(L) > `max(L) > 2π/L2. Meanwhile, by the
definition of `max, the desired upper bound on sysmin(L) is equivalent to

sysmin(L)

`max
<

2π

L2 − 58
· L

2 − 16.03

2π
.

After substituting the definition of sysmin(L), taking logarithms, and dividing both sides by `max

again, the upper bound becomes equivalent to the inequality

(7.27) 4π2 F (haze−1(4π`max + 2π10−5), `max)

`max
< log

(
L2 − 16.03

L2 − 58

)
· L

2 − 16.03

2π
.
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It remains to prove (7.27).
A derivative calculation shows that the right-hand side of (7.27) is decreasing in L. As L→∞,

its limit is

lim
L→∞

− log

(
L2 − 58

L2 − 16.03

)
· L

2 − 16.03

2π
= lim
L→∞

− log

(
1− 41.97

L2 − 16.03

)
· L

2 − 16.03

2π

= lim
L→∞

41.97

L2 − 16.03
· L

2 − 16.03

2π

=
41.97

2π
= 6.679 . . . .

Here, the second equality uses the linear approximation log(1− x) ∼ −x for x near 0. Therefore, the
right-hand side is at least 6.679 for all values of L in the domain.

Meanwhile, we have already checked that the left-hand side of (7.27) is increasing in `max, hence
decreasing in L. Direct calculation shows that the left-hand side equals 6.674 . . . when L = 11. Thus
inequality (7.27) holds for all L ≥ 11.

Finally, for L ∈ [10.1, 11], inequality (7.27) is established using interval arithmetic in Sage. See
the ancillary files [23] for details. �

Theorem 7.28. For a real number L0 ≥ 10.1, let sysmin(L0) be the function of Definition 7.25. Let
N be a cusped hyperbolic 3–manifold whose systole is at least sysmin(L0). Let s be a tuple of surgery
slopes on the cusps of N , whose normalized length is L = L(s) ≥ L0.

Then the Dehn filled manifold M = N(s) is hyperbolic. The core Σ of the Dehn filling solid tori is
isotopic to a geodesic link with an embedded tubular neighborhood of radius at least 1.281. Finally,
the only geodesics in M of length at most ` = len(Σ) are the components of Σ itself.

Proof. Let M = N(s), and let Σ be the union of the cores of the filled solid tori. We will apply
Theorem 5.17. Note the hypotheses imply that the normalized length is at least L2

0 ≥ (10.1)2 ≥
I(0.8568), where I is the function of Definition 5.16. By Theorem 5.17, M admits a hyperbolic metric
that is connected to the complete metric onN = M−Σ by a cone-deformation with singular locus along
Σ. Moreover, the cone deformation maintains a tube about Σ of radius R0 ≥ arctanh(0.8568) ≥ 1.281.
At the end of this cone deformation, Σ becomes a geodesic link in the complete metric on M . The
length of Σ in this complete metric satisfies

` = len4π2(Σ) <
2π

L2 − 16.03
= `max < 0.0731.

Here, the first inequality follows by Lemma 6.10, plugging in the value 4π2G(tanh(R0)) = 16.028 . . ..
Meanwhile, the last inequality uses the hypothesis L ≥ 10.1.

Suppose, for a contradiction, that M contains a closed geodesic γ 6⊂ Σ such that len4π2(γ) =
m ≤ `max. By Meyerhoff’s theorem [44, Section 7], γ ∩ Σ = ∅. Thus Σ+ = Σ ∪ γ is a geodesic link
satisfying the hypotheses of Theorem 7.19. Matching the definition of Rmin in Theorem 7.19, we
define

Zmin = haze−1(2π(`+m+ 10−5)) > haze−1(4π`max + 2π · 10−5) > 0.6337.

By Conclusion (3) of Theorem 7.19, we have

dhyp(L0(γ), L4π2(γ)) ≤ 4π2 F (Zmin, `) < 4π2 F (Zmin, `max),

hence Lemma 7.14 implies the length of γ in M0 = M − Σ = N is

len0(γ) < len4π2(γ) exp(4π2F (Zmin, `max))

< `max exp(4π2F (haze−1(4π`max + 2π10−5), `max))

= sysmin(L) ≤ sysmin(L0),
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using the fact that F (z, `) is decreasing in z. But this contradicts the hypothesis that sys(N) ≥
sysmin(L0). This contradiction implies that the components of Σ are the only geodesics in M of
length less than `max, completing the proof. �

Now, Theorem 7.28 combined with topological rigidity of hyperbolic manifolds [27, 28] implies

Theorem 7.29. Let N be a cusped hyperbolic 3–manifold. Suppose that s1, s2 are distinct tuples of
slopes on the cusps of N , where the normalized length of each si satisfies

L(si) ≥ max

{
10.1,

√
2π

sys(N)
+ 58

}
.

Then any homeomorphism ϕ : N(s1)→ N(s2) restricts (after an isotopy) to a self-homeomorphism
of N sending s1 to s2. In particular, if sys(N) ≥ 0.1428, then the above conclusions hold for all pairs
(s1, s2) of normalized length at least 10.1.

Proof. For i = 1, 2, let Li = L(si) be the normalized length of the tuple of slopes si. By hypothesis,

Li ≥ 10.1 and Li ≥
√

2π/sys(N) + 58. Combining these hypotheses with Lemma 7.26, we have

sysmin(Li) ≤ sysmin

(√
2π

sys(N)
+ 58

)
< sys(N).

Let Σi ⊂ N(si) be the union of cores of the Dehn filling solid tori. Then, by Theorem 7.28, the k
components of Σi are the shortest k-tuple of geodesics in the hyperbolic manifold N(si). Furthermore,
there is a tube of radius more than 1 about Σi. Note if N(s1) ∼= N(s2), the number k of components
of Σ1 must equal the number of components of Σ2.

Now, consider a homeomorphism ϕ : N(s1) → N(s2). By Mostow rigidity, combined with a
theorem of Gabai [27], ϕ is isotopic to an isometry. (See also Gabai, Meyerhoff, and Thurston
[28].) This isometry must carry the shortest k-tuple of geodesics in N(s1) to the shortest k-tuple of
geodesics in N(s2). Thus, after adjusting ϕ by an isotopy, we may suppose that ϕ(Σ1) = Σ2. Hence
ϕ restricts to a homeomorphism from N = N(s1)− Σ1 to N = N(s2)− Σ2, sending s1 to s2. �

When N has one cusp, we have the following corollary.

Theorem 7.30. Let N be a one-cusped hyperbolic 3–manifold. Suppose that s1 and s2 are distinct
slopes on the cusp of N , where the normalized length of each si satisfies

L(si) ≥ max

{
10.1,

√
2π

sys(N)
+ 58

}
.

Then (s1, s2) cannot be a purely cosmetic pair. If (s1, s2) is a chirally cosmetic pair, then there is a
symmetry of N sending s1 to s2.

In particular, Conjectures 1.7 and 1.9 both hold for pairs (s1, s2) satisfying the above bound on
length.

Proof of Theorem 7.30. Suppose there is a homeomorphism ϕ : N(s1) → N(s2). Then, by The-
orem 7.29, ϕ restricts to a homeomorphism of N sending s1 to s2. That ϕ : N → N must be
orientation-reversing follows from a standard argument, as in [6, Lemma 2].

Let λ be the unique null-homologous slope on the cusp of N . Thus ϕ|N must send λ to λ. By
Mostow–Prasad rigidity, ϕ|N is homotopic to an isometry. If an isometry of N is orientation-preserving
and stabilizes λ, then it must stabilize every slope, implying s1 = s2. Since we have assumed that
s1 6= s2, it follows that ϕ|N is orientation-reversing, hence ϕ is also. �
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7.4. Controlling multiple geodesics. The following theorem is included here for future use.

Theorem 7.31. Let M be a complete, finite volume hyperbolic 3–manifold. Let Σ = σ1 ∪ . . . ∪ σn
and Σ+ = σ1∪ . . .∪σn+k be geodesic links in M , where k ≥ 1. Assume that, in the complete structure
on M , we have ` = len4π2(Σ) ≤ 0.735. In addition, define

m = max
{

len4π2(σj) : n+ 1 ≤ j ≤ n+ k
}

and assume that `+ 2m ≤ 0.14.
Then M0 = M − Σ is connected to M4π2 = M via a cone deformation that preserves Σ+ setwise

and keeps each component of Σ+ geodesic.

One novelty of Theorem 7.31 is that it does not care about the total length of Σ+. All that the
theorem needs is for the drilling locus Σ to be short, and for each separate component of Σ+ − Σ to
be (uniformly) short. Under these hypotheses, one may use Theorem 7.19 to estimate the change in
length of each component of Σ+ − Σ.

Proof of Theorem 7.31. If k = 1, that is if Σ+ = Σ ∪ γ for a single closed curve γ, this theorem
is already covered by Theorem 7.19. In the general case, when k ≥ 2, the proof closely parallels
that proof. Define R0 = h−1(2π`) ≥ arctanh(1/

√
3). By Theorem 5.14, there is a cone deformation

connecting M − Σ to M , which maintains an embedded tube about Σ of radius at least R0.
Next, define

(7.32) R̂min = h−1(2π(`+ 2m+ 10−5)) > 0.794,

and set Ẑmin = tanh(R̂min) as usual. Our hypothesis on `+2m ensures that 2π(`+2m+10−5) < hmax,
hence Corollary 4.25 ensures that h−1 is decreasing. We claim that the above cone deformation can
be chosen such that the following hold for all t ∈ [0, 4π2]:

(1) The link Σ+ is a union of geodesics in the cone metric gt. Furthermore, the cone deformation
preserves Σ+ setwise.

(2) There is an embedded multi-tube about Σ+ of radius greater than R̂min.
(3) For every curve σj with j > n, the complex length satisfies

dhyp(Lt(σj), L4π2(σj)) ≤ (4π2 − t)F (Ẑmin, `).

Let I be the maximal sub-interval of [0, (2π)2] containing (2π)2, such that conclusions (1), (2) and
(3) hold for t ∈ I.

First, we show that (2π)2 ∈ I, hence is non-empty. Note that (1) holds by hypothesis, while
(3) is vacuous for t = (2π)2. To verify (2), choose an arbitrary pair of components σj , σj′ with
n < j, j′ ≤ n+ k. Let Umax be the maximal multi-tube about Σ ∪ σj ∪ σj′ in the complete metric on
M , and let R be the smallest radius of a tube in Umax. By Lemma 5.15, we know R > 0.531. Now,
Corollary 4.25 says that

R ≥ h−1(A(4π2)) = h−1(2π(`+ 2m)) > R̂min

where the strict inequality is by definition of R̂min. In particular, the tubes of radius R̂min about
the components of Σ ∪ σj ∪ σj′ are pairwise disjoint. Since j, j′ were arbitrary, we conclude that the

tubes of radius R̂min about all components of Σ+ are pairwise disjoint. Thus (2) holds for t = (2π)2,
implying that I 6= ∅.

To see that I is open, let 0 < t0 ∈ I. By Theorem 5.6, there is a local cone deformation on M
that treats Σ+ as its singular locus but does not change the cone angles on Σ+ −Σ. Hence (1) holds
in an open neighborhood of t0, as does (2) because it is an open condition. Now, Lemma 7.4 implies
that (3) holds on the union of I and this open neighborhood. Hence I is open.

To see that I is closed, let a = inf I. Since the tube radius about Σ+ must remain at least R̂min

by continuity, and in particular does not degenerate, Theorem 5.13 implies that the cone deformation
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preserving Σ+ setwise can be extended to t = a. Since (3) is a closed condition, it holds at t = a by
continuity. Thus, for every j > n and every t ∈ [a, (2π)2], Lemma 7.14 gives

2π lent(σj) ≤ 2π len4π2(σj) · exp((4π2 − t)F (Ẑmin, `))

≤ 2πm exp((4π2 − t)F (Ẑmin, `)).

Focusing attention on two components σj and σj′ with j, j′ > n, we have

2π(lent(σj) + lent(σj′)) ≤ 4π ·m exp((4π2 − t)F (Ẑmin, `)).

Meanwhile, by Lemma 7.17, the visual area of Σ satisfies

At(Σ) ≤ A4π2(Σ)

(√
t

2π

)q(Z0)

= 2π`

(√
t

2π

)q(Z0)

where Z0 = tanhR0 and the function q(z) is given in Lemma 7.17. Combining the last two equations,
we conclude that the total visual area of Σ ∪ σj ∪ σj′ satisfies

At(Σ ∪ σj ∪ σj′) ≤ 2π`

(√
t

2π

)q(Z0)

+ 4πm exp((4π2 − t)F (Ẑmin, `)) = f̂`,m(t).

(Note that f̂`,m(t) differs from the function f`,m(t) of Lemma 7.18 in that the second term begins with

4πm instead of 2πm. Note as well that Ẑmin is defined via (7.32), which differs from the definition of
Zmin in Lemma 7.18.)

By an interval arithmetic computation in Sage [23], exactly as in Lemma 7.18, we learn that

f̂`,m(t) is bounded above in terms of f̂`,m(4π2). In symbols, we verify the strict inequality below:

(7.33) At(Σ ∪ σj ∪ σj′) ≤ f̂`,m(t) < 2π(`+ 2m+ 10−5) = h(R̂min).

Thus Corollary 4.25 implies that at t = a, the maximal tube about Σ ∪ σj ∪ σj′ has smallest radius

R > R̂min. Since j, j′ were chosen arbitrarily, the maximal multi-tube about Σ+ also has smallest
radius R > R̂min. This means condition (2) holds at a = inf I, hence I is closed. Thus (1), (2) and
(3) hold for all t ∈ [0, (2π)2], completing the proof. �

8. Bilipschitz estimates in the thick part

The main result of this section is Theorem 8.3. The theorem gives an effective bilipschitz bound
on the change in geometry during a cone deformation.

Definition 8.1. Given Riemannian metrics g and ĝ on a manifold N , we define the bilipschitz
constant at a point p ∈ N by

(8.2) bilipp(g, ĝ) = inf

{
K ≥ 1

∣∣∣∣∣ 1

K
≤

√
ĝ(x, x)

g(x, x)
≤ K for all x ∈ TpN − {0}

}
.

The bilipschitz constant between g and ĝ is

bilipN (g, ĝ) = sup {bilipp(g, ĝ) : p ∈ N},

with the convention that the supremum of an unbounded set is undefined. In the applications in this
paper, the manifold N will be compact, hence the supremum will actually be attained.

Theorem 8.3. Fix 0 < δ ≤ 0.938. Let M be a complete, finite volume hyperbolic 3-manifold and Σ
a geodesic link in M . Suppose that one of the following hypotheses holds.

• In the cusped structure on M − Σ, the total normalized length of the meridians of Σ satisfies
L2 ≥ 107.6/δ2 + 14.41.

• In the complete structure on M , the total length of Σ is ` ≤ δ2/17.11.
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Then there is a cone deformation Mt = (M,Σ, gt) interpolating between the complete structures
on M − Σ and M . For 0 ≤ a ≤ b ≤ (2π)2, the cone deformation defines a natural identity map
id : (M − Σ, ga)→ (M − Σ, gb).

Suppose that W is a submanifold of M such that W ⊂M≥δt for all t ∈ (a, b). Then the identity
map id : (W, ga)→ (W, gb) is J–bilipschitz, where

J = exp

(
7.193 `

δ5/2

)
.

The natural identity map id : (M, ga) → (M, gb) was defined in Remark 5.18. It arises because
we are keeping the pair of sets (M,Σ) constant and varying the metric gt on M − Σ according to a
canonical choice of 1–form ω. One important property of this identity map is that it is equivariant
with respect to the symmetry group of the pair (M,Σ).

We remark that Theorem 8.3 is an effective version of a theorem of Brock and Bromberg [11,
Corollary 6.10]. Our proof follows their outline, with effective control on the boundary terms inserted
into the calculation.

The following lemma shows that the hypothesis on L of Theorem 8.3 implies the hypothesis on `.
Thus, in proving the theorem, it suffices to assume the hypothesis on `. In addition, Lemma 8.4 says
that we may substitute ` ≤ 2π

L2−14.41 in bounding the bilipschitz constant J .

Lemma 8.4. Fix 0 < δ ≤ 0.938. Let M be a complete, finite volume hyperbolic 3-manifold and Σ a
geodesic link in M . Suppose that in the cusped structure on M − Σ, the total normalized length of
the meridians of Σ satisfies L2 ≥ 107.6/δ2 + 14.41. Then in the complete structure on M , the total
length of Σ is

` <
2π

L2 − 14.41
<

δ2

17.11
.

Proof. Since δ ≤ 0.938, we have

L2 ≥ 107.6

δ2
+ 14.41 ≥ 136.7 = I(Zmin),

where Zmin ≥ 0.9006. Thus, by Lemma 6.10, we have

` ≤ 2π

L2 − 14.41
<

δ2

17.11
. �

To prove Theorem 8.3, we recall from Section 5 that the cone deformation is governed by a
harmonic form ω. By Equation (5.2), ω decomposes as

(8.5) ω = η + i ∗Dη.
It turns out that the real part η = <(ω) controls the infinitesimal change in metric. Hodgson and
Kerckhoff pointed out that the metric inner product gt(x, y) between a pair of vectors x, y ∈ TpM
satisfies the differential equation

(8.6)
dgt(x, y)

dt
= 2gt(x, η(y)).

See, for instance, the displayed equation on page 46 of [32]. We remark that (8.6) can be used to
define the TM–valued 1–form η, which is how Brock and Bromberg have defined it [11, page 61].
Subsequently, they showed that the pointwise norm of η controls the bilipschitz constant.

Lemma 8.7. If ||η(p)|| ≤ K for all t ∈ [a, b], then

bilipp(ga, gb) ≤ e(b−a)K .

Proof. On [11, pages 61–62], Brock and Bromberg show that (8.6) implies∣∣∣∣dgt(x, x)

dt

∣∣∣∣ ≤ 2||η(p)|| gt(x, x).
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Here, the pointwise norm ||η(p)|| should be evaluated at time t. Integrating the above estimate, we
obtain

e−2(b−a)K ≤ gb(x, x)

ga(x, x)
≤ e2(b−a)K , hence bilipp(ga, gb) ≤ e(b−a)K . �

8.1. Bounding the pointwise norm. We will control the pointwise norm ‖η(p)‖ by combining
the results of Section 6 and the following mean-value inequality due to Hodgson, Kerckhoff, and
Bromberg [14].

Theorem 8.8. Let ω be a harmonic form on a ball Br(p) ⊂ H3, where r < π/
√

2. Then

(8.9) ‖ω(p)‖ ≤
3
√

2π(sinh(2r)− 2r)

4πf(r)

√∫
Br

‖ω‖2dV,

where
f(r) = cosh(r) sin(

√
2r)−

√
2 sinh(r) cos(

√
2r).

Proof. See Bromberg [14, Theorem 9.9]. We have substituted the formula vol(Br(p)) = π(sinh(2r)−
2r). See, for example, Ratcliffe [55, Exercise 3.4.5]. �

To simplify the bound of (8.9), we employ the following estimate.

Lemma 8.10. Let 0 < δ ≤ 0.938, and let r = δ/2. Then the term in (8.9) before the square root of
the integral satisfies:

(8.11)
3
√

2π(sinh(2r)− 2r)

4πf(r)
≤

(
1.046

2

√
3

π

)(
δ

2

)−3/2

.

If 0 < δ ≤ 0.106 and r = δ/2, the bound becomes

(8.12)
3
√

2π(sinh(2r)− 2r)

4πf(r)
≤

(
1.001

2

√
3

π

)(
δ

2

)−3/2

.

Proof. Before giving the proof, we motivate the statement. The function to be bounded in (8.11)
and (8.12) can be expressed as a Puiseux series in the following way:

3
√

2π(sinh(2r)− 2r)

4πf(r)
=

(
1

2

√
3

π

)
r−3/2 +

(
1

10

√
3

π

)
r1/2 +O(r5/2).

Since r = δ/2, the bounds in (8.11) and (8.12) pick out the leading term of the series, with a bit of
multiplicative error.

Now, we proceed to the proof. Set C = 1.046. A bit of algebraic manipulation shows that the
desired inequality (8.11) is equivalent to

(8.13) Φ(r) = 2f(r)2C2 − 3r3(sinh(2r)− 2r) ≥ 0 on r ∈ [0, 0.469].

Since f(r) = cosh(r) sin(
√

2r)−
√

2 sinh(r) cos(
√

2r) is an analytic function, the entire function Φ(r)
in (8.13) is analytic. The 9-th degree Taylor polynomial for Φ(r), centered at r = 0, is

P (r) = 4(C2 − 1)r6 − 4
5 (C2 + 1)r8.

By Taylor’s theorem with remainder, when r ∈ [0, 0.469] we have

Φ(r)− P (r) =
Φ(10)(ρ)

10!
r10, for some ρ ∈ [0, 0.469] depending on r.

Using interval arithmetic in Sage [23], we verify that Φ(10)(ρ)/10! ≥ −0.085 for all ρ ∈ [0, 0.469].
Thus

Φ(r) ≥ 4(C2 − 1)r6 − 4
5 (C2 + 1)r8 − 0.085r10,

a function that is easily seen to be non-negative for r ∈ [0, 0.469] because it factors into linear and
quadratic terms. This proves (8.13) and therefore (8.11).
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Inequality (8.12) is proved similarly, substituting C = 1.001. �

Proposition 8.14. Fix 0 < δ ≤ 0.938. Let M be a complete, finite volume hyperbolic 3-manifold
and Σ a geodesic link in M with total length ` ≤ δ2/17.11. Let Mt be a cone-manifold occurring

along a deformation from M − Σ to M . Let p ∈M≥δt . Then

‖ω(p)‖ ≤ 0.1822 `

δ5/2
.

Proof. We may assume without loss of generality that t lies in the interior of the deformation interval
[0, (2π)2], or in other words, we have cone angle 0 < α < 2π along every component of Σ. Once we
establish the desired bound on ‖ω(p)‖ for such times in the interior, the general case will follow by
continuity.

For p ∈M≥δt , by Definition 2.14 there is a round ball of radius δ/2 centered at p, which is isometric
to a ball in H3. For each component σj of Σ, let rj(δ) be the tube radius of the δ–thin tube about
σj in the metric gt. By Definition 6.15, this means that every point q ∈ ∂Urj(δ) satisfies

injrad(q) ≤ injrad(q, Urj(δ)) = δ/2,

where the inequality is Lemma 2.19. Set r− = (r1(δ)− δ/2, . . . , rn(δ)− δ/2). By Theorem 6.20, the
multi-tube Ur− is embedded. Moreover, Ur− ∩Bδ/2(p) = ∅. Therefore, by (6.3) and Theorem 6.20

(8.15)

∫
Bδ/2(p)

‖ω‖2 dV ≤
∫
M−Ur−

‖ω‖2 dV = br−(η, η) ≤
(

`

7.935 δ

)2

.

The bound on the term in (8.9) before the square root of the integral is bounded by Lemma 8.10,
particularly equation (8.11). Now, we plug the estimates of (8.15) and (8.11) into (8.9) to obtain

‖ω(p)‖ ≤

(
1.046

δ3/2

√
6

π

)(
`

7.935 δ

)
≤ 0.1822 `

δ5/2
. �

We can now complete the proof of Theorem 8.3.

Proof of Theorem 8.3. By Lemma 8.4, the hypothesis on L implies the hypothesis on `, so we may
assume the hypothesis on `. The existence of a cone deformation (M,Σ, gt) now follows from
Theorem 5.1. Recall as well that in Remark 5.18, we made a canonical choice of harmonic form
ω governing the family of cone-metrics gt, and used this choice to define a natural identity map
id : (M − Σ, ga)→ (M − Σ, gb).

Now, we can check the bilipschitz estimate of the theorem. Set K = 0.1822 ` δ−5/2. Suppose that

W ∈M≥δt for all t ∈ (a, b) and that p ∈W . Then, by (8.5) and Proposition 8.14, we have

‖η(p)‖ ≤ ‖ω(p)‖ ≤ K.

Set

J = exp
(
(2π)2K

)
= exp

(
(2π)2 · 0.1822 `

δ5/2

)
≤ exp

(
7.193 `

δ5/2

)
.

By Lemma 8.7, the bound ‖η(p)‖ ≤ K implies

bilipp(ga, gb) ≤ e|b−a|K ≤ e(2π)2K = J,

as claimed. �
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8.2. Corollaries and variations. Theorem 8.3 has the following pair of corollaries on effective
bilipschitz bounds on drilling and filling. In both statements, g0 denotes the complete hyperbolic
metric on M − Σ, and g4π2 denotes the complete hyperbolic metric on M .

Corollary 8.16. Fix 0 < δ ≤ 0.938 and J > 1. Let M be a complete, finite volume hyperbolic
3–manifold. Let Σ ⊂M be a geodesic link whose total length ` satisfies

` ≤ min

{
δ2

17.11
,
δ5/2 log(J)

7.193

}
.

Let W ⊂ M be any submanifold such that W ⊂ M≥δt for all t. Then, for all a, b ∈ [0, (2π)2], the
identity map id : (W, ga)→ (W, gb) is J–bilipschitz.

Corollary 8.17. Fix any 0 < δ ≤ 0.938 and any J > 1. Let M be a complete, finite volume hyperbolic
3–manifold and Σ a geodesic link in M . Suppose that in the cusped structure on N = M − Σ, the
total normalized length L of the meridians of Σ satisfies

L2 ≥ max

{
107.6

δ2
+ 14.41,

45.20

δ5/2 log(J)
+ 14.41

}
.

Let W ⊂ M be any submanifold such that W ⊂ M≥δt for all t. Then, for all a, b ∈ [0, (2π)2], the
identity map id : (W, ga)→ (W, gb) is J–bilipschitz.

Proof. This follows from Theorem 8.3 and Lemma 8.4. �

We also have the following analogue of Theorem 8.3, with stronger hypotheses and a stronger
bilipschitz estimate. This stronger statement will be used in Section 9.

Theorem 8.18. Fix 0 < δ ≤ 0.106 and 1 < J ≤ e1/5. Let M be a complete, finite volume hyperbolic
3-manifold and Σ a geodesic link in M . Suppose that in the complete structure on M , the total length
of Σ is bounded as follows:

` ≤ δ5/2 log(J)

3.324
if δ ≤ 0.012, ` ≤ δ5/2 log(J)

3.498
if 0.012 < δ ≤ 0.106.

Let [a, b] ⊂ [0, (2π)2] be an interval of time, and suppose that W is a submanifold of M such that

W ⊂M≥δt for all t ∈ (a, b). Then the identity map id : (W, ga)→ (W, gb) is J–bilipschitz.

Proof. First, suppose that δ ≤ 0.012. Since log(J) ≤ 1/5 and 5× 3.324 = 16.62, our hypotheses are
stronger than those of Proposition 6.27. The proof that id is J–bilipschitz is almost identical to the
proof of Theorem 8.3, with two small substitutions. Inside the proof of Proposition 8.14, we replace
(8.15), which uses Theorem 6.20, by the estimate of Proposition 6.27:

(8.19)

∫
Bδ/2(p)

‖ω‖2 dV ≤
∫
M−Ur−

‖ω‖2 dV = br−(η, η) ≤
(

`

16.432 δ

)2

.

We also replace (8.11) by (8.12). Now, using (8.12) and (8.19) in place of (8.11) and (8.15),
Proposition 8.14 becomes

(8.20) ‖ω(p)‖ ≤

(
1.001

δ3/2

√
6

π

)(
`

16.432 δ

)
≤ 0.08419 `

δ5/2
.

Plugging (8.20) into the final part of the proof of Theorem 8.3 gives

bilip(ga, gb) ≤ exp

(
(2π)2 · 0.08419 `

δ5/2

)
≤ exp

(
3.324 `

δ5/2

)
≤ J.

If 0.012 < δ ≤ 0.106, the proof is again almost identical; we use Proposition 6.26 instead of
Proposition 6.27 to get a slightly looser bound on br−(η, η). �
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9. Margulis numbers for cone-manifolds

Our goal in this section is to give an effective estimate on the Margulis numbers of cone-manifolds
that occur in the cone-deformations we have been studying. See Theorems 9.26 and 9.27 for effective
statements in this vein. These estimates for cone-manifolds are used to control the Margulis number
of the non-singular manifold M at the end of the deformation, under hypotheses on either the drilled
manifold M − Σ (in Theorem 9.25), or the filled manifold M (in Theorem 9.29).

The proof of each of these results breaks into a topological statement and a geometric statement.
The topological statement is Theorem 9.1, which can be paraphrased as follows: so long as ε is a
Margulis number for an initial manifold M0, and so long as the ε–thick part M≥ε0 stays δ–thick in Mt

for every t, we learn that δ is a Margulis number for Mt. The geometric statement is Theorem 9.15:
under strong hypotheses on length, the ε–thick part M≥ε0 indeed stays almost ε–thick in Mt for all t.
In fact, both the topological and the geometric statement require geometric hypotheses about ` or L,
and rely on the estimates in the preceding sections.

Theorem 9.15 has an additional application: it allows us to formulate a version of the bilipschitz
Theorem 8.3 whose hypotheses are only on the non-singular manifold at one end of a cone-deformation,
without any pre-existing knowledge about intermediate cone manifolds. See Theorem 9.30 for details.

9.1. Tubes realizing injectivity radii. The following theorem says that Margulis numbers in a
cone-manifold Mt are related to Margulis numbers in M0, provided that we have set containment of
the corresponding thin parts.

Theorem 9.1. Fix 0 < δ ≤ ε, where δ < 0.9623. Suppose M is a complete, finite volume hyperbolic
manifold, and Σ = σ1 ∪ . . . ∪ σn is a geodesic link in M . Suppose that len(σj) ≤ 0.0996 for every j,
while the total length of Σ satisfies

(9.2) ` = len(Σ) ≤ min

{
0.261δ,

1

2π
haze

(
δ + 0.1604

1.1227

)}
.

Let M0 be the complete metric on M−Σ, and assume that ε is a Margulis number for M0. Suppose
as well that for every t, we have

(9.3) (M≤δt − Σ) ⊂M<ε
0 .

Then δ is a Margulis number for Mt, for each t.

The hypotheses on δ, len(σj), and ` in Theorem 9.1 match those of Lemma 6.16. Recall that the
function in (9.2), which expresses the upper bound on ` in terms of δ, is depicted in Figure 6.1 on
page 36.

The proof of Theorem 9.1 breaks up into several steps. In Proposition 9.4, we show that if Mt is a
cone-manifold occurring in the interior of our deformation, and injrad(x) ≤ δ/2, then an appropriate
subset of M≤δ is (loosely speaking) realized by a tube through x. This “tube” U may be immersed
rather than embedded, may be singular, and may be a horocusp. There may also be more than
one such tube through x. In Lemma 9.9, we will show that, under the hypotheses of Theorem 9.1,
these tubes or cusps are in fact disjointly embedded in a singular cone-manifold Mt. This proves
Theorem 9.1 for singular manifolds Mt, corresponding to a time parameter t < (2π)2.

We complete the proof of Theorem 9.1 via a continuity argument. The function injradt(x) is not
always continuous in t, but it comes close; the precise (and more subtle) continuity statement is
established in Lemma 9.10.

Recall from Definition 2.8 that a non-trivial group element ϕ ∈ π1(M −Σ) is called peripheral if a
loop representing ϕ is freely homotopic into a cusp of M − Σ.

Proposition 9.4. Fix 0 < δ < 0.9623. Let M be a complete, finite volume hyperbolic manifold, and
Σ = σ1 ∪ . . . ∪ σn a geodesic link in M . Suppose that len(σj) ≤ 0.0996 for every j, while ` = len(Σ)
satisfies (9.2).
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Let Mt be a cone-manifold in the interior of the deformation from M − Σ to M . Let x ∈Mt be a
point such that 2injrad(x) ≤ δ. Choose a lift x̃ ∈ M̂t, the universal branched cover, let ϕ ∈ π1(M −Σ)
be a group element guaranteed by Lemma 2.11, so that d(x̃, ϕx̃) = 2injrad(x), and let G = C(ϕ) be
the centralizer of ϕ in π1(M − Σ). Then the following hold.

(1) G stabilizes an open set Ṽ ⊂ M̂t, which is either a horoball or a regular neighborhood of a
geodesic.

(2) The quotient V = Ṽ /G admits a local isometry f : V →Mt. Thus f is an immersed tube or
immersed horocusp in Mt, as in Definition 2.16.

(3) We have V ≥1.51 6= ∅.
(4) There is a sub-tube or sub-horocusp U ⊂ V and a point y ∈ ∂U , such that x = f(y).

Furthermore, injrad(x) = injrad(y, U).
(5) If ϕ is peripheral, then f |U : U →Mt is an embedding of a horocusp or singular tube.

Proof. Let Umax(Σ) = U1 ∪ . . . ∪ Un be the maximal multi-tube about Σ, as in Definition 4.2. Let
Un+1, . . . , Um be horoball neighborhoods of the cusps of Mt (if any), expanded until each Uj bumps
into a previously expanded cusp or tube. By Lemma 6.16, each tube Uj has radius Rj , where

Rj ≥ Rmin = h−1(2π`) ≥ 0.7555.

By Theorem 4.26, every point z ∈ ∂Uj satisfies

2 injrad(z, Uj) > 1.1227 tanhRmin − 0.1604.

Furthermore, by Remark 4.35, this bound applies to both tubes and horocusps. Combining this with
(6.18) in Lemma 6.16, we learn that

(9.5) 2 injrad(z, Uj) > 1.1227 tanhRmin − 0.1604 ≥ δ
for every point z ∈ ∂Uj on the boundary of a tube or horocusp.

To begin proving the conclusions of the proposition, suppose first that ϕ is peripheral. Then
Lemma 2.9 says that ϕ stabilizes either a horoball in M̂t or a singular geodesic σ̂j ⊂ Σ̂, where Σ̂
is the preimage of Σ. In both cases, we will see that x ∈ Uj for a tube or horocusp Uj constructed
above.

If ϕ stabilizes a singular geodesic σ̂j ⊂ Σ̂ ⊂ M̂t, then it stabilizes the universal branched cover Ũj
of some singular tube Uj . Alternately, ϕ stabilizes the universal cover Ũj ⊂ M̂t of some horocusp Uj .

In either case, we claim that x̃ ∈ Ũj . This is because ϕ moves x̃ by distance 2injrad(x) ≤ δ, whereas

(9.5) implies that ϕ moves every point outside Ũj by distance strictly greater than δ. Thus x̃ ∈ Ũj ,
hence x ∈ Uj .

We can now construct the sets U and V claimed in the proposition. Let Ṽ be the maximal metric

neighborhood of Ũj that is disjoint from Σ̂, except possibly at the core of Ũj . Let Ũ ⊂ Ũj be the

proper sub-tube or sub-horoball defined by the property that x̃ ∈ ∂Ũ . Set G = C(ϕ) ∼= Z× Z and

consider the covering projection π : Ṽ → Ṽ /G. Then we have a sequence of local isometries

(9.6) V = Ṽ /G ↪→ M̂t/G −→Mt,

whose composition we call f . Restricting attention to Uj = π(Ũj), we recover the embedding

f : Uj ↪→Mt. Since U ⊂ Uj , it follows that f |U is an embedding as well. Since x̃ ∈ ∂Ũ , we have a
point y = π(x̃) ∈ ∂U such that f(y) = x. Furthermore, since ϕ ∈ G, we have

2 injrad(x) = d(x̃, ϕx̃) = 2 injrad(y, U).

This proves all the properties claimed of U and V , except for (3). We will check (3) after verifying
the corresponding property in the non-peripheral case in Claim 9.7.

Next, suppose that ϕ is non-peripheral. Then Lemma 2.9 says that ϕ stabilizes a geodesic axis

β̃ ⊂ M̂t, not contained in the singular locus, which covers a closed geodesic β ⊂Mt. Observe that
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β cannot be entirely contained in a singular tube Uj , because the only closed geodesic in Uj is the
singular core σj .

Furthermore, for every Uj , we have d(σj , ∂Uj) ≥ Rmin ≥ 0.7555. Thus if β∩Uj reaches the singular
core σj , then len(β ∩ Uj) ≥ 2 · 0.7555 = 1.511. However,

len(β ∩ Uj) ≤ len(β) ≤ d(x̃, ϕx̃) ≤ δ < 0.9623.

So any geodesic arc β ∩Uj cannot reach the singular core σj , implying that β ∩Σ = ∅. Consequently,

β̃ is disjoint from the singular locus Σ̂ ⊂ M̂t.

Let Ṽ ⊂ M̂t be the maximal tubular neighborhood of β̃ that is disjoint from the singular locus Σ̂.

This neighborhood has finite radius because M̂t contains singular points. Then Ṽ is stabilized by the

maximal cyclic subgroup G = C(ϕ) ∼= Z, where β̃/G = β. Note that ϕ ∈ G. Define a model tube

V = Ṽ /G. Then, as in (9.6), we have a sequence of local isometries

V = Ṽ /G ↪→ M̂t/G −→Mt,

whose composition we call f . Now, we have to show that the immersion f : V →Mt has the properties
claimed in the proposition.

Claim 9.7. We have V ≥1.51 6= ∅.

Recall that Ṽ was defined to be the maximal open tube about β̃ that is disjoint from Σ̂. Thus

there is a point z̃ ∈ ∂Ṽ ∩ Σ̂. Let z̃′ be a closest translate of z̃ by a non-trivial element of G. Then
z̃, z̃′ must lie on distinct singular geodesics in Σ̂ that cover the same component σj ⊂ Σ. Since the
tube Uj about σj must have radius Rj ≥ 0.7555, it follows that

d(z̃, z̃′) ≥ 2Rj ≥ 2Rmin > 1.51.

Compare Claim 4.8 for a very similar setup.
Let π : M̂t → M̂t/G be the covering projection, and let z = π(z̃) = π(z̃′) ∈ ∂V . Since z̃, z̃′ are a

pair of closest lifts of z under G, we have

injrad(z, V ) > 1.51.

In particular, V ≥1.51 6= ∅. (The same argument applies to the tube or horocusp V in the peripheral
case, completing the proof of the proposition in that case.)

In the non-peripheral case, we have now checked that the immersion f : V →Mt satisfies properties
(1)–(3). It remains to show that there is a sub-tube U ⊂ V satisfying (4). Note that (5) is vacuous
for non-peripheral elements.

Claim 9.8. There exists a tube U with U ⊂ V and a point y ∈ ∂U , such that x = f(y) and
injrad(x) = injrad(y, U).

Recall that x̃ ∈ M̂t and ϕ ∈ π1(M − Σ) were chosen to have the property that d(x̃, ϕx̃) =

2injrad(x) ≤ δ. In particular, ϕx̃ is a closest translate of x̃ in M̂t. Recall as well that ϕ ∈ G. Letting

y = π(x̃) = π(ϕx̃) ∈ M̂t/G, we get

2injrad(y) = d(x̃, ϕx̃) = 2injrad(x) ≤ δ < 1,

where injrad(y) denotes the injectivity radius of y in the cone-manifold M̂t/G.

On the other hand, by Claim 9.7, V ⊂ M̂t/G extends out to include points of injectivity radius

1.51 in M̂t/G. Thus y ∈ V .
Let U ⊂ V be the model tube such that y ∈ ∂U . Then

injrad(x) = injrad(y) = injrad(y, V ) = injrad(y, U),

because the realizing isometry ϕ belongs to G = π1V = π1U .
By construction, the local isometry f : V →Mt is a restriction of the covering map M̂t/G→Mt.

Thus f(y) = f ◦ π(x̃) = x, completing the proof of (4). �
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Lemma 9.9. Fix 0 < δ ≤ ε, where δ < 0.9623. Let M be a complete, finite volume hyperbolic
manifold, and let Σ = σ1 ∪ . . . ∪ σn is a geodesic link in M . Suppose that len(σj) ≤ 0.0996 for every
j, while the total length of Σ satisfies (9.2).

Let M0 be the complete metric on M − Σ, and assume that ε is a Margulis number for M0. For a
cone-manifold Mt in the interior of the cone-deformation from M0 to M4π2 , suppose that

(M≤δt − Σ) ⊂M<ε
0 .

Then δ is a Margulis number for Mt.

Proof. Let x ∈Mt be a point such that 2injrad(x) = δ. Choose a lift x̃ ∈ M̂t. By Lemma 2.11, there
is a group element ϕ ∈ π1(M − Σ) such that d(x̃, ϕx̃) = δ. By Proposition 9.4, ϕ defines a closed
model tube or horocusp U with an isometric immersion f : U →Mt, such that x ∈ f(∂U).

Note that the isometry ϕ may not be unique. The proof amounts to checking that U is unique
and that f is an embedding.

If ϕ is peripheral, Proposition 9.4 tells us that U is a singular tube or horocusp and that f is
an embedding. Furthermore, there exists y ∈ ∂U such that x = f(y) and injrad(x) = injrad(y, U).
Since local isometries can only reduce the injectivity radius (by Lemma 2.19) and since y ∈ ∂U , every
point z ∈ U satisfies

injrad(f(z)) ≤ injrad(z, U) ≤ injrad(y, U) = injrad(x) = δ/2.

Then f(U) ⊂ M≤δt , hence by hypothesis f(U) − Σ ⊂ M<ε
0 . Let W be the component of M<ε

0

containing f(U)− Σ. Since U is a horocusp or singular tube, it follows that W must be a horocusp
of M0. Here, we are using the hypothesis that ε is a Margulis number for M0.

Suppose that ϕ′ ∈ π1(M − Σ) also has the property that d(x̃, ϕ′x̃) = δ. Let U ′ be the tube or
horocusp associated to ϕ′, with an isometric immersion f ′ : U ′ →Mt and with x ∈ f ′(∂U ′). Since
x ∈ U ′ ∩W , the hypotheses of the lemma imply (f(U ′)− Σ) ⊂W . In particular, ϕ′ ∈ f ′∗π1(U ′) ⊂
π1(W ), where π1(W ) ∼= Z× Z is a peripheral subgroup of π1(M − Σ). It follows that U and U ′ are
either both horocusps or both tubes about the same component of Σ, hence U ′ is also embedded.

Since x ∈ ∂U and x ∈ ∂U ′, it follows that U = U ′ is the full component of M≤δt containing x.
One particular consequence of the above paragraph is that if ϕ is peripheral, then ϕ′ must also be

peripheral.

If ϕ is non-peripheral, Proposition 9.4 tells us that there is a non-singular immersed tube f : U →Mt

and a point y ∈ ∂U such that x = f(y) and injrad(x) = injrad(y, U). Since isometric immersions can
only reduce injectivity radius, every point z ∈ U satisfies

injrad(f(z)) ≤ injrad(z, U) ≤ injrad(y, U) = injrad(x) = δ/2.

Thus f(U) ⊂ (M≤δt − Σ) ⊂M<ε
0 . Let W be the component of M<ε

0 containing f(U). Since the core
of f(U) is a non-singular geodesic β ⊂Mt, it follows that W must be a non-singular, embedded tube
in M0. Recall that ε is a Margulis number for M0.

We check that f is an embedding by considering the universal branched cover M̂t. Recall from

the construction of Proposition 9.4, specifically from (9.6), that the universal cover Ũ is identified

with a tubular neighborhood of a geodesic axis β̃ ⊂ M̂t, and that π1(U) = G = C(ϕ), the stabilizer

of β̃. Let W̃ ⊂ M̂t be a component of the preimage of W such that Ũ ⊂ W̃ . Viewed in the complete

hyperbolic metric of M̃ − Σ = M̃0 = H3, the component W̃ is a tubular neighborhood of a geodesic,

whose translates by elements of π1(M − Σ) are either disjoint from W̃ or coincide with W̃ . Thus a

translate ηŨ for η ∈ π1(M − Σ) is either disjoint from W̃ or contained in W̃ . In the first case, we

have ηŨ ∩ Ũ = ∅, and in fact η(∂Ũ) ∩ ∂Ũ = ∅. In the second case, η must stabilize the endpoints of

β̃, in which case η ∈ G stabilizes β̃ and also Ũ . Thus Ũ ∪ ∂Ũ is precisely invariant under the action
of π1(M − Σ), which means the quotient tube U embeds in Mt.

Finally, suppose that ϕ′ ∈ π1(M − Σ) also has the property that d(x̃, ϕ′x̃) = δ. Let U ′ be the
tube associated to ϕ′, with an isometric immersion f ′ : U ′ → Mt. We already checked that the
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peripheral and non-peripheral cases cannot overlap, so U ′ must also be a non-singular tube. By the
same argument as above, f ′ must be an embedding, hence we consider U and U ′ to be subsets of Mt.
As above, all of U ′ must be δ–thin in Mt, hence U ′ ⊂W ⊂M<ε

0 . Since x ∈ U ∩U ′ ⊂W , both π1(U)
and π1(U ′) are subgroups of π1(W ) ∼= Z. Furthermore, both π1(U) and π1(U ′) are generated by
primitive elements of π1(M − Σ), hence the two generators of Z must coincide up to inverses, hence
the cores of U and U ′ map to the same geodesic β ⊂Mt. Since x ∈ ∂U and x ∈ ∂U ′, it follows that

U = U ′ is the full component of M≤δt containing x. �

Lemma 9.9 establishes the conclusion of Theorem 9.1 for all t < (2π)2, when the cone-manifold Mt

is actually singular. To finish the proof of Theorem 9.1, we need a continuity argument as t→ (2π)2.
This is somewhat subtle, as injectivity radius can be discontinuous as a function of t precisely when
t→ (2π)2.

We fix the following notation throughout. Let Mt be a cone-manifold occurring along a deformation
from M − Σ to M , with metric gt. Let injradt(x) denote the injectivity radius of x in the gt metric,
and let dt(·, ·) denote distance in the gt metric.

Lemma 9.10. Fix 0 < δ < 0.9623. Suppose M is a complete, finite volume hyperbolic manifold, and
Σ = σ1 ∪ . . .∪σn is a geodesic link in M . Suppose that len(σj) ≤ 0.0996 for every j, while ` = len(Σ)
satisfies (9.2).

Consider the cone-deformation Mt from M−Σ to M . Then, for every x ∈M and every b < (2π)2,
we have

lim
t→b

injradt(x) = injradb(x).

Furthermore, for b = (2π)2,(
db(x,Σ) ≥ δ

2
or lim

t→b−
injradt(x) ≥ δ

2

)
implies lim

t→b−
injradt(x) = injradb(x).

Proof. By Definition 2.10, injradt(x) varies continuously under a continuous change in cone metric
when the cone-manifold stays singular, that is, t < (2π)2. This proves the first assertion of the
lemma.

As t → b = (2π)2 and α → 2π, a discontinuity can arise in the following restricted way. If the
cone angle on Σ is α < 2π, a non-singular ball about x cannot have radius larger than dt(x,Σ),
hence injradt(x) ≤ dt(x,Σ). For α ≥ π, and for points sufficiently close to Σ, injradt(x) can in fact
be equal to dt(x,Σ). As t → b and α → 2π, the link Σ becomes non-singular, allowing injradb(x)
to suddenly become larger than db(x,Σ) at time b = (2π)2. Thus the “furthermore” statement also
holds automatically, unless x is a point satisfying

db(x,Σ) = lim
t→b−

dt(x,Σ) = lim
t→b−

injradt(x).

Suppose, for a contradiction, that x ∈M is a point that satisfies

(9.11) db(x,Σ) = lim
t→b−

injradt(x) ≥ δ/2.

Then the distance h = db(x,Σ) is realized by a geodesic segment β (in the non-singular gb metric)
from x to some component σj ⊂ Σ. Let y ∈ β be the point such that db(y, σj) = δ/2, hence
db(x, y) = h − δ/2. We will obtain a contradiction by estimating injradt(y) for t near b, in two
different ways. First, Lemma 3.1 implies injradt(y) ≥ injradt(x)− dt(x, y) for every t. Taking limits,
we obtain

lim
t→b−

injradt(y) ≥ lim
t→b−

injradt(x)− lim
t→b−

dt(x, y)

= h− (h− δ/2)

= δ/2.(9.12)

On the other hand, since dt(y, σj) is a continuous function of t, it must be the case that for all
t < b sufficiently close to b, we have dt(y, σj) ≤ 1.0006(δ/2). For all such t, Lemma 6.16 says that
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there is an embedded δ–thin tube Ut = Ut(σj) about σj , of radius rj(δ) ≥ 1.001(δ/2) in the gt metric.
Thus y ∈ Ut, and furthermore,

dt(y, ∂Ut) ≥ 0.0004(δ/2) = 0.0002δ.

By Lemma 6.16, Ut is a δ–thin tube, meaning injradt(z, Ut) = δ/2 for every z ∈ ∂Ut. Define δ′ < δ
by the property that

0.0002δ = arccosh

√
cosh δ − 1

cosh δ′ − 1
.

Then the upper bound of Theorem 3.6 implies that injradt(y, Ut) ≤ δ′/2. Combining this with
Lemma 2.19, we obtain

(9.13) injradt(y) ≤ injradt(y, Ut) ≤ δ′/2 for all t < b sufficiently close to b.

But now (9.13) contradicts (9.12), because δ′ < δ. Thus no point x ∈M can satisfy (9.11), completing
the proof. �

We can now complete the proof of Theorem 9.1.

Proof of Theorem 9.1. Given Lemma 9.9, it remains to prove that δ is a Margulis number for M4π2 .
Set b = 4π2. For every t < b, and every component σj ⊂ Σ, Lemma 6.16 gives an embedded

δ–thin tube Ut = Ut(σj), whose radius (in the gt metric) is at least (1.001)δ/2. By Proposition 9.4,
every point xt ∈ ∂Ut satisfies injradt(xt) = injradt(xt, Ut) = δ/2. By Lemma 6.16, the tubes about
different components of Σ are disjointly embedded. As t → b, each tube Ut(σj) converges (in the
Hausdorff metric) to a tube Ub(σj). Every convergent sequence of points {xt ∈ ∂Ut} limits to a point
xb ∈ ∂Ub, with db(xb, σj) = db(xb,Σ) > δ/2. Thus, by Lemma 9.10,

injradb(xb) = lim
t→b−

injradt(xb) = lim
t→b−

injradt(xt) = δ/2.

We conclude that for every σj ⊂ Σ, there is a tube Ub(σj) ⊂ M≤δb , such that ∂Ub(σj) consists of
points where injradt is continuous in t. By Lemma 9.10, all points outside these tubes also have
the property that injradt is continuous in t. Thus we may apply continuity arguments outside the
multi-tube Ub(Σ).

Recall that for every t, we have (M≤δt − Σ) ⊂M<ε
0 . Since M<ε

0 is open and
⋃
tM

≤δ
t is closed, by

continuity, there is a value δ+ > δ such that

(M
≤δ+
t − Σ) ⊂M<ε

0 .

Thus Lemma 9.9 implies that δ+ is a Margulis number for Mt for all t < b. For all t < b sufficiently

close to b, we have M≤δb ⊂M≤δ+t . By choosing δ+ sufficiently close to δ and t sufficiently close to b,

we can ensure that every component of M
≤δ+
t contains a component of M≤δt .

With this setup, let Ub be an arbitrary component of M≤δb . We will see that Ub is a tube or

horocusp by showing that Ub = limt→b Ut, where Ut ⊂M≤δt is a δ–thin tube or cusp in the gt metric.

For t close to b, our chosen component Ub is contained in a tube or horocusp component of M≤δ
+

t ,

which contains a δ–thin tube or horocusp Ut ⊂M≤δt . As t→ b, these tubes or horocusps Ut converge

in the Hausdorff topology to Ub. Note that disjoint components Ut, U
′
t ⊂ M≤δt cannot collide as

t→ b because they are contained in disjoint components of M<ε
0 . Similarly, a component Ut cannot

collide into itself because distinct lifts of Ut to M̂b are contained in disjoint preimages of a component
of M<ε

0 . Thus every Ub is an embedded tube or horocusp. �

9.2. Thick parts stay almost as thick. Next, we show that under strong hypotheses on the length
`, the thick part of a cone-manifold Ma stays almost as thick in every other Mt. This will enable
us to apply Theorem 9.1 and control Margulis numbers. We begin with the following strengthened
version of Theorem 3.6, which applies to an entire cone-manifold instead of a tube.
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Proposition 9.14. Fix 0 < ε ≤ log 3, and 0 < δ ≤ ε2/7.256. Suppose M is a complete, finite volume
hyperbolic manifold, and Σ is a geodesic link in M . Suppose ` = len(Σ) ≤ 0.261δ. Then, for all t,

d(M≤δt ,M≥εt ) ≥ arccosh

(
ε√

7.256δ

)
− 0.1475.

Furthermore, if ε ≤ 0.3, then

d(M≤δt ,M≥εt ) ≥ arccosh

(
ε√

7.256δ

)
− 0.0424.

Proof. We will use Proposition 9.4. To check the hypotheses of that proposition, observe that our
hypotheses require 0 < δ ≤ (log 3)2/7.256 < 0.1664. For δ in this range, Equation (9.2) becomes the
simpler statement ` ≤ 0.261δ, which is what we require here. Similarly, every component σj ⊂ Σ
must have len(σj) ≤ 0.261 · 0.1664 < 0.0996. Thus Proposition 9.4 applies under our hypotheses.

Now, let x ∈M≤δt . By Proposition 9.4, there is an immersed tube (or immersed cusp) f : V →Mt,
such that x = f(y) for some point y ∈ V , and

injrad(y, V ) = injrad(x).

Furthermore, V ≥1.51 6= ∅, hence V ≥ε 6= ∅. By Theorem 3.6, we have

d(V ≤δ, V ≥ε) ≥ arccosh

(
ε√

7.256δ

)
− 0.1475 =: h.

Consequently, every point y′ ∈ V such that d(y, y′) < h must lie in V <ε.
It follows that f(V <ε) contains the h–neighborhood of x = f(y). Thus every point x′ ∈Mt such

that d(x, x′) < h must be the image of some y′ ∈ V <ε, hence Lemma 2.19 gives

2injrad(x′) ≤ 2injrad(y′, V ) < ε.

We conclude that every point of M≥εt lies further than h from x ∈M≤δt .
Finally, if ε ≤ 0.3, we can use Theorem 3.7 instead of Theorem 3.6, and repeat the same argument

with h = ε√
7.256δ

− 0.0424. �

Theorem 9.15. Fix 0 < ε ≤ log 3 and 1 < J ≤ e1/5. Let M be a complete, finite volume hyperbolic
3-manifold and Σ ⊂M a geodesic link. Suppose that ` = len(Σ) is bounded as follows:

(9.16) ` ≤ ε5 log J

471.5 J5 cosh5(Jε/2 + 0.0424)
if 0 < ε ≤ 0.3,

or

(9.17) ` ≤ ε5 log J

496.1 J5 cosh5(Jε/2 + 0.1475)
if 0.3 ≤ ε ≤ log 3.

Then, for every a, t ∈ [0, (2π)2], the manifolds Ma and Mt in the deformation from M − Σ to M
satisfy

(9.18) M≥εa ⊂M>ε/J
t .

Moreover, let B be a closed ball of radius ε/2 in the ga metric about a point p ∈ M≥εa . Then
bilipB(ga, gt) < J .

Theorem 9.15 is reminiscent of a result of Brock and Bromberg [11, Theorem 6.11]. Furthermore,
the crawling argument employed in the proof below is inspired by the one used in [11, Theorem 6.11].
However, the statement of Theorem 9.15 is stronger than that of [11, Theorem 6.11] in two distinct
ways. First, following the theme of this paper, Theorem 9.15 is effective. Second, Theorem 9.15
provides better control over quantifiers. Brock and Bromberg’s theorem says that for all sufficiently

small ε, there exists ε′ < ε such that M≤ε
′

t ⊂M<ε
0 . Meanwhile, Theorem 9.15 says that for all ε ≤ 0.3,

and for all ε′ = ε/J < ε, we have M≤ε
′

t ⊂M<ε
0 , provided ` is sufficiently short.
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Figure 9.1. The function of J that provides an upper bound on ` in Equation (9.16),
for the value ε = 0.292. For any fixed ε, this function has a global maximum when
J ≤ e1/5.

The seemingly artificial hypothesis J ≤ exp(1/5) in Theorem 9.15 is justified as follows. For fixed
ε, the function in (9.16) or (9.17) is not monotonic in J : it starts out at 0 when J = 1, rises to a
maximum, and then decreases toward 0. Note that the function factors as (log(J)/J5) times a term
that is decreasing in J . Hence the maximum of the function, corresponding to the mildest hypotheses
on `, always occurs when log J ≤ 1/5. (See Figure 9.1, and compare Lemma 9.24.) For J > exp(1/5),
the theorem requires stronger hypotheses on ` but produces a weaker conclusion, hence it makes
sense to exclude those values.

Proof of Theorem 9.15. For most of the proof, suppose that ε ≤ 0.3. This means we are working
under the hypothesis (9.16).

Fix an arbitrary a ∈ [0, (2π)2]. For the length of the proof, we will treat a as a constant and t as
a variable. Set

(9.19) δ =
(ε/J)2

7.256 cosh2(Jε/2 + 0.0424)
, so that arccosh

(
ε/J√
7.256 δ

)
− 0.0424 = Jε/2.

It follows that δ ≤ 0.012. For this value of δ, we will actually prove the closely related condition

(9.20) da(M≤δt , M≥εa ) > ε/2.

As we shall see at the end of the proof, equation (9.20) quickly implies (9.18).
Let I be the maximal sub-interval of [0, (2π)2], containing a, such that (9.20) holds for all t ∈ I.

First, we check that I is non-empty. This follows from Proposition 9.14:

da(M≤δa ,M≥εa ) ≥ arccosh

(
ε/J√
7.256 δ

)
− 0.0424 = Jε/2 > ε/2.

Thus a ∈ I, hence I is nonempty. Also, I is open because (9.20) involves a strict inequality, hence is
an open condition. We will show I is closed, which will imply that I = [0, (2π)2].

Consider what can be said about I. Let b = sup I. Lemma 9.10 tells us that if x ∈ M satisfies
limt→b− injradt(x) ≥ δ/2, then injradb(x) ≥ δ/2 as well. A stronger form of continuity holds for inf I.
In other words, Lemma 9.10 and the definition of I imply

(9.21) da(M≤δt , M≥εa ) ≥ ε/2 for all t ∈ I.

Suppose, for a contradiction, that I is not closed, hence either sup I /∈ I or inf I /∈ I. We start
by handling the supremum b = sup I. Suppose, in contradiction to (9.20), that there exist points
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∂M≥εa

Figure 9.2. The proof of Theorem 9.15. The left and right panels illustrate how
the region near q looks in the ga metric and gb metric, respectively. Black objects
are in the ga metric and blue objects are in the gb metric.

p ∈ ∂M≥εa and q ∈ ∂M≤δb such that da(p, q) = ε/2. Since p ∈ M≥εa , there is an embedded ball B
centered at p, of radius ε/2 in the ga metric, such that q ∈ ∂B. See Figure 9.2.

We will apply Theorem 8.18 to B. To check the hypotheses, note that (9.19) and ε ≤ 0.3 imply
δ ≤ 0.012. In addition, note that

3.324 (7.256)5/2 = 471.415 . . . < 471.5,

hence (9.16) and (9.19) imply

(9.22) ` ≤ (ε/J)5 log J

471.5 cosh5(Jε/2 + 0.0424)
=
δ5/2 log J ′

3.324
<
δ5/2 log J

3.324
.

where J ′ is ever so slightly less than J . Finally, (9.21) implies B ⊂M≥δt for all t ∈ I.
Thus we may apply Theorem 8.18 and get a J ′–bilipschitz diffeomorphism on B. One direction

of Theorem 8.18 says that distances from p to points of ∂B can only shrink by a factor of J ′ < J
as we change metrics from ga to gb. Thus B contains a ball B′ of radius ε/(2J ′) in the gb metric,

implying that p ∈M≥ε/Jb . On the other hand, since da(p, q) = ε/2, the bilipschitz upper bound of
Theorem 8.3 implies

(9.23) db(p, q) ≤ J ′ε/2 < Jε/2.

Now, Proposition 9.14 and (9.19) imply that the distance between thick and thin parts in the gb
metric satisfies

db(M
≤δ
b ,M

≥ε/J
b ) ≥ arccosh

(
ε/J√
7.256 δ

)
− 0.0424 = Jε/2.

But then db(p, q) ≥ Jε/2, which contradicts (9.23). This contradiction implies that b = sup I ∈ I.
By the same argument, inf I ∈ I. Thus I is closed, hence (9.20) stays true for all t ∈ [0, (2π)2].

Now, we can conclude the proof of the theorem for 0 < ε ≤ 0.3. For any p ∈ M≥εa , there is an

embedded ball B centered at p, of radius ε/2 in the ga metric. By (9.20), we have B ⊂M≥δt for all
t, hence Theorem 8.18 applies to give a J ′–bilipschitz diffeomorphism on B. Thus, as in the above
argument, we learn that for every t, B contains a ball B′, centered at p, of radius ε/(2J) in the gt
metric. Therefore, p ∈M≥ε/Jt , and (9.18) holds.

Finally, if 0.3 < ε ≤ log 3, the argument is identical apart from slightly different numbers. We
define

δ =
(ε/J)2

7.256 cosh2(Jε/2 + 0.1475)
< 0.106,

which means that hypothesis (9.17) enables us to apply the version of Theorem 8.18 for δ ≤ 0.106.
Then we employ a crawling argument to prove (9.20) for this value of δ, which implies (9.18). �
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9.3. Applications. Combining Theorems 9.1 and 9.15 gives several results about the behavior of
Margulis numbers under filling and drilling. We begin with a lemma.

Lemma 9.24. For 0 ≤ ε ≤ log 3 and 1 ≤ J ≤ e1/5, consider the function

g(ε, J) =
ε5 log J

496.1 J5 cosh5(Jε/2 + 0.1475)

occurring in (9.17). The maximum value of g on this domain is 5.609 . . . × 10−5, achieved when
ε = log 3 and J = 1.15203 . . .. Furthermore, g(ε, J) is increasing ε on its entire domain and increasing
in J when J ∈ [1, 1.15].

We remark that g(ε, J) is not increasing in J on its entire domain; compare Figure 9.1.

Proof. To see that g(ε, J) is increasing in ε, we compute the partial derivative:

∂g

∂ε
=

5ε4 log J

496.1 J5 cosh6(Jε/2 + 0.1475)
·
[

cosh
(
Jε
2 + 0.1475

)
− Jε

2 sinh
(
Jε
2 + 0.1475

)]
.

The first term in the above product is non-negative on the whole domain, and positive whenever
ε > 0 and J > 1. To analyze the second term, we substitute x = Jε/2 and verify that the function
(cosh(x+ 0.1475)− x sinh(x+ 0.1475)) is positive whenever x ∈ [0, 1]. Since Jε/2 < 1 on the entire
domain, it follows that ∂g/∂ε ≥ 0 on the entire domain.

In a similar fashion, we compute ∂g/∂J :

∂g

∂J
=

5
2ε

5

496.1 J6 cosh6(Jε/2 + 0.1475)
·
[ (

2
5 − 2 log J

)
cosh

(
Jε
2 +0.1475

)
− εJ log J sinh

(
Jε
2 +0.1475

)]
The first term in the product is non-negative on the whole domain, and positive when ε > 0. Using
Sage [23], we verify that the second term is positive when J ≤ 1.15, hence g(ε, J) is increasing in J
on this sub-domain.

Finally, we check the assertion about the maximum value of g(ε, J). By monotonicity in ε, any
maximum occurs when ε = log 3. We verify using Sage that g(log 3, J) < 5.610× 10−5 for every J in
the domain. We also check directly that the function attains a value greater than 5.609× 10−5 at
J = 1.15203. See the ancillary files [23] for full details. �

Theorem 9.25. Fix 0 < ε ≤ log 3 and 1 < J ≤ e1/5. Let N be a cusped hyperbolic 3–manifold such
that ε is a Margulis number of N . Let s be a tuple of slopes on cusps of N whose normalized length
L = L(s) satisfies

2π

L(s)2 − 11.7
≤ ε5 log J

496.1 J5 cosh5(Jε/2 + 0.1475)
= g(ε, J).

Then δ = min{ε/J, 0.962} is a Margulis number for M = N(s).

Proof. By Lemma 9.24, g(ε, J) < 5.61×10−5 for all ε, J . Consequently, any tuple of slopes s satisfying
the hypotheses of the theorem must have normalized length L = L(s) ≥ 334. By Theorem 5.17, there
is a cone deformation from M0 = N to M4π2 = M = N(s) maintaining a tube of radius Rmin about
the singular locus Σ, where Zmin = tanhRmin ≥ 0.9998. Consequently, Lemma 6.10 says that the
length of Σ in the complete metric on M is

` = len4π2(Σ) ≤ 2π

L2 − 11.7
≤ g(ε, J).

By Lemma 9.24, g(ε, J) is increasing in J when J ≤ 1.15. Thus, given δ = min{ε/J, 0.962} as in
the theorem statement, we define J ′ = ε/δ = max{J, ε/0.962} and obtain

` ≤ g(ε, J) ≤ g(ε, J ′).

By Theorem 9.15, every cone-manifold Mt occurring in the deformation satisfies M≥ε0 ⊂M>ε/J′

t =

M>δ
t . Taking complements of thick parts, and removing Σ, we obtain (M≤δt − Σ) ⊂M<ε

0 .
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We conclude the proof using Theorem 9.1. The one hypothesis of that theorem that remains to be
checked is equation (9.2). The first inequality of (9.2) holds because

` ≤ g(ε, J ′) =
(ε/J ′)5 log J ′

496.1 cosh5(J ′ε/2 + 0.1475)
<

δ5

496.1
� 0.261δ.

For the second inequality of (9.2), we only need to consider δ ∈ [δcut, 0.962], where δcut is as in
the proof of Lemma 6.16; compare Figure 6.1. By Lemma 4.22 and Remark 4.23, the function
haze( δ+0.1604

1.1227 ) is decreasing in this range. Thus

` ≤ g(ε, J ′) < 5.61× 10−5 < 1.44× 10−4 <
1

2π
haze

(
0.962 + 0.1604

1.1227

)
≤ 1

2π
haze

(
δ + 0.1604

1.1227

)
,

hence (9.2) holds for every pair (ε, J). Thus we may use Theorem 9.1 to conclude that δ is a Margulis
number for every Mt, and in particular for the non-singular metric on M . �

Theorem 9.25 is useful in a situation where we have information about N = M − Σ and its
(optimal) Margulis number. However, Theorems 9.1 and 9.15 can also be used in a situation where
we have information about M and its short geodesics.

Theorem 9.26. Let M be a (non-singular) finite-volume hyperbolic 3-manifold with k = 0, 1, or
2 cusps. Suppose the (3 − k) shortest geodesics in M have total length at most 5.56 × 10−5. Let
Σ denote the union of these geodesics. Then the geodesics are disjointly embedded, there exists
a cone-deformation Mt interpolating between the complete structure on M − Σ and the complete
structure on M , and for all t, the optimal Margulis number for Mt is greater than 0.9536.

Proof. If M contains (3−k) closed geodesics of total length at most 5.56× 10−5, then by Meyerhoff’s
theorem [44], those geodesics are disjointly embedded. By Theorem 5.1, there is a cone-deformation
Mt interpolating between the complete structure on M−Σ and the complete structure on M . Observe
that M0 = M − Σ has three cusps. Thus b1(M0) ≥ 3, hence Theorem 1.5.(3) says that ε = log 3 is a
Margulis number for M0. Setting J = 1.152 gives

` ≤ 5.56× 10−5 <
ε5 log J

496.1 J5 cosh5(Jε/2 + 0.1475)
.

(As in Lemma 9.24, the value J = 1.152 was chosen because it very nearly places the mildest possible

hypotheses on `.) Now, by Theorem 9.15, we have M
≤ε/J
t ⊂M<ε

0 for every t. Since ` is small enough
to satisfy equation (9.2) for δ = ε/J , Theorem 9.1 implies that ε/J > 0.9536 is a Margulis number
for every Mt. �

Theorem 9.27. Let M be a finite-volume hyperbolic 3-manifold. Let ` = sys(M) denote the length
of a shortest geodesic Σ ⊂ M , and assume ` ≤ 0.0996. Then there exists a cone-deformation Mt

interpolating between the complete structure on M0 = M − Σ and M = M4π2 . Furthermore, the
following hold for every Mt.

(1) If ` ≤ 2.93× 10−7, then for any t ∈ [0, 4π2], the optimal Margulis number for Mt is greater
than 0.2408.

(2) If ` ≤ 2.73× 10−8, then for any t ∈ [0, 4π2], the optimal Margulis number for Mt is greater
than 0.29.

Proof. Since ` ≤ 0.0996, Theorem 5.1 implies the cone-deformation Mt exists.
For (1), assume ` ≤ 2.93 × 10−7. By Theorem 1.5.(4), ε = 0.292 is a Margulis number for M0.

Now, set J = 1.2124. Plugging in these values of ε and J yields

(9.28) ` ≤ 2.93× 10−7 <
ε5 log J

471.5 J5 cosh5(Jε/2 + 0.0424)
.

(As above, the value J = 1.2124 < e1/5 is chosen because it very nearly maximizes the function in
(9.28), placing the mildest possible hypotheses on `. See Figure 9.1.) Now, by Theorem 9.15, we have
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M
≤ε/J
t ⊂M<ε

0 for every t. Since ` is small enough to satisfy equation (9.2) for δ = ε/J , Theorem 9.1
implies ε/J > 0.2408 is a Margulis number for every Mt.

Item (2) is obtained by an identical argument. Suppose that ` ≤ 2.73× 10−8, and set ε = 0.292

and J = 1.00689 < 0.292/0.29. By Theorem 9.15, we have M
≤ε/J
t ⊂ M<ε

0 for every t. Thus, by
Theorem 9.1, we have that ε/J > 0.29 is a Margulis number for every Mt in this case. �

The above results imply the following.

Theorem 9.29. Let M be a non-singular hyperbolic 3-manifold.

(1) If µ(M) ≤ 0.2408, then M is closed and vol(M) ≤ 36.12. Furthermore, sys(M) ≥ 2.93×10−7.
(2) If µ(M) ≤ 0.29, then M is closed and vol(M) ≤ 52.78. Furthermore, sys(M) ≥ 2.73× 10−8.
(3) If µ(M) ≤ 0.9536, then M has finite volume and k ∈ {0, 1, 2} cusps. The (3− k) shortest

geodesics in M have total length at least 5.56× 10−5.

Proof. We begin by proving (1). Let M be a hyperbolic 3-manifold with µ(M) ≤ 0.2408. By
Theorem 1.5.(4), M must be closed. By a theorem of Shalen [57, Theorem 7.1], we have vol(M) ≤
36.12. Let Σ be the shortest closed geodesic in M . Then Theorem 9.27.(1) implies ` = len(Σ) ≥
2.93× 10−7.

Turning to (2), let M be a hyperbolic 3-manifold with µ(M) ≤ 0.29. Then again, a theorem
of Shalen [57, Theorem 7.1] implies that vol(M) ≤ 52.78, and Theorem 9.27.(2) implies sys(M) ≥
2.73× 10−8.

To check (3), suppose that µ(M) ≤ 0.9536. Then, by Theorem 1.5.(3), we know vol(M) < ∞.
Since a k–cusped manifold has b1(M) ≥ k, the same theorem implies that M has 0 ≤ k ≤ 2 cusps.
Then Theorem 9.26 implies that the (3 − k) shortest geodesics in M have total length at least
5.56× 10−5. �

As a final application of the results of this section, we have a version of the bilipschitz theorem
Theorem 8.3 whose hypotheses are only on a non-singular manifold M , rather than the a cone-
manifolds Mt occurring in the middle of the deformation.

Theorem 9.30. Fix 0 < ε ≤ log 3. Let M be a finite-volume hyperbolic 3-manifold and Σ a geodesic
link in M . Let N = M − Σ. Suppose that one of the following hypotheses holds:

(1) In the complete structure on M , the total length of Σ satisfies

(9.31) ` ≤ ε5

6771 cosh5(0.6ε+ 0.1475)
.

(2) In the complete structure on N = M − Σ, the total length of the meridians of Σ satisfies

(9.32) L2 ≥ 2π · 6771 cosh5(0.6ε+ 0.1475)

ε5
+ 11.7.

Then there is a cone-deformation Mt connecting the complete hyperbolic metric g0 on N to the
complete hyperbolic metric g4π2 on N . Furthermore, the cone deformation gives a natural identity
map id : (M − Σ, g0)→ (M − Σ, g4π2), such that id and id−1 restrict to

id|N≥ε : N≥ε ↪→M≥ε/1.2, id−1|M≥ε : M≥ε ↪→ N≥ε/1.2,

which are J–bilipschitz inclusions for

J = exp

(
11.35 `

ε5/2

)
and ` ≤ 2π

L2 − 11.7
.

Furthermore, for any x ∈M≥ε ∪N≥ε, we have 1
1.2 injrad0(x) ≤ injrad4π2(x) ≤ 1.2 injrad0(x).

We remark that the strong hypotheses on ` or L are driven by Theorem 9.15. Under these strong
hypotheses, we do get very tight control on the bilipschitz constant: for every ε ≤ log 3, the theorem
gives a value J ∈ (1, 1.0005).
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Proof of Theorem 9.30. First, we check that hypothesis (2) implies hypothesis (1). By Lemma 9.24
(substituting the value J0 = 1.2), the right-hand side of (9.31) is increasing in ε, hence the right-hand
side of (9.32) is decreasing in ε. Thus the loosest possible upper bound on L2 occurs when ε = log 3,
and implies L2 ≥ 116, 321. As in the proof of Theorem 9.25, we can now conclude using Lemma 6.10
that

` ≤ 2π

L2 − 11.7
,

hence the hypothesis on L implies the one on `, as claimed. By Theorem 5.14 and Lemma 6.10, the
estimate ` ≤ 2π

L2−11.7 also holds under hypothesis (1).
Now, set J0 = 1.2. Then our hypotheses imply

` ≤ ε5 log J0

496.1J5
0 cosh5(J0ε/2 + 0.1475)

.

Hence Theorem 9.15 applies. By Theorem 9.15, we have

M≥ε ⊂M≥ε/1.2t , N≥ε ⊂M≥ε/1.2t for all t.

The last conclusion of Theorem 9.15 also implies that for any a, b ∈ [0, (2π)2], a point x ∈M≥εa satisfies
1

1.2 injrada(x) ≤ injradb(x) ≤ 1.2 injrada(x). In particular, this holds when {a, b} = {0, (2π)2}.
To complete the proof, we set W = N≥ε and apply Theorem 8.3 with δ = ε/1.2. By Theorem 8.3,

the cone-deformation provides a natural J–bilipschitz map id : (W, g0) → (W, g4π2), as desired.
Applying Theorem 8.3 to W = M≥ε gives the reverse J–bilipschitz inclusion id−1. �

Corollary 9.33 (Theorem 1.2). Fix any 0 < ε ≤ log 3 and any J > 1. Let M be a finite-volume
hyperbolic 3–manifold and Σ a geodesic link in M whose total length ` satisfies

` ≤ min

{
ε5

6771 cosh5(0.6ε+ 0.1475)
,
ε5/2 log(J)

11.35

}
.

Then, setting N = M − Σ, there are natural J–bilipschitz inclusions

ϕ : M≥ε ↪→ N≥ε/1.2, ψ : N≥ε ↪→M≥ε/1.2,

which are equivariant with respect to the symmetry group of the pair (M,Σ).

Proof. The J–bilipschitz inclusions ϕ and ψ are restrictions of the natural identity maps id and id−1

from Theorem 9.30. Because id is defined by a canonical harmonic form ω, in Remark 5.18, it is
equivariant with respect to the symmetry group of (M,Σ). �

Corollary 9.34. Fix any 0 < ε ≤ log 3 and any J > 1. Let M be a 3–manifold with empty or
toroidal boundary, and Σ a link in M . Suppose that N = M − Σ admits a complete, finite volume
hyperbolic metric where the total normalized length of the meridians of Σ satisfies

L2 ≥ max

{
2π · 6771 cosh5(0.6ε+ 0.1475)

ε5
+ 11.7,

2π · 11.35

ε5/2 log(J)
+ 11.7

}
.

Then M admits a complete hyperbolic metric in which Σ is isotopic to a union of geodesics. Further-
more, there are natural J–bilipschitz inclusions

ϕ : M≥ε ↪→ N≥ε/1.2, ψ : N≥ε ↪→M≥ε/1.2,

which are equivariant with respect to the symmetry group of the pair (M,Σ).

Proof. By Theorem 5.17, M is hyperbolic and Σ is a union of geodesics. Now, the J–bilipschitz
inclusion ϕ is a restrictions of the natural identity map id : (M − Σ, g0) → (M − Σ, g4π2) from
Theorem 9.30, while ψ is a restriction of id−1. By Remark 5.18, the identity map id is equivariant
with respect to the symmetry group of (M,Σ), hence so are ϕ and ψ. �
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Appendix A. Hyperbolic trigonometry

This appendix records several elementary facts that are used throughout the paper.

Lemma A.1. Let z = tanh r and x = er. Then

er =

√
1 + z

1− z
, sinh r =

xz

1 + z
=

z√
1− z2

, cosh r =
x

1 + z
=

1√
1− z2

.

Proof. We may solve the (quadratic) equation

z =
x− x−1

x+ x−1
to find x =

√
1 + z

1− z
.

Now, substituting the formula for x into

sinh r = x · 1− x−2

2
, cosh r = x · 1 + x−2

2

gives the remaining identities. �

Lemma A.2. Let 0 < r < s. Then

cosh s

cosh r
< es−r <

sinh s

sinh r
.

Proof. Let h = s− r. Then

cosh(s) = cosh(r + h)

= cosh r coshh+ sinh r sinhh

< cosh r coshh+ cosh r sinhh

= cosh r · eh,

proving the first inequality. The second inequality is proved similarly. �

Lemma A.3. Suppose that 0 < s ≤ smax and tanh smax ≤ zmin ≤ tanh r. Then

sinh(r − s) ≥ sinh r · f(smax, zmin) ≥ er zmin

1 + zmin
· f(smax, zmin),

where

f(s, z) = cosh s− z−1 sinh s.

Proof. We set z = tanh r and compute:

sinh(r − s) = sinh r cosh s− cosh r sinh s

= sinh r cosh s− z−1 sinh r sinh s

= sinh r · f(s, z).

Since s > 0 and z = tanh r ∈ (0, 1), it follows that

∂f

∂z
> 0 and

∂f

∂s
< 0.

Therefore,

f(s, z) ≥ f(smax, zmin),

proving the first inequality of the lemma. For the second inequality, note that the hypothesis
tanh smax ≤ zmin implies f(smax, zmin) ≥ 0. Now, we obtain

sinh r · f(smax, zmin) = er
z

1 + z
· f(smax, zmin) ≥ er zmin

1 + zmin
· f(smax, zmin),

where the equality is Lemma A.1 and the inequality is the monotonicity of z
1+z . �
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