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Abstract. It is conjectured that every cusped hyperbolic 3-manifold admits a geometric triangulation,

i.e. it is decomposed into positive volume ideal hyperbolic tetrahedra. Here, we show that sufficiently
highly twisted knots admit a geometric triangulation. In addition, by extending work of Guéritaud

and Schleimer, we also give quantified versions of this result for infinite families of examples.

1. Introduction

A topological triangulation of a 3-manifold M is a decomposition of M into tetrahedra or ideal
tetrahedra such that the result of gluing yields a manifold homeomorphic to M . Every compact 3-
manifold with boundary consisting of tori has interior that admits a topological ideal triangulation [22, 3].

A geometric triangulation is a much stronger notion. It is an ideal triangulation of a cusped hyperbolic
3-manifold M such that each tetrahedron is positively oriented and has a hyperbolic structure of strictly
positive volume, and such that the result of gluing gives M a smooth manifold structure with its
complete hyperbolic metric. It is still unknown whether every finite volume hyperbolic 3-manifold
admits a geometric triangulation, and there are currently only a few families which provably admit one.
These include 2-bridge knots and punctured torus bundles, due to Guéritaud and Futer [15], and all the
manifolds of the SnapPy census [5], as well as manifolds built from isometric Platonic solids [13, 12].
On the other hand, Choi has shown that there exists an orbifold with no geometric triangulation [4].

In this paper, we prove that a large family of knots admit geometric triangulations. To state the
main result, we recall the following definitions.

A twist region of a link diagram consists of a portion of the diagram where two strands twist around
each other maximally. More carefully, let D(K) be a diagram of a link K ⊂ S3. Two distinct crossings
of the diagram are twist equivalent if there exists a simple closed curve on the diagram that runs
transversely through the two crossings, and is disjoint from the diagram elsewhere. The collection of all
twist equivalent crossings forms a twist region.

Note that one can perform flypes on a link diagram until all twist equivalent crossings line up
in a row, forming bigons between them. Suppose every simple closed curve that meets the diagram
transversely only in two crossings has the property that it bounds a region of the diagram consisting
only of bigons, or possibly contains no crossings. If this holds for every simple closed curve, the diagram
is called twist-reduced. Figure 1.1, left, shows an example of a twist-reduced diagram with exactly two
twist regions.

The first main result of this paper is the following.

Theorem 5.5. For every n ≥ 2, there exists a constant An depending on n, such that if K is a link in
S3 with a prime, twist-reduced diagram with n twist regions, and at least An crossings in each twist
region, then S3 −K admits a geometric triangulation.

The proof uses links called fully augmented links. These are obtained by starting with a twist-reduced
diagram of any knot or link, and for each twist-region, adding a simple unknot called a crossing circle
encircling the twist-region. We further remove all pairs of crossings in each twist region; see Figure 1.1.
The result has explicit geometric properties, and can be subdivided into geometric tetrahedra. The
original link complement is obtained by Dehn filling the crossing circles. We complete the proof of
Theorem 5.5 by arguing that Dehn filling can be performed in a way that gives a geometric triangulation.

In fact, we can prove a result that is more general than Theorem 5.5, allowing any Dehn fillings on
crossing circles and indeed leaving some crossing circles unfilled. This is the following theorem.
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Figure 1.1. Constructing a fully augmented link.

Theorem 5.4. Let L be a hyperbolic fully augmented link with n ≥ 2 crossing circles. Then there exist
constants A1, . . . , An such that if M is a manifold obtained by Dehn filling the crossing circle cusps of
S3 − L along slopes s1, . . . , sn whose lengths satisfy len(si) ≥ Ai for each i = 1, . . . , n, then M admits
a geometric triangulation. Allowing some collection of si =∞, i.e. leaving some crossing circle cusps
unfilled, also admits a geometric triangulation.

Guéritaud and Schleimer considered geometric triangulations and Dehn filling [14]. They showed
that if a cusped manifold satisfies certain ‘genericity’ conditions, then Dehn filling can be performed
via geometric triangulation.1 Unfortunately, the usual geometric decomposition of a fully augmented
link, as in [20, Appendix] or [10, 27], fails Guéritaud–Schleimer’s genericity conditions. Nevertheless,
we may adjust the decomposition to give a triangulation satisfying the Guéritaud–Schleimer conditions.
This is the idea of the proof of Theorem 5.5.

Highly twisted knots, as in Theorem 5.5, are known to have other useful geometric properties.
For example, they can be shown to be hyperbolic when there are at least six crossings in each twist
region [10]. When there are at least seven, there are bounds on the volumes of such knots and links [9].
With at least 116 crossings per twist region, there are bounds on their cusp geometry [25]. The results
of Theorem 5.5 are not as nice as these other results, because we do not have an effective universal
bound on the number of crossings per twist region required to guarantee that a knot admits a geometric
triangulation. Nevertheless, we conjecture such a bound holds.

To obtain effective results, we need to generalise and sharpen results of Guéritaud and Schleimer,
and we do this in the second half of the paper. This allows us to present two effective results, which
guarantee geometric triangulations of new infinite families of cusped hyperbolic 3-manifolds. The first
result is the following.

Theorem 8.6. Let L be a fully augmented link with exactly two crossing circles. Let M be a manifold
obtained by Dehn filling the crossing circles of S3−L along slopes m1,m2 ∈ (Q∪{1/0})−{0, 1/0,±1,±2}.
Then M admits a geometric triangulation.

There are three fully agumented links with exactly two crossing circles; one is the Borromean rings
and the others are closely related; these are shown in Figure 6.1. The Dehn fillings of these links include
double twist knots, which were already known to admit geometric triangulations by [15]. They also
include large families of cusped hyperbolic manifolds that do not embed in S3. More generally, we also
show the following.

Theorem 9.12. Let L be a result of taking the standard diagram of a 2-bridge link, and then fully
augmenting the link, such that L has n > 2 crossing circles (and no half-twists). Let s1, s2, . . . , sn ∈
Q ∪ {1/0} be slopes, one for each crossing circle, that are all positive or all negative. Suppose finally
that s1 and sn are the slopes on the crossing circles on either end of the diagram, and the slopes satisfy:

s1, sn /∈ {0/1, 1/0,±1/1,±2/1}, and s2, . . . , sn−1 /∈ {0/1, 1/0,±1/1}.
Then the manifold obtained by Dehn filling S3 − L along these slopes on its crossing circles admits a
geometric triangulation.

1In fact, they showed something stronger: that Dehn filling gives a triangulation that is actually canonical, i.e. dual to

the Ford-Voronoi domain, but we will not consider canonical decompositions here.
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For ease of notation, we will refer to a link such as L in the above theorem as a fully augmented
2-bridge link. That is, a fully augmented 2-bridge link is obtained by fully augmenting the standard
diagram of a 2-bridge link.

The Borromean rings and other links of Theorem 8.6 form examples of fully-augmented 2-bridge
links, and therefore instances of Theorem 8.6 also follow from Theorem 9.12. However, we prove the
theorems separately to build up tools.

The manifolds included in Theorem 9.12 include many 2-bridge links, obtained by setting each
sj = 1/mj where mj is an integer with appropriate sign. Such a Dehn filling gives a 2-bridge link
with a diagram with at least two crossings per twist region, an even number of crossings in each twist
region, and conditions on signs of twisting. All 2-bridge links were already known to admit geometric
triangulations [15]. However, again Theorem 9.12 also includes infinitely many additional manifolds
obtained by different Dehn fillings.

1.1. More on geometric triangulations. It is known that every cusped hyperbolic 3-manifold has a
decomposition into convex ideal polyhedra, due to work of Epstein and Penner [6]. The convex polyhedra
may be further subdivided into tetrahedra, but the result may not give a geometric triangulation.
The difficulty is that the subdivision involves triangulating the polygonal faces of the polyhedra, and
these triangulations may not be consistent with each other under gluing. To solve this problem, flat
tetrahedra are inserted between identified faces of the polyhedra; see Petronio and Porti for more
discussion [24].

If we pass to finite covers, then geometric triangulations exist by work of Luo, Schleimer, and
Tillmann [21]: Every cusped hyperbolic 3-manifold admits a finite cover with a geometric triangulation.

If we relax the restriction that the tetrahedra glue to give a complete hyperbolic metric, and only
require that the dihedral angles of each tetrahedra are strictly positive, and sum to 2π around each edge
of the triangulation, then the result is called an angle structure (or sometimes a strict angle structure).
Geometric triangulations admit angle structures. Moreover, Hodgson, Rubinstein, and Segerman show
that many 3-manifolds admit an angle structure, including all hyperbolic link complements in S3 [17].
However, they note that the triangulations they find are not generally geometric.

There was some hope in the past that a class of triangulations introduced by Agol [1], called
veering triangulations, give geometric triangulations. Indeed it was shown by Hodgson, Rubinstein,
Segerman and Tillmann [18] and by Futer and Guéritaud [7] that veering triangulations admit angle
structures. However Hodgson, Issa, and Segerman found a 13-tetrahedron veering triangulation that is
not geometric [16], and recently Futer, Taylor, and Worden showed that a random veering triangulation
is not geometric [11]. Thus tools to exhibit geometric triangulations must come from other directions.

Why geometric triangulations? Various results become easier with geometric triangulations. For
example, Neumann and Zagier showed that certain useful bounds exist on the volume of a hyperbolic
3-manifold that admits a geometric triangulation [23], although this can be proven in general with
more work; see Petronio–Porti [24]. Similarly, Benedetti and Petronio give a straightforward proof
of Thurston’s hypebolic Dehn surgery theorem using geometric triangulations [2]. Choi finds nice
conditions on the deformation variety for manifolds admitting geometric triangulations [4]. In summary,
such triangulations seem to lead to simpler proofs, and more manageable geometry.

1.2. Organisation. The paper is organised as follows. Sections 2 through 5 give the proof of Theo-
rem 5.5, on more general highly twisted knots. We recall fully augmented links in Section 2, layered
solid tori in Sections 3 and 4, and put this together with Dehn filling in Section 5.

Sections 6 through 8 give the proof of Theorem 8.6, on Dehn fillings of links with two crossing circles,
and build up the new machinery required for both Theorem 8.6 and Theorem 9.12.

Finally, in Section 9, we complete the proof of Theorem 9.12, on Dehn fillings of fully augmented
2-bridge links.

1.3. Acknowledgements. We thank B. Nimershiem for helping us to improve the exposition in
Section 4. We also thank the referees for their comments, which helped us improve the paper. Both
authors were supported in part by the Australian Research Council.
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2. Fully augmented links

The links of the main theorem, Theorem 5.5, are obtained by Dehn filling a parent link, called a
fully augmented link. In this section, we review fully augmented links and their geometry, and show
that they admit geometric triangulations.

Begin with any twist-reduced diagram of a link. As in the middle of Figure 1.1, for each set of twist
equivalent crossings, insert a single unknotted curve that encircles the bigons of the twist region. If a
twist region consists of only a single crossing, there are two ways to insert this link component; either
will do. These unknotted components are chosen to be disjoint, and to bound discs that are punctured
by exactly two strands of the original link. We call them crossing circles. A fully augmented link is a
link obtained by adding a single crossing circle to every twist region of a twist-reduced diagram, and
then removing all crossings that bound a bigon. That is, crossings are removed in pairs. The resulting
diagram consists of crossing circles that are perpendicular to the plane of projection and strands that
lie on the plane of projection except possibly for single crossings in the neighbourhood of a crossing
circle. See Figure 1.1, right.

Agol and Thurston studied the geometry of fully augmented links using a decomposition into
ideal polyhedra [20, Appendix]. In particular, they show that every fully augmented link admits a
decomposition into two identical totally geodesic polyhedra that determine a circle packing on C. The
result we need is the following.

Proposition 2.1. A fully augmented link decomposes into the union of two identical ideal polyhedra
with the following properties.

(1) Each polyhedron is convex, right-angled, with a checkerboard colouring of its faces, shaded and
white. The shaded faces are all ideal triangles, each a subset of a 2-punctured disc bounded by a
crossing circle.

(2) Each polyhedron is determined by a circle packing on R2∪{∞}, with white faces lifting to planes
in H3 whose boundaries are given by the circles. Shaded faces lift to planes with boundaries
given by the dual circle packing.

(3) Embed the ideal polyhedron in H3 as a convex right-angled polyhedron. Each ideal vertex
projects to a link component, or more precisely, the boundary of a sufficiently small horoball
neighbourhood of an ideal vertex projects to a subset of a horospherical torus about a link
component.

Apply an isometry so that an ideal vertex corresponding to a crossing circle lies at the point
at infinity in the upper half space model of H3. Then two white faces form parallel vertical
planes meeting the point at infinity, with two shaded faces forming perpendicular parallel vertical
planes, cutting out a rectangle. Two other white faces, defining circles tangent to the white
parallel vertical planes, meet the shaded parallel vertical planes at right angles. This forms a
rectangle with two circles; see Figure 2.1.

Moreover, none of the four ideal vertices on R2 corresponding to the corners of the rectangle
project to crossing circles.

Proofs of Proposition 2.1 can be found in various places, including [10, 27]. We review the details
briefly as it is important to our argument.

Proof of Proposition 2.1. There are two types of totally geodesic surface in the complement of a fully
augmented link, and these will form the white and shaded faces of the polyhedra. The first totally
geodesic surface comes from embedded 2-punctured discs bounded by crossing circles; colour each of
these shaded.

The second comes from a surface related to the plane of projection. If the fully augmented link has
no crossings on the plane of projection, then it is preserved by a reflection in the plane of projection and
the white surface is the plane of projection. This reflection is realised by an isometry fixing the white
surface pointwise, so the white surface is totally geodesic. If the link admits single crossings adjacent to
crossing circles, reflection in the plane of projection will change the direction of each crossing. However,
a full twist about the adjacent crossing circle is a homeomorphism of the complement, and it returns
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Figure 2.1. Left: the general form of a circle packing determining a polyhedron, with
a vertex that projects to a crossing circle cusp at the point at infinity. The dashed
lines show two parallel shaded faces meeting infinity. The region between the circles
and lines will be filled with a circle packing. Note white and shaded faces through
infinity cut out a rectangle. Right: a specific example.

the link to its original position. The combination of reflection followed by twists is an isometry fixing a
surface pointwise; this is the white surface. Again it is totally geodesic.

To obtain the decomposition into ideal polyhedra, first cut along each shaded 2-punctured disc.
Near single crossings, rotate one copy of the 2-punctured disc by 180◦ to remove the crossing from
the diagram. The white face then lies on the projection plane. Slice along the projection plane. This
process is shown in Figure 2.2.

Figure 2.2. Left to right: Slice along shaded faces bounded by 2-punctured discs and
unwind single crossings. Then slice along the white plane of projection. Shrinking
remnants of the link to ideal vertices gives the ideal polyhedron. The circle packing is
obtained by lifting the polyhedron to H3, and taking boundaries of white faces.

The result is two ideal polyhedra. We now show that these satisfy the properties stated. First, the
checkerboard colouring is as claimed, by construction. The involution described above is the reflection
through white faces taking one polyhedron to another. Also, note that under the involution, shaded
2-punctured discs are taken to their reflection in the projection plane, hence must still be geodesic. It
follows that they are perpendicular to white faces, and so the polyhedron is right-angled.

The circle packing comes from the totally geodesic white faces. These faces are all disjoint, and
correspond to regions of the plane of projection. They lift to a collection of geodesic planes in H3, whose
boundaries form a collection of circles that are tangent exactly when two white faces are adjacent across
a strand of the link, or meet a common crossing circle. The shaded faces lift to ideal triangles, dual to
the white circles. Thus this corresponds to a circle packing by shaded circles dual to a circle packing of
white circles. The intersections of the exteriors of planes in H3 defined by the circles gives a convex
region with all right-angled dihedral angles; this is the geometric structure on the ideal polyhedron.

The fact that the cusp is as claimed follows from the fact that each ideal vertex of the polyhedron
is 4-valent, so moving one to infinity gives a rectangle, and each shaded face is an ideal triangle, so
beneath a vertical shaded face lies a single white circle. The shaded ideal triangle is obtained by slicing
a 2-punctured disc through the projection plane. One vertex corresponds to an arc of the crossing
circle above (or below) the projection plane, and the other two vertices correspond to strands of the
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Figure 2.3. For each ideal vertex corresponding to a crossing circle, there exists a
circle running through all four vertices of the rectangle of Proposition 2.1 (3). Each of
these defines a plane in H3, and their intersection with the polyhedron defines a
rectangle R.

link running through the crossing circle. Thus exactly one of the ideal vertices of the shaded triangle
corresponds to a crossing circle. Because the ideal vertex corresponding to the crossing circle lies at
infinity, the other two ideal vertices, lying at points of intersection of vertical shaded and white planes,
must correspond to link strands on the plane of projection. These are other vertices of the rectangle on
R2. �

We will show that fully augmented links admit a geometric triangulation coming from the decompo-
sition into polyhedra of Proposition 2.1. To do so, we will show that appropriate neighbourhoods of
crossing circles can be triangulated separately.

Consider a polyhedron of the decomposition of a fully augmented link, as in Proposition 2.1. Arrange
the polyhedron in H3 so that the point at infinity projects to a crossing circle cusp, with vertical
planes cutting out a rectangle on ∂H3. Then there is a unique circle on ∂H3 meeting each vertex of the
rectangle. It intersects exactly four of the circles in the circle packing corresponding to white faces of
the polyhedron. See Figure 2.3. The circle is the boundary of a geodesic plane in H3. The intersection
of the plane with the polyhedron determines a totally geodesic rectangular surface.

Lemma 2.2. Let R1, . . . , Rn denote the totally geodesic rectangular surfaces arising as above, one for
each crossing circle vertex. Then either the interiors of the rectangles are pairwise disjoint, or there
exist exactly two crossing circles, each ideal polyhedron is a regular ideal octahedron, and the rectangle
R1 = R2 cuts each polyhedron into two square prisms.

Proof. Let C denote the circle running through the four vertices of the rectangle of a crossing circle cusp.
Consider the intersection of this circle C and the circles corresponding to white faces of the polyhedron.
The circle C intersects the two vertical planes that form two of the four edges of the rectangle; this
gives two intersections. Additionally, the circle C intersects the two hemispheres bounded by circles
meeting the vertical planes, at the top and bottom of Figure 2.3.

The fact that C cannot meet any other white faces of the polyhedron now follows from the fact that it
encloses the region on ∂H3 bounded by the parallel vertical planes and by the two white circles tangent
to them. All other white circles are completely contained in this region. Therefore, the hemispheres
they determine cannot intersect C.

Now we consider the intersections of two rectangular surfaces R1 and R2 arising from circles C1

and C2 from different crossing circles. Arrange the polyhedron so that the crossing circle vertex
corresponding to R1 lies at infinity, and R1 determines a circle C1 running through four vertices of a
rectangle. The rectangular surface R2 lies on a geodesic hemisphere H2 whose boundary on ∂H3 is
a circle C2. By the argument above, C2 meets exactly four of the white circles in the circle packing;
these intersections cut C2 into four circular arcs. Note that the endpoints of each arc are ideal vertices
of the polyhedron.
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If the surfaces R1 and R2 intersect, then the circles C1 and C2 intersect. Because the circular arcs
of C2 lie inside white circles of the circle packing, this is possible only if a point of intersection of C1

and C2 occurs within one of the circles of the circle packing. Because C1 only meets the two parallel
sides of the rectangle and two circles tangent to them, the circles where C1 and C2 intersect must be
among these circles.

Next note that C1 and C2 must intersect twice within the same circle of the circle packing, else the
ideal vertices met by circular arcs of C1 and C2 interleave on a circle. However, C1 runs through the
outermost ideal vertices on each of the four circles under consideration: there are no additional ideal
vertices outside the rectangle for C2 to meet for interleaving.

Finally, the intersection points either lie on the vertices of the rectangle defining R1, or lie outside
that rectangle, because C1 lies outside that rectangle. But only points inside the rectangle lie inside
the polyhedron, so intersections outside the rectangle cannot give intersections of R1 and R2, which
both are embedded in the polyhedron.

The only remaining possibility is that C1 and C2 both run through at least two of the same ideal
vertices on the rectangle defining R1. If exactly two, R1 and R2 share an edge, but have disjoint
interiors as claimed. If more than two, then they must share all four ideal vertices, and R1 and R2

agree. In this case, the polyhedron is determined: it must be a regular ideal octahedron with R1 = R2

cutting off an ideal vertex corresponding to a crossing circle on either side. The fully augmented link
can only have two crossings circles, corresponding to the ideal vertices used to define R1 and R2. The
rectangles R1 = R2 cut the octahedron into two pyramids over a square base. �

Proposition 2.3. Every fully augmented link admits a geometric triangulation with the following
properties.

(1) Each crossing circle meets exactly four tetrahedra, two in each polyhedron.
(2) The triangulation is symmetric across the white faces. That is, a reflection across white faces

preserves the triangulation.

Proof. Begin with the ideal polyhedral decomposition of Proposition 2.1. For either one of the two
symmetric ideal polyhedra, cut off each ideal vertex corresponding to a crossing circle by cutting along
the rectangles of Lemma 2.2. This splits the polyhedron into n pyramids over a rectangular base
corresponding to crossing circles, where n is the number of crossing circles, and one remaining convex
ideal polyhedron P . In the case that there are just two crossing circles, the remaining convex ideal
polyhedron is degenerate: it is just the rectangle R1 = R2. In all other cases, it has 3-dimensional
interior.

Split each rectangular pyramid into two geometric tetrahedra by choosing a diagonal of the rectangle
and cutting along it.

When we reglue into the fully augmented link, the choices of diagonals on the rectangles R1, . . . , Rn

are mapped to ideal edges on the convex polyhedron P . When R1 = R2, and P is degenerate, choosing
the same diagonal gives the desired triangulation.

When P is nondegenerate, we triangulate it by coning. Choose any ideal vertex w of P . For any
face not containing w that is not already an ideal triangle, subdivide the face into ideal triangles in
any way by adding ideal edges. Then take cones from w over all the triangles in faces disjoint from w.
Because P is convex, the result is a division of P into geometric ideal tetrahedra.

Transfer the triangulation on the first polyhedron to the second by reflection in the white surface.
This gives both polyhedra exactly the same subdivision, up to reflection.

Now note that the polyhedra glue by reflection in the white faces, so no new flat tetrahedra need
to be introduced in these faces to obtain the gluing. All shaded faces are ideal triangles, which are
glued by isometry and again no flat tetrahedra need to be introduced. Thus the decomposition of the
polyhedra into geometric tetrahedra described above gives a decomposition of the fully augmented link
complement into geometric tetrahedra.

Finally, the fact that the geometric triangulation satisfies the two properties of the theorem follows
by construction: Each crossing circle meets two rectangles, hence four tetrahedra. The triangulation is
preserved by the reflection in the white faces. �
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The previous lemma gives a geometric triangulation of a fully augmented link, but four tetrahedra
meet each crossing circle. We need a triangulation for which only two tetrahedra meet each crossing
circle.

Proposition 2.4. Every fully augmented link admits a geometric triangulation with the property that
each crossing circle meets exactly two tetrahedra.

Proof. Begin with the geometric triangulation of Proposition 2.3 and consider the crossing circles. These
are triangulated by exactly four tetrahedra, two in each polyhedron. For each of the two tetrahedra in
one polyhedron, one face lies on a totally geodesic ideal rectangle coming from Lemma 2.2 embedded
in H3. Call the two rectangles, one for each polyhedron, R1 and R2.

Adjust the geometric triangulation as follows. At an ideal vertex corresponding to a crossing circle,
two polyhedra are glued along a white face. The result of gluing both polyhedra together along such
a face is shown in Figure 2.4. Note rectangles R1 and R2 are glued along an edge. The boundary of
the two glued polyhedra forms an even larger rectangle, with boundary the outermost parallel lines in
Figure 2.4, and the dashed lines.

R1 R2

C

Figure 2.4. Glue both polyhedra in the decomposition of a fully augmented link
along a white face corresponding to a vertical plane in H3. Two rectangles, R1 and
R2, are glued as shown. A larger circle C runs through vertices of both R1 and R2.

There is a circle C running through each vertex of that rectangle, shown in red in Figure 2.4. Note
that the hemisphere defined by C in H3 meets an edge of R1 and an edge of R2. Cutting along the
hemisphere cuts the two polyhedra along a rectangle R. The region bounded by R1, R2, R and the
two polyhedra is a solid with three ideal quadrilateral faces and two ideal triangle faces; it forms a
prism over an ideal triangle. The region between R and infinity forms a neighbourhood of the crossing
circle vertex. Triangulate it by adding an edge along a diagonal of R and then coning to infinity. This
gives two geometric ideal tetrahedra meeting the crossing circle vertex. These are the only tetrahedra
meeting this vertex.

It remains to triangulate the prism over the ideal triangle bounded by R1, R2, and R. The rectangles
R1, R2, and R all have been triangulated by a choice of diagonal; the one on R comes from the
paragraph just above, and those on R1 and R2 come from Proposition 2.3. These three edges determine
two ideal triangles whose interiors are disjoint in the interior of the triangular prism. They divide the
prism into three geometric tetrahedra. �

3. Layered solid tori

To obtain highly twisted links, we will be performing Dehn filling on the crossing circle cusps of fully
augmented links, using the triangulation of Proposition 2.4. We need a triangulation of the solid torus
used in the Dehn filling. The triangulation that will work in this setting is a layered solid torus, first
described by Jaco and Rubinstein [19]. In this section, we will review the construction of layered solid
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tori, and how they can be used to triangulate a Dehn filling of a triangulated manifold such as a fully
augmented link.

The boundary of a layered solid torus consists of two ideal triangles whose union is a triangulation
of a punctured torus. The space of all such triangulations of punctured tori is described by the Farey
graph. Guéritaud and Schleimer present a description of the layered solid torus using the combinatorics
of the Farey graph [14], and then glue this into the boundary of a manifold to be Dehn filled. We will
follow their presentation.

3.1. Review of layered solid tori. Recall first the construction of the Farey triangulation of H2. We
view H2 in the disc model, with antipodal points 0/1 and 1/0 =∞ in ∂H2 lying on a horizontal line
through the centre of the disc, with 1/0 on the left and 0/1 on the right. Put 1/1 at the north pole,
and −1/1 at the south pole. Two points a/b and c/d in Q ∪ {1/0} ⊂ ∂H2 have distance measured by

i(a/b, c/d) = |ad− bc|.
Here i(·, ·) denotes geometric intersection number of slopes on the torus. We draw an ideal geodesic
between each pair a/b, c/d with |ad− bc| = 1. This gives the Farey triangulation.

Any triangulation of a once-punctured torus consists of three slopes on the boundary of the torus,
with each pair of slopes having geometric intersection number 1. Denote the slopes by p, q, r. Note
that this triple determines a triangle in the Farey triangulation. Moving across an edge of the Farey
triangulation changes the triangulation by replacing one slope with another, say r′ replaces r. See
Figure 3.1.

Figure 3.1. Each triangle in the Farey graph determines a triangulation of a punctured
torus. Moving across an edge replaces one of the three slopes of the triangulation by a
different slope.

In the case that we wish to perform a Dehn filling by attaching a solid torus to a triangulated
once-punctured torus, there are four important slopes involved. Three of the slopes are the slopes of
the initial triangulation of the once-punctured solid torus. In our setting, these will typically either be
{0/1, 1/0, 1/1} or {0/1, 1/0,−1/1}. They form an initial triangle in the Farey graph. The last slope is
m, the slope of the Dehn filling.

Now consider the geodesic in H2 from the centre of the initial triangle to the slope m ⊂ ∂H2. This
passes through a sequence of triangles in the Farey graph by crossing edges of the Farey triangulation.
In particular, there will be a finite sequence of triangles, each determined by three slopes,

(T0, T1, . . . , TN ) = (pqr, pqr′, . . . , stm),

with initial triangle T0 and final triangle TN such that m is not a slope of any previous triangle in the
sequence. For our purposes, we will require that N ≥ 2. Thus we do not allow m to be a slope of the
initial triangle T0 nor a slope of the three triangles adjacent to T0.

We build a layered solid torus by stacking a tetrahedron onto a once punctured torus, initially
triangulated by the slopes of T0, and replacing one slope with another at each step as we stack. That
is, two consecutive once punctured tori always have two slopes in common and two that differ by a
diagonal exchange. The diagonal exchange is obtained in three-dimensions by layering a tetrahedron
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onto a given punctured torus such that the diagonal on one side matches the diagonal to be replaced. In
Figure 3.1, note that the diagonal exchanges have been drawn in such a way to indicate the tetrahedra.

For each triangle in the path from T0 to TN−1, layer on a tetrahedron, obtaining a collection of
tetrahedra homotopy equivalent to T 2 × [0, 1]. At the k-th step, the boundary component T 2 × {0}
has the triangulation of T0 and that T 2 × {1} has the triangulation of Tk. Continue until k = N − 1,
obtaining a triangulated complex with boundary consisting of two once-punctured tori, one triangulated
by T0 and the other by TN−1. Recall that m is a slope of TN — notice that we are not adding on a
tetrahedron corresponding to TN .

If we stop at TN−1 (not TN ), then one further diagonal exchange will give the slope m. That is,
m is not one of the slopes of the triangulation of TN−1, but a single diagonal exchange replaces the
triangulation TN−1 with TN , which is a triangulation consisting of two slopes s and t in common with
TN−1 and the slope m cutting across a slope m′ of TN−1.

Recall we are trying to obtain a triangulation of a solid torus for which the slope m is homotopically
trivial. To homotopically kill the slope m, fold the two triangles of TN−1 across the diagonal slope
m′. Gluing the two triangles on one boundary component of T 2 × I in this manner gives a quotient
homeomorphic to a solid torus, with boundary still triangulated by T0. Inside, the slopes t and s
are identified. The slope m has been folded onto itself, meaning it is now homotopically trivial. See
Figure 3.2.

mm′

s s

t

t

m

m′

t

s

s

Figure 3.2. Folding m makes it homotopically trivial.

4. Angle structures

In order to prove that the triangulations we construct are geometric, we will use tools from the
theory of angle structures on 3-manifolds. (These are also often called strict angle structures in the
literature.) We are following the lead of Guéritaud and Schleimer in [14], who use angle structures
to show that layered solid tori admit geometric triangulations. The results we need are only slight
generalisations of Guéritaud and Schleimer’s work, and the proofs follow almost immediately. However,
we believe it is useful to step through the results and many of the proofs here as well. Not only does
that make this paper more self-contained, but it also sets up a number of tools that we will need later
in the paper when we further generalise to different triangulations of solid tori. Thus in this section we
review angle structures, relevant results such as the Casson–Rivin theorem, and we work through the
proof that layered solid tori admit geometric triangulations using angle structures.

Definition 4.1. An angle structure on an ideal triangulation τ of a 3-manifold M (possibly with
boundary) is an assignment of dihedral angles on each tetrahedron such that opposite edges of the
tetrahedron carry the same angle, and such that

(1) all angles lie in the range (0, π),
(2) around each ideal vertex of a tetrahedron, the dihedral angles sum to π,
(3) around each edge in the interior of M , the dihedral angles sum to 2π.

The set of all angle structures for the triangulation τ is denoted A(τ).
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An angle structure on an ideal tetrahedron uniquely determines a hyperbolic structure on that
tetrahedron. However, an angle structure on a triangulated 3-manifold is not as restrictive as a geometric
triangulation. While one can assemble a space from hyperbolic triangles determined by the angles,
under the gluing there may be shearing along edges. Thus the structure does not necessarily give a
hyperbolic structure on M .

However, an angle structure determines a volume, by summing the volumes of the hyperbolic ideal
tetrahedra with the dihedral angles given by the angle structures. That is, recall that a hyperbolic ideal
tetrahedron with dihedral angles α, β, γ has volume Λ(α) + Λ(β) + Λ(γ), where Λ is the Lobachevsky
function. Define the volume functional V : A(τ) → R as follows. For p ∈ A(τ) ⊂ R3n, assign to the
angle structure p = (p1, p2, p3, . . . , p3n) the real number

V(p) = Λ(p1) + Λ(p2) + Λ(p3) + · · ·+ Λ(p3n).

The volume functional is a convex function on A(τ). That means it either takes its maximum on
the interior of the space A(τ), or there is no maximum in A, and V is maximised on the boundary of

the closure A(τ). See, for example, [8].
The following theorem, proved independently by Casson and Rivin, will allow us to use angle

structures to obtain a geometric triangulation in the case that the maximum occurs in the interior of
the space A(τ).

Theorem 4.2 (Casson, Rivin). Let M be an orientable 3-manifold with boundary consisting of tori,
and let τ be an ideal triangulation of M . Then a point p ∈ A(τ) corresponds to a complete hyperbolic
metric on the interior of M if and only if p maximises the volume functional V : A(τ)→ R.

The proof of Theorem 4.2 follows from work in [28]. A different proof that includes a nice exposition
is given by Futer and Guéritaud [8].

4.1. Angle structures on layered solid tori. This subsection is devoted to the following proposition
and its proof, which guarantees an angle structure on a layered solid torus. The result is essentially
[14, Proposition 10], and the proof is very similar. However, our statement is slightly more general.
Additionally, parts of the proof will be needed in a later section, so we include the full argument.

Proposition 4.3. Let p, q, r be slopes on the torus that bound a triangle in the Farey graph in H2.
Let m be a slope separated from the triangle (p, q, r) by at least one triangle; that is, the geodesic γ in
H2 from the centre of triangle (p, q, r) to m intersects at least three triangles (one containing m, one
containing (p, q, r), and at least one more). Relabel p, q, r if necessary so that the geodesic γ exits the
triangle (p, q, r) by crossing the edge (p, q), and exits the next triangle (p, q, r′) by crossing the edge
(q, r′). (Thus r is the first slope to disappear from the triangulation, and p is the second.) Assign to
p, q, r exterior dihedral angles θp, θq, θr, respectively, satisfying

(4.4) θp + θq + θr = π, −π < θp, θq < π and 0 < θr < π.

Finally, consider the layered solid torus T with boundary ∂T a punctured torus triangulated with slopes
p, q, r, and meridian the slope m. Set interior dihedral angles at edges of slope p, q, r of ∂T equal to
π − θp, π − θq, π − θr, respectively.

There exists an angle structure on T with the given interior dihedral angles if and only if

(4.5) i(m, p)θp + i(m, q)θq + i(m, r)θr > 2π,

where i(a, b) denotes geometric intersection number.

Remark 4.6. Guéritaud and Schleimer actually requre 0 ≤ θp, θq in the statement of their proposition.
However, most of their argument applies equally well if one of θp, θq, say θp, is negative, provided
π − θp < 2π. The other conditions will then imply that θq is positive, and that θp + θr is positive, and
these conditions suffice to prove the proposition.

We start by setting up notation. Let T be a layered solid torus constructed by following a geodesic
γ in the Farey graph in H2 from the centre of triangle (p, q, r) to the slope m, with γ intersecting at
least three triangles. Let (T0, T1, . . . , TN−1, TN ) denote the sequence of triangles. As in the statement
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of Proposition 4.3, we label such that r is the first slope to be replaced by diagonal exchange and p is
the second.

Let ∆1, . . . ,∆N−1 denote the tetrahedra in T , constructed as in Section 3. Thus ∆1 meets the
boundary of the layered solid torus in slopes (p, q, r), and the tetrahedron ∆N−1 is folded on itself to
form the solid torus with m homotopically trivial.

Lemma 4.7. The solid torus T has a single ideal vertex. A horosphere about this ideal vertex intersects
each tetrahedron of T in four triangles, arranged corner to corner such that their outer boundary forms
a hexagon, with opposite angles agreeing. For tetrahedra ∆1, . . . ,∆N−2, an inner boundary is also a
hexagon, with inner boundary of the triangles of ∆i identified to the outer boundary of the triangles of
∆i+1. For tetrahedron ∆N−1, the four triangles form a solid hexagon.

Proof. Consider the boundary of any layered solid torus. This is a 1-punctured torus triangulated by
two triangles. A path that stays on the 1-punctured torus that runs once around the puncture will
run over exactly six triangles; these form a hexagon in the cusp neighbourhood of the solid torus. See
Figure 4.1. Stripping the k outermost tetrahedra off a layered solid torus yields a smaller layered solid
torus for k < N − 1; its boundary still forms a hexagon as in Figure 4.1.

r

r

q

q

p

p

r′

r′

r

p

q

p

q

r′

z
x y

z
z

x

y x

y

z
xy

Figure 4.1. Left: a path encircling the puncture of the 1-punctured torus meets
exactly six triangles, meeting slopes p, q, r, p, q, r in order. Right: These triangles lift
to give a hexagon in the cusp neighbourhood of a layered solid torus. The tetrahedron
that effects the diagonal exchange from r to r′ is glued to the hexagon along two faces,
forming a new hexagon in the interior.

The innermost tetrahedron has its two inside triangles folded together. This gives one of the hexagons
shown in Figure 4.2. �

z
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z
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zz
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x
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x
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Figure 4.2. The last tetrahedron in the layered solid torus has two interior triangles
folded together. The two possible cases are shown.

For the tetrahedron ∆i, label the (interior) dihedral angles by xi, yi, zi, with xi + yi + zi = π. By
adjusting these labels, we may ensure that zi is the angle assigned to the slope that is covered by ∆i,
and that xi, yi are chosen to be in alphabetical order when we run around one of the cusp triangles in
anti-clockwise order. These labels agree with the choices in Figures 4.1 and 4.2.
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Since opposite edges of a tetrahedron have the same angles, this choice of angles xi, yi, zi completely
determines the angles on the hexagons. We summarise the result in the following lemma.

Lemma 4.8. For i ∈ {1, . . . , N −2}, two opposite interior angles of the outer hexagon of ∆i are zi, two
opposite exterior angles of the inner hexagon are zi, and at the four vertices shared by both hexagons,
two angles xi meet at two of the opposite vertices, and two angles yi meet at two other opposite vertices.

For ∆N−1, the interior angles of the solid hexagon are either zN−1, 2xN−1 + zN−1, and 2yN−1 (with
opposite angles agreeing), or zN−1, 2yN−1 + zN−1, and 2xN−1 (with opposite angles agreeing). �

Gluing tetrahedron ∆i+1 to ∆i in the construction of the layered solid torus corresponds to performing
a diagonal exchange in the triangulation of the boundary. One of the three edges on the punctured
torus boundary is covered by this move. In the cusp picture of the hexagons, gluing ∆i+1 to ∆i glues
four triangles to the inner hexagon. Two opposite vertices are covered by the triangles and two new
vertices are added to the interior. See Figure 4.4 for an example.

The labeling of Lemma 4.8 implies that two vertices of the inner hexagon formed at the i-th step by
∆i have interior angle 2π−zi. These vertices were just added at the previous step by diagonal exchange.
Since the path γ in the Farey graph is a geodesic, these vertices will not be covered in the next step.
Thus there are two choices for vertices to cover. We call the choices L and R, referring to a choice of
direction in the Farey graph, as follows. After crossing the first edge in the Farey graph, L and R are
determined by the direction the geodesic γ takes in the Farey graph, left or right. Except in the last
triangle of the Farey graph, this corresponds to attaching a tetrahedron and covering a diagonal. Label
the corresponding tetrahedron ∆i with an L or R, for i = 2, . . . , N − 1; see Figure 4.3 for an example.

L

∆i−1

∆i

L

∆i+1

ri−1

pi−1

ri

ri+1

qi−1

ri−2

Figure 4.3. Turning left then left again in the Farey graph. Tetrahedron ∆i−1 has
inner boundary with slopes pi−1, qi−1, and ri−1, with angles xi−1, yi−1, and zi−1,
respectively. Adding ∆i in the L direction removes the slope pi−1 from the inner
boundary, replacing it with slope ri, with angle zi. Adding ∆i+1 removes slope ri−1,
replacing it with slope ri+1, with angle zi+1.

We need to consider the interior angles of each hexagon. When values of the zi are given, we will
choose the xi and yi so that the interior angles form a Euclidean hexagon at each step. Consider the
outermost hexagon. The slopes of the edges of the outermost hexagon are p, q, and r, and their interior
angles are π − θp, π − θq, and π − θr, respectively, as in Proposition 4.3. These are chosen such that
the sum of all interior angles is 4π, as usual for a Euclidean hexagon. Since tetrahedron ∆1 covers the
edge of slope r, the angle z1 must agree with the interior angle along the slope r, or z1 = π − θr. Now
we consider the next hexagon.

Lemma 4.9. Let θr, θp, θq denote exterior dihedral angles as in Proposition 4.3. In particular, recall
that r is the first slope covered, and p is the second.
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For the first tetrahedron ∆1, set z1 = π − θr. Suppose z2 ∈ (0, π), and define a new variable
z0 = π + θp.

The tetrahedron ∆2 has either an L or an R label. Assign the same label to ∆1, so both are labeled
L or both are labeled R.

• If both ∆1 and ∆2 are labeled L, set x1 = π − (z0 + z2)/2, and y1 = π − z1 − x1.
• If both ∆1 and ∆2 are labeled R, set y1 = π − (z0 + z2)/2, and x1 = π − z1 − y1.

Then the values of the interior angles of the hexagon between ∆1 and ∆2 are z2 (at the two edges of
slope p), 2π − z1, and z1 − z2.

Proof. One of the interior angles is immediate: the angle at the newly added edge of slope r′ is 2π− z1.
If ∆2 is labeled L, then the slope p is given angle x1 in ∆1, as in Figure 4.1, right. Otherwise it is

given angle y1 in ∆1, based on our orientation conventions. Assume first that ∆2 is labeled L.
Before adding ∆1, the interior angle at the edge of slope p was π− θp. After adding ∆1, it decreases

by 2x1. Thus the interior angle is

π − θp − 2x1 = π − θp − 2π + (z0 + z2) = z2.

Similarly, after adding ∆1 the interior angle at the edge of slope q becomes

π − θq − 2y1 = π − (π − θp − θr)− 2(π − z1 − x1)

= θp + θr − 2π + 2z1 + 2π − z0 − z2 = z1 − z2.
Similar equations hold, only switching the roles of x1 and y1, if ∆2 is labeled R. �

We will deal with the last tetrahedron ∆N−1 separately. For the others, we have the following result.

Lemma 4.10. Let θp, θq, θr denote the exterior dihedral angles as in Proposition 4.3. Suppose
z0 = π + θp, z1 = π − θr, and z2, . . . , zN−1 lie in (0, π).

For i = 1, . . . , N − 2, assign the angles xi and yi as below, with assignments depending on the labels
(L or R) of ∆i and ∆i+1:

• If ∆i and ∆i+1 are both labeled L, set xi = π − (zi−1 + zi+1)/2, and yi = π − zi − xi.
• If ∆i and ∆i+1 are both labeled R, set yi = π − (zi−1 + zi+1)/2, and xi = π − zi − yi.
• If ∆i is labeled L and ∆i+1 labeled R, set yi = (zi−1 − zi − zi+1)/2, and xi = π − zi − yi.
• If ∆i is labeled R and ∆i+1 labeled L, set xi = (zi−1 − zi − zi+1)/2, and yi = π − zi − xi.

Then for i = 1, . . . , N −2, the hexagon between tetrahedra ∆i and ∆i+1 has interior angles zi+1, 2π−zi,
and zi − zi+1.

Moreover, for any interior edge obtained by layering tetrahedra ∆1, . . . ,∆N−2, the sum of the dihedral
angles about that edge is 2π.

Proof. The proof is by induction. We will show that after layering tetrahedron ∆i+1 onto tetrahedra
∆1, . . . ,∆i, the interior edges of hexagons are as claimed, and the sum of dihedral angles around all
interior edges is 2π.

By Lemma 4.9, the interior angles of the hexagon are as claimed when i = 1. When layering ∆1 onto
the tetrahedra outside of the layered solid torus, there are no interior edges created, so the statement
on interior edges is vacuously true.

Now assume by induction that the interior angles of the hexagon between ∆i−1 and ∆i are as
claimed in the lemma, and that dihedral angles sum to 2π around any interior edges in the layering of
tetrahedra ∆1, . . . ,∆i. Consider ∆i+1.

The argument is mainly a matter of bookkeeping, particularly keeping track of labels on tetrahedra
when turning left or right. We have illustrated the process carefully for the case that ∆i and ∆i+1 are
both labeled L. Figure 4.3 shows the path in the Farey graph. What is important at each step is which
slope is covered by the diagonal exchange effected by adding the next tetrahedron. Thus ∆i covers a
slope pi−1 and ∆i+1 covers a slope ri−1.

Figure 4.4 left, shows the effect on the cusp triangulation. In that figure, the outermost hexagon
lies on the outside of ∆i−1, with the thick lines the hexagon between ∆i−1 and ∆i. The edges of ∆i−1
with slopes ri−1 are both assigned angle zi−1. In the figure, slope ri−1 is marked by the red dot.
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Figure 4.4. Left: The cusp diagram of the portion of a layered solid torus obtained
by turning left, then left again. The red dot indicates an edge of the triangulation that
is surrounded by the three tetrahedra ∆i−1, ∆i, ∆i+1. Right: Turning left then right.
The vertices of the outer hexagon for ∆i−1 are adjacent to these three tetrahedra, and
to no other interior tetrahedra.

Adding tetrahedron ∆i gives a new hexagon, indicated by the thinner line in Figure 4.4, left, between
∆i and ∆i+1. The edges of ∆i with slopes pi−1 and ri are assigned angle zi. Our orientation convention
then ensures that the edge of slope ri−1 is assigned angle xi.

Finally we add tetrahedron ∆i+1. This gives a new innermost hexagon, indicated by the dashed
lines in Figure 4.4, left. The edge of slope ri−1 is assigned angle zi+1.

First we consider the interior angles of the hexagon between ∆i and ∆i+1. One of these is 2π − zi,
as desired. The other two are obtained by subtracting 2xi and 2yi from interior angles of the hexagon
at the previous step. In particular, we have angles

2π − zi−1 − 2xi = 2π − zi−1 − 2π + zi−1 + zi+1 = zi+1,

and

zi−1 − zi − 2yi = zi−1 − zi − 2π + 2zi + (2π − zi−1 − zi+1) = zi − zi+1,

as desired.
Notice that after adding tetrahedron ∆i+1, the edge of slope ri−1 is completely surrounded by

tetrahedra ∆i−1, ∆i, and ∆i+1, and thus it becomes an interior edge. Notice also that this is the only
new interior edge obtained by adding ∆i+1. Thus we only need to ensure the sum of dihedral angles
about this edge is 2π. We read the dihedral angles off of Figure 4.4 left:

zi−1 + 2xi + zi+1 = 2π.

This will hold if and only if xi satisfies the requirements of the lemma.
A very similar pair of pictures, Farey graph and cusp triangulation, gives the result in the case ∆i

and ∆i+1 are both labeled R. In this case, however, the slope qi−1 will be covered by ∆i. Again ri−1
will then be covered by ∆i+1, but by turning right, the angles adjacent to the slope ri−1 in this case
will be zi−1, two copies of yi, and zi+1. Thus this case differs from the previous only by switching the
roles of xi and yi.

If we first turn left then turn right, the slope pi−1 is covered first by ∆i, then qi−1 by ∆i+1; see
Figure 4.4, right. The interior angles of the hexagon between ∆i and ∆i+1 are 2π− zi, 2π− zi−1 − 2xi,
and zi−1 − zi − 2yi. The latter two simplify as follows:

2π − zi−1 − 2xi = 2π − zi−1 − 2π + 2zi + 2yi

= 2π − zi−1 − 2π + 2zi + (zi−1 − zi − zi+1) = zi − zi+1.



16 SOPHIE L. HAM AND JESSICA S. PURCELL

zi−1 − zi − 2yi = zi−1 − zi − zi−1 + zi + zi+1 = zi+1.

Finally, in this case, none of the newly added edges are surrounded by the three tetrahedra ∆i−1,
∆i, and ∆i+1. However, adding ∆i+1 may have created an interior edge at qi−1, if qi−1 does not lie on
the boundary of the layered solid torus. By induction, we know that the interior angle of the hexagon
between ∆i−1 and ∆i at the edge of slope qi−1 must be zi−1 − zi. To this we add two angles yi coming
from ∆i, and one angle zi+1 from ∆i+1.

In particular, the angles will fit into the Euclidean hexagon, and therefore have the correct angle
sum, if and only if

2yi + zi+1 = zi−1 − zi.
This holds if and only if yi satisfies the requirement of the lemma.

The case of R followed by L is nearly identical, with the roles of xi and yi switched. Thus by
induction, the result holds for i = 1, . . . , N − 2. �

Lemma 4.11. Consider the last tetrahedron ∆N−1. Assign a label L or R to an empty tetrahedron
∆N depending on whether γ turns left or right when running into the final triangle TN of the Farey
complex, and set zN = 0. Define the angles xN−1 and yN−1 in terms of zN , zN−1, an zN−2 depending
on the labels L or R on ∆N−1 and ∆N exactly as in Lemma 4.10. Then the sum of dihedral angles is
2π around the interior edges in the layered solid torus that are surrounded by ∆N−2 and ∆N−1.

Proof. The proof is very similar to that of Lemma 4.10. The cusp triangulations for cases LL and LR
are shown in Figure 4.5.
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zN−2
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zN−1

zN−1

xN−1
xN−1

xN−1
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zN−2

zN−2

zN−1

zN−1

zN−1

zN−1

xN−2 yN−2

zN−2

zN−2

Figure 4.5. Shown are both cases when ∆N−1 is labeled L. On the left, the empty
tetrahedron ∆N is labeled L, and on the right, the empty tetrahedrahedron ∆N is
labeled R.

In the case LL, exactly one edge in the interior of the solid torus is surrounded by ∆N−2 and ∆N−1.
The sum of the angles around this edge is

zN−2 + 2xN−1 = zN−2 + 2π − zN−2 − zN = 2π,

since zN = 0. Thus the sum is 2π in the LL case when i = N − 1.
In the case LR, an interior edge is surrounded by ∆N−1 and ∆N−2, and the sum of angles around

the edge must be

zN−2 + 2xN−1 + zN−1 = zN−2 + zN−1 + 2(π − zN−1 − yN−1)

= zN−2 + zN−1 + 2π − 2zN−1 − zN−2 + zN−1 + zN = 2π.

The cases RR and RL hold similarly. �

Lemma 4.12. Let θp, θq, θr be as in Proposition 4.3. Let

(z0 = π + θp, z1 = π − θr, z2, . . . , zN−1, zN = 0)
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be a sequence of numbers with zi ∈ (0, π) for i = 1, . . . , N − 1. Let xi or yi be defined in terms of
the sequence of the zj via the equations of Lemma 4.10. Then xi, yi, zi give an angle structure on the
layered solid torus if and only if for each i = 1, . . . , N − 1, the sequence satisfies:{

zi−1 > zi + zi+1 if ∆i and ∆i+1 are labeled RL or LR (hinge condition)

zi−1 + zi+1 > 2zi if ∆i and ∆i+1 are labeled RR or LL (convexity condition)

and additionally z2 < π − θp.
Moreover, if they give an angle structure, then the sequence is strictly decreasing.

Proof. Suppose first that we have an angle structure. Then xi, yi, zi ∈ (0, π) for i = 1, . . . , N − 1, and
xi + yi + zi = π. We can use this equation along with the equations of Lemma 4.10 to write both xi
and yi in terms of zi−1, zi, and zi+1.

In the LL or RR case, each of xi and yi are one of

(4.13) (zi−1 − 2zi + zi+1)/2 and π − (zi−1 + zi+1)/2.

Thus, because we are assuming we have an angle structure, we have:

0 <
zi−1 − 2zi + zi+1

2
< π and 0 < π − zi−1 + zi+1

2
< π.

The first inequality on the left implies the convexity equation. When i = 1, the first inequality on the
right implies z2 < π − θp.

In the RL or LR case, each of xi and yi are one of

(4.14) (zi−1 − zi − zi+1)/2 and π − (zi−1 + zi − zi+1)/2.

Because we have an angle structure,

0 <
zi−1 − zi − zi+1

2
< π and 0 < π − zi−1 + zi − zi+1

2
< π.

Again the first inequality on the left implies the hinge equation. This concludes one direction of the
proof.

Now suppose for each i = 1, . . . , N − 1, the sequence satisfies the convexity or hinge condition. We
check the conditions on an angle structure, Definition 4.1. Condition (2) holds by our definition of xi
and yi: by hypothesis we require xi + yi + zi = π.

Condition (3) follows from Lemma 4.10 and Lemma 4.11. These lemmas prove that given our
definitions of xi and yi in terms of zi−1, zi, and zi+1, the sum of dihedral angles around every interior
edge of the layered solid torus is 2π.

As for condition (1), by hypothesis each zi ∈ (0, π) for i = 1, . . . , N − 1. It remains to show that xi
and yi lie in (0, π) for i = 1, . . . , N − 1. In the LL or RR case, we have noted that xi and yi are as in
equation (4.13). Thus we need

0 <
zi−1 − 2zi + zi+1

2
< π and 0 < π − zi−1 + zi+1

2
< π.

These give four inequalities. When i = 2, . . . , N − 1, three of the inequalities are automatically satisfied
when zi−1, zi, zi+1 ∈ (0, π) or when i = N − 1 and zN = 0. The final inequality holds if and only if
zi−1 + zi+1 > 2zi, which is the convexity condition.

When i = 1, the inequalities become

0 <
(π + θp)− 2(π − θr) + z2

2
< π and 0 < π − (π + θp) + z2

2
< π.

These give four inequalities, one of which is automatically true for 0 < π + θp < π, and the other three
all hold if and only if

π − θp − 2θr < z2 < π − θp.
For 2 ≤ i ≤ N − 1 in the RL or LR case, xi and yi are as in equation (4.14). Thus we require

0 <
zi−1 − zi − zi+1

2
< π and 0 < π − zi−1 + zi − zi+1

2
< π.
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Again this gives four inequalities, two of which are automatically satisfied for zi−1, zi, zi+1 ∈ (0, π), or
when i = N − 1, for zN = 0. The other two inequalities that must be satisfied are zi−1 > zi+1 − zi and
zi−1 > zi+1 + zi. Both hold if and only if zi−1 > zi+1 + zi.

This proves the if and only if statement of the lemma.
Now suppose we have an angle structure. At this point, we know all the inequalities of the lemma

must hold, plus an extra one: zi−1 > zi+1. However, the hinge and convexity equations imply that the
sequence is strictly decreasing: The proof is by a downward induction starting at zN = 0. This finishes
the lemma. �

Lemma 4.15. Suppose all tetrahedra are glued via RR or LL and never a hinge RL or LR. Then
there exists a sequence satisfying the previous lemma if and only if

i(m, p)θp + i(m, q)θq + i(m, r)θr > 2π.

Proof. Suppose first that such a sequence holds.
We claim the convexity condition implies that zN−k < zN−(k+1)k/(k + 1) for k = 1, . . . , N − 1.

This can be seen by induction: when k = 1, zN−2 + zN > 2zN−1 implies zN−1 < zN−2/2. Assuming
zN−(j−1) < zN−j(j−1)/j then zN−(j−1)+zN−(j+1) > 2zN−j implies zN−j(j−1)/j+zN−(j+1) > 2zN−j ,
which implies jzN−(j+1) > (j + 1)zN−j , as desired.

Now observe that when k = N − 1, the inequality is Nz1 < (N − 1)z0, which then becomes
N(π − θr) < (N − 1)(π + θp). Simplifying, we obtain

π < (N − 1)θp +Nθr ⇐⇒ 2π < θq +Nθp + (N + 1)θr,

using θp + θq + θr = π.
Suppose that the tetrahedra are all glued in the pattern LL . . . L. Apply an isometry to H2 so that

the triangle (p, q, r) maps to (0, 1/0,−1). Then the slope m is mapped to the slope N/1 ∈ Q, and the
geometric intersection numbers satisfy i(1/0, N) = 1, i(0, N) = N , and i(−1, N) = N + 1. Because
applying an isometry of H2 preserves intersection numbers, it follows that the inequality holds above if
and only if

i(m, p)θp + i(m, q)θq + i(m, r)θr > 2π.

The argument in the case that all tetrahedra are glued in the pattern RR . . . R is similar. It follows
that if a sequence (z0, . . . , zN ) exists, then the inequality holds.

Conversely, suppose the inequality holds. Set z0 = π + θp, z1 = π − θr. Choose z2 such that

max{0, 2z1 − z0 = π − 2θr − θp} < z2 < min{z1 = π − θr, π − θp}.

Inductively, choose a decreasing sequence zk such that zk > 2zk−1 − zk−2 and zk ∈ (0, π). We need to
ensure we can choose the sequence all the way to zN−1 and set zN = 0. Note by this choice of zk, we
have

zk > π − kθr − (k − 1)θp,

so when k = N ,

zN > π −Nθr − (N − 1)θp.

But as above, the inequality on θp, θq, θr is equivalent to

π −Nθr − (N − 1)θp < 0.

Thus we may set zN = 0 and satisfy all the required conditions. �

Lemma 4.16. Suppose there exists a hinge RL or LR in the sequence of labels of ∆1, . . . ,∆N . Then
the inequality

i(m, p)θp + i(m, q)θq + i(m, r)θr > 2π

is satisfied for every θp, θq, θr as in Proposition 4.3.
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Proof. If there exists a hinge, it is not in the first two labels by choice of p and r. Suppose first that
the first two labels are RR. Apply an isometry to H2 taking (p, q, r) to (0, 1/0,−1). Then the first two
steps in the Farey graph move from triangle (0, 1/0,−1) to (0, 1, 1/2). There may be some additional
number of Rs in the sequence. Starting at (0, 1/0,−1) and stepping through n initial labels R in the
Farey graph puts γ in the triangle (0, 1/(n− 1), 1/n). At this point, the path γ goes left, crossing the
edge (1/(n− 1), 1/n). Because γ never returns to an edge, this means that the slope m lies between
1/(n− 1) and 1/n in the Farey complex. Write m = a/b in lowest terms. The set of rational numbers
between 1/(n− 1) and 1/n in the Farey complex can be obtained inductively by summing numerators
and denominators of 1/(n− 1), 1/n and other rationals obtained in this manner. Since a/b lies in this
range, a ≥ 2 and b ≥ 2n− 1 > 2.

Now, note that for (p, q, r) = (0, 1/0,−1), i(a/b, p) = a, i(a/b, q) = b, and i(a/b, r) = a+ b. Thus

i(m, p)θp + i(m, q)θq + i(m, r)θr = a(θp + θr) + b(θq + θr).

Because θp + θq + θr = π, and −π < θp, θq < π, both θp + θr = π− θq and θq + θr = π− θp are positive.
Thus

a(θp + θr) + b(θq + θr) ≥ min{a, b}(θp + θq + 2θr) = min{a, b}(π + θr) > 2π.

Since intersection numbers are unchanged under isometry of H2, this proves the result when the first
two labels are RR.

The case that the first two labels are LL is similar. �

Lemma 4.17. Suppose there exists a hinge RL or LR. Then there exists a sequence satisfying
Lemma 4.12.

Proof. Let h ∈ {2, 3, . . . , N − 1} be the smallest index such that ∆h is a hinge of the form RL or LR.
Set z0 = π + θp, z1 = π − θr. We can choose inductively a positive decreasing sequence zk such that
z2 < π − θp, each zk ∈ (0, π), and zk > 2zk−1 − zk−2 for 2 ≤ k ≤ h.

The rest of the sequence zi is constructed backwards from i = N to i = h. Consider a sequence z′i.
Set z′N = 0 and z′N−1 = 1. For each i such that N − 2 ≥ i ≥ h + 1, inductively choose z′i such that
z′i > z′i+1 + z′i+2 or z′i + z′i+2 > 2z′i+1, depending on whether ∆i+1 has a different label (L or R) from
∆i or not, respectively. Observe z′i must be greater than z′i+1 for each i.

Choose ε such that

0 < ε <
zh−1 − zh
z′h+1

.

Set zi = εz′i for h + 1 ≤ i ≤ N . We need zh to satisfy the hinge condition zh < zh−1 − zh+1, or
zh < zh−1 − εz′h+1. This holds by our choice of ε.

Finally, we need each zi to lie in (0, π), for h + 1 ≤ i ≤ N − 1. Observe that zh−1 < π, so
0 < ε < π/z′h+1. Then zi = εz′i < πz′i/z

′
h+1. For h + 1 ≤ i ≤ N − 1, we know z′i ≤ z′h+1, hence z′i is

strictly less than π, as desired. Because z′i is at least z′N−1 > 0, zi = εz′i > 0. Thus we have found a
sequence satisfying Lemma 4.12. �

Proof of Proposition 4.3. Suppose

i(m, p)θp + i(m, q)θq + i(m, r)θr ≤ 2π.

By Lemma 4.16, there is no hinge RL or LR in the sequence of labels of tetrahedra making the layered
solid torus. By Lemma 4.15, there does not exist a sequence satisfying Lemma 4.12. But such a
sequence is required in an angle structure on a layered solid torus, so there is no angle structure in this
case.

Now suppose i(m, p)θp + i(m, q)θq + i(m, r)θr > 2π. Then Lemma 4.17 and Lemma 4.15 imply
there exists a sequence satisfying Lemma 4.12. It follows from that lemma that there exists an angle
structure. �
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4.2. Volume maximisation. We now show that the volume functional on the space of angle structures
takes its maximum on the interior. This is essentially [14, Proposition 15], but we extract slightly more
information from the proof.

Lemma 4.18. Suppose the volume functional on the space of angle structures on a layered solid torus
takes its maximum on the boundary. Then the corresponding structure consists only of flat tetrahedra,
with angles (xi, yi, zi) a permutation of (0, 0, π) for each i = 1, . . . , N − 1.

Proof. By work of Rivin [28], if the volume functional takes its maximum on the boundary of the
space of angle structures, then any tetrahedron with an angle 0 must also have an angle π. Thus those
tetrahedra that do not have all angles strictly within (0, π) must have angles (xi, yi, zi) a permutation
of (0, 0, π); this is a flat tetrahedron.

By Lemma 4.12, a point on the boundary of the space of angle structures corresponds to a sequence
(z0 = π + θp, z1 = π − θr, z2, . . . , zN−1, zN = 0) satisfying the hinge and convexity equations, except
the strict inequalities will be replaced by weak inequalities. This must be a nonincreasing sequence.

Suppose the i-th tetrahedron is the first flat tetrahedron. Then zi ∈ {0, π} but zi−1 ∈ (0, π) unless
i− 1 = 0. If zi = π, then convexity implies zj = π for j = i+ 1, . . . , h, where h is the next hinge index.
The hinge condition then implies that all later zj = 0. Similarly, if zi = 0 then all later zj = 0.

Now consider zi−1. We have xi, yi, zi, zi+1 ∈ {0, π}. Thus by one of Lemmas 4.10, 4.9, or 4.11,
depending on the index i, we have zi−1 = 2π. But 0 < zi−1 < π unless i− 1 = 0. So i− 1 = 0. Then
the first flat tetrahedron is the first tetrahedron, so the entire solid torus consists of flat tetrahedra. �

Corollary 4.19. Suppose the set of angle structures as in Proposition 4.3 is nonempty. Then the
volume functional takes its maximum on the interior of such angle structures. �

The following follows immediately from the Casson–Rivin theorem, Theorem 4.2.

Corollary 4.20. For slopes p, q, r, and m as in Proposition 4.3, and any angles θp, θq, θr satisfying
(4.4), there exists a geometric triangulation of the layered solid torus T of that proposition with exterior
dihedral angles θp, θq, θr.

5. Dehn filling

In this section, we complete the proof of Theorem 5.5.
Let s be a slope, and let len(s) denote the Euclidean length of a geodesic representative of s on a

horospherical cusp torus.
The following theorem is a consequence of Thurston’s hyperbolic Dehn filling theorem [29]. The

version below can be proved assuming a geometric triangulation exists for M , with ideas in Benedetti
and Petronio [2], using methods of Neumann and Zagier [23].

Theorem 5.1 (Hyperbolic Dehn filling theorem). Let M be a hyperbolic 3-manifold with a geometric
ideal triangulation, such that exactly two ideal tetrahedra, ∆ and ∆′, meet a cusp of M . Let s be a
slope on this cusp. Then for all but finitely many choices of s, the Dehn filled manifold M(s) admits a
complete hyperbolic structure, obtained by deforming the triangulation of M , and taking the completion
of the resulting structure. The tips of the tetrahedra ∆,∆′ spin asymptotically along the geodesic core
of the filling solid torus of M(s). As len(s) goes to infinity, the cross-ratios of the tetrahedra of M(s)
become uniformly close to those of M . �

In particular, since M admits a geometric ideal triangulation, the cross-ratios of its tetrahedra have
strictly positive imaginary part. This is an open condition. Thus for s large enough, the triangulation
of M(s) also has cross-ratios with strictly positive imaginary part. It follows that the incomplete, spun
triangulation of M(s) is built of geometric tetrahedra. However, we are not interested in incomplete
triangulations. We will use the incomplete spun triangulation to build a complete geometric ideal
triangulation.
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5.1. Dehn filling and spun triangulations. The following proposition is essentially Proposition 8
of Guéritaud–Schleimer [14].

Proposition 5.2. Let X be a solid torus with ∂X a punctured torus, with boundary ∂X triangulated
by two ideal triangles. Let m ⊂ ∂X be the meridian of X. The following are equivalent.

(1) A complete hyperbolic structure on X is obtained by taking the completion of a spun triangulation
consisting of two tetrahedra ∆ and ∆′, where one face of ∆ and one face of ∆′ form the two
ideal triangles making up ∂X.

(2) The exterior dihedral angles a, b, and c on the edges of the triangulation satisfy a, b ∈ (−π, π),
c ∈ (0, π), and a+ b+ c = π, and also

naa+ nbb+ ncc > 2π,

where na, nb, nc denote the number of times the meridian m ⊂ ∂X of X crosses the edge with
angle a, b, c, respectively.

Moreover, if the hyperbolic structure exists on X, then it is unique. �

Remark 5.3. Proposition 8 of [14] is not quite stated the same as Proposition 5.2, but an almost
identical proof gives the result claimed here. One difference is that in [14], they restrict to a, b, c ∈ [0, π).
However, this restriction is not required for the proof. What is required, if these form exterior dihedral
angles of a solid torus as claimed, is that a+ b+ c = π and a, b, c ∈ (−π, π). These conditions follow
from considering the Euclidean geometry of a horospherical neighbourhood of the puncture on ∂X.
Moreover, the condition a+ b+ c = π forces one of a, b, c to be strictly positive; we let this angle be
denoted c.

Now in the proof of [14, Propostion 8], it is shown that angle structures can be put onto ∆ and ∆′

to form the spun triangulation of X if and only if naa + nbb + ncc > 2π. In the case the inequality
holds, it is shown that the volume functional takes its maximum on the interior of the space of such
angle structures, meaning there exists a hyperbolic structure, and that structure is unique by the
Casson–Rivin theorem, Theorem 4.2.

Theorem 5.4. Let L be a hyperbolic fully augmented link with n ≥ 2 crossing circles. Then there exist
constants A1, . . . , An such that if M is a manifold obtained by Dehn filling the crossing circle cusps of
S3 − L along slopes s1, . . . , sn whose lengths satisfy len(si) ≥ Ai for each i = 1, . . . , n, then M admits
a geometric triangulation. Allowing some collection of si =∞, i.e. leaving some crossing circle cusps
unfilled, also admits a geometric triangulation.

Proof. By Proposition 2.4, S3 − L admits a geometric ideal triangulation with the property that each
crossing circle meets exactly two ideal tetrahedra. By Theorem 5.1, for any slope sufficiently long, the
Dehn filling along that slope is obtained by taking the completion of a spun triangulation consisting of
two tetrahedra. In particular, for the j-th twist region, there exists Aj such that if the length of the
slope is at least Aj , then Dehn filling yields a manifold with spun triangulation. This can be repeated
sequentially for each crossing circle, giving constants A1, . . . , An.

For each crossing circle, consider the two tetrahedra that spin around the core of the Dehn filled solid
torus. These two tetrahedra together form a spun triangulation of a solid torus. By Proposition 5.2,
this torus is unique, and the exterior dihedral angles a, b, c must satisfy naa+nbb+ncc > 2π, where na,
nb, nc denote the number of times the meridian meets the edge on the boundary with corresponding
dihedral angle. Then Corollary 4.20 implies there exists a corresponding layered solid torus with the
same dihedral angles along slopes on the boundary, and the same meridian, with a complete, geometric
hyperbolic structure.

Because dihedral angles agree, each spun solid torus can be removed and replaced by the layered
solid torus by isometry. The result is a geometric ideal triangulation of the Dehn filling of S3 − L. �

We can now complete the proof of Theorem 5.5 from the introduction.

Theorem 5.5. For every n ≥ 2, there exists a constant An depending on n, such that if K is a link in
S3 with a prime, twist-reduced diagram with n twist regions, and at least An crossings in each twist
region, then S3 −K admits a geometric triangulation.
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Figure 6.1. A picture of the Borromean rings as a fully augmented link and the other
two fully augmented links with exactly two crossing circles.

Proof. If K has a prime, twist-reduced diagram with n ≥ 2 twist regions, then S3 −K is obtained by
Dehn filling a hyperbolic fully augmented link L with n crossing circles, where the Dehn filling is along
slopes on each crossing circle. Let mj be the number of crossings in the j-th twist region. Then the

length of the j-th slope is at least
√
m2

j + 1 by [10, Theorem 3.10].

Note that for fixed n, there are only finitely many fully augmented links with n crossing circles. Fix
one of these fully augmented links; call it Lk. By Theorem 5.4, there exist constants Ak,1, . . . , Ak,n

such that if the slope on the j-th crossing circle of Lk has length at least Ak,j , for j = 1, . . . , n, then
the Dehn filling admits a geometric triangulation. Consider An = max{Ak,j}, where the maximum is
taken over all links Lk with n crossing circles. Then provided the number of crossings in each twist
region of K is at least An, the length of each slope on each crossing circle will be at least An, which
implies the Dehn filling yields a geometric triangulation. �

6. Borromean rings and related links

In the previous section, we completed the proof of Theorem 5.5, which is unfortunately not effective:
the constants A1, . . . , An are unknown. In this section, by restricting the fully augmented links we
consider, we are able to prove an effective result, giving an explicit family of hyperbolic 3-manifolds with
geometric triangulations. This is similar in spirit to section 5 of [14], in which Guéritaud–Schleimer show
a similar result for Dehn filling one cusp of the Whitehead link. We extend first to the Borromean rings,
which is a fully augmented link with two crossing circle cusps, and to the two other fully augmented
links with exactly two crossing circle cusps.

The augmented links we consider next are shown in Figure 6.1. The link on the left of Figure 6.1
shows a fully augmented link with three link components; this is ambient isotopic to the Borromean
rings. There are two different fully augmented links obtained by inserting half-twists into the crossing
circles of the Borromean rings shown; these are the links in the middle and right of that figure.

Following the procedure for decomposing fully augmented links into polyhedra as in Section 2, we
find that all three links in Figure 6.1 decompose into two ideal octahedra; the decomposition for the
middle link is exactly the illustration shown in Figure 2.2.

Lemma 6.1. Let L be one of the three fully augmented links with exactly two crossing circles, as shown
in Figure 6.1. Then M = S3 − L has a decomposition into two regular ideal octahedra. Fix one of the
two crossing circle cusps. The octahedra meet the fixed crossing circle cusp as follows.

• One vertex of each octahedron meets the crossing circle cusp. Taking such a vertex to infinity
gives a square on R2 in ∂H3. We may arrange that one square has corners at (0, 0), (1, 0),
(1, 1), and (0, 1) in R2, and the other has corners at (1, 0), (2, 0), (2, 1), and (1, 1) in R2.
• When the crossing circle does not encircle a half-twist, then the arc running from (0, 0) to (0, 1)

projects to a meridian of the crossing circle. When the crossing circle encircles a half-twist
(single crossing), the arc from (0, 0) to (1, 1) projects to a meridian.
• In all cases, the arc from (0, 0) to (2, 0) projects to a longitude of the crossing circle, bounding

a disc in S3.

Proof. The lemma is proved by considering the decomposition. White faces become the circles shown
in Figure 6.2, left. The x’s on each circle packing indicate crossing circle cusps. Take one of these
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Figure 6.2. On the left are shown the two identical circle packings arising from the
decomposition of the links of Figure 6.1. The x’s mark the crossing circle cusps in the
two polyhedra. On the right, the two cusp neighbourhoods are shown, obtained by
taking each pair of x’s to infinity. Dashed lines indicate shaded faces.
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Figure 6.3. Shows how to glue the bases of the crossing circle cusps of fully augmented
links with two crossing circles. Note we could choose the opposite diagonals instead.

points to infinity to obtain the required square. Because the two polyhedra are glued along a white
side, the squares line up side-by-side as claimed; see Figure 6.2, right. A longitude runs along two
shaded faces, which runs along the base of both squares, as claimed.

When there is no half-twist, the shaded face running across the bottom of the square is glued to the
shaded face running across the top of the same square, and hence the base of each square is glued to
the top of the same square to form a fundamental domain for the cusp torus. A meridian runs along a
white side of a square.

When there is a half-twist, a shaded face running across the bottom of the square on the left is glued
to the shaded face running across the top of the square on the right, and so a shearing occurs. See [27,
Proposition 3.2]. The result is that a meridian runs across the diagonal of a square, as claimed. �

Lemma 6.2. Let M be the complement of one of the three fully augmented links with exactly two
crossing circles. Then M has a decomposition into exactly eight ideal tetrahedra, with four tetrahedra
meeting each crossing circle cusp, two in each square of Lemma 6.1.

The square bases are glued as follows. The square on the left of one cusp is glued to the square on the
left of the other cusp by reflecting across the diagonal of negative slope. The other square, on the right
of the first cusp, is glued to the square on the right of the other cusp by reflecting across the diagonal of
positive slope, as shown in Figure 6.3.

Proof. The gluing is obtained by considering squares at the base of the octahedra in Figure 6.2. For the
cusp shown in the middle-right of Figure 6.2, one square base has as vertices the points of intersection
of circles A ∩ C, A ∩D, B ∩D and B ∩ C in anti-clockwise order. This is glued to a square in the
opposite cusp meeting the same points of intersection: Note that the points A ∩ C, A ∩D, B ∩D and
B ∩C are now in clockwise order in the cusp on the right, with A ∩C and B ∩D in the same location
in both. It follows that the squares are glued by a reflection in the negative diagonal.

The other square on the middle-right of Figure 6.2 has as vertices the points of intersection A′ ∩ C ′,
B′ ∩C ′, B′ ∩D′ and A′ ∩D′ in anti-clockwise order. It is glued to a square on the right with the same
vertices, but now A′ ∩C ′, B′ ∩C ′, B′ ∩D′ and A′ ∩D′ are in clockwise order on the right, with A′ ∩C ′
and B′ ∩D′ in the same location. Thus the squares are glued by a reflection in the positive diagonal.

To triangulate: choose both positive diagonals or both negative diagonals in the cusp on the middle-
right of Figure 6.2. This splits the two squares into four triangles; either choice of diagonal will do, but
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we will choose the same diagonal in each square (as opposed to Figure 6.3 where different diagonals
are marked). There are four tetrahedra lying over the four triangles in this cusp. Under the gluing,
the diagonals and the squares are preserved, so the four triangles are mapped to four triangles in the
second cusp. The four additional tetrahedra lie over these four triangles in the second cusp. �

7. Doubling layered solid tori

When the boundary of M is a once-punctured torus triangulated by just two ideal triangles, then we
may glue a layered solid torus to ∂M to perform Dehn filling. In the case of the Borromean rings, the
boundary of our manifold is a twice-punctured torus triangulated by four ideal triangles, in symmetric
pairs. To perform Dehn filling, we need to modify the construction. This modification essentially
appears at the end of Guéritaud and Schleimer [14], when they consider the Whitehead link. However,
the construction applies much more generally than the Whitehead link application, so we walk through
it carefully.

There are two different modifications required, depending on the slope we wish to Dehn fill. Consider
the cover R2 of the twice punctured torus obtained by putting punctures at integral points Z2 ⊂ R2.
Assume first that there are no half-twists, so a meridian µ of slope 1/0 lifts to run from (0, 0) to (0, 1).
A longitude λ of slope 0/1 lifts to run from (0, 0) to (2, 0). Then any slope m = `/k = `µ+ kλ on the
torus lifts to an arc beginning at (0, 0) and ending at (2k, `).

The two modifications depend on whether ` is even or odd. If ` is odd, the lift of the slope `/k will
only meet the points of Z2, which are lifts of punctures, at its endpoints. In this case, we will take a
double cover of a layered solid torus.

Lemma 7.1. Suppose m = `/k = `µ+ kλ is a slope on the torus (with generators µ, λ as above) such
that ` is odd, and `/k /∈ {1/0,±1}.

Consider first the layered solid torus X, constructed as follows. Begin in the Farey triangle with
vertices (1/0, 0/1,±1/1) and step to the triangle with slope `/2k, building the corresponding layered
solid torus X as in Section 3.

Let Y be the double cover of X. Then Y satisfies the following properties.

• The boundary of Y is a twice-punctured torus, triangulated by four ideal triangles (in two
symmetric pairs), lifting to give a triangulation of the cover R2. The basis slope λ lifts to run
from (0, 0) to (2, 0) in R2, and projects to run twice around the slope 0/1 in ∂X. The slope µ
lifts to run from (0, 0) to (0, 1) in R2. Diagonals of the triangulation of ∂Y have positive or
negative slope, depending on whether m is positive or negative.
• The meridian of Y is the slope m = `µ+ kλ.

Proof. Let X denote the layered solid torus with a boundary triangulation that includes the slopes
0/1 and 1/0 and a diagonal ±1/1, with sign agreeing with the sign of m, and meridian `/2k. Note
that since ` is odd and ` /∈ {1/0,±1}, we have `/2k /∈ {0, 1/0,±1,±2,±1/2}, which were the excluded
slopes for building a layered solid torus in Section 3.

Let Y denote the double cover of X. The double cover of a solid torus is a solid torus, and the
once-punctured torus boundary lifts to a twice-punctured torus, with triangles lifting to triangles. We
need to show that the slopes behave as claimed.

First, the slope 1/0 and the meridian `/2k of X have geometric intersection number |1·2k−`·0| = |2k|,
which is even, and thus 1/0 is homotopic to an even power of the core of the solid torus X. Thus in
the double cover Y , the slope 1/0 lifts to a closed curve. As 1/0 is an edge of a triangle on ∂X, it will
remain an edge of a triangle on ∂Y , and lift to a generator of the fundamental group denoted µ. We
may take this to run from (0, 0) to (0, 1) in R2.

Next, the curve 0/1 meets `/2k a total of |0 · 2k− ` · 1| = |`| times on ∂X, which is odd. Therefore it
lifts to an arc rather than a closed curve on ∂Y , with endpoints on distinct punctures. Thus a second
generator of the fundamental group of ∂Y is given by taking two lifts of 0/1, end to end. Denote this
generator by λ. Its lift runs from (0, 0) to (2, 0) in R2.
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Figure 7.1. To create a solid torus with boundary a 2-punctured torus, at each step
layer two identical tetrahedra onto the current boundary triangulation, effecting a
diagonal exchange.

Finally we check that the meridian of Y is the slope m, written in terms of µ and λ as claimed. In
X, the curve `/2k bounds a disc. This lifts to bound a disc in Y as well. However, note the lift runs `
times along µ and k times along λ. Thus the meridian slope is as claimed. �

If ` is even, say ` = 2s for some integer s, the lift of m = `/k to R2 is an arc running from (0, 0)
through (k, s) ∈ Z2 to (2k, 2s) ∈ Z2. Thus it meets a lift of a puncture in its interior. In this case,
taking a double cover of a layered solid torus will not suffice. Instead, we need to give a different
construction.

Construction 7.2. Let m = `/k be a slope such that ` is even, say ` = 2s, and m /∈ {0/1,±2/1}. Let
(T0, . . . , TN ) be a sequence of triangles in the Farey triangulation where T0 is a triangle with slopes 0/1,
1/0, and either 1/1 or −1/1, with sign agreeing with the sign of m, and TN is a triangle with slopes u,
t, and s/k.

Start with the triangulation of the twice-punctured torus consisting of two copies of the slopes of T0
laying side-by-side. More precisely, fill R2 − Z2 with unit squares with diagonals matching that of T0,
and quotient by (x, y) 7→ (x+ 2, y) and (x, y) 7→ (x, y + 1).

Inductively, for the j-th step across an edge in the Farey triangulation, attach two ideal tetrahedra
to the twice-punctured torus, effecting two identical diagonal exchanges with the slopes of Tj−1, and
producing a triangulation of a space homotopy equivalent to the product of the interval and the
twice-punctured torus, with one boundary triangulated by two side-by-side copies of T0, and the other
triangulated by two side-by-side copies of Tj . Note that so far, this is identical to the procedure for
the layered solid torus, only we are taking two copies of each tetrahedron instead of just one. See
Figure 7.1.

This time, continue until j = N , so one boundary is labeled by slopes u, t, and s/k, repeated twice
in each of two parallelograms lying side-by-side. Now obtain a solid torus as follows. First, identify the
two slopes s/k in the two boundary triangles. Then fill the remaining space with a single tetrahedron
whose four faces are glued to the inner faces.

Remark 7.3. Note that to construct a layered solid torus in Section 3, we needed to exclude slopes
in T0 and T1 in the Farey graph. It is no longer necessary to exclude slopes in T1 for the previous
construction, because of the addition of extra tetrahedra corresponding to j = N and a final tetrahedron
after identifying diagonals of the tetrahedra corresponding to j = N . We still exclude slopes in T0.

Lemma 7.4. Suppose m = `/k = `µ+ kλ is such that ` is even and m = `/k /∈ {0/1,±2/1}. Then the
triangulated space Y constructed as above, by taking a sequence of side-by-side tetrahedra and attaching
a final tetrahedron at the core, forms a solid torus satisfying:

• The boundary of Y is a twice-punctured torus, triangulated by four triangles (in symmetric
pairs), with basis slopes µ running over one edge of a triangle, lifting to run from (0, 0) to (0, 1)
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in R2, and λ running over two edges (and two punctures), lifting to run from (0, 0) to (2, 0)
in R2. Diagonal edges of the triangulation have positive or negative slope, where the sign is
determined by the sign of m.
• The meridian of the solid torus Y is the slope m = `µ+ kλ.

Proof. Generators for the fundamental group of the boundary torus consist of edges 1/0 in the original
triangulation, and two copies of 0/1 by construction. Denote the first generator by µ and the second,
consisting of two edges, by λ.

The meridian of the solid torus is the curve that is homotopically trivial. This is the curve formed
by pinching together two edges of slope s/k on the inside boundary of triangulated space. Thus it runs
twice over this edge. In terms of the generators µ and λ, the curve running twice over the edge s/k of
the innermost twice-punctured torus has slope 2sµ+ kλ, or `µ+ kλ. �

Remark 7.5 (Symmetry of Construction 7.2). Notice that the solid torus Y from Construction 7.2
will admit an involution. This involution takes the innermost tetrahedron to itself (setwise), and for
each of the other tetrahedra in the construction, it swaps the two tetrahedra that were layered together,
corresponding to the same triangle in the Farey graph. We will give this solid torus an angle structure.
We will choose the angles to be preserved under this involution. Thus, although tetrahedra are layered
in pairs, and although there are two punctures on the boundary, the two cusp triangulations will be
identical, with angles on any tetrahedron agreeing with the angles on its image under the involution.

Lemma 7.6. Let V be a solid torus with twice punctured torus boundary, and with triangulation either
as in Lemma 7.1 or Lemma 7.4, depending on whether the meridian m = `µ+ kλ has ` even or odd.
We also assume m /∈ {0/1, 1/0,±1/1,±2/1}.

Let {θp, θq, θr} be exterior dihedral angles along edges of the twice punctured torus, where each is
repeated twice symmetrically, such that

0 < θr < π, −π < θp, θq < π, and θp + θq + θr = π.

Suppose also that in the case ` is odd, intersection numbers satisfy

i(p, `/2k)θp + i(q, `/2k)θq + i(r, `/2k)θr > 2π.

Then there exists an angle structure on the triangulated solid torus with these exterior angles. Conversely,
if an angle structure exists and ` is odd, then the intersection numbers satisfy the above equation.

Proof. The case of the double cover of a layered solid torus follows from the same result for usual
layered solid tori, Proposition 4.3. In this case, the angle structure exists for the layered solid torus; lift
the angles to the double cover to obtain the result. This gives the proof when ` is odd.

In the case that ` is even, we work with the side-by-side solid torus. For every pair of tetrahedra
layered on at the i-th step of Construction 7.2, where 1 ≤ i ≤ N , label the dihedral angles of both
tetrahedra by xi, yi, zi with xi + yi + zi = π. Similarly for the last tetrahedron, label its angles
xN+1, yN+1, zN+1 with xN+1 + yN+1 + zN+1 = π. As in Section 4, we build an angle structure on the
side-by-side layered solid torus by finding a sequence (z0 = π + θp, z1 = π − θr, · · · , zN , zN+1) with
zi ∈ (0, π).

The side-by-side layered solid torus has two ideal vertices. The cusp triangulation of each of the two
ideal vertices is still a sequence of hexagons, and these will be identical because of the symmetry of the
solid torus. The cusp triangulations are constructed exactly as in the case of the layered solid torus for
the first N steps; these agree with Figure 4.4. But the cusp triangulation differs from that of the usual
layered solid torus at the innermost hexagon, where the last tetrahedron is attached.

Because cusp triangulations agree before the last step, the dihedral angles xi, yi, zi for 2 ≤ i ≤ N
satisfy the same conditions of Lemma 4.10. Similarly, z0 = π + θp, z1 = π − θr, and x1, y1 satisfy the
conditions of Lemma 4.9, with the same cusp pictures. Therefore, just as in Lemma 4.12, for 1 ≤ i ≤ N
the sequence satisfies:{

zi−1 > zi + zi+1 if ∆i and ∆i+1 are labelled RL or LR (hinge condition)

zi−1 + zi+1 > 2zi if ∆i, ∆i+1 are RR or LL (convexity condition)
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Figure 7.2. The innermost triangles of one of the two hexagons forming a cusp
triangulation of a side-by-side solid torus.

Moreover, for the first two tetrahedra,

π − θp − 2θr < z2 < π − θp.
Recall that to make the slope m trivial in the side-by-side case, we identify the two edges of slope

(`/2)/k in the pair of tetrahedra at the N -th step. This corresponds to identifying a pair of opposite
vertices in the innermost hexagon; see Figure 7.2.

As in the proof of Lemma 4.11, the sum of the interior angles of the hexagon is 4π. This gives the
equation

(2xN + xN+1) + (2yN + zN+1) + zN = 2π, or zN = zN+1 + xN+1.

Since xN+1 > 0, this implies that 0 < zN+1 < zN . Thus for angle structure to exist on the side-by-side
layered solid torus, we require that 0 < zN+1 < zN . Finally, note again that by a downward induction,
convexity and hinge equations imply that the sequence is strictly decreasing.

As in Lemmas 4.15 and 4.17, we find a sequence (z0, z1, . . . , zN , zN+1) satisfying the above conditions.
In the layered solid torus case, we had to split into two cases, depending on whether or not a hinge
existed. When there was no hinge, we needed a convex sequence with the last term equal to zero.
However, in this case, we need a convex sequence with zN+1 > 0, which can always be arranged. Thus
we only need to show that a sequence satisfying the above requirements exits.

To find such a sequence, the same argument of Lemma 4.17 can be used. Namely, let h ∈
{2, 3, . . . , N + 1} be the smallest index such that ∆h is a hinge of the form RL or LR, or set h = N + 1
if no such index exists. Set z0 = π + θp, z1 = π − θr. We can choose inductively a positive decreasing
sequence zk such that zk > 2zk−1 − zk−2 for 1 ≤ k ≤ h.

The rest of the sequence zi is constructed backwards from i = N + 1 to i = h. Consider a sequence
z′i. Set 1 > z′N+1 > 0 and z′N = 1. For each i such that N − 1 ≥ i ≥ h+ 1, inductively choose z′i such
that z′i > z′i+1 + z′i+2 or z′i + z′i+2 > 2z′i+1, depending on whether ∆i+1 is a hinge or not.

Now choose ε such that 0 < ε < (zh−1 − zh)/z′h+1. Set zi = εz′i for h+ 1 ≤ i ≤ N + 1. The sequence
zi satisfies the required inequalities for i < h and i > h. Because of our choice of ε, it also satisfies the
hinge condition zh < zh−1 − zh+1, or zh < zh−1 − εz′h+1. Thus we have found a sequence giving an
angle structure. �

Lemma 7.7. Let V be the triangulated solid torus of Lemma 7.6; in particular, the meridian m of
V is not one of {0/1, 1/0,±1/1,±2/1}. If the volume functional takes its maximum on the boundary
of the space of angle structures, then all tetrahedra in the solid torus must be flat. Thus the volume
functional is maximised in the interior.

Proof. Suppose the volume functional is maximised on the boundary for the double cover V of a layered
solid torus. There is a symmetry of the triangulated solid torus V swapping triangles in pairs, changing
the basepoint of the double covering. If the volume is maximised at a point in which angles are not
preserved by this symmetry, then applying the symmetry gives two distinct maxima, contradicting the
fact that the volume functional is convex. Thus a point of maximum for the double cover descends
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to a maximal point for the original layered solid torus. By Lemma 4.18, if the volume functional is
maximised on the boundary, all tetrahedra are flat. Thus the maximum is in the interior in this case.

For the side-by-side triangulation, a point on the boundary of the space of angle structures corresponds
to a sequence (z0, z1, . . . , zN+1) satisfying hinge and convexity equations, but now with weak inequalities.
This must be a non-increasing sequence. Suppose the i-th tetrahedron is the first flat tetrahedron.
Then zi ∈ {0, π} but zi−1 ∈ (0, π) unless i − 1 = 0. If zi = π, then convexity implies zj = π for
j = i+ 1, . . . , h, where h is the next hinge index. The hinge condition then implies that all later zj = 0.
Similarly, if zi = 0 then all later zj = 0.

Now consider zi−1. We have xi, yi, zi, zi+1 ∈ {0, π}. Thus by one of the formulas determining angles,
as in Lemma 4.10, zi−1 = 2π. But 0 < zi−1 < π unless i− 1 = 0. If i− 1 = 0, the first flat tetrahedron
is the first tetrahedron, so the entire solid torus consists of flat tetrahedra.

There is one final thing to check: above, we have restricted to angle structures in which a tetrahedron
and its image under the involution preserving the side-by-side solid torus are given the same angles. We
have shown that under this restriction, volume is maximised in the interior. However, note that if the
volume were maximised for an angle structure on Y that did not have symmetric angles, then applying
the involution would give a distinct angle structure on Y with the same volume, contradicting the fact
that the volume functional has a unique maximum. Hence the maximum of the volume functional must
occur at an angle structure that is preserved under our involution. �

Lemma 7.8. Let V be the triangulated solid torus of Lemma 7.6; in particular, the meridian m of V
is not one of {0/1, 1/0,±1/1,±2/1}. Suppose V is a subset of a triangulation of a 3-manifold M such
that the volume functional on M is maximised at a point in which a tetrahedron of V is flat. Then the
exterior dihedral angles of V satisfy: (θp, θq, θr) are equal to one of (π,−π, π), (−π, π, π), (π, 0, 0), or
(0, π, 0). Conversely, if the exterior dihedral angles satisfies one of these choices, then all tetrahedra in
V are flat.

Proof. By Lemma 7.7, if one of the tetrahedra in the solid torus is flat then all of the tetrahedra in this
solid torus are flat.

Next observe that the exterior dihedral angles of the solid torus satisfy: θr = π−z1, θq = π−(z2+2x1)
or θq = π − (z2 + 2y1), and θp = π − θq − θr, where z1, x1, y1 are the dihedral angles of the outermost
tetrahedron in the flat layered solid torus, and z2 is an angle in the next outermost tetrahedron. Exactly
one of x1, y1, z1 is π, and the other two are 0.

If z1 = 0, then z2 = 0 because the zi form a nonincreasing nonnegative sequence. Then θr = π and θq
is either π or −π, depending on x1, y1. Since θp + θq + θr = π, this implies that (θp, θq, θr) = (π,−π, π)
or (−π, π, π).

Now suppose z1 = π. Then x1, y1 = 0, and z2 is 0 or π. In this case, θr = π − z1 = 0, θq is 0 or π
depending on z2, and θp = π − θr − θq is π if θq = 0 or 0 if θq = π. Therefore, (θp, θq, θr) = (π, 0, 0), or
(0, π, 0).

Conversely, suppose the exterior dihedral angles are as in the lemma. Then z1 = π− θr must be 0 or
π. In either case, the angles of the outermost tetrahedron must then be a permutation of (0, 0, π), and
hence that tetrahedron is flat. By Lemma 7.7, if any tetrahedron is flat, all tetrahedra are flat. �

7.1. The case of a half-twist. In the case that a crossing circle encircles a half-twist, the cusp is still
formed from two squares, but a meridian of the crossing circle cusp lifts to R2 to run from (0, 0) to
(1, 1).

Suppose first that m is positive. Then apply a homeomorphism to the fully augmented link
complement that reverses the direction of the crossing. The meridian µ = 1/0 of this new link
complement lifts to run from (0, 0) to (−1, 1), and the longitude λ = 0/1 to run from (0, 0) to (2, 0).
The vertical line from (0, 0) to (0, 1) is a lift of the slope 1/1. Now given `, k relatively prime, perform
the construction of the solid torus in Lemma 7.1 or Lemma 7.4 depending on whether ` is even or odd.
Only now, lift µ to the curve running from (0, 0) to (−1, 1) in R2. As the lift is purely topological, this
gives a solid torus that can be used to perform the Dehn filling just as before. Moreover, Lemmas 7.6
and 7.7 still hold with their proofs unchanged in this case.
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If m is negative, then the meridian µ = 1/0 of the crossing circle cusp lifts to run from (0, 0) to (1, 1),
the longitude λ = 0/1 lifts to run from (0, 0) to (2, 0), and the slope −1/1 lifts to run from (0, 0) to
(0, 1). Given m = `/k, again perform the construction of the solid torus of Lemma 7.1 or Lemma 7.4,
depending on whether ` is even or odd, and lift µ to the curve running from (0, 0) to (1, 1) in R2.
Again Lemma 7.6 and Lemma 7.7 hold with proofs unchanged to give the required angle structures,
with volume maximised in the interior. Thus the construction works equally well with or without a
half-twist.

7.2. A vertical construction. Finally, the above work is sufficient to perform all Dehn fillings on
the family of fully augmented links with exactly two twist regions, shown in Figure 6.1. However, in
Section 9, we will need to extend this construction to obtain a solid torus in which µ = 1/0 lifts to run
from (0, 0) to (0, 2) and λ = 0/1 lifts to run from (0, 0) to (1, 0). We treat that case in this subsection.

Note that above, we constructed a solid torus by taking side-by-side tetrahedra, i.e. stacking identical
tetrahedra horizontally, in the x-axis direction. More precisely, we tiled all of R2 − Z2 by unit squares
cut through by a diagonal, layered on tetrahedra coming from a walk in the Farey graph, and then
took the quotient by (2Z,Z).

This construction could instead have been done by taking identical tetrahedra stacked in the y-axis
direction. That is, quotient out by (Z, 2Z). All the results above immediately hold for this construction.
In particular, we have the following.

Lemma 7.9. Let m = `/k be such that k is even, and m /∈ {1/0,±1/2}. The “vertical side-by-side” solid
torus, constructed by layering on tetrahedra in a path from T0 = (0/1,±1/1, 1/0) to TN = (u, v, `/(k/2)),
has the following properties.

(1) Its boundary is a twice-punctured torus, triangulated by four ideal triangles in two symmetric
pairs, with basis slopes µ running over two edges of a triangle, lifting to run from (0, 0) to (0, 2)
in R2, and λ running over one edge, lifting to run from (0, 0) to (1, 0) in R2.

(2) The meridian of the solid torus is the slope m = `µ+ kλ.
(3) The triangulated solid torus admits an angle structure, with volume functional taking its

maximum in the interior.
(4) In a volume maximising structure, if there is one flat tetrahedron, then all tetrahedra must

be flat. Moreover, all tetrahedra are flat if and only if exterior dihedral angles are one of
(θp, θq, θr) = (π,−π, π), (−π, π, π), (π, 0, 0), or (0, π, 0). �

Similarly, if `/k is a slope such that k is odd, we may take a double cover of a layered solid torus to
produce a solid torus whose boundary is a twice-punctured torus, only now with a fundamental domain
that consists of two squares stacked vertically rather than horizontally, as follows.

Lemma 7.10. Let m = `/k be such that k is odd and m /∈ {0/1,±1/1}. Then the (vertical) double cover
Y of the layered solid torus X constructed from a walk in the Farey graph from T0 = (0/1, 1/0,±1/1)
to slope (2`)/k has the following properties.

• The boundary of Y is a twice-punctured torus, triangulated by four ideal triangles (in two
symmetric pairs), lifting to give a triangulation of the cover R2. The basis slope µ lifts to run
from (0, 0) to (0, 2) in R2, and projects to run twice around the slope 1/0 in ∂X. The basis
slope λ lifts to run from (0, 0) to (1, 0).
• The meridian of Y is the slope m = `µ+ kλ.

Proof. Let X be a layered solid torus with meridian slope 2`/k, where k is odd. Let Y be the (vertical
double) cover of X.

The slope from (0, 0) to (0, 1) is a generator in the solid torus X. It meets the meridian 2`/k of X a
total of |1 · k − 0 · 2`| = |k| times, which is odd. Therefore the curve from (0, 0) to (0, 1) lifts to an
arc in ∂Y . Thus a generator of the fundamental group of ∂Y is given by taking two lifts of the curve
from (0, 0) to (0, 1), lined up end-to-end. Denote the resulting closed curve in Y by µ. Its lift runs
from (0, 0) to (0, 2) in R2.
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The slope from (0, 0) to (1, 0) is a generator in the solid torus X. This curve and the meridian of X,
of slope 2`/k, have geometric intersection number |0 · k − 2 · `| = |2`|, which is even. Thus the curve
from (0, 0) to (1, 0) is homotopic to an even power of the core of X. Therefore a second generator of
the fundamental group of ∂Y is given by taking the lift of the curve from (0, 0) to (1, 0). Denote this
generator by λ. Its lift runs from (0, 0) to (1, 0) in R2.

The meridian 2`/k of X lifts to bound a disc in Y . Note that the lift runs 2` times along µ and k
times along λ. So in the basis for Y , the meridian has the form `/k = `µ+ kλ. �

8. Dehn filling the Borromean rings

In this section we finish the proof that triangulations of Dehn fillings of the crossing circles of the
Borromean rings are geometric, for appropriate choices of slopes, and similarly for the other fully
augmented link complements shown in Figure 6.1.

Lemma 8.1. Let M be one of the fully augmented link complements with exactly two crossing circles.
Let m1,m2 be slopes such that

m1,m2 /∈ {0/1, 1/0,±1/1,±2/1}.

Then the Dehn filling of M on its crossing circle cusps along slopes m1 and m2, denoted M(m1,m2),
admits a topological triangulation built by gluing together two triangulated solid tori that are either
both double covers of layered solid tori, or one double cover and one solid torus with the side-by-side
consruction of Lemma 7.4, or two solid tori of that form.

Proof. The slopes m1 and m2 on the two crossing circle cusps each determine a triangulation of a solid
torus by Lemma 7.1 or Lemma 7.4. To perform Dehn filling, we remove interiors of all edges, faces, and
tetrahedra meeting a crossing circle cusp, and replace them by one of these two triangulated solid tori.

Removing interiors of edges, faces, and tetrahedra meeting the two crossing circle cusps removes all
but two squares from the manifold, namely the squares shown in Figure 6.3, identified as shown in
Lemma 6.2. We wish to attach triangulated solid tori to these squares. There are two cases to consider.

Case 1: The triangulations on the boundary of the solid tori agree. If M is the Borromean
rings complement, this is the case that the slopes m1 and m2 are both positive, or the case that the
slopes m1 and m2 are both negative. In this case, the squares of Figure 6.3 are triangulated by the
same diagonals. If M has one or two half-twists, again the sign of m1 and m2 determine the diagonals.
This is the case that the choice of triangulation gives the same diagonals.

In this case, the corresponding solid tori have boundary triangulation that matches the triangulation
on the squares. Moreover, when we attach the two solid tori to opposite sides of the squares, following
the gluing instructions of Figure 6.3, their triangulations match the given triangulations, giving a
topological triangulation of the Dehn filling.

Case 2: The triangulations disagree. For example, this is the case that m1 and m2 have
opposite signs when M is the Borromean rings complement.

In this case, the triangulations of the solid tori will induce triangulations of the two squares with
opposite diagonals. To glue these together, we add two identical extra tetrahedra between the two
squares, with the tetrahedra effecting a diagonal exchange on the squares.

Because both tetrahedra are attached along exactly two faces to the second solid torus, in fact they
form an extra layer on the solid torus, equivalent to changing the initial triangulation on the boundary
in the construction from (0, 1, 1/0) to (0,−1, 1/0), or vice versa. Thus we glue these two tetrahedra to
the second solid torus. Then the second solid torus has the form of Lemma 7.1 or Lemma 7.4, except
with triangulation on its boundary consisting of diagonals having opposite sign from the slope. �

Lemma 8.2. Suppose the exterior dihedral angles on the i-th solid torus are denoted αi for the diagonal
edges, and θi for the horizontal edges, for i = 1, 2. If an angle structure exists on M(m1,m2) then
α1 = −α2 and

θ1 = θ2 + α2, θ2 = α1 + θ1.
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Proof. Angle structures for each of the triangulated solid tori will come from Lemma 7.6, once we
decide on exterior dihedral angles. Angle structures on the solid tori will induce an angle structure on
the entire manifold if and only if the edge equations are satisfied for edges that lie on the two squares,
on the boundaries of the solid tori.

Each solid torus has six edges on its boundary, and we assign three angles, giving a pair of symmetric
edges the same angle. On the first solid torus, the horizontal edges all have the same exterior angle,
denoted θ1. The diagonal edges have the same exterior angle, denoted α1, and the vertical edges have
the same exterior angle, which must be π − α1 − θ1. Similarly denote the horizontal, diagonal, and
vertical exterior angles on the second solid torus by θ2, α2, and π − θ2 − α2, respectively.

Diagonal edges are glued to diagonal edges. Thus the sum of interior angles satisfies

(π − α1) + (π − α2) = 2π, or α1 = −α2.

Horizontal edges with exterior angle θ1 are identified to vertical edges with exterior angle π− θ2−α2;
both vertical edges in the second solid torus lie in this edge class. Similarly horizontal edges with
exterior angle θ2 are identified to the vertical edges of the first solid torus. Thus the sum of interior
angles around these two edge classes satisfy:

2(π − θ1) + 2(θ2 + α2) = 2π, or θ1 = θ2 + α2, and

2(π − θ2) + 2(θ1 + α1) = 2π, or θ2 = θ1 + α1. �

Lemma 8.3. Let M denote the complement of a fully augmented link with two crossing circles, as in
Figure 6.1, and let M(m1,m2) denote its Dehn filling along slopes m1, m2 on the crossing circle cusps.
If m1,m2 satisfy

m1,m2 /∈ {0/1, 1/0,±1/1/,±2/1},
then M(m1,m2) admits an angle structure.

Proof. If an angle structure exists, it must satisfy the equations of Lemma 8.2. In addition, there is an
angle structure on each of two solid tori, with exterior angles denoted by θp1

, θq1 , θr1 in the first solid
torus, satisfying

(8.4) θp1 + θq1 + θr1 = π, −π < θp1 , θq1 < π, 0 < θr1 < π,

and denoted by θp2
, θq2 , θr2 in the second solid torus, and satisfying similar conditions.

In addition, in the special case that mi = `i/ki and `i is odd, and moreover the path in the Farey
graph from the initial triangulation has no hinges, then we require the slopes pi, qi, ri and `i/(2ki) to
satisfy the intersection condition (4.5).

Provided we can find any angles that simultaneously satisfy all the above, we will have proved the
lemma.

The difficulty is that the angles θpi
, θqi , and θri have different relationships with angles αi, θi and

π − αi − θi depending on whether m1,m2 have the same or different sign, and on whether a crossing
circle has a half-twist.

Suppose first that there are no half-twists, i.e. M is the Borromean rings complement, and that m1

and m2 have the same sign; for concreteness, say they are both positive. In this case, we build the two
solid tori corresponding to m1 and m2 by starting in the triangle in the Farey graph with vertices 0, 1,
1/0, and go up. In this case, 1 is not covered in the first step, so r = 0 or r = 1/0, and 1 is the slope p
or q. If both solid tori have hinges, then the intersection condition will either be automatically satisfied
for the layered solid tori we construct, or it is unnecessary for the side-by-side tori we construct. So the
more difficult remaining case is when m1 = `1/k1 with `1 odd, and there are no hinges in the path
from the triangle (0, 1, 1/0) to `1/(2k1), and similarly for `2/(2k2).

No hinges means the slope `i/(2ki) is of the form 1/2n for n a positive integer, or of the form n/1;
the second is impossible because 1 6= 2ki. Thus the path in the Farey graph consists only of Ls, and
goes from (0, 1, 1/0) to 1/(2ki). Then we know that ri, the first slope covered, corresponds to 1/0,
which is the vertical edge in the initial triangulation, labeled with exterior angle π − αi − θi. The slope
pi, the second slope covered, corresponds to 1/1, which is the diagonal edge in the initial triangulation,
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labeled with exterior angle αi. Thus the slope qi corresponds to 0, the horizontal edge, with exterior
angle θi. The required equations then become: θi = θqi , αi = θpi

, π − θi − αi = θri satisfy (8.4), as
well as intersection conditions:

i(1/(2ki), 1/1)αi + i(1/(2ki), 0/1)θi + i(1/(2ki), 1/0)(π − αi − θi) > 2π,

or

(2ki − 1)αi + θi + 2ki(π − αi − θi) > 2π.

There are many solutions to these equations. For example, set α1 = π/6, θ1 = 5π/9, and π−α1−θ1 =
5π/18, and α2 = −α1 = −π/6, θ2 = α1 + θ1 = 13π/18, and π − α2 − θ2 = 4π/9. This gives an angle
structure, as desired.

The case that both m1 and m2 are negative is similar.
Next suppose there are no half-twists, but m1 and m2 have opposite signs; say m1 > 0 and m2 < 0.

Then we insert an extra tetrahedron onto the first solid torus. Thus the construction of this solid
torus now starts at the Farey triangle (0,−1, 1/0) and immediately crosses into the triangle (0, 1, 1/0).
It follows that r = −1, corresponding to exterior angle α1. The only case in which the intersection
condition comes up is if the path in the Farey triangulation only steps L, and the slope m1 = 1/(2k1).
Then in this case, p = 1/0, corresponding to exterior angle π − α1 − θ1, and q = 0, corresponding to
exterior angle θ1. The intersection condition is similar to above; the only difference is that we need to
ensure we have a solution in which α1 now lies strictly between 0 and π. But notice we already found
such a solution in the previous case. Thus the same angles in the previous case still work to give an
angle structure in this case. Notice that α2 < 0, but because m2 < 0 as well, α2 does not correspond
to the exterior angle on slope r2, the first slope covered, and so −π < α2 < 0 works in this case.

In the case that there is one half-twist, the half-twist changes the names of the slopes in the framing:
the meridian of the unfilled manifold is now a diagonal, the longitude runs over two horizontal segments.
However, we still assign the same exterior angles α1 to the diagonal, θ1 to the horizontal. In fact, this
gives the same required equations as above, both in the case of m1 and m2 having the same sign, and
m1 and m2 having opposite signs, and so the same choices of angles will give an angle structure.

Finally, when there are two half-twists, again we change the framing on both solid tori, but ensuring
the triangulations match up will again give the same required equations, and so the solution above
always gives an angle structure. �

Lemma 8.5. Let M denote the complement of one of the fully augmented links with two crossing
circles, shown in Figure 6.1, and let M(m1,m2) denote its Dehn filling along slopes m1, m2 on the
crossing circle cusps. Suppose m1,m2 satisfy

m1,m2 /∈ {0/1, 1/0,±1/1/,±2/1}.

Then, for the space of angle structures on the triangulation of M(m1,m2) from above, the volume
functional takes a maximum in the interior.

Proof. Consider a point on the boundary of the space of angle structures. Because it is on the boundary,
it contains a flat tetrahedron, with angles 0, 0, and π. Because the triangulation of M(m1,m2) is built
of two triangulated solid tori, one of the tetrahedra in one of the solid tori is flat. Then by Lemma 7.7,
all of the tetrahedra in this solid torus are flat.

By Lemma 7.8, we know that the exterior dihedral angles of the flat solid torus (θp, θq, θr) are either
(π,−π, π), (−π, π, π), (π, 0, 0), or (0, π, 0).

Suppose that (θp, θq, θr) = (π,−π, π) or (−π, π, π). In either case, this implies that α1 = ±π, so
−α2 = α1 = ±π, and θ2 = α1 + θ1 = 0 (it cannot be 2π since we restrict to exterior angles between −π
and π), by Lemma 8.2. Then the third angle satisfies π − α2 − θ2 = 0. So the exterior dihedral angles
of the second solid torus are (π, 0, 0). It follows from Lemma 7.8 that the second solid torus must also
be flat. Thus such an angle structure has zero volume, and cannot maximise volume.

Now suppose that (θp, θq, θr) = (0, 0, π), up to permutation. Then α1 is 0 or π, so α2 = −α1 is 0 or
−π, and θ2 = α1 + θ1 is 0 or π. In any case, the exterior dihedral angles must all be either 0 or ±π,
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Figure 9.1. The two forms of a 2-bridge link above, and the forms of the fully
augmented 2-bridge link (without half-twists) below.

which again implies that the second layered solid torus is flat. As before the angle structure cannot
maximise volume. �

Theorem 8.6. Let L be a fully augmented link with exactly two crossing circles, as in Figure 6.1.
Let M be the manifold obtained by Dehn filling the crossing circles of S3 − L along slopes m1,m2 ∈
(Q ∪ {1/0})− {0, 1/0,±1,±2}. Then M admits a geometric triangulation.

Proof. By Lemma 8.1, M(m1,m2) admits a topological triangulation. By Lemma 8.3, this triangulation
admits an angle structure. By Lemma 8.5 the volume functional takes its maximum on the interior
of the space of angle structures. Then the Casson–Rivin theorem, Theorem 4.2, implies that the
triangulation is geometric. �

9. Fully augmented 2-bridge links

In this section we consider links obtained by fully augmenting the standard diagram of a 2-bridge
link, which we call fully augmented 2-bridge links for short. These admit a decomposition into two
identical, totally geodesic, right-angled ideal polyhedra as in Section 2. In this case, the polyhedra
have a particularly nice form: they are built by gluing finitely many regular ideal octahedra. The
construction is illustrated carefully in [26, Section 4]. We review it briefly here.

A 2-bridge link has one of two forms, depending on whether there is an even or odd number of twist
regions; see Figure 9.1. As before, we augment each twist region with a crossing circle, and remove all
even pairs of crossings from the corresponding twist region, leaving one or zero crossings encircled by
each crossing circle. When there is one crossing, we say the crossing circle has a half-twist. In fact, we
will not consider half-twists here, so assume the fully augmented 2-bridge link has no half-twists.

To obtain the polyhedra, cut the fully augmented 2-bridge link along the geodesic surface of the
projection plane. This cuts each of the 2-punctured disks bounded by a crossing circle in half. The
3-sphere is cut into two pieces, one above and one below the projection plane. For each half, we
cut open half discs and flatten them in the projection plane. Lastly, shrink the link components to
ideal vertices. See Figure 9.2, left. The circle packing giving the polyhedral decomposition of a fully
augmented 2-bridge link is shown in Figure 9.2, right.

Lemma 9.1. The cusp shapes of any fully augmented 2-bridge link complement with no half-twists
consist of a 1× 2 block of squares, if the cusp is the first or the last in the diagram, or a 2× 2 block of
squares for all other cusps.

Proof. The fully augmented 2-bridge link has a circle packing built of two tangent circles labelled C1

and C2, and a string of circles C3, . . . , Cn, each tangent to both C1 and C2, and Cj tangent to Cj−1
and Cj+1 for j = 4, . . . , n − 1, as in Figure 9.2, right. This circle packing describes each of the two
polyhedra making up the link complement.
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Figure 9.2. How to decompose a fully augmented 2-bridge link into two polyhedra.
On the right, the corresponding circle packing.
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Figure 9.3. Left to right: The first cusp, the next cusp, the (2k)-th cusp, and the
(2k + 1)-th cusp.

We need to determine the cusp shapes of the crossing circle cusps. In each polyhedron, the crossing
circle cusps correspond to tangencies in the circle packing betweeen C2 and C3, between C4 and C1,
and more generally, between C2 and C2k+1, and between C1 and C2k. We take each of these tangent
points to infinity to determine the cusp shape. There are two cases.

Case 1. Consider the first and last crossing circles, corresponding to tangencies of C2 and C3, and
of either C2 and Cn or C1 and Cn if n is odd or even, respectively.

Take the point of tangency to infinity. In the case of C2 and C3, there are two circles, C1 and C4,
tangent to both C2 and C3, and tangent to each other. Thus the circle packing forms a square, similar
to the case of the Borromean rings. When we glue across white faces, we glue an identical square
coming from the second polyhedron, and the cusp becomes a 1× 2 rectangle. See Figure 9.3, left. The
case of Cn is similar.

Case 2. For tangencies between circles C1 and C2k or C2 and C2k+1, where the circles C2k or C2k+1

are not the first or last such circles, when we take the point of tangency to infinity we see a pattern as
shown in Figure 9.3, right. That is, in the first case, circles C1 and C2k become parallel lines. Between
them are three circles tangent to both parallel lines, namely C2k−1, C2, and C2k+1. These circles form
the cusp circle packing. Again glue a white face to another white face to obtain the full cusp shape,
shown in Figure 9.3, middle-right. In this case, the cusp shape is a 2× 2 rectangle. The case of C2 and
C2k+1 is similar, and is illustrated in Figure 9.3, far right. �

Notice that each crossing circle cusp is tiled by ideal pyramids over a square base. The first and last
crossing circle cusps are tiled by two pyramids, the others by four.

The fully augmented 2-bridge link is obtained by gluing all these pyramids together according to the
following pattern.



GEOMETRIC TRIANGULATIONS AND HIGHLY TWISTED LINKS 35

Figure 9.4. How the square faces of pyramids glue to each other.

Lemma 9.2. Consider the fully augmented 2-bridge link, with no half-twists, and cusp shapes as in
Lemma 9.1. The gluing is as follows.

• The first cusp, which is a 1× 2 rectangle, is glued to the top half of the second cusp, with left
side gluing by a reflection in the diagonal of positive slope, and right side gluing by reflection in
the diagonal of negative slope.
• The bottom half of the second cusp, another 1× 2 rectangle, is glued to the top half of the third

cusp, with the left side gluing by reflection in the negative diagonal, and the right side gluing by
reflection in the positive diagonal.
• Inductively, the 1× 2 bottom half of the k-th cusp glues to the 1× 2 top half of the (k + 1)-th

cusp, with left side gluing by reflection in one diagonal, and the right side gluing by reflection
in the other diagonal. See Figure 9.4. Importantly, diagonals glue to diagonals, and horizontal
lines glue to vertical and vice-versa.
• Finally, on the last 2× 2 rectangle, the bottom 1× 2 rectangle glues to the final crossing circle

cusp, a 1× 2 rectangle, again with vertical edges gluing to horizontal and horizontal to vertical,
and diagonals gluing to diagonals.

Proof. As in the case of the link with two crossing circles, this result is obtained by observing the
intersections of circles in the circle packings; refer to Figure 9.3. For the first cusp, the square on the
left has ideal vertices C1 ∩ C2, C2 ∩ C4, C3 ∩ C4, C3 ∩ C1 in anti-clockwise order. These map to the
top square in the middle left, but note this list of vertices now runs in clockwise order, with C2 ∩ C4

and C3 ∩ C1 in the same locations. It follows that the gluing is a reflection in the diagonal of positive
slope. For the square on the right, ideal vertices C ′1 ∩ C ′3, C ′3 ∩ C ′4, C ′2 ∩ C ′4, C ′2 ∩ C ′1 in anti-clockwise
order are mapped to the top right square in the middle-left, only now in clockwise order. The gluing is
a reflection in the diagonal of negative slope.

The rest of the squares are treated similarly to obtain the result. �

To Dehn fill, we remove the interiors of the pyramids meeting the cusp, leaving only the square base
of each pyramid behind. We will then put in a triangulated solid torus in which the chosen slope bounds
a meridian and the boundary is triangulated to match the triangulation on the original manifold.

We know how to fill in a solid torus in the case of the 1× 2 rectangles: we just take the double cover
of the layered solid torus as in Lemma 7.1 or the side-by-side solid torus as in Lemma 7.4.

For the 2× 2 rectangle, we see in Lemma 9.3 that the double cover of one of the solid tori we have
already encountered will always work.

Lemma 9.3. Suppose a/b is a slope, and a/b /∈ {0/1, 1/0,±1/1}.
(1) If a is odd and b is even, then let Y be the double cover of the vertical side-by-side solid torus

X from Lemma 7.9, constructed so that X has meridian a/2b.
(2) If a is even and b is odd, or if a is odd and b is odd, then let Y be the double cover of the

horizontal side-by-side solid torus X from Lemma 7.4, constructed so that X has meridian
2a/b.
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In either case, Y is a triangulated solid torus whose boundary consists of eight ideal triangles in four
symmetric pairs, forming a 2× 2 square. The slope a/b is a meridian of Y .

Proof. Case 1. Suppose a/b is of the form odd over even.
Let X be the triangulated solid torus that is a “vertical” side-by-side of a layered solid torus,

constructed so that the meridian of X has slope a/2b := mX , as in Lemma 7.9. Note that to build
such a triangulation, we walk to the slope a/b in the Farey graph, then identify edges of slope a/b in
the final layered tetrahedra, and insert one more tetrahedron. In R2, the slope 1/0 := µX in X lifts to
run from (0, 0) to (0, 2), and 0/1 := λX lifts to run from (0, 0) to (1, 0). The meridian of X, the slope
a/2b = mX , lifts to run from (0, 0) to (2b, 2a).

Let Y denote the (horizontal) double cover of X. We will show Y gives the required Dehn filling.
To do so, we need to show that a/b, now written as a slope on Y , in the basis for Y , bounds a disc.

In the solid torus X, the slope µX = 1/0 lifts to the curve running from (0, 0) to (0, 2) in R2. The
meridian slope mX = a/2b meets the slope µX a total of |a · 0− 2b · 1| = |2b| times, which is even. Thus
the curve µX is homotopic to an even power of the core of X. Therefore it lifts to a generator of the
fundamental group of ∂Y . Denote this generator by µY = 1/0. When we lift ∂Y to R2, the lift of µY

still runs from (0, 0) to (0, 2).
The meridian slope mX = a/2b of X meets the slope λX = 0/1 a total of |2b · 0− a · 1| = |a| times,

which is odd. Thus a second generator of the fundamental group of ∂Y is given by taking two lifts of
the curve λX = 0/1, lined up end-to-end. Denote this generator by λY . When we lift ∂Y to R2, λY
lifts to run from (0, 0) to (0, 2) in R2, i.e. twice the lift of the corresponding generator in ∂X.

The meridian mX = a/2b of X lifts to bound a disc in Y . Note that the lift runs a times along µY

and b times along λY . This means the meridian of Y is the slope a/b, as desired.

Case 2. Suppose a/b is of the form even over odd or is of the form odd over odd.
Let X be the triangulated solid torus that is a “horizontal” side-by-side solid torus, constructed so

that the meridian of X has slope 2a/b := mX . Note that to build such a triangulation, we walk to the
slope a/b in the Farey graph, as in Lemma 7.4. The solid torus X has generators of the fundamental
group given by slopes µX = 1/0, lifting to run from (0, 0) to (0, 1) in the R2 cover of ∂X, and λX = 0/1,
lifting to run from (0, 0) to (2, 0). The meridian 2a/b lifts to run from (0, 0) to (2b, 2a).

Let Y denote the (vertical) double cover of X. We will show Y gives the required Dehn filling. To
do so, we need to show that a/b, written in the basis for Y , bounds a disc.

In X, the slope µX = 1/0 meets the meridian slope mX = 2a/b a total of |1 · b− 0 · 2a| = |b| times,
which is odd. Thus µX in X lifts to an arc in ∂Y . A generator of the fundamental group of ∂Y is given
by taking two lifts of this curve, lined up end-to-end. Denote the resulting closed curve in Y by µY . Its
lift runs from (0, 0) to (0, 2) in R2.

In X, the slope λX = 0/1 meets the meridian slope mX = 2a/b of X a total of |0 · b− 1 · 2a| = |2a|
times, which is even. Thus the curve λX is homotopic to an even power of the core of X, and it lifts to
a closed curve in Y . A second generator of the fundamental group of ∂Y is given by taking this lift of
λX . Denote it by λY . When we lift ∂Y to R2, the lift of λY is the same as the lift of λX : it runs from
(0, 0) to (0, 2) in R2.

The meridian mX = 2a/b of X lifts to bound a disc in Y . Note that the lift runs a times along µY

and b times along λY , hence has the slope a/b, as desired. �

Lemma 9.4. Let a/b ∈ Q ∪ {1/0} be such that a/b /∈ {0/1, 1/0,±1/1}. Let Y denote the triangulated
solid torus with meridian a/b of Lemma 9.3. Let {θp, θq, θr} be exterior dihedral angles along the
boundary of the four-punctured torus forming the 2× 2 square, each repeated four times symmetrically,
satisfying:

0 < θr < π, −π < θp, θq < π, θp + θq + θr = π.

Then there exists an angle structure on the triangulated solid torus of Lemma 9.3 with these exterior
angles.
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Proof. This is automatic from Lemma 7.6 or 7.9: our solid torus is the double cover of a vertical or hori-
zontal side-by-side solid torus X, with meridian of X not one of the slopes {0/1, 1/0,±1/1,±1/2,±2/1}.
For such solid tori, the angle structure exists, so it exists for the double cover by lifting angles. �

Lemma 9.5. Let T be the triangulated solid torus of Lemma 9.3. If the volume functional has its
maximum in the boundary of the space of angle structures, then all tetrahedra of T must be flat. Hence,
the volume functional takes its maximum in the interior.

Moreover, all tetrahedra are flat if and only if exterior angles (θp, θq, θr) are one of (π, 0, 0), (0, π, 0),
(−π, π, π) or (π,−π, π).

Proof. This follows immediately from the similar fact for side-by-side solid tori, Lemmas 7.7 and 7.8,
or in the vertical side-by-side case by Lemma 7.9. �

After removing pyramids from the fully augmented 2-bridge link, and putting in triangulated solid
tori satisfying the above lemmas, we have a triangulation of a Dehn filling. To obtain an angle structure,
we need gluing equations to be satisfied. Since we already know gluing equations inside the solid tori,
we only need to ensure gluing equations hold on the boundaries of these solid tori, where they glue to
each other.

Lemma 9.6. Let L be a fully-augmented 2-bridge link with n > 2 crossing circles (and no half-twists).
Let s1, . . . , sn be slopes that are all positive or all negative, and further

s1, sn /∈ {0/1, 1/0,±1/1,±2/1}, and s2, . . . , sn−1 /∈ {0/1, 1/0,±1/1}.

Label horizontal edges in all crossing circle cusps by θj, diagonals by αj, and verticals by π − θj − αj.
(These are exterior angles). Let T be the triangulation of the Dehn filling of S3 − L along these slopes
obtained by inserting solid tori as above. Then if there is an angle structure, exterior angles on the
solid tori must satisfy:

(9.7) Diagonal equations: αi = −αi+1 for all i

(9.8) Interior equations: 2(θi + αi)− θi−1 − θi+1 = 0 for 2 ≤ i ≤ n− 1

(9.9) End equations: θ1 + α1 − θ2 = 0, and θn + αn − θn−1 = 0.

Proof. This follows from the gluing description given above.
Diagonal edges map to diagonal edges, and these are the only edges in this edge class. Thus for all i,

(π − αi) + (π − αi+1) = 2π, which implies αi = −αi+1, giving (9.7).
For the first end equations, the vertical edges with angles π − θ1 − α1 in the first 1× 2 cusp glue to

the horizontal edges on the left side of the first 2× 2 cusp, labelled θ2. Note that both vertical edges
and both horizontal edges are glued to the same edge class. Thus 2(π− (π− θ1−α1)) + 2(π− θ2) = 2π.
This gives the first end equations in (9.9).

For the interior equations, the horizontal edge with angle θi−1 in the (i− 1)-st cusp glues to both
vertical edges in the i-th cusp, with angles π− θi−αi. In turn, both vertical edges in the i-th cusp glue
to the horizontal edge with angle π− θi+1 in the (i+ 1)-st cusp. Note that this is true for 2 ≤ i ≤ n− 1.
Thus we require that π − θi−1 + 2(π − (π − θi − αi)) + π − θi+1 = 2π for 2 ≤ i ≤ n− 1 . This gives the
interior equations in (9.8).

For the last end equations, both horizontal edges with angle θn−1 in the last 2× 2 cusp glue to both
vertical edges with angle π−θn−αn in the last 1×2 cusp. Thus 2(π−θn−1)+2(π−(π−θn−αn)) = 2π,
giving the last end equation in (9.9). �

Lemma 9.10. For the triangulation on the Dehn filling of the fully augmented 2-bridge link given
above, the space of angle structures is non-empty.

Proof. Because the signs of all the slopes agree, say all are positive, the solid tori are constructed by
starting in the Farey triangulation in the triangle (0, 1, 1/0), and moving either across the edge from 0
to 1 or from 1 to 1/0. In either case, the slope 1/1 cannot correspond to the slope covered first, so αj
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will never correspond to the slope θrj ; it will be θpj
or θqj . Then set all αj = 0. This is in the required

range of Lemma 9.4.
Because αj = 0 for all j, the end equations imply θ1 = θ2, and the interior equations imply

2θ2 = θ1 + θ3, hence θ3 = θ1. Inductively assume θj = θ1 for j ≤ k and k ≤ n − 1. Then
2θk = θk−1 + θk+1, hence θk+1 = θ1 as well. Finally, the end equations imply θn = θn−1 = θ1. So all
angles θj = θ1.

Now by Lemma 9.4 in the case of the 2× 2 square, or by Lemma 7.6 in the case of the 1× 2 square,
an angle structure exists on the solid tori. By choice of angles, these satisfy the gluing equations
required in Lemma 9.6. So this gives an angle structure. �

Lemma 9.11. Volume is maximised in the interior of space of angle structures.

Proof. Suppose volume is not maximised in the interior. Then there is a flat tetrahedron, say in the
i-th solid torus a tetrahedron is flat. By Lemma 9.5 the i-th solid torus must be a flat solid torus.

A solid torus is flat if and only if the exterior angles αi, θi, π − αi − θi are (0, 0, π) or (π,−π, π), up
to permutation, by Lemma 9.5.

Cases:

(1) αi = θi = 0
(2) αi = 0, θi = π
(3) αi = π, θi = 0
(4) αi = π, θi = −π
(5) αi = −π, θi = π.

Case (1): Suppose that αi = θi = 0. Then αj = 0 for all j by the diagonal equations (9.7). As in
the proof of Lemma 9.10, this implies that θj = θ1 for all j. In particular, θ1 = θi = 0, so all θj = 0, so
all the solid tori are flat by Lemma 9.5.

Case (2): Suppose that αi = 0 and θi = π. Then 2θi = θi−1 + θi+1 by the interior equations (9.8).
Since θi = π, we have 2π = θi−1 + θi+1, which implies that both θi−1 and θi+1 are π. Hence all solid
tori are flat by Lemma 9.5.

Case (3): Suppose that αi = π and θi = 0. By the interior equations (9.8), we have θi+1+θi−1−2θi =
2π. Now θi = 0 gives θi−1 +θi+1 = 2π, which implies that θi−1 and θi+1 are π. Then diagonal equations
plus these results imply αi−1 = −π and θi−1 = π. This is case (5). We show below that all tetrahedra
are flat.

Case (4): Suppose that αi = π and θi = −π.
First suppose i is even, where 1 < i ≤ n. Then αj = π for j = 2k and αj = −π for j = 2k + 1. In

particular, α1 = −π. By the end equations (9.9), we have θ2 = θ1 − π. By the interior equations (9.8),
we have 2θj − θj−1 − θj+1 = 2π for j = 2k + 1, and 2θj − θj−1 − θj+1 = −2π for j = 2k. In particular,
when j = 2k = 2, this implies θ1 = θ3.

Now inductively assume that θ2j+1 = θ1 for j ≤ k and θ2j = θ1 − π for j ≤ k, and 2k + 3 ≤ n− 1.
Then the interior equations imply:

2θ2k+1 − θ2k − θ2k+2 = 2θ1 − θ1 + π − θ2k+2 = 2π,

and so θ2k+2 = θ1 − π. Moreover,

2θ2k+2 − θ2k+1 − θ2k+3 = 2(θ1 − π)− θ1 − θ2k+3 = −2π,

thus θ2k+3 = θ1. Finally, the end equation implies:

θn =

{
θn−1 − π = θ1 − π if n even

θn−1 + π = (θ1 − π) + π = θ1 if n odd.

Since our fixed i is even, we have θ1 = θi + π = −π + π = 0. This implies that θj = 0 for all j even
and θj = −π for all j odd. It follows that all tetrahedra are flat by Lemma 9.5.

Now suppose i is odd, αi = π, θi = −π. Then αj = −π for j even and αj = π for j odd. In
particular, α1 = π. As above, the end and interior equations imply that θj = θ1 when j is odd, and
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θj = θ1 + π when j is even. So again, −π = θi = θ1 = θj for all j odd, and 0 = θ1 + π = θj for all j
even. Thus again all tetrahedra are flat.

Case (5): Now suppose that αi = −π and θi = π. This case is similar to Case (4) above. When i is
odd, one can show θ2j+1 = θ1 and θ2j = θ1 − π for all j, implying θ1 = θi = π = θ2j+1, and θ2j = 0.
Thus all tetrahedra are flat.

When i is even, one can show θ2j+1 = θ1 and θ2j = θ1 + π for all j, implying π = θi = θ1 + π, so
θ1 = θ2j+1 = 0, and θ2j = 0 + π, so again all tetrahedra are flat. �

Theorem 9.12. Let L be a fully-augmented 2-bridge link with n > 2 crossing circles (and no half-twists).
Let s1, s2, . . . , sn ∈ Q∪ {1/0} be slopes, one for each crossing circle, that are all positive or all negative.
Suppose finally that s1 and sn are the slopes on the crossing circles on either end of the diagram, and
the slopes satisfy:

s1, sn /∈ {0/1, 1/0,±1/1,±2/1}, and s2, . . . , sn−1 /∈ {0/1, 1/0,±1/1}.
Then the manifold obtained by Dehn filling S3 − L along these slopes on its crossing circles admits a
geometric triangulation.

Proof. With these slopes, there exists a triangulated solid torus with meridian sj and boundary
triangulated by a number of triangles matching that on the crossing circle boundary. Topologically,
the Dehn filling is given by triangulating the solid tori and gluing them together. By Lemma 9.10,
the result admits an angle structure. By Lemma 9.11, the volume is maximised in the interior of
the angle structure. The Casson–Rivin Theorem, Theorem 4.2, then implies that the triangulation is
geometric. �
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