GEOMETRIC TRIANGULATIONS AND HIGHLY TWISTED LINKS

SOPHIE L. HAM AND JESSICA S. PURCELL

Abstract. It is conjectured that every cusped hyperbolic 3-manifold admits a geometric triangulation, i.e., it is decomposed into positive volume ideal hyperbolic tetrahedra. Here, we show that sufficiently highly twisted knots admit a geometric triangulation. In addition, by extending work of Guérin and Schleimer, we also give quantified versions of this result for infinite families of examples.

1. Introduction

A topological triangulation of a 3-manifold M is a decomposition of M into tetrahedra or ideal tetrahedra such that the result of gluing yields a manifold homeomorphic to M. Every compact 3-manifold with boundary consisting of tori has interior that admits a topological ideal triangulation [20, 3].

A geometric triangulation is a much stronger notion. It is an ideal triangulation of a cusped hyperbolic 3-manifold M such that each tetrahedron is positively oriented and has a hyperbolic structure of strictly positive volume, and such that the result of gluing gives M a smooth manifold structure with its complete hyperbolic metric. It is still unknown as to whether every finite volume hyperbolic 3-manifold admits a geometric triangulation, and there are currently only a few families which provably admit one. These include 2-bridge knots and punctured torus bundles, due to Guérin and Futer [13], and all the manifolds of the SnapPea census [5]. On the other hand, Choi has shown that there exists an orbifold with no geometric triangulation [4].

In this paper, we prove that a large family of knots admit geometric triangulations. To state the main result, we recall the following definitions.

A twist region of a link diagram consists of a portion of the diagram where two strands twist around each other maximally. More carefully, let $D(K)$ be a diagram of a link $K \subset S^3$. Two distinct crossings of the diagram are twist equivalent if there exists a simple closed curve on the diagram that runs transversely through the two crossings, and is disjoint from the diagram elsewhere. The collection of all twist equivalent crossings forms a twist region.

Note that one can perform flypes on a link diagram until all twist equivalent crossings line up in a row, forming bigons between them. Suppose every simple closed curve that meets the diagram transversely only in two crossings has the property that it bounds a (possibly empty) region of the diagram consisting only of bigons. In such a case, the diagram is called twist-reduced. Figure 1.1, left, shows an example of a twist-reduced diagram with exactly two twist regions.

The first main result of this paper is the following.

Theorem 5.5. For every $n \geq 2$, there exists a constant C_n depending on n, such that if K is a link in S^3 with a prime, twist-reduced diagram with n twist regions, and at least C_n crossings in each twist region, then $S^3 - K$ admits a geometric triangulation.

The proof uses links called fully augmented links. These are obtained by starting with a twist-reduced diagram of any knot or link, and for each twist-region, adding a simple unknot called a crossing circle encircling the twist-region. We further remove all pairs of crossings in each twist region; see Figure 1.1. The result has explicit geometric properties, and can be subdivided into geometric tetrahedra. The original link complement is obtained by Dehn filling the crossing circles. We complete the proof of Theorem 5.5 by arguing that Dehn filling can be performed in a way that gives a geometric triangulation.

Guéritaud and Schleimer considered geometric triangulations and Dehn filling [12]. They showed that if a cusped manifold satisfies certain ‘genericity’ conditions, then Dehn filling can be performed via geometric triangulation. Unfortunately, the usual geometric decomposition of a fully augmented link, as in [18, Appendix] or [10, 25], fails Guéritaud–Schleimer’s genericity conditions. Nevertheless, we may adjust the decomposition to give a triangulation satisfying the Guéritaud–Schleimer conditions. This is the idea of the proof of Theorem 5.5.

Highly twisted knots, as in Theorem 5.5, are known to have other useful geometric properties. For example, they can be shown to be hyperbolic when there are at least six crossings in each twist region [10]. When there are at least seven, there are bounds on the volumes of such knots and links [9]. With at least 116 crossings per twist region, there are bounds on their cusp geometry [23]. The results of Theorem 5.5 are not as nice as these other results, because we do not have an effective universal bound on the number of crossings per twist region required to guarantee that a knot admits a geometric triangulation. Nevertheless, we conjecture such a bound holds.

To obtain effective results, we need to generalise and sharpen results of Guéritaud and Schleimer, and we do this in the second half of the paper. This allows us to present two effective results, which guarantee geometric triangulations of new infinite families of cusped hyperbolic 3-manifolds. The first result is the following.

Theorem 8.6. Let L be a fully augmented link with exactly two crossing circles. Let M be a manifold obtained by Dehn filling the crossing circles of $S^3 - L$ along slopes $m_1, m_2 \notin \{0, \infty, \pm 1, \pm 2\}$. Then M admits a geometric triangulation.

There are three fully agumented links with exactly two crossing circles; one is the Borromean rings and the others are closely related; these are shown in Figure 6.1. The Dehn fillings of these links include double twist knots, which were already known to admit geometric triangulations by [13]. They also include large families of cusped hyperbolic manifolds that do not embed in S^3. More generally, we also show the following.

Theorem 9.12. Let L be a fully-augmented 2-bridge link with n crossing circles (and no half-twists). Let s_1, s_2, \ldots, s_n be slopes, one for each crossing circle, that are all positive or all negative. Suppose finally that s_1 and s_n are the crossing circles on either end of the diagram, and the slopes satisfy:

\[s_1, s_n \notin \{0/1, 1/0, \pm 1/1, \pm 2/1\}, \text{ and } s_2, \ldots, s_{n-1} \notin \{0/1, 1/0, \pm 1/1\}. \]

Then the manifold obtained by Dehn filling $S^3 - L$ along these slopes on its crossing circles admits a geometric triangulation.

The Borromean rings and other links of Theorem 8.6 form examples of fully-augmented 2-bridge links, and therefore Theorem 8.6 also follows from Theorem 9.12. However, we prove the theorems separately to build up tools.

The manifolds included in Theorem 9.12 include all 2-bridge links with at least two crossings per twist region. These were already known to admit geometric triangulations [13]. However, again they also include infinitely many additional manifolds.

\[\text{In fact, they showed something stronger: that Dehn filling gives a canonical triangulation, i.e. dual to the Ford-Voronoi domain, but we will not consider canonical triangulations here.} \]
1.1. **More on geometric triangulations.** It is known that every cusped hyperbolic 3-manifold has a decomposition into convex ideal polyhedra, due to work of Epstein and Penner [6]. The convex polyhedra may be further subdivided into tetrahedra, but the result may not give a geometric triangulation. The difficulty is that the subdivision involves triangulating the polygonal faces of the polyhedra, and these triangulations may not be consistent with each other under gluing. To solve this problem, flat tetrahedra are inserted between identified faces of the polyhedra; see Petronio and Porti for more discussion [22].

If we pass to finite covers, then geometric triangulations exist by work of Luo, Schleimer, and Tillmann [19]: Every cusped hyperbolic 3-manifold admits a finite cover with a geometric triangulation.

If we relax the restriction that the tetrahedra glue to give a complete hyperbolic metric, and only require that the dihedral angles of each tetrahedra are strictly positive, and sum to 2π around each edge of the triangulation, then the result is called an *angle structure* (or sometimes a *strict angle structure*). Geometric triangulations admit angle structures. Moreover, Hodgson, Rubinstein, and Segerman show that many 3-manifolds admit an angle structure, including all hyperbolic link complements in S^3 [15]. However, they note that the triangulations they find are not generally geometric.

There was some hope in the past that a class of triangulations introduced by Agol, [1] called *veering triangulations*, give geometric triangulations. Indeed it was shown by Hodgson, Rubinstein, Segerman and Tillmann [16] and by Futer and Guéritaud [7] that veering triangulations admit angle structures. However Hodgson, Issa, and Segerman found a 13-tetrahedron veering triangulation that is not geometric [14], and recently Futer, Taylor, and Warden showed that a random veering triangulation is not geometric [11]. Thus tools to exhibit geometric triangulations must come from other directions.

Why geometric triangulations? Various results become easier with geometric triangulations. For example, Neumann and Zagier showed that certain useful bounds exist on the volume of a hyperbolic 3-manifold that admits a geometric triangulation [21], although this can be proven in general with more work; see Petronio–Porti [22]. Similarly, Benedetti and Petronio give a straightforward proof of Thurston’s hyperbolic Dehn surgery theorem using geometric triangulations [2]. Choi finds nice conditions on the deformation variety for manifold admitting geometric triangulations [4]. In summary, such triangulations seem to lead to simpler proofs, and more manageable geometry.

1.2. **Organisation.** The paper is organised as follows. Sections 2 through 5 give the proof of Theorem 5.5, on more general highly twisted knots. We recall fully augmented links in Section 2, layered solid tori in Sections 3 and 4, and put this together with the Dehn filling in Section 5.

Sections 6 through 8 give the proof of Theorem 8.6, on Dehn fillings of links with two crossing circles, and build up the new machinery required for both Theorem 8.6 and Theorem 9.12.

Finally, in Section 9, we complete the proof of Theorem 9.12, on Dehn fillings of fully augmented 2-bridge links.

1.3. **Acknowledgements.** Both authors were supported in part by the Australian Research Council, grant DP160103085. Purcell was also supported in part by ARC grant FT160100232.

2. Fully augmented links

The links of the main theorem, Theorem 5.5, are obtained by Dehn filling a parent link, called a fully augmented link. In this section, we review fully augmented links and their geometry, and show that they admit geometric triangulations.

Begin with any twist-reduced diagram of a link. As in the middle of Figure 1.1, for each set of twist equivalent crossings, insert a single unknotted curve that encircles the bigons of the twist region. If a twist region consists of only a single crossing, there are two ways to insert this link component; either will do. These unknotted components are chosen to be disjoint, and to bound discs that are punctured by exactly two strands of the original link. We call them *crossing circles*. A *fully augmented link* is a link obtained by adding a single crossing circle to every twist region of a twist-reduced diagram, and then removing all crossings that bound a bigon. That is, crossings are removed in pairs. The resulting diagram consists of crossing circles that are perpendicular to the plane of projection and strands that
lie on the plane of projection except possibly for single crossings in the neighbourhood of a crossing circle. See Figure 1.1, right.

Agol and Thurston studied the geometry of fully augmented links using a decomposition into ideal polyhedra [18, Appendix]. In particular, they show that every fully augmented link admits a decomposition into two identical totally geodesic polyhedra that determine a circle packing on \mathbb{C}. The result we need is the following.

Proposition 2.1. A fully augmented link decomposes into the union of two identical ideal polyhedra with the following properties.

1. Each polyhedron is convex, right-angled, with a checkerboard colouring of its faces, shaded and white. The shaded faces are all ideal triangles, each a subset of a 2-punctured disc bounded by a crossing circle.

2. Each polyhedron is determined by a circle packing on $\mathbb{R}^2 \cup \{\infty\}$, with white faces lifting to planes in \mathbb{H}^3 whose boundaries are given by the circles. Shaded faces lift to planes with boundaries given by the dual circle packing.

3. Embed the ideal polyhedron in \mathbb{H}^3 as a convex right-angled polyhedron. Ideal vertices project to link components. Apply an isometry so that an ideal vertex corresponding to a crossing circle lies at the point at infinity in the upper half space model of \mathbb{H}^3. Then two white faces form parallel vertical planes meeting the point at infinity, with two shaded faces forming perpendicular parallel vertical planes, cutting out a rectangle. Two other white faces, defining circles tangent to the white parallel vertical planes, meet the shaded parallel vertical planes at right angles. This forms a rectangle with two circles; see Figure 2.1.

Moreover, none of the four ideal vertices on \mathbb{R}^2 corresponding to the corners of the rectangle project to crossing circles.

Proofs of Proposition 2.1 can be found in various places, including [10, 25]. We review the details briefly as it is important to our argument.

Proof of Proposition 2.1. There are two types of totally geodesic surface in the complement of a fully augmented link, and these will form the white and shaded faces of the polyhedra. The first totally geodesic surface comes from embedded 2-punctured discs bounded by crossing circles; colour each of these shaded.

The second comes from a surface related to the plane of projection. If the fully augmented link has no crossings on the plane of projection, then it is preserved by a reflection in the plane of projection and the white surface is the plane of projection. This reflection is realised by an isometry fixing the white surface pointwise, so the white surface is totally geodesic. If the link admits single crossings adjacent to crossing circles, reflection in the plane of projection will change the direction of each crossing. However,
a full twist about the adjacent crossing circle is a homeomorphism of the complement, and it returns the link to its original position. The combination of reflection followed by twists is an isometry fixing a surface pointwise; this is the white surface. Again it is totally geodesic.

To obtain the decomposition into ideal polyhedra, first cut along each shaded 2-punctured disc. Near single crossings, rotate one copy of the 2-punctured disc by 180° to remove the crossing from the diagram. The white face then lies on the projection plane. Slice along the projection plane. This process is shown in Figure 2.2.

The result is two ideal polyhedra. We now show that these satisfy the properties stated. First, the checkerboard colouring is as claimed, by construction. The involution above is the reflection through white faces taking one polyhedron to another. Also, note that under the involution, shaded 2-punctured discs are taken to their reflection in the projection plane, yet must still be geodesic. It follows that they are perpendicular to white faces, and so the polyhedron is right-angled.

The circle packing comes from the totally geodesic white faces. These faces are all disjoint, and correspond to regions of the plane of projection. They lift to a collection of geodesic planes in \mathbb{H}^3, whose boundaries form a collection of circles that are tangent exactly when two white faces are adjacent across a strand of the link, or meet a common crossing circle. The shaded faces lift to ideal triangles, dual to the white circles. The intersections of the exteriors of planes in \mathbb{H}^3 defined by the circles gives a convex region with all right-angled dihedral angles; this is the geometric structure on the ideal polyhedron.

The fact that the cusp is as claimed follows from the fact that each ideal vertex of the polyhedron is 4-valent, so moving one to infinity gives a rectangle, and each shaded face is an ideal triangle, so beneath a vertical shaded face lies a single white circle. The shaded ideal triangle is obtained by slicing a 2-punctured disc through the projection plane. One vertex corresponds to an arc of the crossing circle above (or below) the projection plane, and the other two vertices correspond to strands of the link running through the crossing circle. Thus exactly one of the ideal vertices of the shaded triangle corresponds to a crossing circle. Because the ideal vertex corresponding to the crossing circle lies at infinity, the other two ideal vertices, lying at point of intersection of vertical shaded and white planes, must correspond to link strands on the plane of projection. These are other vertices of the rectangle on \mathbb{R}^2.

We will show that fully augmented links admit a geometric triangulation coming from the decomposition into polyhedra of Proposition 2.1. To do so, we will show that crossing circles can be triangulated separately.

Consider a polyhedron of the decomposition of a fully augmented link, as in Proposition 2.1. Arrange the polyhedron in \mathbb{H}^3 so that the point at infinity projects to a crossing circle cusp, with vertical planes cutting out a rectangle on $\partial\mathbb{H}^3$. Then there is a unique circle on $\partial\mathbb{H}^3$ meeting each vertex of the rectangle. It intersects exactly four of the circles in the circle packing corresponding to white faces of the polyhedron. See Figure 2.3. The circle is the boundary of a geodesic plane in \mathbb{H}^3. The intersection of the plane with the polyhedron determines a totally geodesic rectangular surface.
For each ideal vertex corresponding to a crossing circle, there exists a circle running through all four vertices of the rectangle of Proposition 2.1 (3). Each of these defines a plane in \mathbb{H}^3, and their intersection with the polyhedron defines a rectangle R.

Lemma 2.2. Let R_1, \ldots, R_n denote the totally geodesic rectangular surfaces arising as above, one for each crossing circle vertex. Then either the interiors of the rectangles are pairwise disjoint, or there exist exactly two rectangles R_1 and R_2, the ideal polyhedron is a regular ideal octahedron, and the rectangle $R_1 = R_2$ cuts the polyhedron into two square prisms.

Proof. Let C denote the circle running through the four vertices of the rectangle of a crossing circle cusp. Consider the intersection of this circle C and the circles corresponding to white faces of the polyhedron. The circle C intersects the two vertical planes that form two of the four edges of the rectangle; this gives two intersections. Additionally, the circle C intersects the two hemispheres bounded by circles meeting the vertical planes, at the top and bottom of Figure 2.3.

The fact that C cannot meet any other white faces of the polyhedron now follows from the fact that it encloses the region on $\partial \mathbb{H}^3$ bounded by the parallel vertical planes and by the two white circles tangent to them. All other white circles are completely contained in this region. Therefore, the hemispheres they determine cannot intersect C.

Now we consider the intersections of two rectangular surfaces R_1 and R_2 arising from circles C_1 and C_2 from different crossing circles. Arrange the polyhedron so that the crossing circle vertex corresponding to R_1 lies at infinity, and R_1 determines a circle C_1 running through four vertices of a rectangle. The rectangular surface R_2 lies on a geodesic hemisphere H_2 whose boundary on $\partial \mathbb{H}^3$ is a circle C_2. By the argument above, C_2 meets exactly four of the white circles in the circle packing; these intersections cut C_2 into four circular arcs. Note that the endpoints of each arc are ideal vertices of the polyhedron.

If the surfaces R_1 and R_2 intersect, then the circles C_1 and C_2 intersect. Because the circular arcs of C_2 lie inside white circles of the circle packing, this is possible only if a point of intersection of C_1 and C_2 occurs within one of the circles of the circle packing. Because C_1 only meets the two parallel sides of the rectangle and two circles tangent to them, the circles where C_1 and C_2 intersect must be among these circles.

Next note that C_1 and C_2 must intersect twice within the same circle of the circle packing, else the ideal vertices met by circular arcs of C_1 and C_2 interleave on a circle. However, C_1 runs through the outermost ideal vertices on each of the four circles under consideration: there are no additional ideal vertices outside the rectangle for C_2 to meet for interleaving.

Finally, the intersection points either lie on the vertices of the rectangle defining R_1, or lie outside that rectangle, because C_1 lies outside that rectangle. But only points inside the rectangle lie inside the polyhedron, so intersections outside the rectangle cannot give intersections of R_1 and R_2, which both are embedded in the polyhedron.

The only remaining possibility is that C_1 and C_2 both run through at least two of the same ideal vertices on the rectangle defining R_1. If exactly two, R_1 and R_2 share an edge, but have disjoint
interiors as claimed. If more than two, then they must share all four ideal vertices, and R_1 and R_2 agree. In this case, the polyhedron is determined: it must be a regular ideal octahedron with $R_1 = R_2$ cutting off an ideal vertex corresponding to a crossing circle on either side. The fully augmented link can only have two crossings circles, corresponding to the ideal vertices used to define R_1 and R_2. The rectangles $R_1 = R_2$ cut the octahedron into two pyramids over a square base.

Proposition 2.3. Every fully augmented link admits a geometric triangulation with the following properties.

1. Each crossing circle meets exactly four tetrahedra, two in each polyhedron.
2. The triangulation is symmetric across the white faces. That is, a reflection across white faces preserves the triangulation.

Proof. Begin with the ideal polyhedral decomposition of Proposition 2.1. For either one of the two symmetric ideal polyhedra, cut off each ideal vertex corresponding to a crossing circle by cutting along the rectangles of Lemma 2.2. This splits the polyhedron into n pyramids over a rectangular base corresponding to crossing circles, where n is the number of crossing circles, and one remaining convex ideal polyhedron P. In the case that there are just two crossing circles, the remaining convex ideal polyhedron is degenerate: it is just the rectangle $R_1 = R_2$. In all other cases, it has 3-dimensional interior.

Split each rectangular pyramid into two geometric tetrahedra by choosing a diagonal of the rectangle and cutting along it.

When we reglue into the fully augmented link, the choices of diagonals on the rectangles R_1, \ldots, R_n are mapped to ideal edges on the convex polyhedron P.

When P is nondegenerate, we triangulate it by coning. Choose any ideal vertex w of P. For any face not containing w that is not already an ideal triangle, subdivide the face into ideal triangles in any way by adding ideal edges. Then take cones from w over all the triangles in faces disjoint from w. Because P is convex, the result is a division of P into geometric ideal tetrahedra.

Transfer the triangulation on the first polyhedron to the second by reflection in the white faces. This gives both polyhedra exactly the same subdivision, up to reflection.

Now note that the polyhedra glue by reflection in the white faces, so no new flat tetrahedra need to be introduced in these faces to obtain the gluing. All shaded faces are ideal triangles, which are glued by isometry and again no flat tetrahedra need to be introduced. Thus the decomposition of the polyhedra into geometric tetrahedra described above gives a decomposition of the fully augmented link complement into geometric tetrahedra.

Finally, the fact that the geometric triangulation satisfies the two properties of the theorem follows by construction: Each crossing circle meets two rectangles, hence four tetrahedra. The triangulation is preserved by the reflection in the white faces. □

The previous lemma gives a geometric triangulation of a fully augmented link, but four tetrahedra meet each crossing circle. We need a triangulation for which only two tetrahedra meet each crossing circle.

Proposition 2.4. Every fully augmented link admits a geometric triangulation with the property that each crossing circle meets exactly two tetrahedra.

Proof. Begin with the geometric triangulation of Proposition 2.3 and consider the crossing circles. These are triangulated by exactly four tetrahedra, two in each polyhedron. For each of the two tetrahedra in one polyhedron, one face lies on a totally geodesic ideal rectangle coming from Lemma 2.2 embedded in \mathbb{H}^3. Call the two rectangles, one for each polyhedron, R_1 and R_2.

Adjust the geometric triangulation as follows. At an ideal vertex corresponding to a crossing circle, two polyhedra are glued along a white face. The result of gluing both polyhedra together along such a face is shown in Figure 2.4. Note rectangles R_1 and R_2 are glued along an edge. The boundary of the two glued polyhedra forms an even larger rectangle, with boundary the outermost parallel lines in Figure 2.4, and the dashed lines.
Figure 2.4. Glue both polyhedra in the decomposition of a fully augmented link along a white face corresponding to a vertical plane in H^3. Two rectangles, R_1 and R_2, are glued as shown. A larger circle C runs through vertices of both R_1 and R_2.

There is a circle C running through each vertex of that rectangle, shown in red in Figure 2.4. Note that the hemisphere defined by C in H^3 meets an edge of R_1 and an edge of R_2. Cutting along the hemisphere cuts the two polyhedra along a rectangle R. The region bounded by R_1, R_2, R and the two polyhedra is a solid with three ideal quadrilateral faces and two ideal triangle faces; it forms a prism over an ideal triangle. The region between R and infinity forms a neighbourhood of the crossing circle vertex. Triangulate it by adding an edge along a diagonal of R and then coning to infinity. This gives two geometric ideal tetrahedra meeting the crossing circle vertex. These are the only tetrahedra meeting this vertex.

It remains to triangulate the prism over the ideal triangle bounded by R_1, R_2, and R. The rectangles R_1, R_2, and R all have been triangulated by a choice of diagonal; the one on R comes from the paragraph just above, and those on R_1 and R_2 come from Proposition 2.3. These three edges determine two ideal triangles whose interiors are disjoint in the interior of the triangular prism. They divide the prism into three geometric tetrahedra. □

3. Layered solid tori

To obtain highly twisted links, we will be performing Dehn filling on the crossing circle cusps of fully augmented links, using the triangulation of Proposition 2.4. We need a triangulation of the solid torus used in the Dehn filling. The triangulation that will work in this setting is a layered solid torus, first described by Jaco and Rubinstein [17]. In this section, we will review the construction of layered solid tori, and how they can be used to triangulate a Dehn filling of a triangulated manifold such as a fully augmented link.

The boundary of a layered solid torus consists of two ideal triangles whose union is a triangulation of a punctured torus. The space of all such triangulations of punctured tori is described by the Farey graph. Guéritaud and Schleimer present a description of the layered solid torus using the combinatorics of the Farey graph [12], and then glue this into the boundary of a manifold to be Dehn filled. We will follow their presentation.

3.1. Review of layered solid tori. Recall first the construction of the Farey triangulation of H^2. We view H^2 in the disc model, with antipodal points $0/1$ and $1/0 = \infty$ in ∂H^2 lying on a horizontal line through the centre of the disc, and $1/1$ at the north pole, $-1/1$ at the south pole. Two points a/b and c/d in $\mathbb{Q} \cup \{\infty\} \subset \partial H^2$ have distance measured by

$$i(a/b, c/d) = |ad - bc|.$$

Here $i(\cdot, \cdot)$ denotes geometric intersection number. We draw an ideal geodesic between each pair a/b, c/d with $|ad - bc| = 1$. This gives the Farey triangulation.
Any triangulation of a once-punctured torus consists of three slopes on the boundary of the torus, with each pair of slopes having geometric intersection number 1. Denote the slopes by p, q, r. Note that this triple determines a triangle in the Farey triangulation. Moving across an edge of the Farey triangulation changes the triangulation by replacing one slope with another, say r' replaces r. See Figure 3.1.

Figure 3.1. Each triangle in the Farey graph determines a triangulation of a punctured torus. Moving across an edge replaces one of the three slopes of the triangulation by a different slope.

In the case that we wish to perform a Dehn filling by attaching a solid torus to a triangulated once-punctured torus, there are four important slopes involved. Three of the slopes are the slopes of the initial triangulation of the once-punctured solid torus. In our setting, these will typically either be $\{0/1, 1/0, 1/1\}$ or $\{0/1, 1/0, -1/1\}$. They form an initial triangle in the Farey graph. The last slope is m, the slope of the Dehn filling.

Now consider the geodesic in \mathbb{H}^2 from the centre of the initial triangle to the slope $m \subset \partial \mathbb{H}^2$. This passes through a sequence of triangles in the Farey graph by crossing edges of the Farey triangulation. In particular, there will be a finite sequence of triangles, each determined by three slopes, $(T_0, T_1, \ldots, T_N) = (pqr, pqr', \ldots, stm)$, with initial triangle T_0 and final triangle T_N such that m is not a slope of any previous triangle in the sequence. For our purposes, we will require that $N \geq 2$. Thus we do not allow m to be a slope of the initial triangle T_0 nor a slope of the three triangles adjacent to T_0.

We build a layered solid torus by stacking a tetrahedron onto a punctured torus, initially triangulated by the slopes of T_0, and replacing one slope with another at each step as we stack. That is, two consecutive twice punctured tori always have two slopes in common and two that differ by a diagonal exchange. The diagonal exchange is obtained in three-dimensions by layering a tetrahedron onto a given punctured torus such that the diagonal on one side matches the diagonal to be replaced. In Figure 3.1, note that the diagonal exchange has been drawn in such a way to indicate the tetrahedra.

For each triangle in the path from T_0 to T_{N-1}, layer on a tetrahedron, obtaining a collection of tetrahedra homotopy equivalent to $T^2 \times [0, 1]$. At the k-th step, the boundary component $T^2 \times \{0\}$ has the triangulation of T_0 and that $T^2 \times \{1\}$ has the triangulation of T_k. Continue until $k = N - 1$, obtaining a triangulated complex with boundary consisting of two once-punctured tori, one triangulated by T_0 and the other by T_{N-1}. Recall that m is a slope of T_N — notice that we are not adding on a tetrahedron corresponding to T_N.

If we stop at T_{N-1} (not T_N), then one further diagonal exchange will give the slope m. That is, m is a diagonal of the triangulation T_{N-1}. A single diagonal exchange replaces the triangulation T_{N-1} with T_N, which is a triangulation consisting of two slopes s and t in common with T_{N-1} and the slope m cutting across a slope m' of T_{N-1}.

Recall we are trying to obtain a triangulation of a solid torus for which the slope m is homotopically trivial. To homotopically kill the slope m, fold the two triangles of T_{N-1} across the diagonal slope m'. Gluing the two triangles on one boundary component of $T^2 \times I$ in this manner gives a quotient that is homeomorphic to a solid torus, with boundary still triangulated by T_0. Inside, the slopes t and s
are identified. The slope m has been folded onto itself, meaning it is now homotopically trivial. See Figure 3.2.

Figure 3.2. Folding m makes it homotopically trivial.

4. Angle structures

In order to prove that the triangulations we construct are geometric, we will use tools from the theory of angle structures on 3-manifolds. (These are also often called strict angle structures in the literature.) We are following the lead of Guéritaud and Schleimer in [12], who use angle structures to show that layered solid tori admit geometric triangulations. The results we need are only slight generalisations of Guéritaud and Schleimer’s work, and the proofs follow almost immediately. However, we believe it is useful to step through the results and many of the proofs here as well. Not only does that make this paper more self-contained, but it also sets up a number of tools that we will need later in the paper when we further generalise to different triangulations of solid tori. Thus in this section we review angle structures, relevant results such as the Casson–Rivin theorem, and we work through the proof that layered solid tori admit geometric triangulations using angle structures.

Definition 4.1. An angle structure on an ideal triangulation τ of a 3-manifold M is an assignment of dihedral angles on each tetrahedron such that opposite edges of the tetrahedron carry the same angle, and such that

1. all angles lie in the range $(0, \pi)$,
2. around each ideal vertex of a tetrahedron, the dihedral angles sum to π,
3. around each edge of M, the dihedral angles sum to 2π.

The set of all angle structures for the triangulation τ is denoted $\mathcal{A}(\tau)$.

An angle structure on an ideal tetrahedron uniquely determines a hyperbolic structure on that tetrahedron. However, an angle structure on a triangulated 3-manifold is not as restrictive as a geometric triangulation. While one can assemble a space from hyperbolic triangles determined by the angles, under the gluing there may be shearing along edges. Thus the structure does not necessarily give a hyperbolic structure on M.

However, an angle structure determines a volume, by summing the volumes of the hyperbolic ideal tetrahedra with the dihedral angles given by the angle structures. That is, recall that a hyperbolic ideal tetrahedron with dihedral angles α, β, γ has volume $\Lambda(\alpha) + \Lambda(\beta) + \Lambda(\gamma)$, where Λ is the Lobachevsky function. Define the volume functional $\mathcal{V}: \mathcal{A}(\tau) \to \mathbb{R}$ as follows. For $p \in \mathcal{A}(\tau) \subset \mathbb{R}^{3n}$, assign to the angle structure $p = (p_1, p_2, p_3, \ldots, p_{3n})$ the real number

$$\mathcal{V}(p) = \Lambda(p_1) + \Lambda(p_2) + \Lambda(p_3) + \cdots + \Lambda(p_{3n}).$$

The volume functional is a convex function on $\mathcal{A}(\tau)$. That means it either takes its maximum on the interior of the space $\mathcal{A}(\tau)$, or there is no maximum in \mathcal{A}, and \mathcal{V} is maximised on the boundary of the closure $\overline{\mathcal{A}(\tau)}$. See, for example, [8].
The following theorem, proved independently by Casson and Rivin, will allow us to use angle structures to obtain a geometric triangulation in the case that the maximum occurs in the interior of the space $A(\tau)$.

Theorem 4.2 (Casson, Rivin). Let M be an orientable 3-manifold with boundary consisting of tori, and let τ be an ideal triangulation of M. Then a point $p \in A(\tau)$ corresponds to a complete hyperbolic metric on the interior of M if and only if p maximises the volume functional $V: A(\tau) \to \mathbb{R}$.

The proof of Theorem 4.2 follows from work in [26]. A different proof that includes a nice exposition is given by Futer and Guéritaud [8].

4.1. **Angle structures on layered solid tori.** This subsection is devoted to the following proposition and its proof, which guarantees an angle structure on a layered solid torus. The result is essentially [12, Proposition 10], and the proof is very similar. However, our statement is slightly more general than that in [12]. Additionally, parts of the proof will be needed in a later section, so we include the full argument.

Proposition 4.3. Let p, q, r be slopes on the torus that bound a triangle in the Farey graph in \mathbb{H}^2. Let m be a slope separated from the triangle (p, q, r) by at least one triangle; that is, the geodesic γ in \mathbb{H}^2 from the centre of triangle (p, q, r) to m intersects at least three triangles (one containing m, one containing (p, q, r), and at least one more). Relabel p, q, r if necessary so that the geodesic γ exits the triangle (p, q, r) by crossing the edge (p, q), and exits the next triangle (p, q, r') by crossing the edge (q, r'). (Thus r is the first slope to disappear from the triangulation, and p is the second.) Assign to p, q, r exterior dihedral angles $\theta_p, \theta_q, \theta_r$, respectively, satisfying
\[
(4.4) \quad \theta_p + \theta_q + \theta_r = \pi, \quad -\pi < \theta_p, \theta_q < \pi \quad \text{and} \quad 0 < \theta_r < \pi.
\]
Finally, consider the layered solid torus T with boundary ∂T a punctured torus triangulated with slopes p, q, r, and meridian the slope m. Set interior dihedral angles at edges of slope p, q, r of ∂T equal to $\pi - \theta_p$, $\pi - \theta_q$, $\pi - \theta_r$, respectively.

There exists an angle structure on T with the given interior dihedral angles if and only if
\[
(4.5) \quad i(m, p)\theta_p + i(m, q)\theta_q + i(m, r)\theta_r > 2\pi,
\]
where $i(a, b)$ denotes geometric intersection number.

Remark 4.6. Guéritaud and Schleimer actually require $0 \leq \theta_p, \theta_q$ in the statement of their proposition. However, most of their argument applies equally well if one of θ_p, θ_q, say θ_p, is negative, provided $\pi - \theta_p < 2\pi$. The other conditions will then imply that θ_q is positive, and that $\theta_p + \theta_r$ is positive, and these conditions suffice to prove the proposition.

We start by setting up notation. Let T be a layered solid torus constructed by following a geodesic γ in \mathbb{H}^2 from the centre of triangle (p, q, r) to the slope m, with γ intersecting at least three triangles. Let $(T_0, T_1, \ldots, T_{N-1}, T_N)$ denote the sequence of triangles. As in the statement of Proposition 4.3, we label such that r is the first slope to be replaced by diagonal exchange and p is the second.

Let $\Delta_1, \ldots, \Delta_{N-1}$ denote the tetrahedra in T, constructed as in Section 3. Thus Δ_1 meets the boundary of the layered solid torus in slopes (p, q, r), and the tetrahedron Δ_{N-1} is folded on itself to form the solid torus with m homotopically trivial.

Lemma 4.7. The solid torus T has a single ideal vertex. A horosphere about this ideal vertex intersects each tetrahedron of T in four triangles, arranged end to end such that their outer boundary forms a hexagon, with opposite angles agreeing. For tetrahedra $\Delta_1, \ldots, \Delta_{N-2}$, an inner boundary is also a hexagon, with inner boundary of the triangles of Δ_i identified to the outer boundary of the triangles of Δ_{i+1}. For tetrahedron Δ_{N-1}, the four triangles form a solid hexagon.

Proof. Consider the boundary of any layered solid torus. This is a 1-punctured torus triangulated by two triangles. A path that stays on the 1-punctured torus that runs once around the puncture will run over exactly six triangles; these form a hexagon in the cusp neighbourhood of the solid torus. See
Figure 4.1. Stripping the k outermost tetrahedra off a layered solid torus yields a smaller layered solid torus for $k < N - 1$; its boundary still forms a hexagon as in Figure 4.1.

![Diagram of layered solid torus with hexagonal boundary](image)

The innermost tetrahedron has its two inside triangles folded together. This gives one of the hexagons shown in Figure 4.2.

![Diagram of hexagons](image)

For the tetrahedron Δ_i, label the (interior) dihedral angles by x_i, y_i, z_i, with $x_i + y_i + z_i = \pi$. By adjusting these labels, we may ensure that z_i is the angle assigned to the slope that is covered by Δ_i, and that x_i, y_i are chosen to be in alphabetical order when we run around one of the cusp triangles in anti-clockwise order. These labels agree with the choices in Figures 4.1 and 4.2.

Since opposite edges of a tetrahedron have the same angles, this choice of angles x_i, y_i, z_i completely determines the angles on the hexagons. We summarise the result in the following lemma.

Lemma 4.8. For $i \in \{1, \ldots, N - 2\}$, two opposite interior angles of the outer hexagon of Δ_i are z_i, two opposite exterior angles of the inner hexagon are z_i, and at the four vertices shared by both hexagons, two angles x_i meet at two of the opposite vertices, and two angles y_i meet at two other opposite vertices.

For Δ_{N-1}, the interior angles of the solid hexagon are either z_{N-1}, $2x_{N-1} + z_{N-1}$, and $2y_{N-1}$ (with opposite angles agreeing), or z_{N-1}, $2y_{N-1} + z_{N-1}$, and $2x_{N-1}$ (with opposite angles agreeing).

Gluing tetrahedron Δ_{i+1} to Δ_i in the construction of the layered solid torus corresponds to performing a diagonal exchange in the triangulation of the boundary. One of the three edges on the punctured torus boundary is covered by this move. In the cusp picture of the hexagons, gluing Δ_{i+1} to Δ_i glues four triangles to the inner hexagon. Two opposite vertices are covered by the triangles and two new vertices are added to the interior. See Figure 4.4 for an example.

The labeling of Lemma 4.8 implies that two vertices of the inner hexagon formed at the i-th step by Δ_i have interior angle $2\pi - z_i$. These vertices were just added at the previous step by diagonal exchange.
Since the path γ in the Farey graph is a geodesic, these vertices will not be covered in the next step. Thus there are two choices for vertices to cover. We call the choices L and R, referring to a choice of direction in the Farey graph, as follows. After crossing the first edge in the Farey graph, L and R are determined by the direction the geodesic γ takes in the Farey graph, left or right. Except in the last triangle of the Farey graph, this corresponds to attaching a tetrahedron and covering a diagonal. Label the corresponding tetrahedron Δ_i with an L or R, $i = 2, \ldots, N - 1$; see Figure 4.3 for an example. We deal with the first and last steps separately. For the others, we have the following lemma.

Lemma 4.9. For tetrahedra $\Delta_2, \ldots, \Delta_{N-2}$, angles x_i and y_i satisfy one of the following:

- If Δ_i and Δ_{i+1} are both labeled L,
 \[z_{i-1} + z_{i+1} + 2x_i = 2\pi. \]
- If Δ_i and Δ_{i+1} are both labeled R,
 \[z_{i-1} + z_{i+1} + 2y_i = 2\pi. \]
- If Δ_i is labeled L and Δ_{i+1} labeled R,
 \[2y_i + z_i + 1 = z_{i-1} - z_i. \]
- If Δ_i is labeled R and Δ_{i+1} labeled L,
 \[2x_i + z_{i+1} = z_{i-1} - z_i. \]

Since $x_i + y_i + z_i = \pi$, this allows us to write x_i, y_i in terms of z_{i-1}, z_i, and z_{i+1}.

Proof. The proof is mainly a matter of bookkeeping, particularly keeping track of labels on tetrahedra when turning left or right. We have illustrated the process carefully for the case that Δ_i and Δ_{i+1} are both labeled L. Figure 4.3 shows the path in the Farey graph. What is important at each step is which slope is covered by the diagonal exchange effected by adding the next tetrahedron. Thus Δ_i covers a slope p_{i-1} and Δ_{i+1} covers a slope r_{i-1}.

![Figure 4.3](image)

Figure 4.3. Turning left then left again in the Farey graph. Tetrahedron Δ_{i-1} has inner boundary with slopes p_{i-1}, q_{i-1}, and r_{i-1}, with angles x_{i-1}, y_{i-1}, and z_{i-1}, respectively. Adding Δ_i in the L direction removes the slope p_{i-1} from the inner boundary, replacing it with slope r_i, with angle z_i. Adding Δ_{i+1} removes slope r_{i-1}, replacing it with slope r_{i+1}, with angle z_{i+1}.

When we add tetrahedron Δ_i, we obtain a new hexagon inside the inner hexagon from Δ_{i-1}. This is indicated by the thinner line in Figure 4.4, left. The edges of Δ_i with slopes p_{i-1} and r_i are assigned angle z_i. Our orientation convention then ensures that the edge of slope r_{i-1} is assigned angle x_i.

Assign the same label to Δ_{i-1}. This implies $y_i = z_i = \pi$. The vertices of the outer hexagon for Δ_{i-1} will be covered by Δ_i. Finally we add tetrahedron Δ_{i+1}. This gives a new innermost hexagon, indicated by the dashed lines in Figure 4.4, left. The edge of slope r_{i-1} is assigned angle z_{i+1}.

Notice that after adding this tetrahedron, the edge of slope r_{i-1} is completely surrounded by tetrahedra $\Delta_{i-1}, \Delta_i, \Delta_{i+1}$. The sum of all angles around this edge must add to 2π, and we read those angles off of Figure 4.4 left:

$$z_{i-1} + 2x_i + z_{i+1} = 2\pi.$$

A very similar pair of pictures, Farey graph and cusp triangulation, gives the result in the case Δ_i and Δ_{i+1} are both labeled R. In this case, however, the slope q_{i-1} will be covered by Δ_i. Again r_{i-1} will then be covered by Δ_{i+1}, but by turning right, the angles adjacent to the slope r_{i-1} in this case will be z_{i-1}, two copies of y_i, and z_{i+1}. This is the only difference in this case.

If we first turn left then turn right, the slope p_{i-1} is covered first by Δ_i, then q_{i-1} by Δ_{i+1}. In this case, none of the newly added edges are surrounded by the three tetrahedra. However, all the vertices of the original outside hexagon are surrounded by these tetrahedra; see Figure 4.4, right. Since the sum of the interior angles of a hexagon is 4π, we may use this to compute the desired formula.

In particular,

$$2(2y_{i-1} + 2y_i + z_{i+1}) + 2(2x_{i-1} + z_i) + 2z_{i-1} = 4\pi.$$

This implies

$$2x_{i-1} + 2y_{i-1} + z_{i-1} + 2y_i + z_i + z_{i+1} = 2\pi.$$

Since $x_{i-1} + y_{i-1} + z_{i-1} = \pi$, this simplifies to

$$2y_i + z_i + z_{i+1} - z_i = 0,$$

as desired. The case of R followed by L is similar.

Lemma 4.10. Let $\theta_r, \theta_p, \theta_q$ denote exterior dihedral angles as in Proposition 4.3. In particular, recall that r is the first slope covered, and p is the second.

For the first tetrahedron Δ_1, set $z_1 = \pi - \theta_r$. The tetrahedron Δ_2 has either an L or an R label. Assign the same label to Δ_1, so both are labeled L or both are R. Finally, set $z_0 = \pi + \theta_p$. Then z_0, x_1, y_1, and z_2 satisfy Lemma 4.9.

Proof. Note we need to show that if Δ_2 is labeled L, then $z_0 + z_2 + 2x_1 = 2\pi$, and if Δ_2 is labeled R, then $z_0 + z_2 + 2y_1 = 2\pi$. This will follow by considering the outermost hexagon. The slopes of the
edges of the outermost hexagon are \(p, q, \) and \(r \). Since tetrahedron \(\Delta_1 \) covers the edge of slope \(r \), the interior angle of \(\Delta_1 \) along the slope \(r \) must be \(z_1 = \pi - \theta_r \).

If \(\Delta_2 \) is labeled \(L \), then the slope \(p \) is given angle \(x_1 \) in \(\Delta_1 \). Otherwise it is given angle \(y_1 \) in \(\Delta_1 \), based on our orientation conventions.

Since \(\Delta_2 \) covers \(p \), the edge of slope \(p \) meets only tetrahedra \(\Delta_1 \) and \(\Delta_2 \). We know that the exterior angle of the outermost hexagon at slope \(p \) is \(\theta_p \). Thus the interior angles of \(\Delta_1 \) and \(\Delta_2 \) that are adjacent to \(p \) must sum to \(\pi - \theta_p \).

In the case \(\Delta_2 \) is labeled \(L \), this implies \(2x_1 + z_2 = \pi - \theta_p \), or
\[
\pi + \theta_p + 2x_1 + z_2 = 2\pi,
\]
as desired. In the case \(\Delta_2 \) is labeled \(R \), this implies \(\pi + \theta_p + 2y_1 + z_2 = 2\pi \).

Lemma 4.11. Consider the last tetrahedron \(\Delta_{N-1} \). Assign a label \(L \) or \(R \) to an empty tetrahedron \(\Delta_N \) depending on whether \(\gamma \) turns left or right when running into the final triangle \(T_N \) of the Farey complex, and set \(z_N = 0 \). Then the angles \(z_{N-2}, x_{N-1}, y_{N-1}, z_{N-1}, \) and \(z_N \) satisfy Lemma 4.9.

Proof. The proofs are very similar to those of Lemma 4.9. The cusp triangulations for cases \(LL \) and \(LR \) are shown in Figure 4.5.

![Figure 4.5](image_url)

Figure 4.5. Shown are both cases when \(\Delta_{N-1} \) is labeled \(L \). On the left, the empty tetrahedron \(\Delta_N \) is labeled \(L \), and on the right, the empty tetrahedron \(\Delta_N \) is labeled \(R \).

In the case \(LL \), again an edge in the interior of the hexagon is surrounded by \(\Delta_{N-2} \) and \(\Delta_{N-1} \). The sum of the angles around this edge must be \(2\pi \). Thus \(z_{N-2} + 2x_{N-1} = 2\pi \). Since \(z_N = 0 \), this is the same formula as in Lemma 4.9 in the \(LL \) case when \(i = N - 1 \).

In the case \(LR \), again the sum of the interior angles is \(4\pi \). This implies
\[
(2x_{N-2} + z_{N-1}) + (2y_{N-2} + 2y_{N-1}) + z_{N-2} = 2\pi,
\]
or
\[
-z_{N-2} + z_{N-1} + 2y_{N-1} = 0.
\]
Again because \(z_N = 0 \), this is the same formula as in Lemma 4.9 in the \(LR \) case when \(i = N - 1 \).

Lemma 4.12. Let \(\theta_p, \theta_q, \theta_r \) be as in Proposition 4.3. Let
\[
(z_0 = \pi + \theta_p, z_1 = \pi - \theta_r, z_2, \ldots, z_{N-1}, z_N = 0)
\]
be a sequence of numbers with \(z_i \in (0, \pi) \) for \(i = 1, \ldots, N - 1 \). Let \(x_i, y_i \) satisfy the equations of the previous three lemmas. Then \(x_i, y_i, z_i \) give an angled structure on the layered solid torus if and only if
for each $i = 1, \ldots, N - 1$, the sequence satisfies:

\[
\begin{cases}
 z_{i-1} > z_i + z_{i+1} & \text{if } \Delta_i \text{ and } \Delta_{i+1} \text{ are labeled RL or LR (hinge condition)} \\
 z_{i-1} + z_{i+1} > 2z_i & \text{if } \Delta_i \text{ and } \Delta_{i+1} \text{ are labeled RR or LL (convexity condition)}
\end{cases}
\]

Moreover, the sequence is strictly decreasing, and for the first two tetrahedra,

\[\pi - \theta_p - 2\theta_r < z_2 < \pi - \theta_p.\]

Proof. In an angle structure, $x_i, y_i, z_i \in (0, \pi)$ for $i = 1, \ldots, N - 1$, and $x_i + y_i + z_i = \pi$. We can use this equation along with the equations of the previous lemmas to write x_i and y_i in terms of z_{i-1}, z_i, and z_{i+1}.

In the LL or RR case, x_i and y_i are one of

\([z_{i-1} - 2z_i + z_{i+1}] / 2 \text{ and } \pi - (z_{i-1} + z_{i+1}) / 2.\]

Thus we need to ensure

\[0 < \frac{z_{i-1} - 2z_i + z_{i+1}}{2} < \pi \quad \text{and} \quad 0 < \frac{\pi - (z_{i-1} + z_{i+1})}{2} < \pi.\]

These give four inequalities. When $i = 2, \ldots, N - 1$, two of the inequalities are automatically satisfied when $z_{i-1}, z_i, z_{i+1} \in (0, \pi)$ or when $i = N - 1$ and $z_N = 0$. Another holds when $z_{i-1} > z_{i+1}$. The final inequality holds if and only if $z_{i-1} + z_{i+1} > 2z_i$.

When $i = 1$, the inequalities become

\[0 < \frac{(\pi + \theta_p) - 2(\pi - \theta_r) + z_2}{2} < \pi \quad \text{and} \quad 0 < \frac{\pi - (\pi + \theta_p) - z_2}{2} < \pi.\]

These give four inequalities, one of which is automatically true for $0 < \pi + \theta_p < \pi$, and the other three all hold if and only if

\[\pi - \theta_p - 2\theta_r < z_2 < \pi - \theta_p.\]

For $2 \leq i \leq N - 1$ in the RL or LR case, x_i and y_i are one of

\([z_{i-1} - z_i - z_{i+1}] / 2 \text{ and } \pi - (z_{i-1} + z_i - z_{i+1}) / 2.\]

Thus we require

\[0 < \frac{z_{i-1} - z_i - z_{i+1}}{2} < \pi \quad \text{and} \quad 0 < \frac{\pi - z_{i-1} + z_i - z_{i+1}}{2} < \pi.\]

Again this gives four inequalities, two of which are automatically satisfied for $z_{i-1}, z_i, z_{i+1} \in (0, \pi)$, or when $i = N - 1$, for $z_N = 0$. The other two inequalities that must be satisfied are $z_{i-1} > z_{i+1} - z_i$ and $z_{i-1} > z_{i+1} + z_i$. Both hold if and only if $z_{i-1} > z_{i+1} + z_i$.

At this point, we have all the inequalities of the lemma, plus an extra one: $z_{i-1} > z_{i+1}$. However, the hinge and convexity equations imply that the sequence is strictly decreasing: The proof is by a downward induction starting at $z_N = 0$. This finishes the lemma.

Lemma 4.13. Suppose all tetrahedra are glued via RR or LL and never a hinge RL or LR. Then there exists a sequence satisfying the previous lemma if and only if

\[i(m, p)\theta_p + i(m, q)\theta_q + i(m, r)\theta_r > 2\pi.\]

Proof. Suppose first that such a sequence holds.

We claim the convexity condition implies that $z_{N-k} < z_{N-(k+1)} / (k+1)$ for $k = 1, \ldots, N - 1$. This can be seen by induction: when $k = 1$, $z_{N-2} + z_N > 2z_{N-1}$ implies $z_{N-1} < z_{N-2} / 2$. Assuming $z_{N-(j-1)} < z_{N-j} / j$ then $z_{N-(j-1)} + z_{N-(j+1)} > 2z_{N-j}$ implies $z_{N-j} / j < z_{N-(j+1)} / j + z_{N-(j+1)} > 2z_{N-j}$, which implies $jz_{N-(j+1)} > (j+1)z_{N-j}$, as desired.

Now observe that when $k = N - 1$, the inequality is $Nz_1 < (N - 1)z_0$, which then becomes $N(\pi - \theta_r) < (N - 1)(\pi + \theta_p)$. Simplifying, we obtain

\[\pi < (N - 1)\theta_p + N\theta_r \iff 2\pi < \theta_q + N\theta_p + (N + 1)\theta_r,\]

using $\theta_p + \theta_q + \theta_r = \pi$.
Suppose that the tetrahedra are all glued in the pattern $RR\ldots R$. Apply an isometry to \mathbb{H}^2 so that the triangle (p, q, r) maps to $(0, \infty, -1)$. Then the slope m is mapped to the slope $N/1 \in \mathbb{Q}$, and the geometric intersection numbers satisfy $i(\infty, N) = 1$, $i(0, N) = N$, and $i(-1, N) = N + 1$. Because applying an isometry of \mathbb{H}^2 preserves intersection numbers, it follows that the inequality holds above if and only if

$$i(m, p)\theta_p + i(m, q)\theta_q + i(m, r)\theta_r > 2\pi,$$

The argument in the case that all tetrahedra are glued in the pattern $LL\ldots L$ is similar. It follows that if a sequence (z_0, \ldots, z_N) exists, then the inequality holds.

Conversely, suppose the inequality holds. Set $z_0 = \pi + \theta_p$, $z_1 = \pi - \theta_r$. Inductively, choose a decreasing sequence z_k such that $z_k > 2z_{k-1} - z_{k-2}$ and $z_k \in (0, \pi)$. We need to ensure we can choose the sequence all the way to z_{N-1} and set $z_N = 0$. Note by this choice of z_k, we have

$$z_k > \pi - k\theta_r - (k-1)\theta_p,$$

so when $k = N$,

$$z_N > \pi - N\theta_r - (N-1)\theta_p.$$

But as above, the inequality on $\theta_p, \theta_q, \theta_r$ is equivalent to

$$\pi - N\theta_r - (N-1)\theta_p < 0.$$

Thus we may set $z_N = 0$ and satisfy all the required conditions. □

Lemma 4.14. Suppose there exists a hinge RL or LR in the sequence of labels of $\Delta_1, \ldots, \Delta_N$. Then the inequality

$$i(m, p)\theta_p + i(m, q)\theta_q + i(m, r)\theta_r > 2\pi$$

is satisfied for every $\theta_p, \theta_q, \theta_r$ as in Proposition 4.3.

Proof. If there exists a hinge, it is not in the first two labels by choice of p and r. Suppose first that the first two labels are LL. Apply an isometry to \mathbb{H}^2 taking (p, q, r) to $(\infty, 0, -1)$. Then the first two steps in the Farey graph move from triangle $(\infty, 0, -1)$ to $(0, 1, 1/2)$. There may be some additional number of Ls in the sequence. Starting at $(\infty, 0, -1)$ and stepping through n initial labels L in the Farey graph puts γ in the triangle $(0, 1/(n-1), 1/n)$. At this point, the path γ goes right, crossing the edge $(1/(n-1), 1/n)$. Because γ never returns to an edge, this means that the slope m lies between $1/(n-1)$ and $1/n$ in the Farey complex. Write $m = a/b$ in lowest terms. The set of rational numbers between $1/(n-1)$ and $1/n$ in the Farey complex can be obtained inductively by summing numerators and denominators of $1/(n-1)$, $1/n$ and other rationals obtained in this manner. Since a/b lies in this range, $a \geq 2$ and $b \geq 2n-1 > 2$.

Now, note that for $(p, q, r) = (\infty, 0, -1)$, $i(a/b, p) = b$, $i(a/b, q) = a$, and $i(a/b, r) = a + b$. Thus

$$i(m, p)\theta_p + i(m, q)\theta_q + i(m, r)\theta_r = \theta_p + (\theta_p + \theta_r) + b(\theta_q + \theta_r).$$

Because $\theta_p + \theta_q + \theta_r = \pi$, and $-\pi < \theta_p, \theta_q < \pi$, both $\theta_p + \theta_r = \pi - \theta_q$ and $\theta_q + \theta_r = \pi - \theta_p$ are positive. Thus

$$\theta_p + \theta_r + b(\theta_q + \theta_r) \geq \min\{a, b\}(\theta_p + \theta_q + 2\theta_r) > \min\{a, b\}(\pi + \theta_r) > 2\pi.$$

Since intersection numbers are unchanged under isometry of \mathbb{H}^2, this proves the result when the first two labels are LL.

The case that the first two labels are RR is similar; in this case apply an isometry of \mathbb{H}^2 taking (p, q, r) to $(0, \infty, -1)$. Then a similar argument implies the inequality on intersection numbers holds in this case. □

Lemma 4.15. Suppose there exists a hinge RL or LR. Then there exists a sequence satisfying Lemma 4.12.
Proof. Let \(h \in \{2, 3, \ldots, N - 1\} \) be the smallest index such that \(\Delta_h \) is a hinge of the form \(RL \) or \(LR \).

Set \(z_0 = \pi + \theta_p, z_1 = \pi - \theta_r \). We can choose inductively a positive decreasing sequence \(z_k \) such that
\[
z_k > 2z_{k-1} - z_{k-2} \quad \text{for} \quad 1 \leq k \leq h.
\]

The rest of the sequence \(z_i \) is constructed backwards from \(i = N \) to \(i = h \). Consider a sequence \(z'_i \). Set \(z'_N = 0 \) and \(z'_{N-1} = 1 \). For each \(i \) such that \(N - 2 \geq i \geq h + 1 \), inductively choose \(z'_i \) such that \(z'_i > z'_{i+1} + z'_{i+2} \) or \(z'_i + z'_{i+2} > 2z'_{i+1} \), depending on whether \(\Delta_{i+1} \) is a hinge or not, respectively. Choose \(\epsilon \) such that
\[
0 < \epsilon < \frac{z_N - z_{h+1}}{z_{h+1}}.
\]

Set \(z_i = \epsilon z'_i \) for \(h + 1 \leq i \leq N \). We need \(z_h \) to satisfy the hinge condition \(z_h < z_{h-1} - z_{h+1} \), or \(z_h < z_{h-1} - \epsilon z_{h+1} \). This holds by our choice of \(\epsilon \). Thus we have found a sequence satisfying Lemma 4.12.

Proof of Proposition 4.3. Suppose
\[
i(m, p)\theta_p + i(m, q)\theta_q + i(m, r)\theta_r \leq 2\pi.
\]

By Lemma 4.14, there is no hinge \(RL \) or \(LR \) in the sequence of labels of tetrahedra making the layered solid torus. By Lemma 4.13, there does not exist a sequence satisfying Lemma 4.12. But such a sequence is required in an angle structure on a layered solid torus, so there is no angle structure in this case.

Now suppose \(i(m, p)\theta_p + i(m, q)\theta_q + i(m, r)\theta_r > 2\pi \). Then Lemma 4.15 and Lemma 4.13 imply there exists a sequence satisfying Lemma 4.12. It follows from that lemma that there exists an angle structure.

4.2. Volume maximisation. We now show that the volume functional on the space of angle structures takes its maximum on the interior. This is essentially [12, Proposition 15], but we extract slightly more information from the proof.

Lemma 4.16. Suppose the volume functional on the space of angle structures on a layered solid torus takes its maximum on the boundary. Then the corresponding structure consists only of flat tetrahedra, with angles \((x_i, y_i, z_i)\) a permutation of \((0, 0, \pi)\) for each \(i = 1, \ldots, N - 1 \).

Proof. By work of Rivin [26], if the volume functional takes its maximum on the boundary of the space of angle structures, then any tetrahedron with an angle 0 must also have an angle \(\pi \). Thus those tetrahedra that do not have all angles strictly within \((0, \pi)\) must have angles \((x_i, y_i, z_i)\) a permutation of \((0, 0, \pi)\); this is a flat tetrahedron.

By Lemma 4.12, a point on the boundary of the space of angle structures corresponds to a sequence \((z_0 = \pi + \theta_p, z_1 = \pi - \theta_r, z_2, \ldots, z_{N-1}, z_N = 0)\) satisfying the hinge and convexity equations, except the strict inequalities will be replaced by weak inequalities. This must be a nonincreasing sequence.

Suppose the \(i \)-th tetrahedron is the first flat tetrahedron. Then \(z_i \in \{0, \pi\} \) but \(z_{i-1} \in (0, \pi) \) unless \(i - 1 = 0 \). If \(z_i = \pi \), then convexity implies \(z_j = \pi \) for \(j = i + 1, \ldots, h \), where \(h \) is the next hinge index. The hinge condition then implies that all later \(z_j = 0 \). Similarly, if \(z_i = 0 \) then all later \(z_j = 0 \).

Now consider \(z_{i-1} \). We have \(x_i, y_i, z_i, z_{i+1} \in \{0, \pi\} \). Thus by one of Lemmas 4.9, 4.10, or 4.11, depending on the index \(i \), we have \(z_{i-1} = 2\pi \). But \(0 < z_{i-1} < \pi \) unless \(i - 1 = 0 \). So \(i - 1 = 0 \). Then the first flat tetrahedron is the first tetrahedron, so the entire solid torus consists of flat tetrahedra.

Corollary 4.17. Suppose the set of angle structures as in Proposition 4.3 is nonempty. Then the volume functional takes its maximum on the interior of such angle structures.

Corollary 4.18. For slopes \(p, q, r, \) and \(m \) as in Proposition 4.3, and any angles \(\theta_p, \theta_q, \theta_r \) satisfying (4.4), there exists a geometric triangulation of the layered solid torus \(T \) of that proposition with exterior dihedral angles \(\theta_p, \theta_q, \theta_r \).

Proof. Follows from the Casson–Rivin theorem, Theorem 4.2.
5. Dehn filling

In this section, we complete the proof of Theorem 5.5.

Let s be a slope, and let $\text{len}(s)$ denote the Euclidean length of a geodesic representative of s on a horospherical cusp torus.

The following theorem is a consequence of Thurston’s hyperbolic Dehn filling theorem, proved by Thurston [27]. The version below can be proved using geometric triangulations, with ideas in Benedetti and Petronio [2], using methods of Neumann and Zagier [21].

Theorem 5.1 (Hyperbolic Dehn filling theorem). Let M be a hyperbolic 3-manifold with a geometric ideal triangulation, such that exactly two ideal tetrahedra, Δ and Δ', meet a cusp of M. Let s be a slope on this cusp. Then for all but finitely many choices of s, the Dehn filled manifold $M(s)$ admits a complete hyperbolic structure, obtained by deforming the triangulation of M, and taking the completion of the resulting structure. The tips of the tetrahedra Δ, Δ' spin asymptotically along the geodesic core of the filling solid torus of $M(s)$. As $\text{len}(s)$ goes to infinity, the cross-ratios of the tetrahedra of $M(s)$ become uniformly close to those of M.

In particular, since M admits a geometric ideal triangulation, the cross-ratios of its tetrahedra have strictly positive imaginary part. This is an open condition. Thus for s large enough, the triangulation of $M(s)$ also has cross-ratios with strictly positive imaginary part. It follows that the incomplete, spun triangulation of $M(s)$ is built of geometric tetrahedra. However, we are not interested in incomplete triangulations. We will use the incomplete spun triangulation to build a complete geometric ideal triangulation.

5.1. Dehn filling and spun triangulations.

The following proposition is essentially Proposition 8 of Guéritaud–Schleimer [12].

Proposition 5.2. Let X be a solid torus with ∂X a punctured torus, with boundary ∂X triangulated by two ideal triangles. Let $m \subset \partial X$ be the meridian of X. The following are equivalent.

1. A complete hyperbolic structure on X is obtained by taking the completion of a spun triangulation consisting of two tetrahedra Δ and Δ', where one face of Δ and one face of Δ' form the two ideal triangles making up ∂X.
2. The exterior dihedral angles a, b, and c on the edges of the triangulation satisfy $a, b \in (-\pi, \pi)$, $c \in (0, \pi)$, and $a + b + c = \pi$, and also

\[n_a a + n_b b + n_c c > 2\pi, \]

where n_a, n_b, n_c denote the number of times the meridian $m \subset \partial X$ of X crosses the edge with angle a, b, c, respectively.

Moreover, if the hyperbolic structure exists on X, then it is unique.

Remark 5.3. Proposition 8 of [12] is not quite stated the same as Proposition 5.2, but an almost identical proof gives the result claimed here. One difference is that in [12], they restrict to $a, b, c \in [0, \pi)$. However, this restriction is not required for the proof. What is required, if these form exterior dihedral angles of a solid torus as claimed, is that $a + b + c = \pi$ and $a, b, c \in (-\pi, \pi)$. These conditions follow from considering the Euclidean geometry of a horospherical neighbourhood of the puncture on ∂X. Moreover, the condition $a + b + c = \pi$ forces one of a, b, c to be strictly positive; we let this angle be denoted c.

Now in the proof of [12, Proposition 8], it is shown that angle structures can be put onto Δ and Δ' to form the spun triangulation of X if and only if $n_a a + n_b b + n_c c > 2\pi$. In the case the inequality holds, it is shown that the volume functional takes its maximum on the interior of the space of such angle structures, meaning there exists a hyperbolic structure, and that structure is unique by the Casson–Rivin theorem, Theorem 4.2.

Theorem 5.4. Let L be a hyperbolic fully augmented link with $n \geq 2$ crossing circles. Then there exist constants C_1, \ldots, C_n such that if M is a manifold obtained by Dehn filling the crossing circle cusps of
$S^3 - L$ along slopes s_1, \ldots, s_n whose lengths satisfy $\text{len}(s_i) \geq C_i$ for each $i = 1, \ldots, n$, then M admits a geometric triangulation.

Proof. By Proposition 2.4, $S^3 - L$ admits a geometric ideal triangulation with the property that each crossing circle meets exactly two ideal tetrahedra. By Theorem 5.1, for any slope sufficiently long, the Dehn filling along that slope is obtained by taking the completion of a spun triangulation consisting of two tetrahedra. In particular, for the j-th twist region, there exists C_j such that if the length of the slope is at least C_j, then Dehn filling yields a manifold with spun triangulation. This can be repeated sequentially for each crossing circle, giving constants C_1, \ldots, C_n.

For each crossing circle, consider the two tetrahedra that spin around the core of the Dehn filled solid torus. These two tetrahedra together form a spun triangulation of a solid torus. By Proposition 5.2, this torus is unique, and the exterior dihedral angles a, b, c must satisfy $n_a a + n_b b + n_c c > 2\pi$, where n_a, n_b, n_c denote the number of times the meridian meets the edge on the boundary with corresponding dihedral angle. Then Corollary 4.18 implies there exists a corresponding layered solid torus with the same dihedral angles along slopes on the boundary, and the same meridian, with a complete, geometric hyperbolic structure.

Because dihedral angles agree, each spun solid torus can be removed and replaced by the layered solid torus by isometry. The result is a geometric ideal triangulation of the Dehn filling of $S^3 - L$. □

We can now complete the proof of Theorem 5.5 from the introduction.

Theorem 5.5. For every $n \geq 2$, there exists a constant C_n depending on n, such that if K is a link in S^3 with a prime, twist-reduced diagram with n twist regions, and at least C_n crossings in each twist region, then $S^3 - K$ admits a geometric triangulation.

Proof. If K has a prime, twist-reduced diagram with $n \geq 2$ twist regions, then $S^3 - K$ is obtained by Dehn filling a hyperbolic fully augmented link L with n crossing circles, where the Dehn filling is along slopes on each crossing circle. Let m_j be the number of crossings in the j-th twist region. Then the length of the j-th slope is at least $\sqrt{m_j^2 + 1}$ by [10, Theorem 3.10].

Note that for fixed n, there are only finitely many fully augmented links with n crossing circles. Fix one of these fully augmented links; call it L_k. By Theorem 5.4, there exist constants $C_{k,1}, \ldots, C_{k,n}$ such that if the slope on the j-th crossing circle of L_k has length at least $C_{k,j}$, for $j = 1, \ldots, n$, then the Dehn filling admits a geometric triangulation. Consider $R_n = \max\{C_{k,j}\}$, where the maximum is taken over all links L_k with n crossing circles. Then provided the number of crossings in each twist region of K is at least R_n, the length of each slope on each crossing circle will be at least R_n, which implies the Dehn filling yields a geometric triangulation. □

6. Borromean rings and related links

In the previous section, we completed the proof of Theorem 5.5, which is unfortunately not effective: the constants C_1, \ldots, C_n are unknown. In this section, by restricting the fully augmented links we consider, we are able to prove an effective result, giving an explicit family of hyperbolic 3-manifolds with geometric triangulations. This is similar in spirit to section 5 of [12], in which Guéritaud–Schleimer show a similar result for Dehn filling one cusp of the Whitehead link. We extend first to the Borromean rings, which is a fully augmented link with two crossing circle cusps, and to the two other fully augmented links with exactly two crossing circle cusps.

The augmented links we consider next are shown in Figure 6.1. The link on the left of Figure 6.1 shows a fully augmented link with three link components; this is ambient isotopic to the Borromean rings. There are two different fully augmented links obtained by inserting half-twists into the crossing circles of the Borromean rings shown; these are the links in the middle and right of that figure.

Following the procedure for decomposing fully augmented links into polyhedra as in Section 2, we find that all three links in Figure 6.1 decompose into two ideal octahedra; the decomposition for the middle link is exactly the illustration shown in Figure 2.2.
Lemma 6.1. Let L be one of the three fully augmented links with exactly two crossing circles, as shown in Figure 6.1. Then $M = S^3 - L$ has a decomposition into two regular ideal octahedra. These meet the two crossing circle cusps as follows.

- One vertex of each octahedron meets the crossing circle cusp. Taking such a vertex to infinity gives a square on \mathbb{R}^2 in $\partial \mathbb{H}^3$. We may arrange that one square has corners at $(0,0), (1,0), (1,1)$, and $(0,1)$ in \mathbb{R}^2, and the other has corners at $(1,0), (2,0), (2,1)$, and $(1,1)$ in \mathbb{R}^2.

- When the crossing circle does not encircle a half-twist, then the arc running from $(0,0)$ to $(0,1)$ projects to a meridian of the crossing circle. When the crossing circle encircles a half-twist (single crossing), the arc from $(0,0)$ to $(1,1)$ projects to a meridian.

- In all cases, the arc from $(0,0)$ to $(2,0)$ projects to a longitude of the crossing circle, bounding a disc in S^3.

Proof. The lemma is proved by considering the decomposition. White faces become the circles shown in Figure 6.2, left. The x’s on each circle packing indicate crossing circle cusps. Take one of these points to infinity to obtain the required square. Because the two polyhedra are glued along a white side, the squares line up side-by-side as claimed; see Figure 6.2, right. A longitude runs along two shaded faces, which runs along the base of both squares, as claimed.

When there is no half-twist, the shaded face running across the bottom of the square is glued to the shaded face running across the top of the same square, and hence the base of each square is glued to the top of the same square to form a fundamental domain for the cusp torus. A meridian runs along a white side of a square.

When there is a half-twist, a shaded face running across the bottom of the square on the left is glued to the shaded face running across the top of the square on the right, and so a shearing occurs. See [25, Proposition 3.2]. The result is that a meridian runs across the diagonal of a square, as claimed. □

Lemma 6.2. Let M be one of the three fully augmented links with exactly two crossing circles. Then M has a decomposition into exactly eight ideal tetrahedra, with four tetrahedra meeting each crossing circle cusp, two in each square of Lemma 6.1.

The square bases are glued as follows. The square on the left of one cusp is glued to the square on the left of the other cusp by reflecting across the diagonal of negative slope. The other square, on the right...
of the first cusp, is glued to the square on the right of the other cusp by reflecting across the diagonal of positive slope, as shown in Figure 6.3.

Proof. The gluing is obtained by considering squares at the base of the octahedra in Figure 6.2. For the cusp shown in the middle-right of Figure 6.2, one square base has as vertices the points of intersection of circles \(A \cap C, A \cap D, B \cap D \) and \(B \cap C \) in anti-clockwise order. This is glued to a square in the opposite cusp meeting the same points of intersection: Note that the points \(A \cap C, A \cap D, B \cap D \) and \(B \cap C \) are now in clockwise order in the cusp on the right, with \(A \cap C \) and \(B \cap D \) in the same location in both. It follows that the squares are glued by a reflection in the negative diagonal.

The other square on the middle-right of Figure 6.2 has as vertices the points of intersection \(A' \cap C', B' \cap C', B' \cap D' \) and \(A' \cap D' \) in anti-clockwise order. It is glued to a square on the right with the same vertices, but now \(A' \cap C', B' \cap C', B' \cap D' \) and \(A' \cap D' \) are in clockwise order on the right, with \(A' \cap C' \) and \(B' \cap D' \) in the same location. Thus the squares are glued by a reflection in the positive diagonal.

To triangulate: choose both positive diagonals or both negative diagonals in the cusp on the middle-right of Figure 6.2. This splits the two squares into four triangles; either choice of diagonal will do, but we will choose the same diagonal in each square (as opposed to Figure 6.3 where different diagonals are marked). There are four tetrahedra lying over the four triangles in this cusp. Under the gluing, the diagonals and the squares are preserved, so the four triangles are mapped to four triangles in the second cusp. The four additional tetrahedra lie over these four triangles in the second cusp.

7. Doubling layered solid tori

When the boundary of \(M \) is a once-punctured torus triangulated by just two ideal triangles, then we may glue a layered solid torus to \(\partial M \) to perform Dehn filling. In the case of the Borromean rings, the boundary of our manifold is a twice-punctured torus triangulated by four ideal triangles, in symmetric pairs. To perform Dehn filling, we need to modify the construction. This modification essentially appears at the end of Gu´ eritaud and Schleimer [12], when they consider the Whitehead link. However, the construction applies much more generally than the Whitehead link application, so we walk through it carefully.

There are two different modifications required, depending on the slope we wish to Dehn fill. Consider the cover \(\mathbb{R}^2 \) of the twice punctured torus obtained by putting punctures at integral points \(\mathbb{Z}^2 \subset \mathbb{R}^2 \). Assume first that there are no half-twists, so a meridian \(\mu \) of slope \(1/0 \) lifts to run from \((0,0)\) to \((0,1)\). A longitude \(\lambda \) of slope \(0/1 \) lifts to run from \((0,0)\) to \((2,0)\). Then any slope \(m = \ell/k = \ell \mu + k \lambda \) on the torus lifts to an arc beginning at \((0,0)\) and ending at \((2k, \ell)\).

The two modifications depend on whether \(\ell \) is even or odd. If \(\ell \) is odd, the lift of the slope \(\ell/k \) will only meet the points of \(\mathbb{Z}^2 \), which are lifts of punctures, at its endpoints. In this case, we will take a double cover of a layered solid torus.

Lemma 7.1. Suppose \(m = \ell/k = \ell \mu + k \lambda \) is a slope on the torus (with generators \(\mu, \lambda \) as above) such that \(\ell \) is odd, and \(\ell/k \notin \{ \infty, \pm 1 \} \).

Consider first the layered solid torus \(X \), constructed as follows. Begin in the Farey triangle with vertices \((1/0, 0/1, \pm 1/1)\) and step to the triangle with slope \(\ell/2k \), building the corresponding layered solid torus \(X \) as in Section 3.

Let \(Y \) be the double cover of \(X \). Then \(Y \) satisfies the following properties.

Figure 6.3. Shows how to glue the bases of the crossing circle cusps of fully augmented links with two crossing circles. Note we could choose the opposite diagonals instead.
• The boundary of Y is a twice-punctured torus, triangulated by four ideal triangles (in two symmetric pairs), lifting to give a triangulation of the cover \mathbb{R}^2. The basis slope λ lifts to run from $(0,0)$ to $(2,0)$ in \mathbb{R}^2, and projects to run twice around the slope $0/1$ in ∂X. The slope μ lifts to run from $(0,0)$ to $(0,1)$ in \mathbb{R}^2. Diagonals of the triangulation of ∂Y have positive or negative slope, depending on whether m is positive or negative.

• The meridian of Y is the slope $m = \ell \mu + k \lambda$.

Proof. Let X denote the layered solid torus with a boundary triangulation that includes the slopes $0/1$ and $1/0$ and a diagonal $\pm 1/1$, with sign agreeing with the sign of m, and meridian $\ell/2k$. Note if $\ell/k \neq 1/0$ or $\pm 1/1$ then $\ell/2k \notin \{0, \infty, \pm 1, \pm 2, \pm 1/2\}$, which were the excluded slopes for building a layered solid torus in Section 3.

Let Y denote the double cover of X. The double cover of a solid torus is a solid torus, and the once-punctured torus boundary lifts to a twice-punctured torus, with triangles lifting to triangles. We need to show that the slopes behave as claimed.

First, the slope $1/0$ and the meridian $\ell/2k$ of X have geometric intersection number $|1 \cdot 2k - \ell \cdot 0| = |2k|$, which is even, and thus $1/0$ is homotopic to an even power of the core of the solid torus X. Thus in the double cover Y, the slope $1/0$ lifts to a closed curve. As $1/0$ is an edge of a triangle on ∂X, it will remain an edge of a triangle on ∂Y, and lift to a generator of the fundamental group denoted μ. We may take this to run from $(0,0)$ to $(0,1)$ in \mathbb{R}^2. Next, the curve $0/1$ meets $\ell/2k$ a total of $|0 \cdot 2k - \ell \cdot 1| = |\ell|$ times on ∂X, which is odd. Therefore it lifts to an arc rather than a closed curve on ∂Y, with endpoints on distinct punctures. Thus a second generator of the fundamental group of ∂Y is given by taking two lifts of $1/0$, end to end. Denote this generator by λ. Its lift runs from $(0,0)$ to $(2,0)$ in \mathbb{R}^2.

Finally we check that the meridian of Y is the slope m, written in terms of μ and λ as claimed. In X, the curve $\ell/2k$ bounds a disc. This lifts to bound a disc in Y as well. However, note the lift runs ℓ times along μ and k times along λ. Thus the meridian slope is as claimed.

If ℓ is even, say $\ell = 2s$ for some integer s, the lift of $m = \ell/k$ to \mathbb{R}^2 is an arc running from $(0,0)$ through $(k,s) \in \mathbb{Z}^2$ to $(2k, 2s) \in \mathbb{Z}^2$. Thus it meets a lift of a puncture in its interior. In this case, taking a double cover of a layered solid torus will not suffice. Instead, we need to give a different construction.

Construction 7.2. Let $m = \ell/k$ be a slope such that ℓ is even, say $\ell = 2s$, and $m \notin \{0/1, \pm 2/1\}$. Let (T_0, \ldots, T_N) be a sequence of triangles in the Farey triangulation where T_0 is a triangle with slopes $0/1$, $1/0$, and either $1/1$ or $-1/1$, with sign agreeing with the sign of m, and T_N is a triangle with slopes u, t, and s/k.

Start with the triangulation of the twice-punctured torus consisting of two copies of the slopes of T_0 laying side-by-side. More precisely, fill $\mathbb{R}^2 - \mathbb{Z}^2$ with unit squares with diagonals matching that of T_0, and quotient by $(x,y) \mapsto (x+2,y)$ and $(x,y) \mapsto (x,y+1)$.

Inductively, for the j-th step across an edge in the Farey triangulation, attach two ideal tetrahedra to the twice-punctured torus, attaching two identical diagonal exchanges with the slopes of T_{j-1}, and producing a triangulation of a space homotopy equivalent to the product of the interval and the twice-punctured torus, with one boundary triangulated by two side-by-side copies of T_0, and the other triangulated by two side-by-side copies of T_j. Note that so far, this is identical to the procedure for the layered solid torus, only we are taking two copies of each tetrahedron instead of just one. See Figure 7.1.

This time, continue until $j = N$, so one boundary is labeled by slopes u, t, and s/k, repeated twice in each of two parallelograms lying side-by-side. Now obtain a solid torus as follows. First, identify the two slopes s/k in the two boundary triangles. Then fill the remaining space with a single tetrahedron whose four faces are glued to the inner faces.

Remark 7.3. Note that to construct a layered solid torus in Section 3, we needed to exclude slopes in T_0 and T_1 in the Farey graph. It is no longer necessary to exclude slopes in T_1 for the previous
construction, because of the addition of extra tetrahedra corresponding to \(j = N \) and a final tetrahedron after identifying diagonals of the tetrahedra corresponding to \(j = N \). We still exclude slopes in \(T_0 \).

Lemma 7.4. Suppose \(m = \ell/k = \ell\mu + k\lambda \) is such that \(\ell \) is even and \(m = \ell/k \notin \{0/1, \pm 2/1\} \). Then the triangulated space \(Y \) constructed as above, by taking a sequence of side-by-side tetrahedra and attaching a final tetrahedron at the core, forms a solid torus satisfying:

- The boundary of \(Y \) is a twice-punctured torus, triangulated by four triangles (in symmetric pairs), with basis slopes \(\mu \) running over one edge of a triangle, lifting to run from \((0,0)\) to \((0,1)\) in \(\mathbb{R}^2 \), and \(\lambda \) running over two edges (and two punctures), lifting to run from \((0,0)\) to \((2,0)\) in \(\mathbb{R}^2 \). Diagonal edges of the triangulation have positive or negative slope, where the sign is determined by the sign of \(m \).
- The meridian of the solid torus \(Y \) is the slope \(m = \ell\mu + k\lambda \).

Proof. Generators for the fundamental group of the boundary torus consist of edges \(1/0 \) in the original triangulation, and two copies of \(0/1 \) by construction. Denote the first generator by \(\mu \) and the second, consisting of two edges, by \(\lambda \).

The meridian of the solid torus is the curve that is homotopically trivial. This is the curve formed by pinching together two edges of slope \(s/k \) on the inside boundary of triangulated space. Thus it runs twice over this edge. In terms of the generators \(\mu \) and \(\lambda \), the curve running twice over the edge \(s/k \) of the innermost twice-punctured torus has slope \(2s\mu + k\lambda \), or \(\ell\mu + k\lambda \). \(\square \)

Remark 7.5 (Symmetry of Construction 7.2). Notice that the solid torus \(Y \) from Construction 7.2 will admit an involution. This involution takes the innermost tetrahedron to itself (setwise), and for each of the other tetrahedra in the construction, it swaps the two tetrahedra that were layered together, corresponding to the same triangle in the Farey graph. We will give this solid torus an angle structure. We will choose the angles to be preserved under this involution. Thus, although tetrahedra are layered in pairs, and although there are two punctures on the boundary, the two cusp triangulations will be identical, with angles on any tetrahedron agreeing with the angles on its image under the involution.

Lemma 7.6. Let \(V \) be a solid torus with twice punctured torus boundary, and with triangulation either as in Lemma 7.1 or Lemma 7.4, depending on whether the meridian \(m = \ell\mu + k\lambda \) has \(\ell \) even or odd. We also assume \(m \notin \{0/1, 1/0, \pm 1/1, \pm 2/1\} \).

Let \(\{\theta_p, \theta_q, \theta_r\} \) be exterior dihedral angles along edges of the twice punctured torus, where each is repeated twice symmetrically, such that

\[
0 < \theta_r < \pi, \quad -\pi < \theta_p, \theta_q < \pi, \quad \text{and} \quad \theta_p + \theta_q + \theta_r = \pi.
\]

Suppose also that in the case \(\ell \) is odd, intersection numbers satisfy

\[
i(p, \ell/2k)\theta_p + i(q, \ell/2k)\theta_q + i(r, \ell/2k)\theta_r > 2\pi.
\]
Then there exists an angle structure on the triangulated solid torus with these exterior angles. Conversely, if an angle structure exists and \(\ell \leq 1 \), there is additionally an inequality \(z_i > z_{i+1} \) for 2 \(\leq \) \(i \leq N \) vertices in the innermost hexagon; see Figure 7.2.

Proof. The case of the double cover of a layered solid torus follows from the same result for usual convexity and hinge equations imply that the sequence is strictly decreasing. However, for the first two tetrahedra, \(\Delta_i, \Delta_{i+1} \) are labelled RL or LR (hinge condition) and \(z_i > z_{i+1} \) if \(\Delta_i, \Delta_{i+1} \) are RR or LL (convexity condition). Moreover, for the first two tetrahedra,

\[
\pi - \theta_p - 2\theta_r < z_2 < \pi - \theta_p.
\]

There is additionally an inequality \(z_{i-1} > z_{i+1} \) in the \(RR \) or \(LL \) case, just as in the proof of Lemma 4.12, but just as in that proof, a downward induction will imply that the entire sequence must be strictly decreasing, and so we do not need to record this inequality.

Recall that to make the slope \(m \) trivial in the side-by-side case, we identify the two edges of slope \((\ell/2)/k \) in the pair of tetrahedra at the \(N \)-th step. This corresponds to identifying a pair of opposite vertices in the innermost hexagon, see Figure 7.2.

As in the proof of Lemma 4.11, the sum of the interior angles of the hexagon is \(4\pi \). This gives the equation

\[
(2x_N + x_{N+1}) + (2y_N + z_{N+1}) + z_N = 2\pi, \text{ or } z_N = z_{N+1} + x_{N+1}.
\]

Since \(x_{N+1} > 0 \), this implies that \(0 < z_{N+1} < z_N \). Thus for angle structure to exist on the side-by-side layered solid torus, we require that \(0 < z_{N+1} < z_N \). Finally, note again that by a downward induction, convexity and hinge equations imply that the sequence is strictly decreasing.
As in Lemmas 4.13 and 4.15, we find a sequence \((z_0, z_1, \ldots, z_N, z_{N+1})\) satisfying the above conditions. In the layered solid torus case, we had to split into two cases, depending on whether or not a hinge existed. When there was no hinge, we needed a convex sequence with the last term equal to zero. However, in this case, we need a convex sequence with \(z_{N+1} > 0\), which can always be arranged. Thus we only need to show that a sequence satisfying the above requirements exists.

To find such a sequence, the same argument of Lemma 4.15 can be used. Namely, Let \(h \in \{2, 3, \ldots, N + 1\}\) be the smallest index such that \(\Delta_n\) is a hinge of the form \(RL\) or \(LR\), or set \(h = N + 1\) if no such index exists. Set \(z_0 = \pi + \theta_p, z_1 = \pi - \theta_r\). We can choose inductively a positive decreasing sequence \(z_k\) such that \(z_k > 2z_{k-1} - z_{k-2}\) for \(1 \leq k \leq h\).

The rest of the sequence \(z_i\) is constructed backwards from \(i = N + 1\) to \(i = h\). Consider a sequence \(z_i'\). Set \(1 > z_{N+1}' > 0\) and \(z_N' = 1\). For each \(i\) such that \(N - 1 \geq i \geq h + 1\), inductively choose \(z_i'\) such that \(z_i' > z_{i+1}' + z_{i+2}'\) or \(z_i' + z_{i+2}' > 2z_{i+1}'\), depending on whether \(\Delta_{i+1}\) is a hinge or not.

Now choose \(\epsilon\) such that \(0 < \epsilon < (z_{h-1} - z_h)/z_{h+1}'\). Set \(z_i = \epsilon z_i'\) for \(h + 1 \leq i \leq N + 1\). The sequence \(z_i\) satisfies the required inequalities for \(i < h\) and \(i > h\). Because of our choice of \(\epsilon\), it also satisfies the hinge condition \(z_h < z_{h+1} - z_{h+1}\), or \(z_h < z_{h+1} - \epsilon z_{h+1}\). Thus we have found a sequence satisfying Lemma 4.12.

Lemma 7.7. Let \(V\) be the triangulated solid torus of Lemma 7.6; in particular, the meridian \(m\) of \(V\) is not one of \(\{0/1, 1/0, \pm 1/1, \pm 2/1\}\). If the volume functional takes its maximum on the boundary of the space of angle structures, then all tetrahedra in the solid torus must be flat. Thus the volume functional is maximised in the interior.

Proof. Suppose the volume functional is maximised on the boundary of the double cover \(V\) of a layered solid torus. There is a symmetry of the triangulated solid torus \(V\) swapping triangles in pairs, changing the basepoint of the double covering. If the volume is maximised at a point in which angles are not preserved by this symmetry, then applying the symmetry gives two distinct maxima, contradicting the fact that the volume functional is convex. Thus a point of maximum for the double cover descends to a maximal point for the original layered solid torus. By Lemma 4.16, if the volume functional is maximised on the boundary, all tetrahedra are flat. Thus the maximum is in the interior in this case.

For the side-by-side triangulation, a point on the boundary of the space of angle structures corresponds to a sequence \((z_0, z_1, \ldots, z_{N+1})\) satisfying hinge and convexity equations, but now with weak inequalities. This must be a non-increasing sequence. Suppose the \(i\)-th tetrahedron is the first flat tetrahedron. Then \(z_i \in \{0, \pi\}\) but \(z_{i-1} \in (0, \pi)\) unless \(i - 1 = 0\). If \(z_i = \pi\), then convexity implies \(z_j = \pi\) for \(j = i + 1, \ldots, h\), where \(h\) is the next hinge index. The hinge condition then implies that all later \(z_j = 0\). Similarly, if \(z_i = 0\) then all later \(z_j = 0\).

Now consider \(z_{i-1}\). We have \(x_i, y_i, z_i, z_{i+1} \in \{0, \pi\}\). Thus by one of the formulas determining angles, as in Lemma 4.9, \(z_{i-1} = 2\pi\). But \(0 < z_{i-1} < \pi\) unless \(i - 1 = 0\). If \(i - 1 = 0\), the first flat tetrahedron is the first tetrahedron, so the entire solid torus consists of flat tetrahedra.

There is one final thing to check: above, we have restricted to angle structures in which a tetrahedron and its image under the involution preserving the side-by-side solid tori are given the same angles. We have shown that under this restriction, volume is maximised in the interior. However, note that if the volume were maximised for an angle structure on \(Y\) that did not have symmetric angles, then applying the involution would give a distinct angle structure on \(Y\) with the same volume, contradicting the fact that the volume functional has a unique maximum. Hence the maximum of the volume functional must occur at an angle structure that is preserved under our involution.

Lemma 7.8. Let \(V\) be the triangulated solid torus of Lemma 7.6; in particular, the meridian \(m\) of \(V\) is not one of \(\{0/1, 1/0, \pm 1/1, \pm 2/1\}\). Suppose \(T\) is a subset of a triangulation of a 3-manifold \(M\) such that the volume functional on \(M\) is maximised at a point in which a tetrahedron of \(T\) is flat. Then the exterior dihedral angles of \(T\) satisfy \((\theta_p, \theta_q, \theta_r)\) are equal to one of \((\pi, -\pi, \pi), (-\pi, \pi, \pi), (\pi, 0, 0)\), or \((0, \pi, 0)\). Conversely, if the exterior dihedral angles is one of these choices, then \(T\) is flat.

Proof. By Lemma 7.7, if one of the tetrahedra in the solid torus is flat then all of the tetrahedra in this solid torus are flat.
Next observe that the exterior dihedral angles of the solid torus satisfy: $\theta_r = \pi - z_1, \theta_q = \pi - (z_2 + 2y_1)$ or $\theta_q = \pi - (z_2 + 2y_1)$, and $\theta_p = \pi - \theta_q - \theta_r$, where z_1, x_1, y_1 are the dihedral angles of the outermost tetrahedron in the flat layered solid torus, and z_2 is an angle in the next outermost tetrahedron. Exactly one of x_1, y_1, z_1 is π, and the other two are 0.

If $z_1 = 0$, then $z_2 = 0$ because the z_i form a nonincreasing nonnegative sequence. Then $\theta_r = \pi$ and θ_q is either π or $-\pi$, depending on x_1, y_1. Since $\theta_p + \theta_q + \theta_r = \pi$, this implies that $(\theta_p, \theta_q, \theta_r) = (\pi, -\pi, \pi)$ or $(-\pi, \pi, \pi)$.

Now suppose $z_1 = \pi$. Then $x_1, y_1 = 0$, and z_2 is 0 or π. In this case, $\theta_r = \pi - z_1 = 0$, θ_q is 0 or π depending on z_2, and $\theta_p = \pi - \theta_r - \theta_q$ is π if $\theta_q = 0$ or 0 if $\theta_q = \pi$. Therefore, $(\theta_p, \theta_q, \theta_r) = (\pi, 0, 0)$, or $(0, 0, 0)$.

Conversely, suppose the exterior dihedral angles are as in the lemma. Then $z_1 = \pi - \theta_r$ must be 0 or π. In either case, the angles of the outermost tetrahedron must then be a permutation of $(0, 0, \pi)$, and hence that tetrahedron is flat. By Lemma 7.7, if any tetrahedron is flat, all tetrahedra are flat. □

7.1. The case of a half-twist. In the case that a crossing circle encircles a half-twist, the cusp is still formed from two squares, but a meridian of the crossing circle cusp lifts to \mathbb{R}^2 to run from $(0,0)$ to $(1,1)$.

Suppose first that m is positive. Then apply a homeomorphism to the fully augmented link complement that reverses the direction of the crossing. The meridian $\mu = 1/0$ of this new link complement lifts to run from $(0,0)$ to $(-1,1)$, and the longitude $\lambda = 0/1$ to run from $(0,0)$ to $(2,0)$. The vertical line from $(0,0)$ to $(0,1)$ is a lift of the slope $1/1$. Now given ℓ, k relatively prime, perform the construction of the solid torus in Lemma 7.1 or Lemma 7.4 depending on whether ℓ is even or odd. Only now, lift μ to the curve running from $(0,0)$ to $(-1,1)$ in \mathbb{R}^2. As the lift is purely topological, this gives a solid torus that can be used to perform the Dehn filling just as before. Moreover, Lemmas 7.6 and 7.7 still hold with their proofs unchanged in this case.

If m is negative, then the meridian $\mu = 1/0$ of the crossing circle cusp lifts to run from $(0,0)$ to $(1,1)$, the longitude $\lambda = 0/1$ lifts to run from $(0,0)$ to $(2,0)$, and the slope $-1/1$ lifts to run from $(0,0)$ to $(0,1)$. Given $m = \ell/k$, again perform the construction of the solid torus of Lemma 7.1 or Lemma 7.4, depending on whether ℓ is even or odd, and lift μ to the curve running from $(0,0)$ to $(1,1)$ in \mathbb{R}^2. Again Lemma 7.6 and Lemma 7.7 hold with proofs unchanged to give the required angle structures, with volume maximised in the interior. Thus the construction works equally well with or without a half-twist.

7.2. A vertical construction. Finally, the above work is sufficient to perform all Dehn fillings on the family of fully augmented links with exactly two twist regions, shown in Figure 6.1. However, in Section 9, we will need to extend this construction to obtain a solid torus in which $\mu = 1/0$ lifts to run from $(0,0)$ to $(0,2)$ and $\lambda = 0/1$ lifts to run from $(0,0)$ to $(1,0)$. We treat that case in this subsection.

Note that above, we constructed a solid torus by taking side-by-side tetrahedra, i.e. stacking identical tetrahedra horizontally, in the x-axis direction. More precisely, we tiled all of $\mathbb{R}^2 - \mathbb{Z}^2$ by unit squares cut through by a diagonal, layered on tetrahedra coming from a walk in the Farey graph, and then took the quotient by $(2\mathbb{Z}, \mathbb{Z})$.

This construction could instead have been done by taking identical tetrahedra stacked in the y-axis direction. That is, quotient out by $(\mathbb{Z}, 2\mathbb{Z})$. All the results above immediately hold for this construction. In particular, we have the following.

Lemma 7.9. Let $m = \ell/k$ be such that k is even, and $m \notin \{1/0, \pm 1/2\}$. The “vertical side-by-side” solid torus, constructed by layering on tetrahedra in a path from $T_0 = (0/1, \pm 1/1, 0/0)$ to $T_N = (u,v, \ell/(k/2))$, has the following properties.

1. Its boundary is a a twice-punctured torus, triangulated by four ideal triangles in two symmetric pairs, with basis slopes μ running over two edges of a triangle, lifting to run from $(0,0)$ to $(0,2)$ in \mathbb{R}^2, and λ running over one edge, lifting to run from $(0,0)$ to $(1,0)$ in \mathbb{R}^2.
2. The meridian of the solid torus is the slope $m = \ell\mu + k\lambda$.

GEOMETRIC TRIANGULATIONS AND HIGHLY TWISTED LINKS 27
Then the Dehn filling of M of Lemma 7.4, or two solid tori of that form.

Both double covers of layered solid tori, or one double cover and one solid torus with the side-by-side
admits a topological triangulation built of gluing together two triangulated solid tori that are either

Similarly, if ℓ/k is a slope such that k is odd, we may take a double cover of a layered solid torus to
produce a solid torus whose boundary is a twice-punctured torus, only now with a fundamental domain
that consists of two squares stacked vertically rather than horizontally, as follows.

Lemma 7.10. Let $m = \ell/k$ be such that k is odd and $m \notin \{0/1, \pm 1/1\}$. Then the (vertical) double cover Y of the layered solid torus X constructed from a walk in the Farey graph from $T_0 = (0/1, 1/0, \pm 1/1)$ to slope $(2\ell)/k$ has the following properties.

- The boundary of Y is a twice-punctured torus, triangulated by four ideal triangles (in two
 symmetric pairs), lifting to give a triangulation of the cover \mathbb{R}^2. The basis slope μ lifts to run
 from $(0, 0)$ to $(0, 2)$ in \mathbb{R}^2, and projects to run twice around the slope $1/0$ in ∂X. The basis
 slope λ lifts to run from $(0, 0)$ to $(1, 0)$.

- The meridian of Y is the slope $m = \ell \mu + k \lambda$.

Proof. Let X be a layered solid torus with meridian slope $2\ell/k$, where k is odd. Let Y be the (vertical double) cover of X.

The slope from $(0, 0)$ to $(0, 1)$ is a generator in the solid torus X. It meets the meridian $2\ell/k$ of X a
total of $|1 \cdot k - 0 \cdot 2\ell| = |k|$ times, which is odd. Therefore the curve from $(0, 0)$ to $(0, 1)$ lifts to an arc in ∂Y. Thus a generator of the fundamental group of ∂Y is given by taking two lifts of the curve from $(0, 0)$ to $(0, 1)$, lined up end-to-end. Denote the resulting closed curve in Y by μ. Its lift runs from $(0, 0)$ to $(0, 2)$ in \mathbb{R}^2.

The slope from $(0, 0)$ to $(1, 0)$ is a generator in the solid torus X. This curve and the meridian of X, of slope $2\ell/k$, have geometric intersection number $|0 \cdot k - 2 \cdot \ell| = |2\ell|$, which is even. Thus the curve from $(0, 0)$ to $(1, 0)$ is homotopic to an even power of the core of X. Therefore a second generator of the fundamental group of ∂Y is given by taking the lift of the curve from $(0, 0)$ to $(1, 0)$. Denote this generator by λ. Its lift runs from $(0, 0)$ to $(0, 1)$ in \mathbb{R}^2.

The meridian $2\ell/k$ of X lifts to bound a disc in Y. Note that the lift runs 2ℓ times along μ and k
times along λ. So in the basis for Y, the meridian has the form $\ell/k = \ell \mu + k \lambda$.

8. Dehn filling the Borromean rings

In this section we finish the proof that triangulations of Dehn fillings of the crossing circles of the
Borromean rings are geometric, for appropriate choices of slopes, and similarly for the other fully
augmented link complements shown in Figure 6.1.

Lemma 8.1. Let M be one of the fully augmented link complements with exactly two crossing circles. Let m_1, m_2 be slopes such that

\[m_1, m_2 \notin \{0/1, 1/0, \pm 1/1, \pm 2/1\}. \]

Then the Dehn filling of M on its crossing circle cusps along slopes m_1 and m_2, denoted $M(m_1, m_2)$, admits a topological triangulation built of gluing together two triangulated solid tori that are either
both double covers of layered solid tori, or one double cover and one solid torus with the side-by-side
construction of Lemma 7.4, or two solid tori of that form.

Proof. The slopes m_1 and m_2 on the two crossing circle cusps each determine a triangulation of a solid
torus by Lemma 7.1 or Lemma 7.4. To perform Dehn filling, we remove interiors of all edges, faces, and
tetrahedra meeting a crossing circle cusp, and replace them by one of these two triangulated solid tori.

Removing interiors of edges, faces, and tetrahedra meeting the two crossing circle cusps removes all
but two squares from the manifold, namely the squares shown in Figure 6.3, identified as shown in
Lemma 6.2. We wish to attach triangulated solid tori to these squares. There are two cases to consider.
Case 1: The triangulations on the boundary of the solid tori agree. If M is the Borromean rings complement, this is the case that the slopes m_1 and m_2 are both positive, or the case that the slopes m_1 and m_2 are both negative. In this case, the squares of Figure 6.3 are triangulated by the same diagonals. If M has one or two half-twists, again the sign of m_1 and m_2 determine the diagonals. This is the case that the choice of triangulation gives the same diagonals.

In this case, the corresponding solid tori have boundary triangulation that matches the triangulation on the squares. Moreover, when we attach the two solid tori to opposite sides of the squares, following the gluing instructions of Figure 6.3, their triangulations match the given triangulations, giving a topological triangulation of the Dehn filling.

Case 2: The triangulations disagree. For example, this is the case that m_1 and m_2 have opposite signs when M is the Borromean rings complement.

In this case, the triangulations of the solid tori will induce triangulations of the two squares with opposite diagonals. To glue these together, we add two identical extra tetrahedra between the two squares, with the tetrahedra effecting a diagonal exchange on the squares.

Because both tetrahedra are attached along exactly two faces to the second solid torus, in fact they form an extra layer on the solid torus, equivalent to changing the initial triangulation on the boundary in the construction from $(0, 1, \infty)$ to $(0, -1, \infty)$, or vice versa. Thus we glue these two tetrahedra to the second solid torus. Then the second solid torus has the form of Lemma 7.1 or Lemma 7.4, except with triangulation on its boundary consisting of diagonals having opposite sign from the slope. □

Lemma 8.2. Suppose the exterior dihedral angles on the i-th solid torus are denoted α_i for the diagonal edges, and θ_i for the horizontal edges, for $i = 1, 2$. If an angle structure exists on $M(m_1, m_2)$ then $\alpha_1 = -\alpha_2$ and

$$\theta_1 = \theta_2 + \alpha_2, \quad \theta_2 = \alpha_1 + \theta_1.$$

Proof. Angle structures for each of the triangulated solid tori will come from Lemma 7.6, once we decide on exterior dihedral angles. Angle structures on the solid tori will induce an angle structure on the entire manifold if and only if the edge equations are satisfied for edges that lie on the two squares, on the boundaries of the solid tori.

Each solid torus has six edges on its boundary, and we assign three angles, giving a pair of symmetric edges the same angle. On the first solid torus, the horizontal edges all have the same exterior angle, denoted θ_1. The diagonal edges have the same exterior angle, denoted α_1, and the vertical edges have the same exterior angle, which must be $\pi - \alpha_1 - \theta_1$. Similarly denote the horizontal, diagonal, and vertical exterior angles on the second solid torus by θ_2, α_2, and $\pi - \theta_2 - \alpha_2$, respectively.

Diagonal edges are glued to diagonal edges. Thus the sum of interior angles satisfies

$$(\pi - \alpha_1) + (\pi - \alpha_2) = 2\pi, \quad \text{or} \quad \alpha_1 = -\alpha_2.$$

Horizontal edges with exterior angle θ_1 are identified to vertical edges with exterior angle $\pi - \theta_2 - \alpha_2$; both vertical edges in the second solid torus lie in this edge class. Similarly horizontal edges with exterior angle θ_2 are identified to the vertical edges of the first solid torus. Thus the sum of interior angles around these two edge classes satisfy:

$$2(\pi - \theta_1) + 2(\theta_2 + \alpha_2) = 2\pi, \quad \text{or} \quad \theta_1 = \theta_2 + \alpha_2, \quad \text{and}$$

$$2(\pi - \theta_2) + 2(\theta_1 + \alpha_1) = 2\pi, \quad \text{or} \quad \theta_2 = \theta_1 + \alpha_1. \quad \square$$

Lemma 8.3. Let M denote the complement of a fully augmented link with two crossing circles, as in Figure 6.1, and let $M(m_1, m_2)$ denote its Dehn filling along slopes m_1, m_2 on the crossing circle cusps. If m_1, m_2 satisfy

$$m_1, m_2 \notin \{0/1, 1/0, \pm 1/1, \pm 2/1\},$$

then $M(m_1, m_2)$ admits an angle structure.

Proof. If an angle structure exists, it must satisfy the equations of Lemma 8.2. In addition, there is an angle structure on each of two solid tori, with exterior angles denoted by θ_{p_i}, θ_{q_i}, θ_{r_i} in the first solid
Then we insert an extra tetrahedron onto the first solid torus. Thus the construction of this solid torus, satisfying
\[\theta_{p_1} + \theta_{q_1} + \theta_{r_1} = \pi, \quad -\pi < \theta_{p_1}, \theta_{q_1} < \pi, \quad 0 < \theta_{r_1} < \pi, \]
and denoted by \(\theta_{p_2}, \theta_{q_2}, \theta_{r_2} \) in the second solid torus, and satisfying similar conditions.

In addition, in the special case that \(m_i = \ell_i/k_i \) and \(\ell_i \) is odd, and moreover the path in the Farey graph from the initial triangulation has no hinges, then we require the slopes \(p_1, q_1, r_1 \) and \(\ell_i/(2k_i) \) to satisfy the intersection condition (4.5).

Provided we can find any angles that simultaneously satisfy all the above, we will have proved the lemma.

The difficulty is that the angles \(\theta_{p_1}, \theta_{q_1}, \) and \(\theta_{r_1} \) have different relationships with angles \(\alpha_i, \theta_i \) and \(\pi - \alpha_i - \theta_i \) depending on whether \(m_1, m_2 \) have the same or different sign, and on whether a crossing circle has a half-twist.

Suppose first that there are no half-twists, i.e. \(M \) is the Borromean rings complement, and that \(m_1 \) and \(m_2 \) have the same sign; for concreteness, say they are both positive. In this case, we build the two solid tori corresponding to \(m_1 \) and \(m_2 \) by starting in the triangle in the Farey graph with vertices 0, 1, \(\infty \), and go up. In this case, 1 is not covered in the first step, so \(r = 0 \) or \(r = \infty \), and 1 is the slope \(p \) or \(q \). If both solid tori have hinges, then the intersection condition will either be automatically satisfied for the layered solid tori we construct, or it is unnecessary for the side-by-side tori we construct. So the more difficult remaining case is when \(m_1 = \ell_i/k_i \) with \(\ell_i \) odd, and there are no hinges in the path from the triangle \((0, 1, \infty)\) to \(\ell_i/(2k_i) \), and similarly for \(\ell_2/(2k_2) \).

No hinges means the slope \(\ell_i/(2k_i) \) is of the form \(1/2n \) for \(n \) a positive integer, or of the form \(n/1 \); the second is impossible because \(1 \neq 2k_i \). Thus the path in the Farey graph consists only of \(L \)s, and goes from \((0, 1, \infty)\) to \(1/(2k_i) \). Then we know that \(r_1 \), the first slope covered, corresponds to \(\infty \), which is the vertical edge in the initial triangulation, labeled with exterior angle \(\pi - \alpha_1 - \theta_1 \). The slope \(p_1 \), the second slope covered, corresponds to \(1/1 \), which is the diagonal edge in the initial triangulation, labeled with exterior angle \(\alpha_1 \). Thus the slope \(q_1 \) corresponds to 0, the horizontal edge, with exterior angle \(\theta_1 \). The required equations then become: \(\theta_i = \theta_{q_1}, \alpha_i = \theta_{p_1}, \pi - \theta_i - \alpha_i = \theta_{r_1} \), satisfy (8.4), as well as intersection conditions:
\[
i(1/(2k_i), 1/1)\alpha_1 + i(1/(2k_i), 0/1)\theta_1 + i(1/(2k_i), 1/0)(\pi - \alpha_1 - \theta_1) > 2\pi,
\]
or
\[
(2k_i - 1)\alpha_1 + \theta_1 + 2k_i(\pi - \alpha_1 - \theta_1) > 2\pi.
\]

There are many solutions to these equations. For example, set \(\alpha_1 = \pi/6, \theta_1 = 5\pi/9, \) and \(\pi - \alpha_1 - \theta_1 = 5\pi/18, \) and \(\alpha_2 = -\alpha_1 = -\pi/6, \theta_2 = \alpha_1 + \theta_1 = 13\pi/18, \) and \(\pi - \alpha_2 - \theta_2 = 4\pi/9. \) This gives an angle structure, as desired.

The case that both \(m_1 \) and \(m_2 \) are negative is similar.

Next suppose there are no half-twists, but \(m_1 \) and \(m_2 \) have opposite signs; say \(m_1 > 0 \) and \(m_2 < 0 \). Then we insert an extra tetrahedron onto the first solid torus. Thus the construction of this solid torus now starts at the Farey triangle \((0, -1, \infty)\) and immediately crosses into the triangle \((0, 1, \infty)\). It follows that \(r = -1 \), corresponding to exterior angle \(\alpha_1 \). The only case in which the intersection condition comes up is if the path in the Farey triangulation only steps \(L \), and the slope \(m_1 = 1/(2k_1) \). Then in this case, \(p = \infty \), corresponding to exterior angle \(\pi - \alpha_1 - \theta_1 \), and \(q = 0 \), corresponding to exterior angle \(\theta_1 \). The intersection condition is similar to above; the only difference is that we need to ensure we have a solution in which \(\alpha_1 \) now lies strictly between 0 and \(\pi \). But notice we already found such a solution in the previous case. Thus the same angles in the previous case still work to give an angle structure in this case. Notice that \(\alpha_2 < 0 \), but because \(m_2 < 0 \) as well, \(\alpha_2 \) does not correspond to the exterior angle on slope \(r_2 \), the first slope covered, and so \(-\pi < \alpha_2 < 0 \) works in this case.

In the case that there is one half-twist, the half-twist changes the names of the slopes in the framing: the meridian of the unfilled manifold is now a diagonal, the longitude runs over two horizontal segments. However, we still assign the same exterior angles \(\alpha_1 \) to the diagonal, \(\theta_1 \) to the horizontal. In fact, this gives the same required equations as above, both in the case of \(m_1 \) and \(m_2 \) having the same sign, and \(m_1 \) and \(m_2 \) having opposite signs, and so the same choices of angles will give an angle structure.
Finally, when there are two half-twists, again we change the framing on both solid tori, but ensuring the triangulations match up will again give the same required equations, and so the solution above always gives an angle structure.

Lemma 8.5. Let \(M \) denote the complement of one of the fully augmented links with two crossing circles, shown in Figure 6.1, and let \(M(m_1, m_2) \) denote its Dehn filling along slopes \(m_1, m_2 \) on the crossing circle cusps. Suppose \(m_1, m_2 \) satisfy

\[
m_1, m_2 \notin \{0/1, 1/0, \pm 1/1, \pm 2/1\}.
\]

Then, for the space of angle structures on the triangulation of \(M(m_1, m_2) \) from above, the volume functional takes a maximum in the interior.

Proof. Consider a point on the boundary of the space of angle structures. Because it is on the boundary, it contains a flat tetrahedron, with angles 0, 0, and \(\pi \). Because the triangulation of \(M(m_1, m_2) \) is built of two triangulated solid tori, one of the tetrahedra in one of the solid tori is flat. Then by Lemma 7.7, all of the tetrahedra in this solid torus are flat.

By Lemma 7.8, we know that the exterior dihedral angles of the flat solid torus \((\theta_p, \theta_q, \theta_r) \) are either \((\pi, -\pi, \pi), (-\pi, \pi, \pi), (\pi, 0, 0), \) or \((0, \pi, 0)\).

Suppose that \((\theta_p, \theta_q, \theta_r) = (\pi, -\pi, \pi) \) or \((-\pi, \pi, \pi) \). In either case, this implies that \(\alpha_1 = \pm \pi \), so \(-\alpha_2 = \alpha_1 = \pm \pi \), and \(\theta_2 = \alpha_1 + \theta_1 = 0 \) (it cannot be \(2\pi \) since we restrict to external angles between \(-\pi \) and \(\pi \)), by Lemma 8.2. Then the third angle satisfies \(\pi - \alpha_2 - \theta_2 = 0 \). So the exterior dihedral angles of the second solid torus are \((\pi, 0, 0)\). It follows from Lemma 7.8 that the second solid torus must also be flat. Thus such an angle structure has zero volume, and cannot maximise volume.

Now suppose that \((\theta_p, \theta_q, \theta_r) = (0, 0, \pi) \), up to permutation. Then \(\alpha_1 = 0 \) or \(\pi \), so \(\alpha_2 = -\alpha_1 = 0 \) or \(-\pi \), and \(\theta_2 = \alpha_1 + \theta_1 = 0 \) or \(\pi \). In any case, the exterior dihedral angles must all be either 0 or \(\pm \pi \), which again implies that the second layered solid torus is flat. As before the angle structure cannot maximise volume. \(\square \)

Theorem 8.6. Let \(L \) be a fully augmented link with exactly two crossing circles, as in Figure 6.1. Let \(M \) be the manifold obtained by Dehn filling the crossing circles of \(S^3 - L \) along slopes \(m_1, m_2 \notin \{0, \infty, \pm 1, \pm 2\} \). Then \(M \) admits a geometric triangulation.

Proof. By Lemma 8.1, \(M(m_1, m_2) \) admits a topological triangulation. By Lemma 8.3, this triangulation admits an angle structure. By Lemma 8.5 the volume functional takes its maximum on the interior of the space of angle structures. Then the Casson–Rivin theorem, Theorem 4.2, implies that the triangulation is geometric. \(\square \)

9. Fully augmented 2-bridge links

In this section we consider fully augmented 2-bridge links. These admit a decomposition into two identical, totally geodesic, right-angled ideal polyhedra as in Section 2. In this case, the polyhedra have a particularly nice form: they are built by gluing finitely many regular ideal octahedra. The construction is illustrated carefully in [24, Section 4]. We review it briefly here.

A 2-bridge link has one of two forms, depending on whether there is an even or odd number of twist regions; see Figure 9.1. As before, we augment each twist region with a crossing circle, and remove all even pairs of crossings from the corresponding twist region, leaving one or zero crossings encircled by each crossing circle. When there is one crossing, we say the crossing circle has a half-twist.

To obtain the polyhedra, cut the fully augmented 2-bridge link along the geodesic surface of the projection plane. This cuts each of the 2-punctured disks bounded by a crossing circle in half. The 3-sphere is cut into two pieces, one above and one below the projection plane. For each half, we cut open up half discs and flatten them in the projection plane. Lastly, shrink the link components to ideal vertices. See Figure 9.2, left. The circle packing giving the polyhedral decomposition of a fully augmented 2-bridge link is shown in Figure 9.2, right.
Lemma 9.1. The cusp shapes of any fully augmented 2-bridge link complement with no half-twists consist of a 1 \times 2 block of squares, if the cusp is the first or the last in the diagram, or a 2 \times 2 block of squares for all other cusps.

Proof. The fully augmented 2-bridge link has a circle packing built of two tangent circles labelled C_1 and C_2, and a string of circles C_3, \ldots, C_n, each tangent to both C_1 and C_2, and C_j tangent to C_{j-1} and C_{j+1} for $j = 4, \ldots, n-1$, as in Figure 9.2, right. This circle packing describes each of the two polyhedra making up the link complement.

We need to determine the cusp shapes of the crossing circle cusps. In each polyhedron, the crossing circle cusps correspond to tangencies in the circle packing between C_2 and C_3, between C_4 and C_1, and more generally, between C_2 and C_{2k+1}, and between C_1 and C_{2k}. We take each of these tangent points to infinity to determine the cusp shape. There are two cases.

Case 1. Consider the first and last crossing circles, corresponding to tangencies of C_2 and C_3, and of either C_2 and C_n or C_1 and C_n if n is odd or even, respectively.

Take the point of tangency to infinity. In the case of C_1 and C_3, there are two circles, C_1 and C_4, tangent to both C_2 and C_3, and tangent to each other. Thus the circle packing forms a square, similar to the case of the Borromean rings. When we glue across white faces, we glue an identical square coming from the second polyhedron, and the cusp becomes a 1 \times 2 rectangle. See Figure 9.3, left. The case of C_n is similar.

Case 2. For tangencies between circles C_1 and C_{2k} or C_2 and C_{2k+1}, where the circles C_{2k} or C_{2k+1} are not the first or last such circles, when we take the point of tangency to infinity we see a pattern as shown in Figure 9.3, right. That is, in the first case, circles C_1 and C_{2k} become parallel lines. Between them are three circles tangent to both parallel lines, namely $C_{2k-1}, C_2,$ and C_{2k+1}. These circles form the cusp circle packing. Again glue a white face to another white face to obtain the full cusp shape,
shown in Figure 9.3, middle-right. In this case, the cusp shape is a 2×2 rectangle. The case of C_2 and C_{2k+1} is similar, and is illustrated in Figure 9.3, far right.

Notice that each crossing circle cusp is tiled by ideal pyramids over a square base. The first and last crossing circle cusps are tiled by two pyramids, the others by four.

The fully augmented 2-bridge link is obtained by gluing all these pyramids together according to the following pattern.

Lemma 9.2. Consider the fully augmented 2-bridge link, with no half-twists, and cusp shapes as in Lemma 9.1. The gluing is as follows.

- The first cusp, which is a 1×2 rectangle, is glued to the top half of the second cusp, with left side gluing by a reflection in the diagonal of positive slope, and right side gluing by reflection in the diagonal of negative slope.
- The bottom half of the second cusp, another 1×2 rectangle, is glued to the top half of the third cusp, with the left side gluing by reflection in the negative diagonal, and the right side gluing by reflection in the positive diagonal.
- Inductively, the 1×2 bottom half of the k-th cusp glues to the 1×2 top half of the $(k+1)$-th cusp, with left side gluing by reflection in one diagonal, and the right side gluing by reflection in the other diagonal. See Figure 9.4. Importantly, diagonals glue to diagonals, and horizontal lines glue to vertical and vice-versa.
- Finally, on the last 2×2 rectangle, the bottom 1×2 rectangle glues to the final crossing circle cusp, a 1×2 rectangle, again with vertical edges gluing to horizontal and horizontal to vertical, and diagonals gluing to diagonals.

Proof. As in the case of the link with two crossing circles, this result is obtained by observing the intersections of circles in the circle packings; refer to Figure 9.3. For the first cusp, the square on the
Suppose \(\frac{a}{b} \) is a slope, and \(\frac{a}{b} \notin \{0/1, 1/0, \pm 1/1\} \).

(1) If \(a \) is odd and \(b \) is even, then let \(Y' \) be the double cover of the vertical side-by-side solid torus \(X \) from Lemma 7.9, constructed so that \(X \) has meridian \(\frac{a}{2b} \).

(2) If \(a \) is even and \(b \) is odd, or if \(a \) is odd and \(b \) is odd, then let \(Y \) be the double cover of the horizontal side-by-side solid torus \(X \) from Lemma 7.4, constructed so that \(X \) has meridian \(\frac{2a}{b} \).

In either case, \(Y \) is a triangulated solid torus whose boundary consists of eight ideal triangles in four symmetric pairs, forming a \(2 \times 2 \) square. The slope \(\frac{a}{b} \) is a meridian of \(Y \).

Proof. Case 1. Suppose \(\frac{a}{b} \) is of the form odd over even.

Let \(X \) be the triangulated solid torus that is a “vertical” side-by-side of a layered solid torus, constructed so that the meridian of \(X \) has slope \(\frac{a}{2b} := m_X \), as in Lemma 7.9. Note that to build such a triangulation, we walk to the slope \(\frac{a}{b} \) in the Farey graph, then identify edges of slope \(\frac{a}{b} \) in the final layered tetrahedra, and insert one more tetrahedron. In \(\mathbb{R}^2 \), the slope \(1/0 := \mu_X \) in \(X \) lifts to run from \((0, 0)\) to \((0, 2)\), and \(0/1 := \lambda_X \) lifts to run from \((0, 0)\) to \((1, 0)\). The meridian of \(X \), the slope \(\frac{a}{2b} = m_X \), lifts to run from \((0, 0)\) to \((2b, 2a)\).

Let \(Y \) denote the (horizontal) double cover of \(X \). We will show \(Y \) gives the required Dehn filling. To do so, we need to show that \(\frac{a}{b} \), now written as a slope on \(Y \), in the basis for \(Y \), bounds a disc.

In the solid torus \(X \), the slope \(\frac{a}{2b} = m_X \) lifts to the curve running from \((0, 0)\) to \((0, 2)\) in \(\mathbb{R}^2 \). The meridian slope \(m_X = \frac{a}{2b} \) meets the slope \(\mu_X \) a total of \(|a - 0 - 2b|\) times, which is even. Thus the curve \(\mu_X \) is homotopic to an even power of the core of \(X \). Therefore it lifts to a generator of the fundamental group of \(\partial Y \). Denote this generator by \(\mu_Y := 1/0 \). When we lift \(\partial Y \) to \(\mathbb{R}^2 \), the lift of \(\mu_Y \) still runs from \((0, 0)\) to \((0, 2)\).

The meridian slope \(m_X := \frac{a}{2b} \) of \(X \) meets the slope \(\lambda_X = 0/1 \) a total of \(|2b \cdot 0 - a \cdot 1| = |a|\) times, which is odd. Thus a second generator of the fundamental group of \(\partial Y \) is given by taking two lifts of the curve \(\lambda_X = 0/1 \), lined up end-to-end. Denote this generator by \(\lambda_Y \). When we lift \(\partial Y \) to \(\mathbb{R}^2 \), \(\lambda_Y \) lifts to run from \((0, 0)\) to \((0, 2)\) in \(\mathbb{R}^2 \), i.e. twice the lift of the corresponding generator in \(\partial X \).

The meridian \(m_X = \frac{a}{2b} \) of \(X \) lifts to bound a disc in \(Y \). Note that the lift runs \(a \) times along \(\mu_Y \) and \(b \) times along \(\lambda_Y \). This means the meridian of \(Y \) is the slope \(\frac{a}{b} \), as desired.

Case 2. Suppose \(\frac{a}{b} \) is of the form even over odd or is of the form odd over odd.

Let \(X \) be the triangulated solid torus that is a “horizontal” side-by-side solid torus, constructed so that the meridian of \(X \) has slope \(\frac{2a}{b} := m_X \). Note that to build such a triangulation, we walk to the slope \(\frac{a}{b} \) in the Farey graph, as in Lemma 7.4. The solid torus \(X \) has generators of the fundamental group given by slopes \(\mu_X = 1/0 \), lifting to run from \((0, 0)\) to \((0, 1)\) in the \(\mathbb{R}^2 \) cover of \(\partial X \), and \(\lambda_X = 0/1 \), lifting to run from \((0, 0)\) to \((2, 0)\). The meridian \(\frac{2a}{b} \) lifts to run from \((0, 0)\) to \((2b, 2a)\).

Let \(Y \) denote the (vertical) double cover of \(X \). We will show \(Y \) gives the required Dehn filling. To do so, we need to show that \(\frac{a}{b} \), written in the basis for \(Y \), bounds a disc.
In X, the slope $\mu_X = 1/0$ meets the meridian slope $m_X = 2a/b$ a total of $|1 \cdot b - 0 \cdot 2a| = |b|$ times, which is odd. Thus μ_X in X lifts to an arc in ∂Y. A generator of the fundamental group of ∂Y is given by taking two lifts of this curve, lined up end-to-end. Denote the resulting closed curve in Y by μ_Y. Its lift runs from $(0, 0)$ to $(0, 2)$ in \mathbb{R}^2.

In X, the slope $\lambda_X = 0/1$ meets the meridian slope $m_X = 2a/b$ of X a total of $|0 \cdot b - 1 \cdot 2a| = |2a|$ times, which is even. Thus the curve λ_X is homotopic to an even power of the core of X, and it lifts to a closed curve in Y. A second generator of the fundamental group of ∂Y is given by taking this lift of λ_X. Denote it by λ_Y. When we lift ∂Y to \mathbb{R}^2, the lift of λ_Y is the same as the lift of λ_X: it runs from $(0, 0)$ to $(0, 2)$ in \mathbb{R}^2.

The meridian $m_X = 2a/b$ of X lifts to bound a disc in Y. Note that the lift runs a times along μ_Y and b times along λ_Y, hence has the slope a/b, as desired.}

Lemma 9.4. Let Y denote the triangulated solid torus of Lemma 9.3, with meridian a/b for $a/b \notin \{0/1, 1/0, \pm 1/1\}$. Let $\{\theta_p, \theta_q, \theta_r\}$ be exterior dihedral angles along the boundary of the four-punctured torus forming the 2×2 square, each repeated four times symmetrically, satisfying:

$$0 < \theta_r < \pi, \quad -\pi < \theta_p, \theta_q < \pi, \quad \theta_p + \theta_q + \theta_r = \pi.$$

Then there exists an angle structure on the triangulated solid torus of Lemma 9.3 with these exterior angles.

Proof. This is automatic from Lemma 7.6 or 7.9: our solid torus is the double cover of a vertical or horizontal side-by-side solid torus X, with meridian of X not one of the slopes $\{0/1, 1/0, \pm 1/1, \pm 2/1\}$. For such solid tori, the angle structure exists, so it exists for the double cover by lifting angles.

Lemma 9.5. Let T be the triangulated solid torus of Lemma 9.3. If the volume functional has its maximum in the boundary of the space of angle structures, then all tetrahedra of T must be flat. Hence, the volume functional takes its maximum in the interior.

Moreover, all tetrahedra are flat if and only if exterior angles $(\theta_p, \theta_q, \theta_r)$ are one of $(\pi, 0, 0)$, $(0, \pi, 0)$, $(-\pi, \pi, \pi)$ or $(\pi, -\pi, \pi)$.

Proof. This follows immediately from the similar fact for side-by-side solid tori, Lemmas 7.7 and 7.8, or in the vertical side-by-side case by Lemma 7.9.

After removing pyramids from the fully augmented 2-bridge link, and putting in triangulated solid tori satisfying the above lemmas, we have a triangulation of a Dehn filling. To obtain an angle structure, we need gluing equations to be satisfied. Since we already know gluing equations inside the solid tori, we only need to ensure gluing equations hold on the boundaries of these solid tori, where they glue to each other.

Lemma 9.6. Let L be a fully-augmented 2-bridge link with n crossing circles (and no half-twists). Let s_1, \ldots, s_n be slopes that are all positive or all negative, and further

$$s_1, s_n \notin \{0/1, 1/0, \pm 1/1, \pm 2/1\}, \text{ and } s_2, \ldots, s_{n-1} \notin \{0/1, 1/0, \pm 1/1\}.$$

Label horizontal edges in all crossing circle cusps by θ_j, diagonals by α_j, and verticals by $\pi - \theta_j - \alpha_j$. (These are exterior angles). Let T be the triangulation of the Dehn filling of $S^3 - L$ along these slopes obtained by inserting solid tori as above. Then if there is an angle structure, exterior angles on the solid tori must satisfy:

$$\text{Diagonal equations: } \alpha_i = -\alpha_{i+1} \text{ for all } i$$

(9.7)

$$\text{Interior equations: } 2(\theta_i + \alpha_i) - \theta_{i-1} - \theta_{i+1} = 0 \text{ for } 2 \leq i \leq n - 1$$

(9.8)

$$\text{End equations: } \theta_1 + \alpha_1 - \theta_2 = 0, \text{ and } \theta_n + \alpha_n - \theta_{n-1} = 0.$$

(9.9)
Proof. This follows from the gluing description given above.

Diagonal edges map to diagonal edges, and these are the only edges in this edge class. Thus for all i, $(\pi - \alpha_i) + (\pi - \alpha_{i+1}) = 2\pi$, which implies $\alpha_i = \alpha_{i+1}$, giving (9.7).

For the first end equations, the vertical edges with angles $\pi - \theta_1 - \alpha_1$ in the first 1×2 cusp glue to the horizontal edges on the left side of the first 2×2 cusp, labelled θ_2. Note that both vertical edges and both horizontal edges are glued to the same edge class. Thus $2(\pi - (\pi - \theta_1 - \alpha_1)) + 2(\pi - \theta_2) = 2\pi$. This gives the first end equations in (9.9).

For the interior equations, the horizontal edge with angle θ_{i-1} in the $(i-1)$-st cusp glues to both vertical edges in the i-th cusp, with angles $\pi - \theta_i - \alpha_i$. In turn, both vertical edges in the i-th cusp glue to the horizontal edge with angle $\pi - \theta_{i+1}$ in the $(i+1)$-st cusp. Note that this is true for $2 \leq i \leq n - 1$. Thus we require that $\pi - \theta_{i-1} + 2(\pi - (\pi - \theta_i - \alpha_i)) + \pi - \theta_{i+1} = 2\pi$ for $2 \leq i \leq n - 1$. This gives the interior equations in (9.8).

For the last end equations, both horizontal edges with angle θ_{n-1} in the last 2×2 cusp glue to both vertical edges with angle $\pi - \theta_n - \alpha_n$ in the last 1×2 cusp. Thus $2(\pi - \theta_{n-1}) + 2(\pi - (\pi - \theta_n - \alpha_n)) = 2\pi$, giving the last end equation in (9.9).

Lemma 9.10. For the triangulation on the Dehn filling of the fully augmented 2-bridge link given above, the space of angle structures is non-empty.

Proof. Because the signs of all the slopes agree, say all are positive, the solid tori are constructed by starting in the Farey triangulation in the triangle $(0, 1, \infty)$, and moving either across the edge from 0 to 1 or from 1 to ∞. In either case, the slope 1/1 cannot correspond to the slope covered first, so α_j will never correspond to the slope θ_{p_j}; it will be θ_{p_j} or θ_{q_j}. Then set all $\alpha_j = 0$. This is in the required range of Lemma 9.4.

Because $\alpha_j = 0$ for all j, the end equations imply $\theta_1 = \theta_2$, and the interior equations imply $2\theta_2 = \theta_1 + \theta_3$, hence $\pi_3 = \theta_1$. Inductively assume $\theta_j = \theta_1$ for $j \leq k$ and $k \leq n - 1$. Then $2\theta_k = \theta_{k-1} + \theta_{k+1}$, hence $\theta_{k+1} = \theta_1$ as well. Finally, the end equations imply $\theta_n = \theta_{n-1} = \theta_1$. So all angles $\theta_j = \theta_1$.

Now by Lemma 9.4 in the case of the 2×2 square, or by Lemma 7.6 in the case of the 1×2 square, an angle structure exists on the solid tori. By choice of angles, these satisfy the gluing equations required in Lemma 9.6. So this gives an angle structure.

Lemma 9.11. Volume is maximised in the interior of space of angle structures.

Proof. Suppose volume is not maximised in the interior. Then there is a flat tetrahedron, say in the i-th solid torus a tetrahedron is flat. By Lemma 9.5 the i-th solid torus must be a flat solid torus.

A solid torus is flat if and only if the exterior angles $\alpha_i, \theta_i, \pi - \alpha_i - \theta_i$ are $(0, 0, \pi)$ or $(\pi, -\pi, \pi)$, up to permutation, by Lemma 9.5.

Cases:

1. $\alpha_i = \theta_i = 0$
2. $\alpha_i = 0, \theta_i = \pi$
3. $\alpha_i = \pi, \theta_i = 0$
4. $\alpha_i = \pi, \theta_i = -\pi$
5. $\alpha_i = -\pi, \theta_i = \pi$.

Case (1): Suppose that $\alpha_i = \theta_i = 0$. Then $\alpha_j = 0$ for all j by the diagonal equations (9.7). As in the proof of Lemma 9.10, this implies that $\theta_j = \theta_1$ for all j. In particular, $\theta_1 = \theta_i = 0$, so all $\theta_j = 0$, so all the solid tori are flat by Lemma 9.5.

Case (2): Suppose that $\alpha_i = 0$ and $\theta_i = \pi$. Then $2\theta_i = \theta_{i-1} + \theta_{i+1}$ by the interior equations (9.8). Since $\theta_i = \pi$, we have $2\pi = \theta_{i-1} + \theta_{i+1}$, which implies that both θ_{i-1} and θ_{i+1} are π. Hence all solid tori are flat by Lemma 9.5.

Case (3): Suppose that $\alpha_i = \pi$ and $\theta_i = 0$. By the interior equations (9.8), we have $\theta_{i+1} + \theta_{i-1} - 2\theta_i = 2\pi$. Now $\theta_i = 0$ gives $\theta_{i-1} + \theta_{i+1} = 2\pi$, which implies that θ_{i-1} and θ_{i+1} are π. Then diagonal equations plus these results imply $\alpha_{i-1} = -\pi$ and $\theta_{i+1} = \pi$. This is case (5). We show below that all tetrahedra are flat.
Case (4): Suppose that $\alpha_i = \pi$ and $\theta_i = -\pi$.
First suppose i is even, where $1 < i \leq n$. Then $\alpha_j = \pi$ for $j = 2k$ and $\alpha_j = -\pi$ for $j = 2k + 1$. In particular, $\alpha_1 = -\pi$. By the end equations (9.9), we have $\theta_2 = \theta_1 - \pi$. By the interior equations (9.8), we have $2\theta_j - \theta_{j-1} - \theta_{j+1} = 2\pi$ for $j = 2k + 1$, and $2\theta_j - \theta_{j-1} - \theta_{j+1} = -2\pi$ for $j = 2k$. In particular, when $j = 2k = 2$, this implies $\theta_1 = \theta_3$.
Now inductively assume that $\theta_{2k+1} = \theta_1$ for $j \leq k$ and $\theta_{2j} = \theta_1 - \pi$ for $j \leq k$, and $2k + 3 \leq n - 1$.
Then the interior equations imply:
$$2\theta_{2k+1} - \theta_{2k} - \theta_{2k+2} = 2\theta_1 - \theta_1 + \pi - \theta_{2k+2} = 2\pi,$$
and so $\theta_{2k+2} = \theta_1 - \pi$. Moreover,
$$2\theta_{2k+2} - \theta_{2k+1} - \theta_{2k+3} = 2(\theta_1 - \pi) - \theta_1 - \theta_{2k+3} = -2\pi,$$
thus $\theta_{2k+3} = \theta_1$. Finally, the end equation implies:
$$\theta_n = \begin{cases}
\theta_{n-1} - \pi = \theta_1 - \pi & \text{if } n \text{ even} \\
\theta_{n-1} + \pi = (\theta_1 - \pi) + \pi = \theta_1 & \text{if } n \text{ odd.}
\end{cases}$$

Since our fixed i is even, we have $\theta_1 = \theta_1 + \pi = -\pi + \pi = 0$. This implies that $\theta_j = 0$ for all j even and $\theta_j = -\pi$ for all j odd. It follows that all tetrahedra are flat by Lemma 9.5.

Now suppose i is odd, $\alpha_i = \pi$, $\theta_i = -\pi$. Then $\alpha_j = -\pi$ for j even and $\alpha_j = \pi$ for j odd. In particular, $\alpha_1 = \pi$. As above, the end and interior equations imply that $\theta_j = \theta_1$ when j is odd, and $\theta_j = \theta_1 + \pi$ when j is even. So again, $-\pi = \theta_i = \theta_1 + \theta_j$ for all j odd, and $0 = \theta_1 + \pi = \theta_j$ for all j even. Thus again all tetrahedra are flat.

Case (5): Now suppose that $\alpha_i = -\pi$ and $\theta_i = \pi$. This case is similar to Case (4) above. When i is odd, one can show $\theta_{2j+1} = \theta_1$ and $\theta_{2j} = \theta_1 - \pi$ for all j, implying $\theta_1 = \theta_i = \pi = \theta_{2j+1}$, and $\theta_{2j} = 0$. Thus all tetrahedra are flat.

When i is even, one can show $\theta_{2j+1} = \theta_1$ and $\theta_{2j} = \theta_1 + \pi$ for all j, implying $\pi = \theta_i = \theta_1 + \pi$, so $\theta_1 = \theta_{2j+1} = 0$, and $\theta_{2j} = 0 + \pi$, so again all tetrahedra are flat.

\[\square \]

Theorem 9.12. Let L be a fully-augmented 2-bridge link with n crossing circles (and no half-twists). Let s_1, s_2, \ldots, s_n be slopes, one for each crossing circle, that are all positive or all negative. Suppose finally that s_1 and s_n are the crossing circles on either end of the diagram, and the slopes satisfy:

$$s_1, s_n \notin \{0/1, 1/0, \pm 1/1, \pm 2/1\}, \text{ and } s_2, \ldots, s_{n-1} \notin \{0/1, 1/0, \pm 1/1\}. $$

Then the manifold obtained by Dehn filling $S^3 - L$ along these slopes on its crossing circles admits a geometric triangulation.

Proof. With these slopes, there exists a triangulated solid torus with meridian s_j and boundary triangulated by a number of triangles matching that on the crossing circle boundary. Topologically, the Dehn filling is given by triangulating the solid tori and gluing them together. By Lemma 9.10, the result admits an angle structure. By Lemma 9.11, the volume is maximised in the interior of the angle structure. The Casson–Rivin Theorem, Theorem 4.2, then implies that the triangulation is geometric.

\[\square \]

References

School of Mathematics, Monash University, VIC 3800, Australia

Email address: sophie.ham@monash.edu

School of Mathematics, Monash University, VIC 3800, Australia

Email address: jessica.purcell@monash.edu