
ALTERNATING LINKS ON NONORIENTABLE SURFACES AND

KLEIN-BOTTLY ALTERNATING LINKS

JESSICA S. PURCELL AND LECHENG SU

Abstract. It has been known for several decades that classical alternating

links in the 3-sphere have nice hyperbolic geometric properties. Recent work
generalises such results to give hyperbolic geometry of links with alternat-

ing projections onto any surface in very general 3-manifolds. However, the

most general results require an orientable projection surface. In this paper, we
extend to alternating links on nonorientable projection surfaces. As an appli-

cation, we study Klein bottly alternating links in prism manifolds, which are

a natural generalisation of Adams’ toroidally alternating links in lens spaces.

1. Introduction

An alternating link has a diagram for which crossings alternate over and under
when following each component of the link. Link complements can be studied using
geometric techniques, for example by work of Thurston [29], and these techniques
are particularly effective in the alternating case. In 1984, Menasco [21] showed that
any classical link in the 3-sphere with a prime alternating diagram is either a (2, q)-
torus knot, or it is hyperbolic. Similar hyperbolicity results have been obtained
by Adams [5], Hayashi [13], Ozawa [23], Howie [14], and Adams and Chen [4] for
alternating links on orientable surfaces in other settings. Howie and Purcell have
recent results that are quite broad: they study geometric properties of links with
alternating projections onto orientable surfaces in very general 3-manifolds [15].

However, much less is known for the geometry of alternating links on nonori-
entable surfaces. In [1, 3], Adams et al study alternating links in thickened, pos-
sibly nonorientable surfaces. The ambient 3-manifolds of Howie and Purcell are
more general, but only apply to orientable projection surfaces. In this paper, we
extend the results of Howie and Purcell to nonorientable projection surfaces. This
reproduces many results of [1] and [3], but also extends the work beyond links in
thickened surfaces to links in more general 3-manifolds. One result is the following:

Theorem 1.1. Let π(L) be a weakly generalised alternating diagram of a link L on
a nonorientable projection surface S in a compact, orientable, irreducible 3-manifold
M . Suppose that the representativity satisfies r(π(L), S) > 4, π(L) is cellular, and
M\\S is atoroidal and contains no essential annulus A with ∂A ⊂ ∂M . If S is not
a projective plane P 2, then M∖L is hyperbolic. If S ∼= P 2, then M∖L is hyperbolic
if and only if π(L) is not a string of bigons arranged end to end.

Careful definitions of terminology can be found in Section 2, but briefly, the con-
ditions are mild, automatically satisfied if π(L) is cellular in M a twisted I-bundle
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as in [1]. Our method of proof for Theorem 1.1 is to show M∖L is doubly covered
by a weakly generalised alternating link on an orientable surface, in the sense of
Howie and Purcell [15]. This leads to other immediate geometric consequences, for
example on volume and checkerboard surfaces; see Section 2.

Some work has been done in classifying knot diagrams on nonorientable surfaces.
Drobotukhina [8] tabulated knots projecting onto the projective plane with up to
six crossings. Matveev and Nabeeva [20] have tabulated knots projecting on the
Klein bottle with up to three crossings. Bourgoin introduced a family called twisted
links [7], which lie in thickened, possibly nonorientable surfaces, generalising the
virtual links introduced by Kauffman [16].

In a special case we take S to be the Klein bottle and M to be the class of
3-manifolds with finite fundamental group that contain an embedded Klein bottle.
These are prism manifolds, investigated by Rubinstein [27]; see also Scott [28]. We
define a class of Klein-bottly alternating links, discussed in Section 4, generalising
Adams’ toroidally alternating links [5]. We prove a meridian lemma, Proposi-
tion 4.4, analogous to the meridian lemma in the toroidally alternating case. This
allows us to extend Theorem 1.1 to more Klein-bottly alternating links, with no
requirements on representativity, as follows.

Theorem 4.9. Let L be a geometrically prime, Klein-bottly alternating knot in the
prism manifold M(p, q). Then M(p, q)∖L is hyperbolic.

Our methods generalise those of Adams [5] via an extension of tools of Howie and
Purcell to nonorientable surfaces [15]; see also Purcell and Tsvietkova [24]. The idea
is to decompose the link complement into simpler pieces. In the classical setting,
this is done by cutting along checkerboard surfaces, as pioneered by Thurston for a
few links [30], and studied carefully by Menasco [22]. We cut along nonorientable
projection surfaces, and use normal surface theory to study geometry.

1.1. Acknowledgments. We thank Colin Adams, David Futer, Josh Howie and
Stephan Tillmann for helpful discussions. Purcell was supported in part by the
Australian Research Council, grant DP240102350.

2. Links on nonorientable surfaces

Throughout, consider piecewise linear maps, so knots and surfaces are tame.

2.1. Nonorientable surfaces. We recall a few facts on nonorientable surfaces and
their thickenings in orientable 3-manifolds, partly to define notation. For further
information, see for example Martelli [19, Section 11.4].

Let S be a closed, connected nonorientable surface. Let S̃ denote the orientable

double cover of S. It is an orientable surface with 2-fold covering map p : S̃ → S.

Let τ : S̃ → S̃ denote the deck transformation. Thus τ is a homeomorphism of S̃

and p ◦ τ(x) = p(x) for all x ∈ S̃.
Let I = [−1, 1] be the closed interval, and ι : I → I the automorphism ι(t) = −t.

The twisted I-bundle over S is defined to be S×̃I = (S̃ × I)/(τ, ι). Let q : S̃ × I →
S×̃I denote the quotient map. This is also a double cover. Denote points in S×̃I
by [(x, t)], where [·] denotes equivalence class.

Suppose S is embedded in an orientable 3-manifold M . Then a regular neigh-
borhood of S in M is homeomorphic to the twisted I-bundle S×̃I. See, for example
[19, Proposition 1.1.12]. There is an embedding of S into S×̃I at level t = 0: it
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Figure 1. Left to right: A three component link on the Klein bot-
tle, and four knots on the Klein bottle from the Matveev–Nabeeva
table [20]; left to right shows 11, 26, 25 and 316

takes x in S to [(x, 0)]. Denote the image of the embedding by S0 in S×̃I. Similarly

for t ̸= 0 in [−1, 1], there is an embedding of S̃ taking y in S̃ to [(y, t)]. Denote the

image of this embedding by S̃t; note S̃t = S̃−t. Finally, observe that the boundary

of S×̃I is S̃±1, homeomorphic to S̃.

Definition 2.1. A connected nonorientable projection surface consists of a closed
connected nonorientable surface S, a compact orientable irreducible 3-manifold M ,
and a piecewise linear embedding of S into M such that M∖S is irreducible.

Definition 2.1 extends [15, Definition 2.1], except we restrict to connected sur-
faces for ease of exposition.

A knot in S×̃I is a circle embedded in S×̃I. A link L is a disjoint union of circles
embedded in S×̃I. We say two links are equivalent if they are ambient isotopic. If

L is a link in the double cover S×̃I, then L̃ := q−1(L) is a link in S̃ × I.

Definition 2.2 (Generalised diagram). A link L ⊂ S×̃I ⊂ M can be projected
onto S0 by π : S×̃I → S0, where π([(x, t)]) = [(x, 0)]. We assume transversality, so
π(L) is a 4-valent graph on S0. We say the image π(L) is a generalised diagram.

Let π̃ : S̃×I → S̃ be the projection taking (x, t) to x. Then π̃(L̃) is a generalised

diagram of L̃ on S̃, in the sense of [15]. Note π̃(L̃) is a 4-valent graph on S̃,

by transversality. The double cover p : S̃ → S takes π̃(L̃) to π(L). Similarly

p−1(π(L)) = π̃(L̃). For every crossing X on the diagram π(L), there are two

crossings on π̃(L̃) projecting to X.

Definition 2.3 (Weakly prime). A generalised link diagram π(L) on a nonori-
entable projection surface S is weakly prime if whenever D ⊂ S is a disk with ∂D
intersecting π(L) transversely exactly twice, π(L) ∩D is a single embedded arc.

Example 2.4 (Knots and links on a Klein bottle). The simplest closed nonori-
entable surface is the Klein bottle, which we represent as a square with side-pairings
as in Figure 1, left. That figure shows the diagram of a 3-component link in the
twisted I-bundle over a Klein bottle.

Diagrams of knots with up to 3 crossings in the twisted I-bundle over a Klein
bottle were tabulated by Matveev and Nabeeva [20]. They restricted to cellular
diagrams, i.e. in which complementary regions are contractible (they called this not
reducible), and weakly prime diagrams as in Definition 2.3 (they called not com-
posite). Under these restrictions, they found exactly 17 possible diagrams (graphs)
with up to three crossings (4-valent vertices), showed this leads to at most 33 knots,
and proved that at least 29 and at most 31 of the knots are distinct. Figure 1 (right)
shows four of their knots. Figure 2 shows double covers.
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Figure 2. Diagrams π̃(L̃) on the orientable double cover of the
Klein bottle, for the link and knots of Figure 1.

2.2. Alternating knots and links. In the study of classical alternating knots,
or knots on orientable surfaces, there are globally well-defined notions of ‘over-
crossing’ and ‘under-crossing’. That is not the case on nonorientable surfaces, so
the definition of alternating links on nonorientable surfaces is not completely triv-
ial. There are a few ways to overcome this. For example, Matveev and Nabeeva
view the Klein bottle as a square with sides identified [20]. Since a square is ori-
entable, they define their crossing information on the square. We define alternating
via a definition of over–under from the point of view of local discs and oriented
curves. In this subsection, we carefully state three definitions of alternating knots
on nonorientable surfaces, and show that they are equivalent.

First we define over- and under-crossings locally. To do so, isotope L to lie on
S0 except in a ball neighbourhood of each vertex of π(L), which corresponds to a
crossing. For any such vertex x, let Bx denote a small ball neighbourhood of x in
S0 ⊂ S×̃I, so that ∂Bx∖S0 consists of two hemispheres. We may isotope the two
arcs of L meeting at x to run through distinct hemispheres of Bx∖S0. Now consider
the double cover of this picture. We may take Bx such that the disc Dx = Bx ∩ S0

is evenly covered by two discs in S̃. Then the preimage under π ◦ q is the disjoint
union of two pillars:

(π ◦ q)−1(Dx) ∼= (Dx × I) ⊔ (τ(Dx)× ι(I)).

Note Dx and τ(Dx) have opposite orientations in S̃, and ι also switches orientation.

Definition 2.5. Consider the preimage of one of the strands of L running across

x under the covering map q. If the preimage consists of two arcs of L̃, one through
Dx× [0, 1) and one through τ(Dx)×(−1, 0], we call that strand an over-crossing. If
instead the arcs run through Dx×(−1, 0] and τ(Dx)× [0, 1), it is an under-crossing.

Observe that over- and under-crossings require a choice ofDx versus τ(Dx). This
is a choice of local orientation. The choice can be made continuous over a path.
If γ is 1-sided, i.e. with regular neighbourhood a Möbius band, local orientations
on γ(0) and γ(1) will be opposite; traversing γ twice returns to the same local
orientation. If the curve is 2-sided, γ(0) and γ(1) have the same local orientation.

Definition 2.6 (Strand alternating). Choose a starting point x on π(L), and a local
orientation on Dx. The component of L on which x lies determines a consistent
path of orientations for π(L), where we take the path to run twice around the
component of π(L) if the component is 1-sided. Each crossing encountered then
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Figure 3. Local pictures of strand and region alternating diagrams

inherits a well-defined orientation, hence is an over- or under-crossing, according
to Definition 2.5. A generalised diagram π(L) is strand alternating if, for each
component of the link diagram, the crossings encountered always alternate from
over-crossing to under-crossing. See Figure 3, left.

Definition 2.7 (Region alternating). Consider a region R of S∖π(L). Its boundary
forms a curve γR : [0, 1] → S, and thus defines an orientation. A generalized diagram
π(L) is region alternating if, for each component R of S∖π(L), the crossings we
encounter when traveling along γR always run either from over to under, or under
to over. See Figure 3, right.

Lemma 2.8. Strand alternating and region alternating coincide.

Proof. Each arc of the diagram between vertices of π(L) runs from over-crossing
to under-crossing, or vice versa, if and only if the same is true for the boundary of
adjacent regions at that arc. Since both strand and region alternating are defined
by how such arcs are assembled, the diagram will be strand alternating if and only
if it is region alternating. □

Definition 2.9 (S-alternating). A generalized diagram π(L) is S-alternating if the

diagram π̃(L̃) is alternating on S̃.

Theorem 2.10. For a generalised diagram on a nonorientable surface, strand al-
ternating, region alternating, and S-alternating are all equivalent.

Proof. The diagram π(L) is strand alternating if and only if each component of L
alternates running from over- to under-crossing in an associated orientation as in
Definition 2.6. The path with its orientation lifts to a consistently oriented path

on S̃ × I, with the orientation of Definition 2.6 agreeing with the orientation on

S̃. Thus in S̃, L̃ alternates running from over- to under-crossings if and only if the
same is true for π(L). Hence strand alternating is equivalent to S-alternating.

Region alternating follows similarly, or by Lemma 2.8. □

We say that a link in a nonorientable surface has an alternating diagram if its
diagram is either strand alternating, region alternating, or S-alternating. The link
is alternating if it has an alternating diagram.

Example 2.11. Of Matveev and Nabeeva’s knots on the Klein bottle with up to
three crossings [20], only the knots 26 and 316 are alternating; see Figure 1 (right)
and their double covers in Figure 2.

Lemma 2.12. Let π(L) be an alternating generalised diagram on a nonorientable
projection surface S, embedded in a compact, orientable, irreducible 3-manifold M .

Then π(L) is weakly prime if and only if π̃(L̃) is weakly prime on S̃.
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Proof. Suppose D is a disc on S̃ with ∂D meeting the diagram π̃(L̃) exactly twice.

If τ(D) ∩D = ∅, then D projects under the double cover p : S̃ → S to a disc on S
meeting the diagram π(L) exactly twice, and p(D) has no crossings in its interior
if and only if D also has no crossings in its interior.

If τ(D) ∩ D ̸= ∅, then D∖τ(D) consists of one or more disc components. For
each component E of D∖τ(D), the interior of E is disjoint from τ(E), because τ is
a local homeomorphism and E is an embedded disc. We may isotope ∂E slightly
so that E is disjoint from τ(E).

We claim that some component of D∖τ(D) is a disc E with boundary meeting

the diagram π̃(L̃) exactly twice. The boundary of D∖τ(D) consists of arcs of

∂D∖τ(D) and arcs ∂τ(D) ∩D. Note that if π̃(L̃) meets ∂D∖τ(D), then it meets

a disc component E of D∖τ(D). Then π̃(L̃) must enter and exit E, hence it meets

∂E at least twice. Suppose π̃(L̃) meets ∂D in ∂D ∩ τ(D). Then applying τ , π̃(L̃)
meets τ(∂D) in τ(∂D∩τ(D)) = τ(∂D)∩D. Because τ is a homeomorphism, this is

∂(τ(D))∩D, which lies on the boundary of D∖τ(D). Thus again π̃(L̃) must enter
and exit a disc component E of D∖τ(D), so it meets ∂E at least twice. Because

∂D meets π̃(L̃) only twice, if ∂E meets π̃(L̃) more than twice, the intersections

must lie on ∂(τ(D))∩D. We claim that ∂(τ(D))∩D cannot meet π̃(L̃) more than
twice. This is because each such intersection lies on ∂τ(D), hence corresponds to

an intersection with τ(∂τ(D)) = ∂D, and we know π̃(L̃) meets ∂D exactly twice.
Thus there is a disc component E of D∖τ(D) meeting the diagram exactly twice.
After a slight isotopy, its projection to S is embedded and meets the diagram twice.
It bounds crossings in its interior if and only if the same is true for E. □

Definition 2.13 (Reduced alternating). A generalised link diagram π(L) on a
nonorientable projection surface S is reduced alternating if π(L) is weakly prime,
alternating, and each component projects to at least one crossing on S.

Definition 2.14 (Representativity). Let S be a nonorientable projection surface
in a compact, orientable irreducible 3-manifold M , and let L be a link in S×̃I in M .
Define the representativity r(π(L), S) to be the minimum number of intersections

between π̃(L̃) and any circle that bounds a compression disc for S̃ = ∂(S×̃I) in

M\\S := M∖N(S). If there are no compression discs for S̃, then r(π(L), S) = ∞.

Example 2.15. The representativity depends on the embedding of S and the man-
ifold M . Consider again the knots and links in Figure 1, on the Klein bottle S. If
M = S×̃I, then there are no compressing discs for S in M , and the representativity
satisfies r(π(L), S) = ∞ for every diagram. However, we will see in Section 4 that
we can also embed S in a prism manifold M(p, q). Removing S×̃I from M(p, q)
gives a solid torus, which has a compression disc, and hence we obtain finite repre-
sentativity. The representativity will depend on M(p, q) and the diagram.

On an orientable surface, an alternating link diagram is checkerboard colourable
if each complementary region of the diagram graph can be oriented such that the
induced orientation on each boundary component runs from over to under or vice-
versa. If each complementary region is a disc, that is, the diagram is cellular, the
diagram must be checkerboard colourable.

A 4-valent graph Γ on a nonorientable surface S lifts to a 4-valent graph Γ̃ on

the orientable double cover S̃. The graph Γ is checkerboard colourable on S if its
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lift Γ̃ admits a checkerboard coloring on S̃, and the coloring is preserved by the
deck transformation τ .

Example 2.16. Of Matveev and Nabeeva’s 17 diagrams of knots on the Klein
bottle [20], only two are checkerboard colourable, and these give only three knots
that are checkerboard colourable (two with the same diagram, one alternating, and
one not). These are the knots 26, 25, and 316 shown in Figure 1. However, because

they are cellular, all these diagrams are checkerboard colourable on S̃.

Definition 2.17. A link on a nonorientable surface is weakly generalised alternating

if it is reduced alternating and has representativity r(π(L), S) ≥ 4, and π̃(L̃) is

checkerboard colourable on S̃.

Note this agrees with [15, Definition 2.9] in the orientable case. Furthermore,

we only require π̃(L̃) to be checkerboard colourable on S̃, not π(L) on S.
Let S be a connected nonorientable projection surface embedded in a compact

orientable irreducible 3-manifold M . Define M̃ to be the double of M\\S along S̃.

That is, M̃ is obtained by gluing two copies of M\\S by reflection in ∂(M\\S) = S̃.

Proposition 2.18. Let S be a connected nonorientable projection surface embedded
in a compact orientable irreducible 3-manifold M . Let L be a weakly generalised
alternating link with a generalised diagram on S. Then:

(1) M̃ is a double cover of M .

(2) M̃∖L̃ is a double cover of M∖L.

Proof. Take N to be a tubular neighborhood of S in M , and Ñ a tubular neighbor-

hood of S̃ in M̃ . Since M is orientable, N is homeomorphic to S×̃I. Furthermore,

Ñ is homeomorphic to S̃ × I. We can construct a map q : Ñ → N that is both the

quotient map for the twisted I-bundle N and a double cover. Since M̃∖Ñ ∼= M̃\\S̃,
the manifold M∖Ñ is homeomorphic to two disjoint copies of M\\S by definition

of doubling. Note M∖N ∼= M\\S. Then the map M̃∖Ñ → M∖N , mapping
each copy of M\\S by the identity, is also a double cover. It agrees with q on the

common boundary S̃×{±1}, giving a continuous map that is a double cover of M .

For the link complement M∖L and the doubled complement M̃∖L̃, we can also
cut the complement along a neighborhood of the projection surface. We write

M̃∖L̃ = (M̃\\S̃) ∪ (S̃ × I∖L̃), where M̃\\S̃ is two copies of M\\S. Furthermore,

M∖L = (M\\S)∪ (S×̃I∖L). Thus we only need to show that S̃× I∖L̃ → S×̃I∖L
is a double cover. This is the restriction of the double covering and quotient map

q : S̃ × I → S×̃I. Since L̃ = q−1(L) by definition, the restriction of q on S̃ × I∖L̃
is indeed a double cover. □

Theorem 2.19. If π(L) is a weakly generalised alternating diagram on a nonori-
entable surface S embedded in a compact orientable irreducible 3-manifold M , then

L̃ is a weakly generalised alternating link in M̃ .

Proof. We check each requirement for a weakly generalised alternating link on an

orientable surface, in [15, Definition 2.9]. Consider π̃(L̃) on S̃. The diagram π̃(L̃) is

alternating on S̃ by Theorem 2.10, and weakly prime by Lemma 2.12. It meets the

projection surface S̃ in at least one crossing by our definition of reduced alternating
and the fact that we only consider connected projection surfaces. The diagram
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π̃(L̃) is checkerboard colourable by definition. Its representativity is at least four

by definition. Therefore, the diagram π̃(L̃) is a weakly generalised alternating

diagram on S̃ in M̃ . □

Proof of Theorem 1.1. By Theorem 2.19, L̃ is weakly generalised alternating. Fur-

thermore, M̃\\S̃ is atoroidal and anannular since M\\S is atoroidal and anannular.

If S ≇ P 2, the surface S̃ has genus at least one, implying M̃∖L̃ is hyperbolic by [15,

Theorem 4.2]. If S ∼= P 2, then by irreducibility of M , π̃(L̃) is a classical alternating
link in S3, and by [21] it is hyperbolic if and only if it is not a (2, q)-torus link, if
and only if π(L) is not a string of bigons arranged end to end. Proposition 2.18

implies M∖L is double-covered by M̃∖L̃, hence it is also hyperbolic if and only if

M̃∖L̃ is hyperbolic. □

We obtain other immediate geometric consequences of Theorem 2.19, for example
for hyperbolic volumes and the geometry of embedded surfaces, which we record
below. We omit definitions since we do not need them here; they are in [15].

Corollary 2.20. Let L, S, M be as in Theorem 1.1, with S ≇ RP 2. Suppose
further that if ∂M is nonempty, then ∂M is incompressible in M . Then:

(1) If M∖L admits two checkerboard surfaces, then they are quasifuchsian.

Otherwise, the checkerboard surfaces of π̃(L̃) project to an immersed quasi-
fuchsian surface, with self intersections at crossing arcs.

(2) The volume of M∖L is bounded below:

vol(M∖L) ≥ v8
4
(tw(π̃(L̃))− 2χ(S)− 2χ(∂M))

This is a direct consequence of Theorem 2.19 and [15, Theorem 6.10 and Corol-
lary 5.9]. Item (1) extends similar results in the classical case [2, 10]. Item (2)
extends work of Lackenby on volumes [17].

3. Chunk Decomposition

We can decompose any alternating link complement on a nonorientable projec-
tion surface into chunks, defined by Howie and Purcell [15]. These are a generali-
sation of the checkerboard decomposition of Menasco [22]; see also Aitchison and
Rubinstein [6], Lackenby [17], and Futer and Guéritaud [9] for a related decompo-
sition. The decomposition simplifies the process of identifying embedded surfaces
in the link complement, and we will use it in the next section.

A chunk C is a compact, orientable, irreducible 3-manifold with boundary ∂C
containing an embedded (possibly disconnected) non-empty graph Γ with all ver-
tices having valence at least 3. We allow components of ∂C to be disjoint from
Γ, provided any such component is incompressible. Regions of ∂C∖Γ are called
faces. A component of ∂C disjoint from Γ is called an exterior face. Other faces
are called interior faces. A truncated chunk is a chunk for which a regular neighbor-
hood of each vertex of Γ has been removed. The newly produced faces and edges
after removal are called truncation faces and truncation edges, as in Purcell and
Tsvietkova [24, 25].

A (truncated) chunk decomposition of a 3-manifold M is a decomposition of M
into (truncated) chunks (possibly one), such thatM is obtained by gluing chunks by
homeomorphisms of faces on ∂C, with edges mapping to edges homeomorphically.
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Figure 4. Left: Local picture of the bumping pattern near a
crossing. Right: Locations of edges, shown with orientation on
a disc D and τ(D). Note the four pink edges are identified to a
single crossing arc.

Construction 3.1. Let L be a link embedded in a compact, irreducible, orientable
3-manifold M , with a generalised diagram π(L) that is reduced alternating on
a nonorientable projection surface S. Suppose π(L) has k crossings. Consider

M\\S. Observe that ∂(M\\S)∖∂M is homeomorphic to S̃. The chunk C will be

homeomorphic to M\\S; we need to determine the graph Γ on its boundary S̃.
In the classical alternating setting, informally, one finds the faces of the decom-

position by viewing the two ball components of S3 cut along the plane of projection
as two balloons, and one expands those balloons until they bump in regions com-
plementary to the link diagram. In the setting of π(L) on nonorientable S, we
expand a balloon shaped like M\\S. That is, we expand M\\S towards the re-
moved twisted I-bundle, and it bumps itself in regions complementary to the link
diagram. These will be faces, glued where regions bump. See Figure 4, left.

Continue to expand M\\S towards S. The faces will meet in pairs at crossing
arcs. For a fixed crossing, and a fixed local orientation at that crossing, two pairs
of faces will meet at an over-crossing, and the opposite pairs of faces will meet at
the under-crossing. The crossing arcs will be ideal edges of Γ. Put two copies of
each crossing arc onto either side of the crossing; that is, put two arcs at one lift to

S̃ and others at the other lift. See Figure 4. This gives a total of 4k ideal edges,
which will glue into k crossing arcs.

The boundary of M\\S is now decorated with faces and edges, as well as rem-
nants of the link diagram. Each remnant of link diagram has an endpoint at an

under-crossing in S̃, and runs through an over-crossing to end at a second under-
crossing. Shrink this remnant to a single ideal vertex, located at the position of
the over-crossing. This will pull the ideal edges at the under-crossings into the
over-crossing, giving a 4-valent vertex. See Figure 5.

The chunk decomposition is now complete. We summarize its properties.

Theorem 3.2 (Chunk decomposition). Let L be an alternating link in a compact,
irreducible, orientable 3-manifold M , with alternating generalised diagram π(L) on
a nonorientable projection surface S. Then M∖L admits a chunk decomposition.

(1) The single chunk is homeomorphic to M\\S.
(2) The embedded graph on ∂(M\\S) = S̃ is identical to the diagram graph

π̃(L̃), with ideal vertices corresponding to the crossings.

(3) Each region of S̃∖π̃(L̃) is glued to its translate under the covering map
τ . The gluing is by first applying τ , then rotating either clockwise or an-
ticlockwise to the next adjacent edge, with direction depending on whether
the boundary of the region runs from over- to under-crossing in a clockwise
or anticlockwise direction.
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D τ(D)

Figure 5. Left: Portion of link diagram showing adjacent cross-
ings, with crossing arcs indicated. Right top: corresponding ideal
edges; Right bottom: shrink remnants of link to ideal vertices.

(4) Edges correspond to crossing arcs, and are glued in fours. At each ideal
vertex, two opposite edges are glued together.

Proof. The chunk is homeomorphic to M\\S, which is a compact, orientable, irre-

ducible 3-manifold with boundary S̃, the orientable double cover of S.

Regions of the graph Γ on S̃ come from regions of S̃∖π̃(L̃), which are glued to
regions identified across S, or via τ(S). Note that τ reverses the orientation of R,
as necessary for gluing the boundary of M\\S. Now note that edges on R and
τ(R) are identified by a shift in the clockwise or anticlockwise direction, as shown
in Figure 5. This is due to the fact that locally, on one side of a disc on S the
over-strand separates the two edges identified to the crossing arc, but on the other
side the under-strand separates them. Thus we must follow the translation by τ by
a rotation, with the rotation in opposite directions in adjacent faces.

The edges of the graph Γ separate regions at crossings, and glue in sets of four
to crossing arcs as described above. Their endpoints lie on remnants of the link,
which have been collapsed to ideal vertices lying at over-crossings. When these
remnants shrink to ideal vertices, the endpoint of an ideal edge is pulled along the

link diagram, to take the place of the diagram edge in π̃(L̃), giving an isomorphism
between that graph and Γ. Since the diagram is alternating, this gives 4-valent
vertices, satisfying the definition of a chunk. □

In the classical case, Thurston likened the face rotation (3) to a gear-rotation.

Example 3.3. The example of the decomposition for the link on the left of Figure 1
is shown in Figure 6. Note that the faces labeled 1 in that figure are glued; the one at
the top must be translated by τ , which reverses its orientation (flips it horizontally).
It then must be rotated in the anticlockwise direction to match edges.

We study how surfaces behave inside each chunk using normal surfaces, gener-
alising normal surfaces from Haken’s 1961 work [11]. Such generalisations are used
in many recent results, for example [9, 15, 25, 24].

Following [15, Definition 3.7], a properly embedded surface S in a truncated
chunk C is normal if every component of S ∩ C is incompressible in C, if S and
∂S are transverse to all faces and edges of C, and curves of S ∩ ∂C intersect the
faces of C efficiently, namely: A component of S ∩ ∂C lying entirely in a face does
not bound a disc in that face, and arcs of S ∩∂C with endpoints on the same edge,
or on a truncation edge and an adjacent interior edge, cannot cobound a disc with
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1

1

Figure 6. Construction of chunk decomposition for the link on
the left of Figure 1. Left to right: crossing arcs shown, these be-
come ideal edges, shrink remnants of link to ideal vertices, truncate
ideal vertices

these edges. A properly embedded surface (S, ∂S) ⊂ (M,∂M) is normal if, for
every chunk C in the chunk decomposition for M , S ∩ C is normal in C.

We will not use all the properties of the definition of normal, but we do use heav-
ily [15, Theorem 3.8], which states that any essential, meridianally incompressible
surface embedded in M can be isotoped into normal form.

4. Klein-bottly alternating links

In a paper from 1994 [5], Adams examines a class of links in lens spaces called
toroidally alternating links, in which he puts an alternating link diagram on the
Heegaard torus of a lens space. In 1978 [26], Rubinstein studied one-sided Heegaard
splittings of 3-manifolds as a generalisation of Heegaard splittings. That is, whenM
is a closed orientable 3-manifold and S a closed nonorientable surface embedded in
M , the pair (M,S) is called a one-sided Heegaard splitting if M\\S is a handlebody.

A natural generalisation of toroidally alternating links is to consider a one-sided
Heegaard splitting of M along a Klein bottle S with M\\S a single solid torus, with
an alternating diagram on the Klein bottle. In 1979 [27], Rubinstein examines a
class of 3-manifolds with finite fundamental group that contain an embedded Klein
bottle. He shows these are exactly the manifolds that admit a one-sided Heegaard
splitting with M\\K a solid torus. These are the prism manifolds.

A prism manifold can be realized as (p, q)-Dehn filling the torus boundary of a
twisted I-bundle over a Klein bottle K, and we denote it by M(p, q). In the case
where p = 1, after Dehn filling we obtain L(4q, 2q − 1). If p ̸= 1, then we obtain a
spherical 3-manifold whose fundamental group is a central extension of a dihedral
group. For more information, see Scott [28] or Lackenby and Schleimer [18].

Let L be a link in M = M(p, q) that can be isotoped into a regular neighborhood
of the Klein bottle K in M , which is a twisted I-bundle K×̃I. The following
definition is a direct generalisation of Adams:

Definition 4.1 (Klein-bottly alternating links). Suppose that L admits a gener-
alised diagram π(L) on the Klein bottle K in M(p, q). Then L is called Klein-bottly

alternating if the diagram is alternating on K and every nontrivial curve on K̃

intersects π̃(L̃).

Note that the second condition forces π(L) to be cellular. Observe also that
there are no representativity requirements. Theorem 1.1 immediately implies:



12 JESSICA S. PURCELL AND LECHENG SU

Corollary 4.2. Let L be Klein-bottly alternating on K in M(p, q), and suppose
that r(π(L),K) > 4. Then the link L is hyperbolic.

Corollary 4.3. Fix a cellular diagram of an alternating link on K. Then for all
but finitely many (p, q), L is hyperbolic in M(p, q).

Proof. The boundary of the compression disc for M(p, q) intersects the diagram

the number of times the (p, q)-curve on the torus K̃ meets π̃(L̃). For fixed π̃(L̃),
this intersection number is less than four only for finitely many p, q. □

For example, this corollary holds for diagrams of Matveev and Nabeeva [20].
In his 1994 work, Adams proved a meridian lemma for toroidally alternating

knots in lens spaces. We generalise his result to Klein-bottly alternating links.

Proposition 4.4 (Meridian Lemma). Let L be a Klein-bottly alternating link in
the prism manifold M := M(p, q). If M∖L contains a closed, orientable, incom-
pressible, meridianally incompressible surface F , then F can be isotoped to meet
the solid torus V defining M(p, q) in an even number of meridianal discs for V .

To prove Proposition 4.4, we will use techniques generalised from [5] and [15].
Let M = M(p, q) and let π(L) be a Klein-bottly alternating diagram on a Klein
bottle K. Let C be the chunk of M∖L of Theorem 3.2, so C is a solid torus.

Lemma 4.5 (Left-right rule). A curve that enters a complementary region of π̃(L̃)
with an over-crossing on the left must exit with an over-crossing on the right.

Proof. This follows directly from our definition of region alternating, analogous to
the alternating property of Menasco [21]. □

Now let F be a closed, orientable, incompressible, meridianally incompressible
surface in M∖L. Using [15, Theorem 3.8], we will assume F has been isotoped into
normal form with respect to the chunk decomposition.

Lemma 4.6. No curve of intersection F ∩ ∂C bounds a disc on ∂C.

Proof. Suppose that there is an innermost curve α of F ∩ ∂C that bounds a disc
on ∂C. The curve α must intersect interior edges of the chunk by fact that normal
form has no closed curves of intersection with faces. Because the diagram is cellular,
α must enter and exit each region. By Lemma 4.5, α must intersect edges corre-
sponding to two crossings, once with the crossing on one side of α, once on the other
side. By Theorem 3.2 (4), the edge that α intersects is identified with another edge
on the opposite side of the vertex corresponding to the crossing. Thus there must
exist a corresponding intersection arc on the other side of the crossing. Because α
is innermost, one of these arcs must also be a part of α. However, after gluing the
crossing arcs, there exists a meridianal compression disc on X, contradicting the
meridianal incompressibility of F . □

Lemma 4.7. Components of F ∩ C are meridian discs for the solid torus C.

Proof. By Lemma 4.6, no component of F ∩C bounds a disc on ∂C. By definition
of normal, each component of F ∩ C is incompressible, so F ∩ C consists of annuli
and meridianal discs; see for example [26] or [24, Theorem 8.2].

Suppose that there is an annulus component E of F ∩ C. It must be parallel
to ∂C. Assume E is outermost. The boundary ∂E consists of two parallel curves
A1 and A2 on ∂C, bounding an annuls A ⊂ ∂C. Note they must intersect edges of
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Γ = π̃(L̃) by definition of normal. By Lemma 4.5 and outermost, A1 and A2 must
intersect the same class of crossing arcs (interior edges).

If A1 intersects interior edge e1, as in the proof of Lemma 4.6 some curve of
F ∩ ∂C meets an edge e2 adjacent across an ideal vertex to e1. Because F is
meridianally incompressible, this cannot be A2. Therefore, we can assume that A1

and A2 both intersect e1. But in this case, there is a boundary compressing disc D
for E with an arc of its boundary on e1. We may isotope F through D to remove
both intersections of A1, A2 with e1. Thus we can assume that F ∩C consists only
of meridianal discs of C. □

Lemma 4.8. Suppose F is a closed orientable surface of genus g such that F ∩ C
consists only of meridian discs of the solid torus C. Let v denote the number of

intersections F ∩ π̃(L̃), and let f denote the number of meridian discs F ∩C. Then
f = 2− 2g + v.

Proof. The intersection of F with C gives F a cell structure. The 0-cells are in-

tersections with π̃(L̃), which are edges of Γ. The 1-cells are intersections with
regions of ∂C∖Γ. The 2-cells are the meridian discs of F ∩C. Letting e denote the

number of 1-cells, we have 2e = 4v since π̃(L̃) is 4-valent. We calculate the Euler
characteristic χ(F ) = 2− 2g = v − e+ f . Reorganizing, f = 2− 2g + v. □

Proof of Meridian Lemma, Proposition 4.4. By Lemma 4.7, components of F ∩ C
are meridian discs for the solid torus C. By Lemma 4.8, the number of meridian

discs is 2− 2g + v. Because π̃(L̃) is checkerboard coloured, v must be even. □

We now consider hyperbolicity of Klein-bottly alternating knots. We say a link
is (geometrically) prime in a 3-manifold M if its complement in M contains no
essential meridianal annulus. Adams proved that geometrically prime, toroidally
alternating knots in many lens spaces are hyperbolic [5]. We now show that geo-
metrically prime Klein-bottly alternating knots are hyperbolic.

Theorem 4.9. Let L be a prime, Klein-bottly alternating knot in M(p, q). Then
M∖L is hyperbolic.

Note that while Proposition 4.4 applied to links, the proof of Theorem 4.9 does
require that we restrict to knots.

Proof of Theorem 4.9. By Thurston’s hyperbolization theorem, we need only rule
out essential spheres, discs, tori, and annuli [29].

Suppose there is an essential torus T in M∖L. Lemma 4.8 implies that f = v,

meaning each meridianal disc F ∩C contributes one intersection of T and Γ = π̃(L̃).

Then either π̃(L̃) is not cellular or not checkerboard colorable, a contradiction.
Suppose we have an essential sphere S in M∖L. Then Lemma 4.8 implies that

f = v + 2, which means there will be at least two meridianal discs that have no
intersection with Γ, a contradiction.

Suppose there is an essential compression disc D for ∂N(L) in ∂(M∖N(L)). The
disc D has boundary some (u, v)-curve on N(L), where u is the number of times
it wraps around a meridian of N(L), and v the number of times it wraps around
the longitude, taken to have minimal intersection with K (blackboard longitude).
If v = 0, surger N(L) along D to obtain a 2-sphere embedded in M(p, q) that is
non-separating. This contradicts the irreducibility of M . Similarly if v = 1, then
L is unknotted, bounding a disc with boundary disjoint from K (using L is a knot,
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hence 2-sided). Either the disc can be isotoped into K, or a curve of D ∩K forms

a (p, q) curve on K̃ that is disjoint from L. Either case contradicts Definition 4.1
for Klein-bottly alternating.

Suppose v ≥ 2. Then N(L)∪N(D) is a lens space minus a ball B, where N(D)
denotes regular neighborhood of the disc in M∖L. Since L is completely disjoint
from B, we can recover M(p, q) by gluing the ball back to N(L)∪N(D). The result
after gluing is a lens space, and the only possibility for M is that M = L(4q, 2q−1),
where |q| ≥ 1. The lens space has classical Heegaard splitting into two solid tori
V1 and V2. The knot L must be the core curve V1 because the Heegaard splitting
of a lens space is unique. By transversality, we may isotope the core of V2 to meet
the klein bottle K in a finite number of points. Thus we may isotope the Heegaard
torus ∂V2 such that V2 intersects K in a finite number of meridians for V2. In fact,
Rubinstein shows in [26, Lemma 9] that ∂V2 may be isotoped so that V2 ∩K is a
single meridian disc. Since L intersects the meridianal curve of V1 in a single point,
far from ∂V2, by a further isotopy disjoint from L, we may transfer K ∩ V2 into a
Mobius band X following Rubinstein [26, Lemma 10]. Then the core curve of X
is a nontrivial curve on K that does not intersect the diagram π(L), contradicting
Definition 4.1. Thus there is no essential disc.

Now suppose we have an essential annulus A in M∖L. The annulus is not
meridianal by our assumption that L is geometrically prime. Note that M∖N(L) is
compact, orientable, irreducible and atoroidal. ThenM∖N(L) is Seifert fibered; see
for example Hatcher [12, Lemma 1.18]. The annulus A can be isotoped to be vertical
if M∖N(L) is not an I-bundle over the torus or Klein bottle; see Hatcher [12,
Lemma 1.16]. In this case, the annulus A appears as a union of fibers in the Seifert
fibration, with ∂A two of the fibers that lie on ∂N(L). Say one component of ∂A is
a (u, v)-curve on ∂N(L) that is not meridianal. Then there exists a Seifert fibered
solid torus V where ∂V agrees with the Seifert fibration of M∖N(L). Therefore,
we can insert a solid torus to obtain a Seifert fibering of M = M(p, q). However,
by Rubinstein [27, Proposition 3], the fundamental group of M can be presented
by π1(M) = ⟨a, b|abab−1, apb2q⟩, and the fibers of M are homotopy classes of b2 on
∂N(K). This Seifert fibering forces the diagram to have no crossing at all because
we can embed the entire knot on the torus T = ∂N(K), contradicting the fact that
L meets any nontrivial curve on the Klein bottle.

The manifold M∖N(L) cannot be an I-bundle over the torus because it has
only one boundary component. In the case where M∖N(L) is an I-bundle over the
Klein bottle, there is only one Klein bottle in M up to isotopy, so L does not touch
the Klein bottle K, which contradicts Definition 4.1. Thus there is no essential
annulus in M∖L. □
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