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Abstract. This paper gives the first explicit, two–sided estimates on the cusp area of once–
punctured torus bundles, 4–punctured sphere bundles, and 2–bridge link complements. The
input for these estimates is purely combinatorial data coming from the Farey tesselation
of the hyperbolic plane. The bounds on cusp area lead to explicit bounds on the volume
of Dehn fillings of these manifolds, for example sharp bounds on volumes of hyperbolic
closed 3–braids in terms of the Schreier normal form of the associated braid word. Finally,
these results are applied to derive relations between the Jones polynomial and the volume
of hyperbolic knots, and to disprove a related conjecture.

Dedicated to the memory of Xiao-Song Lin

1. Introduction

Around 1980, Thurston proved that 3–manifolds with torus boundary decompose into
pieces that admit locally homogeneous geometric structures [57], and that in an appropriate
sense the most common such structure is hyperbolic [56]. By Mostow–Prasad rigidity, a
hyperbolic structure is unique for such a manifold, and thus the geometry of a hyperbolic
manifold ought to give a wealth of information to aid in its classification. However, in practice
it has been very difficult to determine geometric properties of a hyperbolic manifold from a
combinatorial or topological description.

In this paper, we address this problem for a class of 3–manifolds that we call Farey mani-
folds: punctured torus bundles, 4–punctured sphere bundles, and 2–bridge link complements.
The combinatorial and geometric structure of these manifolds can be neatly described in
terms of the Farey tesselation of the hyperbolic plane. For each type of Farey manifold, we
use purely combinatorial data coming from this tesselation to give the first explicit, two-sided
estimates on the area of a maximal cusp.

The bounds on cusp areas lead to explicit bounds on the volume of Dehn fillings of Farey
manifolds. An example of such a Dehn filling is the complement of a closed 3–braid. We
bound the volumes of such manifolds, and in particular give sharp bounds on volumes of
hyperbolic closed 3–braids in terms of the Schreier normal form of the associated braid word.
These results are applied to derive relations between the Jones polynomial and the volume
of hyperbolic knots and to disprove a related conjecture.

1.1. Cusp shapes and areas. In a finite–volume hyperbolic 3–manifold M , a horoball
neighborhood of a torus boundary component becomes a cusp, homeomorphic to T 2× [0,∞).
Mostow–Prasad rigidity implies that each cross-sectional torus T 2 is endowed with a flat
metric, or cusp shape, that is determined up to similarity by the topology of M . When
M has a single torus boundary component, we may expand a horoball neighborhood until
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it meets itself. This maximal horoball neighborhood completely determines a flat metric on
the torus, and one can measure lengths of curves and area on the torus using this metric.
We will refer to such a metric as a maximal cusp metric. Similarly, when a 3–manifold
has multiple cusps, a maximal horoball neighborhood is given by expanding a collection of
horoball neighborhoods until none can be exapanded further while keeping their interiors
disjoint. In the case of multiple cusps, the choice of horoball neighborhoods is no longer
unique. However, if we are required to expand the cusp neighborhoods in a fixed order, this
expansion recipe once again determines a collection of maximal cusp metrics.

It is known, due to Nimershiem, that the set of similarity classes of tori that can be realized
as cusps of hyperbolic 3–manifolds is dense in the moduli space of 2–tori [47]. However, in
general it is not known how to determine the cusp shape of a manifold. For simple manifolds,
for example those built of a small number of ideal tetrahedra, or links with a small number
of crossings, Weeks’ computer program SnapPea will determine shapes of cusps and maximal
cusp metrics [58]. For other, larger classes of 3–manifolds, some bounds on cusp shape have
been obtained. Aitchison, Lumsden, and Rubinstein found cusp shapes of certain alternating
links, but the metrics they used were singular [5]. For non-singular hyperbolic metrics, Adams
et al. found upper bounds on the cusp area of knots, in terms of the crossing number of
a diagram [3]. Purcell found that for “highly twisted” knots, the lengths of shortest arcs
on a maximal cusp metric are bounded above and below in terms of the twist number of a
diagram [49]. These results were obtained using cusp estimates on a class of links called fully
augmented links, whose cusp shapes and lengths of slopes on maximal cusp metrics were also
worked out by Purcell [49] and Futer and Purcell [28].

In this paper, we prove explicit, readily applicable bounds on cusp shapes and maximal
cusp metrics of punctured torus bundles and 4–punctured sphere bundles, as well as of 2–
bridge knot complements. These manifolds have a natural ideal triangulation, first discovered
for punctured torus bundles by Floyd and Hatcher [24], and later studied by many others
[6, 7, 30, 38]. One feature that makes these 3–manifolds particularly attractive is that their
geometry can be described in terms of the combinatorics of the Farey tessellation of H2.
Hence, we refer to these manifolds as Farey manifolds.

To state an example of our results in this direction, let M be a hyperbolic once–punctured
torus bundle. The monodromy of M can be thought of as a conjugacy class in SL2(Z). As
such, it has a (unique up to cyclic permutation of factors) presentation of the form

±
[

1 a1

0 1

] [

1 0
b1 1

]

· · · · · · · · ·
[

1 as

0 1

] [

1 0
bs 1

]

,

where ai, bi are positive integers. The integer s is called the length of the monodromy.

Theorem 4.1. Let M be a punctured–torus bundle with monodromy of length s. Let C be a
maximal horoball neighborhood about the cusp of M . Then

16
√

3

147
s ≤ area(∂C) < 2

√
3
v8
v3
s,

where v3 = 1.0149... is the volume of a regular ideal tetrahedron and v8 = 3.6638... is the
volume of a regular ideal octahedron.

Furthermore, if γ is a non-trivial simple closed curve on ∂C (that is, any simple closed
curve that is transverse to the fibers), then its length ℓ(γ) satisfies

ℓ(γ) ≥ 4
√

6

147
s.
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The proof of Theorem 4.1 contains two main steps. First, we derive an estimate for the
size of horoballs in the universal cover of punctured torus bundles (see Proposition 3.6).
Then, we pack the cusp torus with the shadows of these horoballs.

Our estimate on horoball size should be compared with Jørgensen’s work on quasifuchsian
punctured torus groups, which appears in a well–known but unfinished manuscript [34]. A
careful exposition of Jørgensen’s work was given by Akiyoshi, Sakuma, Wada, and Yamashita
[8]. Jørgensen’s results can be applied in our setting to show that the universal cover of a
punctured torus bundle contains a number of maximal horoballs whose size is bounded from
below (see [34, Lemma 4.3] and [8, Lemma 8.1.1]). Jørgensen conjectured the existence of
a much better lower bound for this horoball size; and indeed, our Proposition 3.6 improves
Jørgensen’s lower bound by a factor of more than 10. This improvement is very important
in our setting, since a 10–fold improvement in horoball size yields a 100–fold improvement
in the cusp area estimate. See the end of Section 3.3 for a more detailed discussion.

1.2. Cusp area and link diagrams. A closely related class of manifolds are complements
of 2–bridge links. Using similar techniques, in this paper we are also able to bound the
lengths of slopes on maximal cusps in hyperbolic 2–bridge links. Since all 2–bridge links can
be represented by an alternating diagram, our results give further evidence for a conjectural
picture of the cusp shapes and maximal cusp metrics of alternating knots.

For general alternating knots and links, there is increasing evidence that the cusp shape
and maximal cusp metric ought to be bounded in terms of the twist number of a reduced
diagram. We say that a link diagram is reduced if it does not contain any crossings that
separate the diagram: that is, any crossings in the projection plane such that there is a
simple closed curve meeting the diagram transversely in only that crossing. Similarly, two
crossings are said to be equivalent if there exists a simple closed curve meeting the knot
diagram transversely in those two crossings, disjoint from the knot diagram elsewhere. The
twist number is the number of equivalence classes of crossings (called twist regions).

Conjecture 1.1. The area of a maximal cusp metric on an alternating knot is bounded
above and below by linear functions of the twist number of a reduced, alternating diagram.
Similarly, the length of the shortest non-meridional slope of an alternating knot is bounded
above and below by a linear function of the twist number of the diagram.

We first became aware of this conjecture several years ago by viewing slides of a talk
by Thistlethwaite, in which he showed using SnapPea that the conjecture holds for many
simple alternating knots. Lackenby proved a close variant the conjecture, relating the twist
number of a diagram to the combinatorial length of slopes [37]. However, Lackenby’s methods
are purely combinatorial and cannot be applied to give the geometric information of the
conjecture.

In this paper we prove the conjecture for 2–bridge link complements. In particular, we
show the following.

Theorem 4.8. Let K be a 2–bridge link in S3, whose reduced alternating diagram has twist
number t. Let C be a maximal neighborhood about the cusps of S3rK, in which the two
cusps have equal volume if K has two components. Then

8
√

3

147
(t− 1) ≤ area(∂C) < 2

√
3
v8
v3

(t− 1).

Furthermore, if K is a knot, let γ be any non-trivial arc that starts on a meridian and comes
back to the same meridian (for example, a non-meridional simple closed curve). Then its
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length satisfies

ℓ(γ) ≥ 4
√

6
√

2

147
(t− 1).

This result should be compared to that of Adams et al. [3], where they prove upper bounds
on cusp area in terms of the crossing number c of a knot. For alternating knots, including
2–bridge knots, they show that the cusp area satisfies area(∂C) ≤ 9c− 36 + 36/c. For those
2–bridge knots whose diagrams have very few crossings per twist region (in particular, when
c/t < 1.39), the bound of Adams et al. is sharper than the upper bound of Theorem 4.8.
For more general 2–bridge knots that have more crossings per twist region, the upper bound
of Theorem 4.8 is a significant improvement. To the best of our knowledge, the lower bound
of Theorem 4.8 does not have any predecessors in the literature.

1.3. Applications to hyperbolic Dehn filling. The shapes of the cusps and their actual
metrics give information not just on the 3–manifold itself, but also on the Dehn fillings of
that manifold.

For example, modulo the geometrization conjecture, several theorems imply that Dehn
fillings on slopes of sufficient length yield hyperbolic manifolds (these are the 2π–Theorem,
due to Gromov and Thurston [13]; the 6–Theorem, due to Agol [4] and Lackenby [37]; and
the 7.515–Theorem, due to Hodgson and Kerckhoff [32]). When we combine these theorems
with the results on maximal cusp areas and slope lengths above, we find that Farey manifolds
with long monodromy admit no non-trivial Dehn fillings, where “long” is explicit.

In particular, Bleiler and Hodgson [13] note that the work of Jørgensen [34] combined with
the 2π–Theorem implies that there is a constant N such that every non-trivial Dehn filling
of a punctured torus bundle with monodromy length s > N gives a hyperbolic 3–manifold.
However, they remark on the lack of an explicit value for the constant N . Now Theorem 4.1,
coupled with the 6–Theorem, allows the estimate N ≤ 90.

More recently, the authors proved a result that bounds the volume of manifolds obtained
by Dehn filling along a slope of length at least 2π, in terms of the length of that slope [25].
Thus we may combine Theorem 4.1 with this recent result to estimate the volumes of the
manifolds obtained by Dehn filling. For example, if M is a punctured–torus bundle with
monodromy of length s > 94, then the length of any non-trivial slope γ on the cusp of M
(i.e. any slope transverse to the fibers) will be at least 2π. Then by [25, Theorem 1.1], the
volume of the manifold M(γ) obtained by Dehn filling M along γ will be bounded explicitly
below. See Corollary 4.6.

One large class of examples obtained by Dehn filling 4–punctured sphere bundles is the
class of closed 3–braids, which has been extensively studied by others (see e.g. Murasugi [45],
Birman and Menasco [11]). In this paper, we classify the hyperbolic links that are closed
3–braids (see Theorem 5.5), and obtain the first estimates on volumes of these links.

To state these results, let σ1, σ2 denote the generators for B3, the braid group on three
strands, as in Figure 1. Let C = (σ1σ2)

3. It is known, by work of Schreier [51], that most

σ1 σ2

Figure 1. Braid group generators σ1 and σ2.
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3–braids are conjugate to words of the form w = Ckσp1

1 σ
−q1

2 · · ·σps

1 σ
−qs

2 , where pi, qi are all
positive. In particular, all 3–braids with hyperbolic closures are of this form, as we shall
show in Theorem 5.5. Following Birman and Menasco [11], we call such braids generic.

Theorem 5.6. Let K = ŵ be the closure of a generic 3–braid w = Ckσp1

1 σ
−q1

2 · · ·σps

1 σ
−qs

2 ,
where C = (σ1σ2)

3, and pi, qi are all positive. Suppose, furthermore, that w is not conjugate
to σp

1σ
q
2 for arbitrary p, q. Then K is hyperbolic, and

4v3 s− 277 < vol(S3
rK) < 4v8 s,

where v3 = 1.0149... is the volume of a regular ideal tetrahedron and v8 = 3.6638... is the
volume of a regular ideal octahedron. Furthermore, the multiplicative constants in both the
upper and lower bounds are sharp.

1.4. Volume and Jones polynomial invariants. The volume estimate of Theorem 5.6
has a very interesting application to conjectures on the relationship of the volume to the
Jones polynomial invariants of hyperbolic knots.

For a knot K, let

JK(t) = αKt
m + βKt

m−1 + . . .+ β′Kt
r+1 + α′

Kt
r

denote the Jones polynomial of K. We will always denote the second and next–to–last
coefficients of JK(t) by βK and β′K , respectively.

The Jones polynomial fits into an infinite family of knot invariants: the colored Jones
polynomials. These are Laurent polynomial knot invariants Jn

K(t), n > 1, where J2
K(t) =

JK(t). The volume conjecture [36, 44] states that for a hyperbolic knot K,

2π lim
n→∞

log
∣

∣Jn
K(e2πi/n)

∣

∣

n
= vol(S3

rK),

where e2πi/n is a primitive n-th root of unity. If the volume conjecture is true, then one
expects correlations between vol(S3

rK) and the coefficients of Jn
K(t), at least for large

values of n. For example, for n≫ 0 one would have

vol(S3
rK) < C||Jn

K ||,
where ||Jn

K || denotes the sum of absolute values of the coefficients of Jn
K(t) and C is a constant

independent of K. At the same time, several recent results and much experimental evidence
[18, 22, 25, 26] actually indicate that there may be a correlation between vol(S3rK) and the
coefficients of the Jones polynomial itself. These results prompt the following question.

Question 1.2. Do there exist constants Ci > 0, i = 1, . . . , 4, and a function BK of the
coefficients of JK(t), such that all hyperbolic knots satisfy

(1) C1 BK − C2 < vol(S3
rK) < C3 BK + C4?

Dasbach and Lin [22] showed that for alternating knots, equation (1) holds for BK :=
|βK |+|β′K |. They also presented experimental evidence suggesting linear correlations between
|βK | + |β′K | and the volume of non-alternating knots; their data is based on knots with a
low numbers of crossings. The authors of the current paper have shown that the same
function works for several large families in the class of adequate knots, which are a vast
generalization of alternating knots [25, 26]. In fact, Dasbach and Lin [21] and Stoimenow
[54] showed that for adequate knots, the second and next–to–last coefficients of the colored
Jones polynomial Jn

K(t) are independent of n, equal to those of the Jones polynomial JK(t).
So these results establish strong versions of relations between volume and coefficients of the
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colored Jones polynomials for these knots, as predicted by the volume conjecture. This led
to some hope that not only would Question 1.2 be answered in the affirmative, but also that
BK = |βK | + |β′K | could always work in equation (1).

In this paper we show that a slightly modified function, involving the first two and the last
two coefficients of the Jones polynomial, satisfies equation (1) for hyperbolic closed 3-braids.
Building on Theorem 5.6, we prove the following.

Theorem 6.6. Let K be a hyperbolic closed 3–braid. From the Jones polynomial JK(t), we
define ζK , ζ

′
K as follows. Let

ζK =

{

βK , if |αK | = 1
0, otherwise

and ζ ′K =

{

β′K , if |α′
K | = 1

0, otherwise.

Define ζ = max {|ζK |, |ζ ′K |}. Then

4v3 · ζ − 281 < vol(S3
rK) < 4v8 (ζ + 1).

Furthermore, the multiplicative constants in both the upper and lower bounds are sharp.

We remark that the quantity ζ = max {|ζK |, |ζ ′K |}, as defined in Theorem 6.6, will also
serve to estimate the volumes of alternating links, sums of alternating tangles, and highly
twisted adequate links. In other words, this quantity estimates the volume of every family of
knots and links where the volume is known to be bounded above and below in terms of the
Jones polynomial. The quantity ζ depends only on the first two and last two coefficients of
JK(t), and can be taken as positive evidence for Question 1.2. On the other hand, we also
show that no function of βK and β′K alone can satisfy equation (1) for all hyperbolic knots.

Theorem 6.8. There does not exist a function f(·, ·) of two variables, together with constants
Ci > 0, i = 1, . . . , 4, such that

C1f(βK , β
′
K) − C2 < vol(S3

rK) < C3f(βK , β
′
K) + C4

for every hyperbolic knot K. In other words, the second and next–to–last coefficients of the
Jones polynomial do not coarsely predict the volume of a knot.

Theorem 6.8 relies on two families of examples: adequate Montesinos knots and closed
3–braids. For both of these families, Stoimenow found upper bounds on volume in terms of
outer coefficients of the Jones polynomial [54]. While Theorem 6.8 implies that equation (1)
cannot hold for any function of βK and β′K alone, there might still be an affirmative answer
to Question 1.2 that uses other coefficients.

1.5. Organization. We begin by discussing Farey manifolds. In Section 2, we describe the
canonical triangulations of the three families of Farey manifolds. In Section 3, we show that
the universal cover of one of these manifolds must contain a number of maximal horospheres
whose size is bounded below. This leads to the cusp area estimates of Section 4.

The later sections give applications of these cusp area estimates. In Section 5, we apply
the results on cusp area to estimate the volumes of closed 3–braids. Finally, in Section 6, we
combine this with a discussion of Jones polynomials.

1.6. Acknowledgements. We thank Ian Agol for a number of helpful comments, and in
particular for getting us started in the right direction towards Proposition 3.6. We thank
François Guéritaud for enlightening discussions about punctured torus bundles. In order
to generate Table 1 on page 41, we used software written by Dror Bar-Natan and Nathan
Broaddus, as well as a handy script by Ilya Kofman. We are grateful to all of them. Finally,
we thank the referees for suggesting a number of revisions that improved this paper.
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2. The canonical triangulation of a Farey manifold

In this section, we review the canonical triangulations of Farey manifolds. We begin by
recalling the definition of the Ford domain and the canonical polyhedral decomposition that
is its dual. We then describe the combinatorics of the canonical polyhedral decomposition
for each of the three families of Farey manifolds; for the manifolds in question, it is always
a triangulation. Along the way, we introduce a number of terms and notions that will be
needed in the ensuing arguments.

2.1. The Ford domain and its dual. For a hyperbolic manifold M with a single cusp,
expand a horoball neighborhood about the cusp. In the universal cover H3, this neighborhood
lifts to a disjoint collection of horoballs. In the upper half space model for H

3, we may ensure
that one of these horoballs is centered on the point at infinity. Select vertical planes in H

3

that cut out a fundamental region for the action of the Z × Z subgroup of π1(M) that fixes
the point at infinity. The Ford domain is defined to be the collection of points in such a
fundamental region that are at least as close to the horoball about infinity as to any other
lift of the horoball neighborhood of the cusp.

The Ford domain is canonical, except for the choice of fundamental region of the action
of the subgroup fixing infinity. It is a finite–sided polyhedron, with one ideal vertex. The
faces glue together to form the manifold M .

If the manifold M has several cusps, the above construction still works, but is less canoni-
cal. Once one chooses a horoball neighborhood of each cusp, as well as a fundamental domain
for each cusp torus, the nearest–horoball construction as above produces a fundamental do-
main for M . This fundamental domain is a disjoint union of finite–sided polyhedra, with
one polyhedron for each cusp of M and one ideal vertex per polyhedron. We refer to this
fundamental domain as a Ford domain determined by the choice of horoball neighborhood.

Dual to the Ford domain is a decomposition of M into ideal polyhedra. This decom-
position, first studied by Epstein and Penner [23], is canonically determined by the relative
volumes of the cusp neighborhoods. In particular, if M has only one cusp, the decomposition
dual to the Ford domain is completely canonical. We refer to it as the canonical polyhedral
decomposition.

One of the few infinite families for which the canonical polyhedral decomposition is com-
pletely understood is the family of Farey manifolds. For once–punctured torus bundles and
4–punctured sphere bundles, the combinatorial structure of this ideal triangulation was first
described by Floyd and Hatcher [24]. Akiyoshi [6] and Lackenby [38] gave distinct and in-
dependent proofs that the combinatorial triangulation is geometrically canonical, i.e. dual
to the Ford domain. Guéritaud used the combinatorics of the triangulation to determine by
direct methods those punctured torus bundles that admit a hyperbolic structure [31]; he also
re-proved that the Floyd–Hatcher triangulation is canonical [30].

For two-bridge link complements, the analogue of the Floyd–Hatcher triangulation was
described by Sakuma and Weeks [50]. Following Guéritaud’s ideas, Futer used this triangu-
lation to find a hyperbolic metric for all the 2–bridge link complements that admit one [31,
Appendix]. Akiyoshi, Sakuma, Wada, and Yamashita [7] and (independently) Guéritaud
[30] showed that the Sakuma–Weeks triangulation is geometrically canonical. For all of the
Farey manifolds, our exposition below follows that of Guéritaud and Futer, and we refer the
reader to reference [31] for more details.

2.2. Once–punctured torus bundles. Let Vϕ be a hyperbolic punctured torus bundle
with monodromy ϕ. The mapping class group of the punctured torus is isomorphic to
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Figure 2. Copies of ideal tetrahedra in the cover (R2rZ2) × R of T × R.

SL2(Z). By a well–known argument that we recall below, either ϕ or −ϕ is conjugate to an
element of the form

Ω = Ra1Lb1 · · ·RasLbs ,

where ai, bi are positive integers, and R and L are the matrices

R :=

[

1 1
0 1

]

, L :=

[

1 0
1 1

]

.

Moreover, Ω is unique up to cyclic permutation of its letters.
By projecting ϕ down to PSL2(Z) ⊂ Isom(H2), we may view the matrix ±ϕ as an

isometry of H
2 in the upper half–plane model, where the boundary at infinity of H

2 is
R ∪ {∞}. Then the slopes of the eigenvectors of ϕ are the fixed points of its action on H2.

Now, subdivide H2 into ideal triangles, following the Farey tesselation F . In this tessela-
tion, every vertex is a rational number (or ∞) in ∂H2. Each such vertex corresponds to a
slope on the punctured torus T , that is, an isotopy class of arcs running from the puncture
to itself. Two vertices are connected by an edge in F if and only if the corresponding arcs
can be realized disjointly. Thus an ideal triangle of F corresponds to a triple of disjoint arcs,
which gives an ideal triangulation of T . The monodromy ϕ naturally acts on F .

There is an oriented geodesic γϕ running from the repulsive fixed point of ϕ to its at-
tractive fixed point. This path crosses an infinite sequence of triangles of the Farey graph
(. . . , t−1, t0, t1, t2, . . . ). We can write down a bi-infinite word corresponding to ϕ, where the
k-th letter is R (resp. L) if γϕ exits the k-th triangle tk to the right (resp. left) of where
it entered. This bi-infinite word will be periodic of period m, where m is some integer such
that t0 is taken by ϕ to tm. Then letting Ω be any subword of length m, and substituting
the matrices above for R and L, we find that ±Ω is conjugate to ϕ.

Next, we review the relation between the word Ω and the triangulation of Vϕ. The path γϕ

through the Farey graph determines a sequence of triangulations of the punctured torus T .
Every time γϕ crosses an edge e ⊂ F , moving from one triangle of F to an adjacent triangle,
we change one ideal triangulation of T (call it τ−(e)) into a different ideal triangulation τ+(e),
replacing a single edge with another. In other words, we are performing a diagonal exchange
in a quadrilateral of T . This diagonal exchange determines an ideal tetrahedron ∆(e) as
follows. The boundary of the tetrahedron is made up of two pleated surfaces homotopic to
T , with triangulations corresponding to τ−(e) and τ+(e). These two pleated surfaces are
glued together along the two edges in T where τ−(e) and τ+(e) agree. The result is an ideal
tetrahedron. See Figure 2.
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R

L

R
R

R

R
L
L
L
L

Figure 3. Zigzags on the boundary torus of a punctured torus bundle. The
pleated surfaces in this figure correspond to a sub-word RL4R4L ⊂ Ω.

If γϕ crosses the edges ei, ei+1, then we may glue ∆(ei) to ∆(ei+1) top to bottom, since
τ+(ei) = τ−(ei+1). Thus γϕ determines a bi-infinite stack U of tetrahedra. U is homeo-
morphic to T × R, and there is an orientation–preserving homeomorphism Φ of U , taking
the i-th tetrahedron to the (i +m)-th tetrahedron, acting as ϕ on T . The quotient U/Φ is
homeomorphic to Vϕ, and gives a triangulation of Vϕ into m ideal tetrahedra. This is the
Floyd–Hatcher triangulation of Vϕ, also called the monodromy triangulation.

We summarize the discussion above as follows.

(1) The monodromy ϕ of the bundle is conjugate to a word

Ω = ±Ra1Lb1 · · ·RasLbs .

(2) Each letter R or L corresponds to a triangle in the Farey tesselation of H
2.

(3) Each letter R or L corresponds to a pleated surface homotopic to T , pleated along
arcs whose slopes are the vertices of the corresponding triangle of the Farey graph.
This pleated surface forms the boundary between two tetrahedra of the canonical
triangulation of Vϕ.

Definition 2.1. Let Ω = ±Ra1Lb1 . . . RasLbs . A syllable of Ω is defined to be a subword Rai

or Lbi . That is, a syllable is a maximal string of R’s or L′s in the word Ω.

A punctured torus bundle is a manifold with a single torus boundary component. It is
often convenient to work with the universal cover H

3 of the bundle, seen as the upper half
space model, with the boundary lifting to the point at infinity in this model. Each of the
pleated surfaces corresponding to the letters R and L will lift to H3. Their intersection
with the boundary of a maximal cusp gives a triangulation of the boundary which is well
understood. In particular, these intersections give a collection of zigzags that determine a
triangulation of the boundary with combinatorics specified by the word Ω. See Figure 3.

Definition 2.2. A zigzag is defined to be the lift of one of the pleated surfaces corresponding
to R or L to the universal cover H3, with the cusp lifting to infinity.

Note that in pictures of zigzags, as in Figure 3, the vertices of the zigzag correspond to
edges in H3 along which these zigzags meet. To distinguish separate zigzags, it is conventional
to split them apart at the vertices. (In the manifold M , a sequence of pleated surfaces
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corresponding to a syllable of Ω will meet along a single edge. Thus, in a more topologically
accurate but less enlightening picture, one would collapse together the split–apart vertices
in Figure 3. See also [31, Figure 4].)

Akiyoshi [6], Lackenby [38], and Guéritaud [30] have independently proved that this tri-
angulation is geometrically canonical, i.e. dual to the Ford domain. As a result, each edge
of the triangulation runs through the geometric center of a face of the Ford domain. (More
precisely, each face of the Ford domain lifts to a hemisphere in H3, and each edge of the
triangulation runs through the geometric center of the hemisphere.) Thus, when viewed
from infinity, the “corners” of the zigzag lie over centers of hemispheres projecting to faces
of the Ford domain. We will use this extensively below. See, for example, Figure 8 below.

2.3. 4–punctured sphere bundles. Consider the universal abelian cover X := R
2
rZ

2 of
the punctured torus, and define the following transformations of X:

α(x, y) = (x+ 1, y), β(x, y) = (x, y + 1), σ(x, y) = (−x,−y).
Then one obtains the punctured torus as T = X/〈α, β〉 and the 4–punctured sphere as
S = X/〈α2, β2, σ〉. Both S and T are covered by the 4–punctured torus R = X/〈α2, β2〉.
Then the action of SL2(Z) on T lifts to an action on X, and descends to an action on both
R and S. As a result, every hyperbolic punctured torus bundle M is commensurable with a
hyperbolic 4–punctured sphere bundle N , whose monodromy can be described by the same
word Ω. The common cover is a 4–punctured torus bundle P . In Figure 2, we see lifts of
two pleated surfaces to the common cover.

The 4–punctured sphere bundle N can have anywhere from one to four cusps, depending
on the action of its monodromy on the punctures of S. Thus, for the purpose of discussing
Ford domains, it is important to choose the right horoball neighborhood of the cusps. Unless
stated otherwise (e.g. in Theorem 4.7), we shall always choose the cusp neighborhood in N
that comes from lifting a maximal cusp of the corresponding punctured torus bundle M to
the 4–punctured torus bundle P , and then projecting down to N . We call this the equivariant
cusp neighborhood of a 4–punctured sphere bundle.

By lifting the canonical monodromy triangulation of M to P , and projecting down to
N , we obtain the layered monodromy triangulation of a 4–punctured sphere bundle. Every
tetrahedron ∆(e) of this triangulation lifts to a layer of four tetrahedra in P , and projects
down to a layer of two tetrahedra in N . (See [31, Figure 16].) This triangulation is still
geometrically canonical: it is dual to the Ford domain determined by the the equivariant cusp
neighborhood. We refer to this Ford domain as an equivariant Ford domain. In particular, it
still makes sense to talk about “syllables”, “zigzags”, etc. in relation to 4–punctured sphere
bundles. Note that because of the rotational action of σ, a loop around a puncture of the
fiber will only cross three edges in zigzag of N , instead of six edges as in a zigzag of the
punctured torus bundle M .

Definition 2.3. In a punctured torus bundle M or a 4–punctured sphere bundle N , call
the loop about a puncture of the fiber the meridian of the corresponding manifold. We shall
denote the length of a meridian in a maximal cusp of a punctured torus bundle M by 2µ.
With this convention, the meridian of the corresponding 4–punctured sphere bundle N will
have length µ in a maximal equivariant cusp.

In the discussion of the geometry below, we will switch between descriptions of 4–punctured
sphere bundles and punctured tori, depending on which leads to the simplest discussion. Be-
cause of the covering property, results on the geometry of the universal cover will apply
immediately to both types of manifolds.
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(a) (b)

Figure 4. (a) An alternating braid between two pillowcases, described by
the word Ω = R3L2R. (b) The corresponding two-bridge link K(Ω).

2.4. Two-bridge links. If a 4–punctured sphere bundle N is cut along a pleated fiber S,
the result is a manifold homeomorphic to S × I, equipped with an ideal triangulation. To
recover N , we reglue the top of this product region S × I to the bottom along faces of this
triangulation. Meanwhile, the complement of a two-bridge link K also contains a product
region S × I: namely, the complement of the 4–string braid that runs between the minima
and maxima in a diagram of K. It turns out that the combinatorics of this braid once again
defines a layered triangulation of the product region, and that a particular folding of the top
and bottom faces of S × I yields the canonical triangulation of S3

rK.
A 4–punctured sphere S can be viewed as a square pillowcase with its corners removed.

Consider two such nested pillowcases, with an alternating 4–string braid running between
them, as in Figure 4(a). The combinatorics of this braid, as well as of the complementary
product region S × I, may be described by a (finite) monodromy word of the form Ω =
Rp1Lq1 . . . RpsLqs , as above, where the pi, qi are all positive, except p1 and qs are non-
negative. Each syllable Rpi or Lqi determines a string of crossings in a vertical or horizontal
band, corresponding to a twist region in which two strands of the braid wrap around each
other pi times. To complete this picture to a link diagram, we connect two pairs of punctures
of the outside pillowcase together with a crossing, and connect two pairs of punctures of the
inside pillowcase together with a crossing, as in Figure 4(b). This creates an alternating
diagram of a 2–bridge link K(Ω). It is well–known that any 2–bridge link can be created in
this manner (see, for example, Murasugi [46, Theorems 9.3.1 and 9.3.2]).

Just as in Sections 2.2 and 2.3 above, the monodromy word Ω describes a layered ideal
triangulation of the product region S × I. To form a 4–punctured sphere bundle, one would
glue the outer pillowcase S1 to the inner pillowcase Sc. To obtain a 2–bridge link complement,
we fold the surface S1 onto itself, identifying its four ideal triangles in pairs. (See [31, Figure
17].) We perform the same folding for the interior pillowcase Sc. This gives the desired
canonical triangulation of S3

rK(Ω).
Now consider the combinatorics of the cusp triangulation. The pleated surfaces between

S1 and Sc are 4–punctured spheres with combinatorics identical to that of the 4–punctured
sphere bundle with the same monodromy. The universal cover of the product region looks
like a stack of zigzags, as in Figure 3. (Just as with 4–punctured sphere bundles, a meridian
of K crosses three edges of a zigzag – so Figure 3 shows two meridians.) The folding along
S1 and Sc creates “hairpin turns”, as in [31, Figure 19].

Note that when K is a two-component link, we shall always choose the two cusp neigh-
borhoods of K to have equal volume, following the same principle as in Section 2.3. This
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equivariant cusp neighborhood is the one whose Ford domain is dual to the layered triangu-
lation described above. Also, because the symmetry group of K interchanges the two cusps,
it does not matter which cusp we look at in the calculations of Section 3.

Finally, it is worth remarking that every surface Si, lying between two layers of tetrahe-
dra, is a bridge sphere for the link K, and is thus compressible in S3rK. Despite being
compressible, Si can nevertheless be realized as a pleated surface in the geometry of S3

rK.
With the exception of the folded surfaces S1 and Sc, every other pleated Si is embedded, and
carries the same geometric information as the incompressible fiber in a 4–punctured sphere
bundle.

3. Geometric estimates for Ford domains

This section contains a number of geometric estimates on the Ford domains of Farey
manifolds. We begin with a few estimates (Lemmas 3.1–3.3) that apply to all triangulated
cusped hyperbolic manifolds, and are generally known to hyperbolic geometers. We then
restrict our attention to Farey manifolds, and establish several estimates about their Ford
domains. The main result of this section is Proposition 3.6: every zigzag contains an edge
whose length outside a maximal cusp is universally bounded.

3.1. Estimates for triangulated hyperbolic 3–manifolds. Recall from Section 2.1 that
the Ford domain of a cusped hyperbolic manifold M is a union of finite–sided polyhedra,
with one ideal vertex for each cusp of M . Consider those faces of the Ford domain which
do not meet an ideal vertex. These consist of points that are equidistant from two or more
lifts of a cusp into H3. Each such face is the portion of a geodesic plane in H3 which can
be “seen” from infinity. That is, the geodesic planes are Euclidean hemispheres centered
on points of C (here we are considering the boundary at infinity of H

3 to be C ∪ {∞}), of
some Euclidean radius. These overlap to cover all of C. Looking down from infinity, one sees
portions of these Euclidean spheres. These are the faces. The intersections of two adjacent
faces give edges. The intersections of edges are vertices.

These faces of the Ford domain glue together in pairs. Each pair of faces consists of two
hemispheres with identical Euclidean radii, which glue together by some isometry of H3. In
fact this isometry can be taken to be a reflection in the face of the Ford domain, followed by
a Euclidean reflection (i.e. reflection in the vertical plane that is the perpendicular bisector
of the geodesic connecting centers of the two hemispheres), followed by a rotation. See, for
example, Maskit’s book [41, Chapter IV, Section G].

We will be interested in the sizes of the radii, as well as distances between centers of the
Euclidean hemispheres that give the faces of the Ford domain. For our applications, the cell
decomposition dual to the Ford domain is always an actual triangulation, hence we shall talk
about triangles and tetrahedra.

Now, suppose S1 and S2 are two adjacent faces, which are Euclidean hemispheres of radius
R1 and R2, respectively, and whose centers are Euclidean distance D apart.

Lemma 3.1. R1, R2, and D as above satisfy the triangle inequality:

R1 +R2 > D, R2 +D > R1, D +R1 > R2.

Proof. If D ≥ R1 + R2, the two faces S1 and S2 do not meet, contradicting the fact that
they are adjacent.

If R2 +D < R1, then the hemisphere S2 lies completely inside the region bounded by the
complex plane and the hemisphere S1. Thus S2 cannot be a face of the Ford domain. This
is a contradiction. By a symmetric argument, D +R1 > R2. �
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Now consider the geometric dual of the Ford domain, which we will assume is an actual
triangulation. In the universal cover, this dual is given by taking an ideal vertex at the center
of each Euclidean hemisphere face of the Ford domain, and one at infinity. There is one edge
for each hemisphere face of the Ford domain: a geodesic running from infinity down to the
center of the hemisphere. For each intersection of two faces of the Ford domain, there is a
2–cell. By assumption, when we project to the manifold these 2–cells become ideal triangles.
Similarly, the intersection of three adjacent faces is dual to a 3–cell which projects to an
ideal tetrahedron. Finally, note the geometric dual may not be realized as a combinatorial
dual since, for example, the top of a face S of the Ford domain may be covered by another
face of the Ford domain, and thus the geodesic dual to S will run through this other face in
the universal cover before meeting S. However, this will not affect our arguments below.

As above, let S1 and S2 denote adjacent faces of the Ford domain, which are Euclidean
hemispheres of radius R1 and R2, respectively, and whose centers are Euclidean distance D
apart. Let S′

1 and S′
2 denote the faces that glue to S1 and S2, respectively. So S′

1 and S′
2 are

Euclidean hemispheres of radius R1 and R2 in the universal cover.
Because S1 is adjacent to S2, we may consider the 2–cell which is the geometric dual of

their intersection. By assumption, this is an ideal triangle in the manifold M . One edge of
this triangle is dual to S1 and its paired face S′

1. We take a lift to H
3 such that this edge

runs from infinity straight down the vertical geodesic with endpoints infinity and the center
of S1. When it meets S1, it is identified with the corresponding point (at the center) of S′

1,
and then runs up the vertical geodesic from the center of S′

1 to infinity. Another edge is dual
to S2 and S′

2, and can be seen in H3 similarly.
This triangle will have a third edge, by assumption, dual to a pair of faces S3 and S′

3.
Here S3 will be a sphere adjacent to S′

1, and S′
3 will be a sphere adjacent to S′

2.

Lemma 3.2. (a) The radius of the spheres S3 and S′
3 is R1R2/D.

(b) The distance between the center of S3 and the center of S′
1 is R2

1/D.
(c) The distance between the center of S′

3 and the center of S′
2 is R2

2/D.

Proof. Consider the universal cover. The isometry gluing S1 to S′
1 takes the point on C at

the center of S1 to infinity. It therefore takes the third edge of the triangle, which lifts to a
geodesic in H

3 running from the center of S1 to the center of S2, to a geodesic running from
infinity down to the center of S3.

We may assume without loss of generality that the center of S1 is 0 and the center of S2

is D. The isometry taking S1 to S′
1 is an inversion in S1, followed by a Euclidean reflection

and rotation [41]. Since Euclidean reflection and rotation do not affect radii of hemispheres
or distance on C, the lengths are given by determining the corresponding lengths under the
inversion in S1.

Note under this inversion, D maps to R2
1/D, proving part (b). A symmetric argument,

reversing the roles of S1 and S2, gives part (c).
Finally, to show that the size of the radius is as claimed, consider the point of intersection

of S1 and S2 which lies over the real line. It has coordinates (x, 0, z), say. Since this is a
point on S1, it will be taken to itself under the inversion. However, this point is on the edge
of the Ford domain where the three faces S1, S2 and S3 meet. Thus it will also lie on S3

after the inversion. So to find the radius of S3, we only need to determine the Euclidean
distance between this point of intersection (x, 0, z) and the center (R2

1/D, 0, 0) of S3.
The square of this distance is x2 − 2xR2

1/D + z2. Using the fact that x2 + z2 = R2
1 (since

(x, 0, z) lies on S1) we simplify this formula to R2
1/D

2(D2 − 2Dx+R2
1). Now using the fact



14 D. FUTER, E. KALFAGIANNI, AND J. PURCELL

Fa Fb Fab F ′

a
F ′

b
F ′

ab

a2b21 1 b2 a2

Figure 5. Euclidean distances in the universal cover of a zigzag. The trans-
lation from the left-most to the right-most edge represents one meridian in a
punctured torus, or two meridians in a 4–punctured sphere.

that (x, 0, z) lies on S2, we know x2 − 2Dx+D2 + z2 = R2
2, or R2

1 − 2Dx+D2 = R2
2. Hence

the square of the radius is R2
1R

2
2/D

2. �

Finally, we prove a general estimate about the lengths of edges that are not dual to the
Ford domain.

Lemma 3.3. Let e be a geodesic from cusp to cusp in a hyperbolic manifold M . Fix a choice
of horoball neighborhoods. If e is not an edge of the canonical polyhedral decomposition (with
respect to this horoball neighborhood), then the length of e is at least ln(2).

Proof. Suppose not. Suppose there exists a geodesic from cusp to cusp which is not a
canonical edge yet has length less than ln(2). Lift to H

3. The geodesic lifts to a geodesic γ.
Conjugate such that one endpoint of γ is infinity, and such that the horosphere of height 1
about infinity projects to the cusp. Then the other endpoint of γ runs through a horosphere
H of diameter greater than 1/2.

The set of all points equidistant from H and from the horosphere about infinity is a
hemisphere S of radius at least 1/

√
2. This is not a face of the Ford domain, hence there

must be some face of the Ford domain Fr of radius r, say, which overlaps the highest point
of S. Thus 1/

√
2 < r ≤ 1, and the distance d between the center of Fr and the center of S

is at most
√

r2 − 1/2.
On the other hand, there must be a horosphere under the hemisphere Fr of diameter r2.

The distance d between the center of the horosphere of diameter r2 and that of diameter 1/2
is at least r/

√
2, with equality when the two horospheres are tangent.

Then we have
r√
2
≤ d ≤

√

r2 − 1

2
.

This is possible only when r = 1 and d = 1/
√

2. However, in that case the highest point of
S will not be overlapped by Fr. �

3.2. Parameterization by radii of Ford domain faces. We now restrict our attention to
the case of Farey manifolds. Suppose, for the moment, that M is a punctured torus bundle.
Consider one zigzag of M ; this is a punctured torus T . From the canonical triangulation on
M , T inherits a triangulation. Edges are dual to faces of the Ford domain of M . Since T is a
punctured torus, there are only three edges in a triangulation of T , and two triangles. Thus
the zigzag of T meets six hemispheres of the Ford domain, which are identified in pairs. See
Figure 5.
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Let Fa be a face of the Ford domain whose radius is largest among the faces dual to the
pleating locus of T . (In other words, Fa is dual to the edge of the pleating that is shortest
outside the maximal cusp.) Conjugate H3 such that the distance between the center of Fa

and the center of the nearest adjacent face of the Ford domain to the right (Fb, say) is 1.
Let a denote the radius of Fa, b the radius of Fb.

By Lemma 3.2, the other circle of the Ford domain which is met by T has radius ab. Call
this face Fab. By following the triangulation of a once punctured torus, we see the Euclidean
lengths between centers of horospheres must be as in Figure 5.

This parameterization for a pleated punctured torus extends easily to 4–punctured spheres.
In an ideal triangulation of a 4–punctured sphere S, there are six edges and four ideal triangles
— double the complexity above. However, recall that we have chosen the cusp neighborhoods
and the canonical triangulation equivariantly. As a result, the zigzag of S will look the same
when viewed from each cusp. When viewed from any puncture of S, the zigzag crosses three
faces of the Ford domain, whose radii will be a, b, and ab.

We are interested in the sizes of horospheres at the bottom of each edge in Figure 5.

Lemma 3.4. Suppose that when we lift to H3, the maximal cusp of M lifts to a horosphere
at height h, while the zigzag has Euclidean distances and radii as above. Then the distances
between horospheres along the edges dual to Fa, Fb and Fab are 2 log(h/a), 2 log(h/b), and
2 log(h/(ab)), respectively.

Thus if we conjugate again such that the maximal cusp of M lifts to a horosphere of height
1, then we see horospheres of diameter a2/h2, b2/h2, and a2b2/h2, respectively.

Proof. Recall that the face Fa is equidistant from the horosphere of height h about infinity
and another horosphere which lies under Fa. Thus the distance between the face Fa and the
horosphere below it must equal the distance between the face of radius a and the horosphere
of height h above it. Thus the distance between the two horospheres is 2 log(h/a).

Now, if we conjugate such that the maximal cusp of M lifts to a horosphere of height 1,
we do not change hyperbolic lengths, so the distance between horospheres is still 2 log(h/a).
But now, if the diameter of the horosphere centered on C is d, this implies log(1)− log(d) =
2 log(h/a), or d = a2/h2.

The argument is the same for horospheres under Fb and Fab. �

By Lemma 3.4, the largest horosphere has diameter the maximum of a2/h2, b2/h2, and
a2b2/h2. But we chose Fa so that a was the maximum of a, b, and ab. So the largest
horosphere has diameter a2/h2.

To improve estimates, we may use the fact that faces of the Ford domain meet in a certain
pattern in the three dimensional manifold M as well as in the surface S. We will need
the following lemma about angles between faces of the Ford domain. This lemma was first
observed in a slightly different form by Guéritaud [30, Page 29].

Lemma 3.5. Let FA, FB, FC and FE be faces of the Ford domain corresponding to a single
zigzag, with FA adjacent to FB, FB to FC , and FC to FE. Suppose also that FA, FB, and
FC are dual to a canonical tetrahedron. Denote by A the Euclidean radius of the hemisphere
FA (which is also the radius of FE), and denote by C the Euclidean radius of FC . Denote
the distance between the centers of FE and FC by D. Let α denote the angle between the line
segments from the center of FB to the center of FC , and from the center of FB to the center
of FA. Then the angle α satisfies

cosα >
A4 + C4 +D4 − 2A2D2 − 2C2D2

2A2C2
.
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(a)

β

FB FA

C(β)

(b)

C(β)

FB FA

β

Figure 6. (a) The circles of FA, FB, C(β). (b) The value of β for which the
faces meet in a single point.

Proof. Note that α is the dihedral angle of a tetrahedron in the canonical triangulation.
That tetrahedron is dual to the point of intersection of faces FA, FB, and FC . The key fact
that we will use is that these three faces must overlap.

Consider the circles given by the points where the spheres of FA and FB meet the boundary
at infinity. We will abuse notation and call these circles FA and FB. Consider a third circle
C(β) with radius C such that the line between the center of this circle and the center of FB

makes an angle β with the line between the center of FB and the center of FA. When β = α,
this circle C(β) is the circle of FC . See Figure 6(a).

However, we want to consider varying β. The angle β can lie anywhere in the interval
(0, π). For large β, the circle C(β) may not meet FA. We can decrease β until these two
circles overlap. Since FA, FB, and FC are dual to a tetrahedron of the canonical triangulation,
when β = α, C(α) and FA must overlap enough that the interiors of the regions bounded by
these circles and by FB intersect nontrivially. Thus α must be strictly less than the value of
β for which the three circles meet in a single point. We will find this value of β. See Figure
6(b).

Now, given the distance D and the radii A and C, we can compute all the other distances
and radii of the zigzag, using Lemma 3.2. In particular, the radius of FB is AC/D. The
distance between centers of FA and FB is A2/D, and the distance between the centers of FB

and FC is C2/D.
Without loss of generality, suppose FB has center (0, 0), and FA has center (A2/D, 0).

Here we are writing points in C as points in R
2. Then the center of C(β) is

((C2/D) cosβ, (C2/D) sinβ).

The value of β for which the three circles meet in a single point will be determined as
follows. The circles of FA and of FB intersect in two points which lie on a line ℓAB between
the circles. Similarly, the circles of FB and of C(β) intersect in two points which lie on a
line ℓBC . Notice that the three circles meet in a single point exactly when the lines ℓAB and
ℓBC intersect in a point which lies on the circle of FB. We therefore compute these lines and
their intersection.

The line ℓAB is given by the intersection of the circles (x − A2/D)2 + y2 = A2, and
x2 + y2 = (AC/D)2. This has equation:

x =
A2 + C2 −D2

2D
.

Similarly, the line ℓBC has equation:

(cosβ)x+ (sinβ)y =
A2 + C2 −D2

2D
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Their intersection is therefore the point

(2)

(

A2 + C2 −D2

2D
,
A2 + C2 −D2

2D

(

1 − cosβ

sinβ

))

.

We want this point to lie on the circle x2 + y2 = (AC/D)2. Plugging the point (2) into
the equation of the circle, we find β satisfies

(

A2 + C2 −D2

2D

)2
(

1 +

(

1 − cosβ

sinβ

)2
)

=
A2C2

D2
,

which simplifies to

2

1 + cosβ
=

(

2AC

A2 + C2 −D2

)2

.

Thus

cosβ =
(A2 + C2 −D2)2

2A2C2
− 1 =

A4 + C4 +D4 − 2A2D2 − 2C2D2

2A2C2
.

Since α is strictly less than this β, and 0 < α < π, cosα must be strictly greater than
cosβ. This completes the proof. �

3.3. Horosphere estimate. We can now show that each zigzag contains a large horosphere.

Proposition 3.6. Let M be a Farey manifold. If M is a 4–punctured sphere bundle or two–
bridge link complement, denote its meridian length by µ; if M is a punctured torus bundle,
denote its meridian length by 2µ. (See Definition 2.3.) Then every zigzag in M contains a
horosphere of diameter at least µ2/7.

Proof. Let S be a zigzag in M . As at the beginning of §3.2, let a denote the radius of the
largest face of the Ford domain of S. Call this face Fa. Rescale such that the distance
between the center of Fa and the center of the face directly to its right is 1. Call the face
to its right Fb, and let b denote the radius of the face Fb. The third face, which we will call
Fab, will then have radius ab, and have center distance b2 from Fb, and distance a2 from Fa,
by Lemma 3.2. Then the length µ is equal to d/h, where d is the minimal distance between
centers of faces Fa and h is the height of the maximal cusp in M .

By Lemma 3.1, a, b, and 1 satisfy the triangle inequality. Additionally, because Fa was
chosen to have radius larger than that of Fb and Fab, we have the following inequalities.

(1) a ≥ b, and a ≥ ab, hence 1 ≥ b.
(2) b > −a+ 1 and b > a− 1.

This forces values of a and b to lie within the region shown in Figure 7.
Label the angles of the zigzag as follows. Let θ denote the acute angle between the edges

of the zigzag of length a2 and b2. Let η denote the acute angle between edges of the zigzag of
length 1 and b2. Note this means that the angle between edges of length 1 and a2 is π−θ+η.

By considering orthogonal projections to the edge of length b2, we find that

(3) d2 = 1 + a4 + b4 − 2a2b2 cos θ − 2b2 cos η − 2a2 cos(π − θ + η).

See Figure 8 for an example. Note in Figure 8, the angles θ and η correspond to angles of
tetrahedra in the canonical decomposition. Because we chose Fa to be the largest face, this
will not necessarily be the case, but two of the three angles θ, η, π − θ + η will be canonical
(or, if 2π − (π − θ + η) happens to be acute rather than π − θ + η, then exactly two of the
three angles θ, η, and 2π − (π − θ + η) will be canonical).
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By Lemma 3.4, and because we chose the face Fa to be largest, the largest horosphere in
the zigzag S has diameter a2/h2.

Write:
a2

h2
=
a2µ2

d2
= µ2 a

2

d2
.

We minimize the quantity a2/d2.
Note that if θ is an angle of a tetrahedron in the canonical polyhedral decomposition of

M , then by Lemma 3.5, cos θ satisfies:

cos θ >
1 + a4 + b4 − 2a2 − 2b2

2a2b2
.

Similarly, Lemma 3.5 implies that if η is an angle of a tetrahedron in the canonical polyhedral
decomposition of M , then cos η satisfies:

cos η >
1 + a4 + b4 − 2a2b2 − 2a2

2b2
,

and if π− θ+ η (or 2π− (π− θ+ η)) is an angle of a tetrahedron in the canonical polyhedral
decomposition, then cos(π − θ + η) satisfies:

cos(π − θ + η) >
1 + a4 + b4 − 2a2b2 − 2b2

2a2
.

Two of the three will be canonical. The third will not, since all three angles cannot be
canonical at the same time. However, we know the cosine in that case will be at least −1.
Hence combining the cosine inequalities above with the formula for d2 of (3), we will have
one of the three inequalities:

(1) If θ and η are canonical:

a2

d2
>

a2

6a2 + 2a2b2 + 2b2 − 1 − a4 − b4
=: f1(a, b).

(2) If θ and π − θ + η are canonical:

a2

d2
>

a2

6b2 + 2a2b2 + 2a2 − 1 − a4 − b4
=: f2(a, b).

(3) If η and π − θ + η are canonical:

a2

d2
>

a2

6a2b2 + 2b2 + 2a2 − 1 − a4 − b4
=: f3(a, b).

0.2

0.4

0.6

0.8

1.0

b

0.2 0.4 0.6 0.8 1.0 1.2 1.4

a

1.6 1.8 2.0

Figure 7. The region of allowable values for a and b in Proposition 3.6.
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d

η

a2
a2

b2 b2ζ
11

θ
θ

η

Figure 8. A zigzag. Here the dotted circles correspond to faces of the Ford
domain. Recall the corners of the zigzag are geometric duals of these faces.
Reading left to right following the zigzag, the faces of the Ford domain have
radius a, b, ab, a, b, ab, and a. Here η and θ are angles of canonical tetrahedra.
The angle π − θ + η is not an angle of a canonical tetrahedron.

To complete the proof, we minimize all three of these functions in the region of Figure 7.
This is a calculus problem.

For each fj(a, b), j = 1, 2, 3, we find the only critical point of fj in the region of Figure
7 is the point a = 1, b = 0. For all positive a, the function fj is decreasing on the line
b = a, increasing on the line b = 1, increasing or constant on b = −a+ 1, and decreasing or
constant on b = a − 1. This implies that fj takes its minimum value in the region at the
point a = 1, b = 1.

At this value, fj(1, 1) = 1/7. Hence a2/h2 ≥ µ2/7. �

Remark. The proof of Proposition 3.6 does not require the zigzag S to be embedded. In
other words, the proposition applies even to the terminal pleated surfaces S1 and Sc that
are folded in the construction of a 2–bridge link. When S is a folded surface S1 or Sc, one
of the angles θ, η, or (π − θ + η) is actually 0, hence its cosine is even larger than claimed,
which only improves the estimate.

Proposition 3.6 should be compared to previous work of Jørgensen [34, Lemma 4.3], which
was carefully written down by Akiyoshi, Sakuma, Wada, and Yamashita [8, Lemma 8.1.1].
After adjusting for slightly different choices of normalization, Jørgensen’s Lemma 4.3 can be
summarized as saying that, whenever a zizag of a quasifuchsian punctured torus group is
dual to six faces of the Ford domain, one of those faces has radius at least

µ/(4 + 2
√

5).

It follows from Minksy’s classification of punctured torus groups [42], that given a punctured
torus bundle M , the Kleinian subgroup of π1(M) that corresponds to the fiber can be
obtained as a geometric limit of quasifuchsian groups. As a result, Jørgensen’s estimate
extends to punctured torus bundles. Because a Ford domain face of radius r corresponds to
a horosphere of diameter r2, Jørgensen’s Lemma 4.3 implies that every zigzag in a punctured
torus bundle contains a horosphere of diameter at least

µ2

(4 + 2
√

5)2
≈ µ2

71.777
.
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Proposition 3.6, which is proved by a direct geometric argument without reference to quasi-
fuchsian groups, improves this estimate by a factor of about 10.25.

This improvement becomes highly significant in Section 4. In Theorem 4.1, we estimate
the area of a maximal cusp by packing the horospherical torus with disjoint disks that are
shadows of large horospheres. As a result, a 10–fold increase in the estimate for the diameter
of a horosphere turns into a 100–fold increase in the estimate for the area of its shadow.
Since our applications in Sections 5 and 6 rely on these explicit estimates for cusp area, the
100–fold improvement becomes particularly important for applications.

3.4. The length of a meridian. To make the estimate of Proposition 3.6 independent of
µ, we prove a bound on the value of µ. We note that the following lemma is the only result
in this section that does not apply to all Farey manifolds: it fails for 2–bridge links.

Lemma 3.7. In an equivariant cusp of a 4–punctured sphere bundle M , µ ≥
√

2.

Proof. Lift the hyperbolic structure on M to H3. The cusps lift to collections of horoballs.
Conjugate such that the horoball about infinity of height 1 projects to a cusp neighborhood.
Since we took a maximal cusp neighborhood of M , that is, since we expanded cusps until
they bumped, there must be some full–sized horoball H projecting to a cusp of M , tangent
to the horoball of height 1 about infinity.

There is an isometry of H
3 corresponding to the slope of length µ which is a covering

transformation of M . It takes H to another full–sized horoball H ′. The Euclidean distance
between H and H ′ is the length µ.

Consider the geodesic γ running from the center of H to the center of H ′. This projects
to a geodesic in M running from one puncture of the fiber back to the same puncture. Note
that under the equivariant cusp expansion, any canonical edge runs between two distinct
punctures of the fiber. Hence by Lemma 3.3, the length of the portion of γ outside H and
H ′ is at least ln(2).

Now, recall the following formula for lengths along “right angled hexagons” (see, for ex-
ample, [29, Lemma 3.4]). Let H∞ denote the horosphere about infinity, and let Hp and Hq

be disjoint horospheres not equal to H∞, centered over p and q in C, respectively. Denote
by dp the hyperbolic distance between Hp and H∞, by dq the hyperbolic distance between
Hq and H∞, and by dr the hyperbolic distance between Hp and Hq. Then the Euclidean
distance between p and q is given by

(4) d(p, q) = exp((dr − (dp + dq))/2).

In our case, dp = dq = 0, since the corresponding horospheres (H and H ′) are tangent to

H∞, and dr is at least ln(2). So µ = d(p, q) is at least
√

2. �

By commensurability, the meridian in a punctured torus bundle has length 2µ ≥ 2
√

2. In
the setting of two-bridge links, on the other hand, Lemma 3.7 fails because a meridian of
the link is spanned by a single edge of the canonical triangulation. For two–bridge links, the
best available estimate is Adams’s result that µ ≥ 4

√
2, which works for all links except the

figure–8 and 52 knots [1].

4. Cusp area estimates

In this section, we apply the results of Section 3 to prove quantitative estimates on the
cusp area of Farey manifolds. For most of the section, we shall focus on punctured torus
bundles. At the end of the section, we will generalize these results to 4–punctured sphere
bundles and 2–bridge links.
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4.1. Punctured–torus bundles. We shall prove the following result:

Theorem 4.1. Let M be a punctured–torus bundle with monodromy

Ω = ±Rp1Lq1 · · ·RpsLqs .

Let C be a maximal horoball neighborhood about the cusp of M . Then

0.1885 s ≈ 16
√

3

147
s ≤ area(∂C) < 2

√
3
v8
v3
s ≈ 12.505 s.

Furthermore, if γ is any simple closed curve on ∂C that is transverse to the fibers, then its
length ℓ(γ) satisfies

ℓ(γ) ≥ 4
√

6

147
s.

Remark. Extensive numerical experiments support the conjecture that area(∂C)/s is mono-
tonic under the operation of adding more letters to existing syllables of the monodromy word
Ω. (It is not hard to show using the method of angled triangulations [31] that the volume of
M behaves in a similarly monotonic fashion.) This conjecture would imply that the quantity
area(∂C)/s is lowest when all syllables have length 1 and M is a cover of the figure–8 knot
complement, while area(∂C)/s approaches its upper bound as the syllable lengths approach
∞ and the geometry of M converges to a cover of the Borromean rings. The cusp area of
the figure–8 knot complement is 2

√
3, and the cusp area of one component of the Borromean

rings is 8. Thus, if the monotonicity conjecture is correct, it would follow that

2
√

3 s ≤ area(∂C) < 8 s.

Compared to the values in Theorem 4.1, this represents a modest improvement of the upper
bound but a dramatic improvement of the lower bound.

The main idea of the proof of Theorem 4.1 is to pack the horospherical torus ∂C with
disjoint disks that are shadows of large horospheres. Recall from Definition 2.3 that we
denote the length of a meridian in the maximal cusp of a punctured–torus bundle by 2µ. By
Proposition 3.6, every zigzag on ∂C will contain two horospheres of diameter at least µ2/7,
corresponding to the two endpoints of the same edge of the zigzag. When we project one of
these horospheres to ∂C, we obtain a disk whose radius is at least µ2/14.

To turn this into an effective estimate on the area of ∂C, we need to employ a somewhat
subtle procedure for choosing which horospheres to count and which ones to discard. We
choose the horospheres in the following manner:

(1) Let E be the set of all edges of M whose length outside the maximal cusp is at most
ln(7/µ2). These are exactly the edges that lead to horospheres of diameter ≥ µ2/7.
Thus, by Proposition 3.6, every pleated surface in M contains an edge in E.

(2) Order the letters of the monodromy word Ω: α1, . . . , αm. Recall, from Section 2.2,
that each αi corresponds to a pleated surface Tαi

.
(3) Find the smallest index i such that all three edges in the pleating of Tαi

belong to
E. (It is possible that such an i does not exist.) If such a Tαi

occurs, remove the
longest of the those three edges from E, breaking ties at random.

(4) Repeat step (3) inductively. In the end, the set E will contain at most two edges
from each pleated surface.

At the end of step (4), if a pleated surface T contains one edge of E, that edge is the
shortest in T . If T contains two edges of E, they are the two shortest edges in T .

Lemma 4.2. The set E, constructed as above, contains at least 2s/3 distinct edges.



22 D. FUTER, E. KALFAGIANNI, AND J. PURCELL

F L
L

L
L

S

Figure 9. The only possible words between two triangles that share a vertex
are S RR · · ·RF and S LL · · ·LF , where S and F (start and finish) can both
be either L or R.

Proof. By Proposition 3.6, every pleated surface in M contains an edge whose length is at
most ln(7/µ2). Thus, at the end of step (1) in the selection procedure above, the set E
contained at least one edge from every pleated surface. Now, observe that two different
pleated surfaces Tα and Tβ , corresponding to letters α and β in Ω, will share an edge if and
only if the corresponding triangles in the Farey graph share a vertex. As Figure 9 illustrates,
this can only happen if the letters α and β come from the same syllable, neighboring syllables,
or syllables that share a neighbor. Therefore, at the end of step (1), the set E contained
at least one edge for every consecutive string of three syllables, hence at least 2s/3 distinct
edges in total.

Now, consider what happens when we begin removing edges in step (3). Suppose that
all three edges in a pleated surface Tα belong to E. Then, just as above, for any pleated
surface Tβ that shares an edge with Tα, the letters α and β must come from the same
syllable, neighboring syllables, or syllables that share a neighbor. There are at most five
such syllables altogether (the syllable containing α, plus two on each side). Thus, after we
remove the longest edge of Tα from E, the set E still contains two edges from a string of five
consecutive syllables.

At the end of the selection procedure, every pleated surface in M belongs either to a string
of 3 syllables containing at least one edge of E, or to a string of 5 syllables containing at
least two edges of E. In either scenario, there are at least 2s/3 edges belonging to E. �

Lemma 4.3. Let M be a punctured–torus bundle with monodromy

Ω = ±Rp1Lq1 · · ·RpsLqs ,

Then the maximal cusp boundary ∂C contains 4s/3 disjoint disks, each of radius at least

min

{

1

4
,

√
2µ2

14

}

.

Proof. Consider the edge set E, as above. By Lemma 4.2, E contains at least 2s/3 edges of
length at most ln(7/µ2). Now, lift everything to the universal cover H

3, in such a way that
∂C lifts to the horizontal plane at height 1. In a single fundamental domain for ∂C, each
edge e ∈ E corresponds to two horospheres: one horosphere for each endpoint of e. Hence
∂C contains 4s/3 shadows of disjoint horospheres, each of which has radius at least µ2/14. If
two disjoint horospheres have the same size, then they also have disjoint projections. Thus,
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by shrinking each horosphere to radius µ2/14, we conclude that ∂C contains 4s/3 disjoint
disks of radius µ2/14.

Next, we claim that the disks on ∂C can be enlarged considerably while staying disjoint.
Let x and y be the centers of two of these disks. In other words, x ∈ ∂C ∩ ei and y ∈ ∂C ∩ ej
for some ei, ej ∈ E. The two edges ei, ej lead to horospheres Hi and Hj . Let f be the
geodesic that connects Hi directly to Hj . Consider the length of f outside Hi and Hj . There
are two cases:

Case 1: the length of f is at least ln(2). In this case, the midpoint of f lies at distance

at least ln(2)/2 from both Hi and Hj . If we apply an isometry I that sends ∂Hi to the

horosphere at Euclidean height 1, the midpoint of I(f) will lie at height at most 1/
√

2. In
other words, the horosphere I(Hi) can be expanded by a factor of

√
2 without hitting the

midpoint of I(f), and similarly for Hj . Of course, this still holds true before applying the

isometry I: each of Hi and Hj can be expanded by a factor of
√

2 while staying disjoint from

each other. Since each of Hi and Hj has radius at least µ2/14, the disks of radius
√

2µ2/14
centered at x and y in ∂C are disjoint from each other.

Case 2: f is shorter than ln(2). Then, by Lemma 3.3, f must be an edge of the canonical
triangulation. Since ei and ej are also edges of the canonical triangulation, these three edges
bound an ideal triangle contained in some pleated surface Tα. Now, recall that at the end of
our selection procedure for the set E, if two distinct edges of Tα belong to E, then they are
the shortest edges in Tα. Thus both ei and ej are shorter than ln(2). Since the edges ei and
ej are already vertical in H3 and meet the cusp at Euclidean height 1, the horospheres Hi

and Hj must have diameter at least 1/2. Thus Hi and Hj project to disjoint disks of radius
at least 1/4 centered at x and y on ∂C.

In every case, the points x, y ∈ ∂C are the centers of disjoint disks of radius at least

min

{

1

4
,

√
2µ2

14

}

.

There are 4s/3 such disks, completing the proof. �

We may now estimate the area of ∂C.

Lemma 4.4. Let M be a punctured–torus bundle with monodromy

Ω = ±Rp1Lq1 · · ·RpsLqs .

Let C be a maximal horoball neighborhood about the cusp of M . Then

16
√

3

147
s ≤

√
3 s min

{

1

6
,

4µ4

147

}

≤ area(∂C) < 2
√

3
v8
v3
s.

Proof. There are three inequalities in the statement, and we consider them in turn.

First inequality. This follows immediately from Lemma 3.7, which gives µ ≥
√

2. Note
that with our definition of µ (see Definition 2.3), the conclusion of Lemma 3.7 transfers
perfectly from 4–punctured sphere bundles to punctured torus bundles.

Second inequality. By Lemma 4.3, ∂C contains 4s/3 disjoint disks of equal radius, whose
total area is at least

4s

3
· πmin

{

1

16
,
µ4

98

}

.

Now, a classical result (see e.g. [14, Theorem 1]) states that a packing of the plane by circles
of equal size has density at most π/(2

√
3). This gives the desired inequality.
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Third inequality. A result of Agol gives that vol(M) < 2v8 s (see [31, Theorem B.1] for a
direct proof). Also, a horosphere packing theorem of Böröczky [14, Theorem 4] states that
a maximal cusp in a hyperbolic 3–manifold contains at most

√
3/(2v3) of the volume of M .

Putting these results together gives

vol(C) <
√

3
v8
v3
s, hence area(∂C) < 2

√
3
v8
v3
s.

�

Remark. In the proof of Lemma 4.3, we also showed that ∂C contains 4s/3 disjoint disks
of radius µ2/14. Plugging this estimate into the proof of Lemma 4.4 gives

area(∂C) ≥ 2
√

3µ4

147
s.

This statement, although apparently weaker than Lemma 4.4, will prove useful for estimating
the lengths of slopes on ∂C.

Lemma 4.5. Let M be a punctured–torus bundle with monodromy

Ω = ±Rp1Lq1 · · ·RpsLqs .

Let C be a maximal horoball neighborhood about the cusp of M . If γ is any simple closed
curve on ∂C that is transverse to the fibers, ℓ(γ) ≥ 4

√
6 s/147.

Proof. Define the height of the cusp to be h := area(∂C)/2µ. Then ℓ(γ) ≥ h. Note that by
Lemma 3.7, µ ≥

√
2. Also, since a maximal horocycle in a punctured torus has length at

most 6, it follows that µ ≤ 3. We consider three possibilities for the values of µ in the range
[
√

2, 3].

If
√

2 ≤ µ ≤
√

7/23/4, then 4µ4/147 ≤ 1/6. Thus, by Lemma 4.4,

area(∂C) ≥ 4
√

3µ4

147
s, hence ℓ(γ) ≥ 2

√
3µ3

147
s ≥ 4

√
6 s

147
≈ 0.066652 s.

If
√

7/23/4 ≤ µ ≤ 2, then 1/6 ≤ 4µ4/147. Thus, by Lemma 4.4,

area(∂C) ≥
√

3 s

6
, hence ℓ(γ) ≥

√
3 s

12µ
≥

√
3 s

24
≈ 0.072168 s.

If 2 ≤ µ ≤ 3, then by the remark following Lemma 4.4,

area(∂C) ≥ 2
√

3µ4

147
s, hence ℓ(γ) ≥

√
3µ3

147
s ≥ 8

√
3 s

147
≈ 0.094261 s.

Therefore, for all possible values of µ, we have ℓ(γ) ≥ 4
√

6 s/147. �

Lemmas 4.4 and 4.5 complete the proof of Theorem 4.1.
Combining the results of Theorem 4.1 with our work in [25, Theorem 1.1], we obtain the

following immediate corollary for volumes of Dehn fillings of punctured torus bundles.

Corollary 4.6. Let M be a punctured–torus bundle with monodromy of length s > 94. Let
C be a maximal horoball neighborhood about the cusp of M . For any simple closed curve
γ on ∂C that is transverse to the fibers, let Mγ denote the 3–manifold obtained from M by
Dehn filling ∂C along γ. Then Mγ is hyperbolic, and

(

1 − 7203π2

8 s2

)3/2

2v3 s ≤ vol(Mγ) < 2v8 s,

where v3 = 1.0149... is the volume of a regular ideal tetrahedron and v8 = 3.6638... is the
volume of a regular ideal octahedron.
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Proof. By Theorem 4.1, the slope length of γ will be at least 2π when s ≥ 95. For such
slopes, by [25, Theorem 1.1] we know the volume of the manifold obtained by Dehn filling
along the slope of length ℓ(γ) is at least

vol(Mγ) ≥
(

1 −
(

2π

ℓ(γ)

)2
)3/2

vol(M).

Hence, using the volume bound for such manifolds given by [31, Theorem B.1], and the
estimate on slope length of Theorem 4.1, we have

vol(Mγ) ≥
(

1 − 7203π2

8 s2

)3/2

2v3 s.

For the upper bound, recall that volume only decreases under Dehn filling [56], and so the
result follows immediately from [31, Theorem B.1]. �

4.2. 4–punctured sphere bundles.

Theorem 4.7. Let N be a 4–punctured sphere bundle with monodromy

Ω = Rp1Lq1 · · ·RpsLqs ,

and with the property that the monodromy fixes one preferred boundary circle of the 4–holed
sphere. Let D be the maximal horoball neighborhood of the cusp corresponding to this preferred
puncture, and let γ be any simple closed curve on ∂D that is transverse to the fibers. Then

area(∂D) ≥ 16
√

3

147
s and ℓ(γ) ≥ 8

√
3

147
s.

Proof. As described in Section 2.3, the 4–punctured sphere bundle N is commensurable to
a punctured–torus bundle M with the same monodromy Ω. (The common cover is a 4–
punctured torus bundle P .) Let C be the maximal cusp neighborhood in M . Then, by
lifting C to a cusp neighborhood in P and projecting down to N , we obtain a maximal
equivariant neighborhood of the cusps of N .

Let B be the cusp neighborhood of the preferred puncture in the equivariant expansion of
the cusps of N . Because the cusp neighborhood C ⊂ M lifts to 4 distinct cusps in P , and
one of those cusps double–covers B, Theorem 4.1 implies that

2 · area(∂B) = area(∂C) ≥ 16
√

3

147
s.

Observe that in the canonical triangulation of N , every edge lies in a pleated fiber, and
connects two distinct punctures of the 4–punctured sphere. Thus no edge of the canonical
triangulation has both endpoints inside B. By Lemma 3.3, this means that the shortest arc
from B to B has length at least ln(2), and we may expand B by a factor of at least

√
2

before it bumps into itself. Therefore, every linear measurement on ∂D is at least a factor
of

√
2 greater than on ∂B, and

area(∂D) ≥ 2 · area(∂B) = area(∂C) ≥ 16
√

3

147
s.

By the same argument, every simple closed curve on ∂D is at least a factor of
√

2 longer
than the corresponding loop on ∂B. Thus, if γ is transverse to the fibers of N , ℓ(γ) ≥
8
√

3 s/147. �
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We remark that by Theorem 4.7, an analogue of Corollary 4.6 also holds for fillings of
4–punctured sphere bundles. One important class of manifolds obtained by Dehn filling (one
cusp of) a 4–punctured sphere bundle is the class of closed 3–braids in S3. We shall focus
on these manifolds below, in Section 5.

4.3. 2–bridge links.

Theorem 4.8. Let K be a 2–bridge link in S3, whose reduced alternating diagram has twist
number t. Let C be a maximal neighborhood about the cusps of S3

rK, in which the two
cusps have equal volume if K has two components. Then

8
√

3

147
(t− 1) ≤ area(∂C) < 2

√
3
v8
v3

(t− 1).

Furthermore, if K is a knot, let γ be any non-trivial arc that starts on a meridian and comes
back to the same meridian (for example, a non-meridional simple closed curve). Then its
length satisfies

ℓ(γ) ≥ 4
√

6
√

2

147
(t− 1).

Proof. Let µ denote the length of a meridian of K on ∂C. By Proposition 3.6, every pleated
surface Si in S3

rK contains at least one edge of length at most ln(µ2/7). Furthermore,
opposite edges in Si have the same length, because the geometry of each pleated surface is
preserved by the full symmetry group of its triangulation. Thus, if Si is embedded in S3

rK,
it contains two edges of length at most ln(µ2/7). The only pleated surfaces that are not
embedded are the folded surfaces S1 or Sc at the ends of the product region of K; each of
these surfaces will contain at least one short edge. (See [31, Figure 19] for a description of
how surfaces are folded in the construction of a 2–bridge link.)

Now, we retrace the proof of Theorem 4.1. We construct the set of short edges E exactly
as above, except that we are now counting pairs of edges. Thus, if all three pairs of edges in
a pleated surface are initially part of E, we remove the longest pair.

By the same argument as in Lemma 4.2, E contains at least t/3 distinct edge pairs. The
two paired edges on a pleated surface S will be distinct unless S is S1 or Sc. Thus, if both S1

and Sc contribute edges to E, the minimum possible number of edges (not pairs) is 2(t−1)/3.
The proof of Lemma 4.3 goes through without modification. As a result, ∂C contains

4(t− 1)/3 disjoint disks, of radius at least

r ≥ min

{

1

4
,

√
2µ2

14

}

, hence total area ≥ 4(t− 1)

3
· πmin

{

1

16
,
µ4

98

}

.

Dividing by the maximal density π/2
√

3 of a circle packing in the plane gives

(5) area(∂C) ≥ 8(t− 1)

√
3

3
min

{

1

16
,
µ4

98

}

.

To complete the proof of the lower bound, we note that for all 2–bridge links except the
figure–8 knot and 52 knot, the meridian µ is at least 4

√
2, by work of Adams [1]. Thus the

area is at least 8
√

3 (t − 1)/147. Meanwhile, the figure–8 and 52 knots have twist number
t = 2, hence the estimate 8

√
3/147 is vastly lower than their true cusp area (note a standard

horosphere packing argument implies the area of any cusp is at least
√

3).
For the upper bound, Futer and Guéritaud [31, Theorem B.3] found that the volume of a

hyperbolic 2–bridge knot satisfies vol(S3rK) < 2v8(t − 1). Again, combining this with the
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theorem of Böröczky [14, Theorem 4], that a maximal cusp contains at most
√

3/(2v3) of
the volume of M , we find

vol(C) <
√

3
v8
v3

(t− 1), hence area(∂C) < 2
√

3
v8
v3

(t− 1).

Finally, for the result on arc length, note that the shortest non-trivial arc γ that starts
and ends on the same meridian has length equal to area(∂C)/µ. Again using the estimate of
Adams [1, 2], the length of a meridian of K satisfies 4

√
2 ≤ µ ≤ 2, except if K is the figure–8

or 52 knot. Combining Adams’s estimates with inequality (5) and arguing as in Lemma 4.5
gives the desired lower bound on ℓ(γ). (As above, the figure–8 and 52 knots need to be
checked separately.) �

5. Volume estimates for closed 3–braids

In this section, we give a complete characterization of the closed 3–braids whose com-
plements are hyperbolic. Then, we apply Theorem 4.7 from Section 4 to obtain volume
estimates for closed 3–braids.

5.1. A normal form for 3–braids. We begin with some notation. Let σ1 and σ2 be
generators for B3, the braid group on three strands, as in Figure 1. Thus a positive word in
σ1 and σ−1

2 represents an alternating braid diagram. Let C = (σ1σ2)
3 denote a full twist of

all three strands; C generates the center of B3. For a braid w ∈ B3, let ŵ denote the link
obtained as the closure of w. Note that ŵ only depends on the conjugacy class of w. We
denote the conjugacy relation by ∼.

In the 1920s, Schreier developed a normal form for this braid group [51]. In particular, he
showed the following.

Theorem 5.1 (Schreier). Let w ∈ B3 be a braid on 3 strands. Then w is conjugate to a
braid in exactly one of the following forms:

(1) Ckσp1

1 σ
−q1

2 · · ·σps

1 σ
−qs

2 , where k ∈ Z and pi, qi, and s are all positive integers,
(2) Ckσp

1, for k, p ∈ Z

(3) Ckσ1σ2, for k ∈ Z

(4) Ckσ1σ2σ1, for k ∈ Z, or
(5) Ckσ1σ2σ1σ2, for k ∈ Z.

This form is unique up to cyclic permutation of the word following Ck. Braids in form (1)
above are called generic.

Birman and Menasco have shown that nearly every oriented link obtained as the closure
of a 3–braid can be represented by a unique conjugacy class in B3, with an explicit list of
exceptions [11]. Thus their theorem, combined with Schreier’s normal form, gives a classifica-
tion of closed oriented 3–braids. Their paper also contains a modern exposition of Schreier’s
algorithm for placing braids in normal form.

Let K = ŵ be a closed 3–braid defined by the word w, and let A be the braid axis of K.
That is, A is an unknot with the property that the solid torus S3

rA is swept out by meridian
disks, with each disk intersecting K in 3 points. Then Mw := S3r(K ∪A) is a 4–punctured
sphere bundle over the circle. It is well–known, essentially due to work of Thurston [55],
that the Schreier normal form of w predicts the geometry of Mw. We include a proof for
completeness.

Theorem 5.2. Mw is hyperbolic if and only if w is generic. Moreover, Mw has nonzero
Gromov norm if and only if w is generic.



28 D. FUTER, E. KALFAGIANNI, AND J. PURCELL

Proof. The braid generators σ1 and σ−1
2 act on the 4–punctured sphere as the standard

generators L and R of SL2(Z):

σ1 7→ L :=

[

1 0
1 1

]

, σ−1
2 7→ R :=

[

1 1
0 1

]

, C 7→ I =

[

1 0
0 1

]

.

Thus generic 3–braids with normal form (1) correspond to positive words employing both
letters L and R, hence to pseudo-Anosov monodromies. Thurston showed that a bundle over
S1 with pseudo-Anosov monodromy is hyperbolic [55]. More concretely, Guéritaud showed
how to construct the hyperbolic metric from a positive word in L and R [31]. (See Sections
2.2 and 2.3 above for a review of the connection between the monodromy word and the
canonical ideal triangulation of Mw.)

The braids with normal form (2) correspond to reducible monodromies of the form Lp. In
this case, Mw is a graph manifold obtained by gluing two 3–punctured sphere bundles along
a torus. The braids with normal forms (3–5) correspond to periodic monodromies, hence Mw

is Seifert fibered. Thus all non-generic normal forms yield non-hyperbolic manifolds with
Gromov norm 0. �

5.2. Hyperbolic 3–braids. Our goal in this subsection is to show that the 3–braids whose
closure is a hyperbolic link can be easily identified from their Schreier normal form. Because
a closed braid presentation of a link K comes with a natural orientation, we need to consider
all possible orientations on components of K that are consistent with K being a 3–braid.

In the lemmas that lead up to Theorem 5.5, we rely on two classical invariants that are
insensitive to orientation changes on a component of K: the (absolute value of) the linking
number between components of K, and the determinant det(K). Recall that that det(K) is
the absolute value of the Alexander polynomial of K, evaluated at t = −1, or equivalently
the absolute value of the Jones polynomial of K, also evaluated at t = −1. It is well–known
that reversing the orientation on a component of K leaves the determinant unchanged: from
the point of view of the Jones polynomial, this follows because changing the orientation of
some component of K changes the Jones polynomial JK(t) by a power of t.

Lemma 5.3. Let K = ŵ be the closure of a generic 3–braid

w = Ckσp1

1 σ
−q1

2 · · ·σps

1 σ
−qs

2 ,

where pi, qi are all positive. Suppose that K has two or three components and det(K) ≤ 4.
Then one of two possibilities holds:

(a) det(K) = 2, and w = Cka, where k is even and a ∈
{

σ2
1σ

−1
2 , σ1σ

−2
2

}

, or

(b) det(K) = 4, and w = Cka, where k is even and a ∈
{

σ2
1σ

−2
2 , σ4

1σ
−1
2 , σ1σ

−4
2

}

.

Proof. The proof uses a result of Murasugi [45, Proposition 5.1]. There, Murasugi shows
that a generic 3–braid must have strictly positive determinant. (In his notation, the class of
generic 3–braids is denoted Ω6.) The same proposition states that, if â denotes the closure

of a = σp1

1 σ
−q1

2 · · ·σps

1 σ
−qs

2 , then

det(K) =

{

det(â), if k is even,
det(â) + 4, if k is odd.

If w is generic, then a is also generic, hence det(â) > 0. Thus, if det(K) ≤ 4, we must have
k even and det(K) = det â. Since â is an alternating link, the minimum crossing number is
bounded above by the determinant (see, for example, Burde and Zieschang [16]). Thus the
crossing number of â is at most 4, and we may list the possibilities for a.
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Recall that the crossing number of an alternating link is realized by any alternating dia-
gram without nugatory crossings, and the only way an alternating 3–braid can have nugatory
crossings is if the braid word is σr

1σ
−1
2 or σ1σ

−r
2 . Thus alternating closed 3–braids with cross-

ing number at most 4 consist of words of the form σp
1 for appropriate p, σp

1σ
−q
2 , for appropriate

p, q, and σ1σ
−1
2 σ1σ

−1
2 . All others will have higher crossing numbers.

Since σp
1 is not generic, we need not consider these. Since the closed braid corresponding to

Ckσ1σ
−1
2 σ1σ

−1
2 has just one component, and we are assuming K has at least two components,

we need not consider these words either. Finally, the braids σp
1σ

−q
2 have the appropriate

number of crossings for (p, q) = (1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (3, 1), and (4, 1). Of
these, (1, 1), (1, 3), and (3, 1) have only one link component. The remaining possibilities are

a ∈ {σ2
1σ

−1
2 , σ1σ

−2
2 , σ2

1σ
−2
2 , σ4

1σ
−1
2 , σ1σ

−4
2 }.

If a = σ2
1σ

−1
2 or a = σ1σ

−2
2 , one easily computes that det(K) = det(â) = 2, and conclusion

(a) holds. If a is one of σ2
1σ

−2
2 , σ4

1σ
−1
2 , or σ1σ

−4
2 , then det(K) = det(â) = 4, and conclusion

(b) holds. �

We can now restrict the 3–braids that correspond to Seifert fibered links.

Lemma 5.4. Let K = ŵ be the closure of a 3–braid w, and suppose that S3
rK is Seifert

fibered. Then w is either non-generic, or else conjugate to σp
1σ

±1
2 , σ±1

1 σq
2, or σ2

1σ
−2
2 .

Proof. A theorem of Burde and Murasugi [15] states that if S3rK is Seifert fibered, then
K consists of finitely many fibers in a (possibly singular) Seifert fibration of S3. In case
the Seifert fibration of S3 is not singular, the fibration extends to S3. The Seifert fibrations
of S3 were classified by Seifert [53] (see also Orlik [48]). As a consequence, K must be a
generalized torus link : a link that is embedded on an unknotted torus T (this is called an
(m,n) torus link) plus possibly one or both cores of the solid tori in the complement of T .

The singular fibration does not extend to S3: it is the product fibration on a solid torus,
in which each fiber is a meridian of the complementary unknot. However, note that in this
case the result is again a generalized torus link, with the unknot making up the core of the
(m, 0) torus link. The question of which closed 3-braids represent generalized torus links has
been studied by Murasugi in [45].

In an (m,n) torus link, we may assume without loss of generality that m > 0, and that
either n = 0 or |n| ≥ m. With this normalization, a theorem of Schubert [52] implies that
the bridge number of the (m,n) torus link is m. Since the braid index is greater than or
equal to the bridge number, any choice of orientation on the components of an (m,n) torus
link must yield a braid index of at least m. Thus, if we add c cores of solid tori and obtain
a 3–braid, 1 ≤ m ≤ 3 − c. There are three cases, conditioned on the value of c.

Case 0: c = 0. Then K is an (m,n) torus link, where 1 ≤ m ≤ 3. Murasugi classifies the
torus links that can be written as closed 3–braids in [45, Section 12]. However, a careful
reading of his proofs indicates that he is assuming multiple components of torus links are
always oriented consistently. For our purposes, we will also need to consider the torus links
in which the orientation of some component is reversed. In fact, the machinery developed
by Murasugi in this monograph is sufficient to handle all choices of orientation. For ease of
reading, we will include the arguments for all the cases not immediately apparent from [45].

If m = 1, then K is the unknot, and Theorem 12.1 in Murasugi’s monograph shows
w ∼ σ±1

1 σ±1
2 . If m = 2, then K is a (2, n) torus link. If the (one or two) components of

K are oriented consistently, then it is an elementary torus link in Murasugi’s terminology.
Then, Theorem 12.3 of his monograph implies w ∼ σp

1σ
±1
2 or w ∼ σ±1

1 σq
2.
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Now, suppose that n = 2ℓ, and K is a (2, 2ℓ) torus link whose components have opposite
orientations. Then K is the oriented boundary of a Seifert surface that is an annulus.
Using this annulus, we calculate that the Alexander polynomial of K is ∆K(t) = ℓ(1 − t);
thus deg ∆K(t) = 1. By Proposition 8.1 of [45], K can be the closure of a 3–braid only if
|ℓ| ≤ 1

2deg ∆K(t) + 2 = 5
2 . Since the determinant of the (2, 2ℓ) torus link is |2ℓ|, and this

fact remains true under orientation reversal of components, det(K) = |2ℓ| ≤ 4. Thus, if w is
a generic 3–braid that represents K with this orientation, Lemma 5.3 applies.

If det(K) = 2, Lemma 5.3 says the generic braid w representing K must be conjugate to
Ckσ2

1σ
−1
2 or w ∼ Ckσ1σ

−2
2 , where k is even. Without loss of generality, say w ∼ Ckσ2

1σ
−1
2 .

Then the two components of ŵ have linking number equal to |2k + 1|. But since K is
the (2,±2) torus link, the linking number of the two components is 1. Thus k = 0, and
w ∼ σ2

1σ
−1
2 , as desired.

If det(K) = 4, Lemma 5.3 says the only generic braids representing K must be conjugate
to Ckσ2

1σ
−2
2 , Ckσ4

1σ
−1
2 , or Ckσ1σ

−4
2 . The closure of Ckσ2

1σ
−2
2 has three components, so we

don’t need to consider this case. If w ∼ Ckσ4
1σ

−1
2 , then the two components of ŵ have linking

number |2 + 2k|, which is equal to 2 by hypothesis. Thus k is −2 or 0. But if k = −2, the
closure of C−2σ4

1σ
−1
2 is a hyperbolic link, a contradiction. Thus k = 0, and w ∼ σ4

1σ
−1
2 , as

desired. The argument when w ∼ Ckσ1σ
−4
2 is identical.

Finally, suppose that m = 3, and K is a (3, n) torus link. Then K has either one or three
components. If K is a knot, Proposition 12.3 of [45] shows that K cannot be represented by
a generic 3–braid. In fact, Murasugi’s argument also works for links, with all orientations,
but for completenss we include the argument here.

If K is a 3–component torus link (3, 3ℓ), the linking number of any two components of
K has absolute value |ℓ|. Proposition 3.3 of [45] implies that det(K) is either 0 or 4. By
Lemma 5.3, any generic braid w ∼ Cka representing K, must be conjugate to Ckσ2

1σ
−2
2 , as

all the other possibilities in the lemma have two components. Now, consider the pairwise
linking numbers between components in the closure of w ∼ Ckσ2

1σ
−2
2 . These pairwise linking

numbers are equal in absolute value to |k|, |k + 1|, and |k − 1|. But all these numbers must
be equal to |ℓ|, a contradiction.

Case 1: c = 1. Then K = Lt ∪ La, where Lt is a (m,n) torus link with m = 1 or m = 2,
and La is the core of one of the two solid tori. If m = 1, then (depending on the choice of
solid torus) K is either a (2, 2n) torus link and we reduce to case 0, or K is the Hopf link,
which is the (2, 2) torus link, and we again reduce to case 0. Thus we may suppose that Lt is
a (2, n) torus link. Then, as an unoriented link, K admits a diagram in one of two possible
forms, shown in Figure 10, depending on which solid torus La came from.

Subcase 1a: Suppose that the link K is depicted in the left panel of Figure 10. Then
we can characterize the linking number lk(Lt, La) as follows. If n is odd and Lt is a knot,
then its linking number with La is ±2; if n is even and Lt has two components, then each
component of Lt has linking number ±1 with La. Note that the absolute value of the linking
number is insensitive to changes of orientation.

If all the strands in Figure 10 are oriented counterclockwise, the link K in the left panel of
the figure can be represented by the braid word v = σn

1σ2σ
2
1σ2. Of course, a priori there may

be other braid representatives, possibly corresponding to other choices of orientation on one
or more components of K. Nonetheless, knowing that K can be obtained as the closure v̂ of
the braid represented by v allows us to compute link invariants. Because the normal form
of v is C σn−2

1 , Murasugi’s Proposition 3.6 gives that det(K) = 4. Suppose that, with some
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nn

Figure 10. Case 1 of Lemma 5.4: two ways to add the core of a solid torus
to a (2, n) torus link.

choice of orientation, K is represented by the generic braid w. Since det(K) = 4, Lemma
5.3 implies the normal form of w must be one of Ckσ2

1σ
−2
2 , Ckσ4

1σ
−1
2 , or Ckσ1σ

−4
2 .

If w ∼ Ckσ2
1σ

−2
2 , then K = ŵ is a 3–component link. The 2–component links contained

in K have pairwise linking numbers equal in absolute value to |k|, |k + 1|, and |k − 1|.
By hypothesis, two of these linking numbers must be equal to 1. It follows that the only
possibility is k = 0, hence w ∼ σ2

1σ
−2
2 , as desired.

If w ∼ Ckσ4
1σ

−1
2 , then K = ŵ = Lt ∪ La is a 2–component link. In this case, we compute

that |lk(Lt, La)| = |2 + 2k|, which is equal to 2 by hypothesis. Thus k is −2 or 0. But if
k = −2, the closure of C−2σ4

1σ
−1
2 is a hyperbolic link, a contradiction. Thus k = 0, and

w ∼ σ4
1σ

−1
2 , as desired. The case when w ∼ Ckσ1σ

−4
2 is identical.

Subcase 1b: Suppose that the unoriented link K is depicted in the right panel of Figure
10. It follows that lk(Lt, La) = ±n, depending on choices of orientations of the components.
If all the strands of K are oriented counterclockwise, K can be represented by the braid
word v = (σ1σ2σ1)

n. (Just as in Subcase 1a, there may be other braid representatives, but
knowing one braid representative v allows us to compute invariants that are insensitive to
orientation.) Using the braid relation σ1σ2σ1 = σ2σ1σ2, we can rewrite v as

v =

{

Cn/2, if n is even,

C(n−1)/2σ1σ2σ1, if n is odd.

If n is even, then v̂ is a torus link. Thus the unoriented link K is a torus link, and we
reduce to Case 0. If n is odd, then Murasugi’s Proposition 3.5 gives det(K) = 2. Thus, by
Lemma 5.3, any generic braid w that also represents K must have normal form Ckσ2

1σ
−1
2 or

Ckσ1σ
−2
2 .

If w ∼ Ckσ2
1σ

−1
2 , then K = ŵ = Lt ∪ La is a 2–component link. We may immediately

compute that one component Lt is the (2, 2k− 1) torus knot, the other component La is the
unknot, and |lk(Lt, La)| = |2k + 1|. Because by assumption, Lt is the (2, n) torus link, this
implies |n| = |2k − 1|. Additionally, since by assumption lk(Lt, La) = ±n, we may conclude
that |n| = |2k + 1|. This is possible only if k = 0. So w ∼ σ2

1σ
−1
2 , as desired. The case when

w ∼ Ckσ1σ
−2
2 is identical.
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Case 2: c = 2. Then K = Lt ∪ La ∪ Lb, where Lt is an unknot on T , and La and Lb are
cores of the two solid tori. Since Lt is a (1, n) curve on the torus T , one of the cores La or
Lb (say, Lb) can be isotoped to lie on T , disjointly from Lt. Thus, as an unoriented link,
Lt ∪ Lb is a torus link on T , and this case reduces to Case 1. �

The next theorem characterizes the 3-braids whose closures represent hyperbolic links.
The referee informs us that Stoimenow has found an alternative proof of this theorem.

Theorem 5.5. Let w ∈ B3 be a word in the braid group, and let K ⊂ S3 be the link obtained
as the closure of w. Then S3rK is hyperbolic if and only if w is generic and not conjugate
to σp

1σ
q
2 for arbitrary integers p, q.

Proof. First, we check the “only if” direction. If w is non-generic, then by Theorem 5.2,
Mw = S3

r(K ∪ A) is a graph manifold with Gromov norm 0. Since the Gromov norm of a
manifold cannot increase under Dehn filling [56, Proposition 6.5.2], S3rK also has Gromov
norm 0, and is not hyperbolic. If w is generic and conjugate to σp

1σ
±1
2 , then K is a (2, p)

torus link (similarly for σ±1
1 σq

2). Finally, if w is conjugate to σp
1σ

q
2, where |p|, |q| ≥ 2, then K

is the connected sum of (2, p) and (2, q) torus links, hence cannot be hyperbolic.
For the “if” direction, suppose that S3rK is not hyperbolic. Then, by Thurston’s hy-

perbolization theorem [57], it is reducible, toroidal, or Seifert fibered. If S3rK is Seifert
fibered, then Lemma 5.4 implies w is non-generic or conjugate to σp

1σ
q
2. Meanwhile, if S3rK

is reducible, then K is a split link. By a theorem of Murasugi [45, Theorem 5.1], this can
only happen if w ∼ σp

1 : hence, w is not generic.
Finally, suppose that S3

rK contains an essential torus T . If w is not generic, then we are
done. If w is generic, a theorem of Lozano and Przytycki [40, Corollary 3.3] says that T always
has meridional compression disks, i.e. there is some disk D ⊂ S3 such that D ∩T = ∂D and
D ∩K is a point.1 After meridionally compressing T , i.e. after replacing a neighborhood of
∂D on T with two parallel copies of the annulus DrK, we obtain an essential, meridional
annulus that splits K into connected summands. But by a theorem of Morton [43], a braid
w ∈ B3 represents a composite link if and only if w ∼ σp

1σ
q
2, where |p|, |q| ≥ 2. See Birman

and Menasco [12, Corollary 1] for another way to identify the toroidal 3–braids. �

5.3. Volume estimates. For sufficiently long generic 3–braids, the methods of the previous
sections estimate hyperbolic volume.

Theorem 5.6. Let K = ŵ be the closure of a generic 3–braid w ∼ Ckσp1

1 σ
−q1

2 · · ·σps

1 σ
−qs

2 ,

where pi, qi are all positive and w ≁ σp
1σ

−q
2 . Then K is hyperbolic, and

(6) 4v3 s− 276.6 < vol(S3
rK) < 4v8 s.

Furthermore, the multiplicative constants in both the upper and lower bounds are sharp.

Proof. Let A be the braid axis of K. Then Mw = S3r(K ∪ A) is a 4–punctured sphere
bundle with monodromy

Ω = Lp1Rq1 · · ·LpsRqs .

Futer and Guéritaud showed [31, Corollary B.2] that the length of Ω coarsely determines the
volume of M :

(7) 4v3 s ≤ vol(Mw) < 4v8 s,

1Lozano and Przytycki’s result is stated for “hyperbolic” 3–braids. However, their definition of hyperbolic

is the same as our definition of generic.
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where both the upper and lower bounds are sharp. That is: there exist 4–punctured sphere
bundles that realize the lower bound, and other bundles that are ε–close to the upper bound.
Since S3rK is obtained by Dehn filling on Mw, the same upper bound applies to the volume
of S3

rK. Furthermore, by choosing an extremely long filling slope (which will happen when
|k| → ∞), one can arrange for vol(S3rK) to be arbitrarily close to 4v8 s.

For the lower bound on volume, we rely on Theorem 4.7. That theorem states that the
meridian of A (which will be transverse to the fibers) has length at least 8

√
3 s/147. In

particular, when s ≥ 67, the meridian will be longer than 2π. Thus we may apply Theorem
1.1 of [25], which estimates the change in volume under Dehn filling along slopes longer than
2π. For all s ≥ 67, we obtain

vol(S3rK) ≥
(

1 −
(

2π

8
√

3 s/147

)2
)3/2

vol(Mw), by [25, Thm 1.1] and Thm 4.7

≥
(

1 − 7203π2

16 s2

)3/2

4v3 s, by inequality (7)

Note that by calculus,
(

1 − 7203π2

16 s2

)3/2

4v3 s− 4v3 s

has a minimum of −276.52 · · · for s ≥ 67. Thus vol(S3
rK) > 4v3 s− 276.6.

On the other hand, if s ≤ 67, then 4v3 s−276.6 < 0, hence the volume estimate is trivially
true. Thus the lower bound on volume holds for all hyperbolic 3–braids.

Finally, to show sharpness of the multiplicative constant in the lower bound, consider
3–braids of the form w = (σ1σ

−1
2 )s. In the proof of Theorem B.1 of [31], it was shown that

for the closures of these braids, vol(Mw) = 4v3s. Since vol(S3
rK) < vol(Mw) = 4v3s for

this sequence of knots, the multiplicative constant 4v3 must be sharp. �

We close this section with an interesting side comment. Theorem 5.6 compares in an
intriguing way to prior results that estimate the volume of a link complement in terms of
the twist number of a diagram. (See Section 1.2 and the introduction of [27] for definitions

and background.) In the braid word w, each term σpi

1 or σ−qi

2 corresponds to a twist region
involving a pair of strands of K. Meanwhile, when k 6= 0, the term Ck defines a single
generalized twist region, in which we perform k full twists on all three strands of the braid.
Altogether, the braid word w defines a diagram with either 2s or 2s + 1 generalized twist
regions – including 2s ordinary twist regions twisting on two strands of K. As a result,
Theorem 5.6 can be reformulated in the following way.

Corollary 5.7. Let K be a hyperbolic closed 3–braid, and let D(K) be the braid diagram cor-
responding to the Schreier normal form for K. If tgen(D) denotes the number of generalized
twist regions in the diagram D, then

2v3 tgen(D) − 279 < vol(S3
rK) < 2v8 tgen(D).

Proof. By Theorem 5.5, K must be represented by a generic word w = Ckσp1

1 σ
−q1

2 · · ·σps

1 σ
−qs

2 .
Substituting 2s ≤ tgen(D) ≤ 2s+ 1 into Theorem 5.6 gives the desired volume estimate. �

Remark. In [27, Corollary 3.2], we show that the twist number alone, as opposed to the
generalized twist number, is not a good measure of the volume of 3–braids. Thus the single
generalized twist region from the term Ck is important in the corollary above.
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6. The Jones polynomial and volume of closed 3–braids

In this section, we will apply the previous results to the Jones polynomial of a closed 3–
braid. We begin by relating the Jones polynomial of a closed 3–braid to the Schreier normal
form of the braid. By applying Theorem 5.6, we will show in Theorem 6.6 that certain
coefficients of the Jones polynomial are bounded in terms of the volume. At the end of the
section, we will prove Theorem 6.8, which shows that no function of βK and β′K can coarsely
predict the volume of all hyperbolic knots.

6.1. The Jones polynomials of generic 3–braids. In the case that K is the closure of
a 3–braid, we need to relate the Jones polynomial to the Schreier normal form of the braid.
(See Theorem 5.1.) Here, we will concern ourselves with 3–braids whose Schreier normal
forms are generic. That is, we will consider braids b ∈ B3 written in the form

b = Ckσp1

1 σ
−q1

2 · · ·σps

1 σ
−qs

2 ,

where pi, qi, k ∈ Z, with pi, qi > 0, and C := (σ1σ2σ1)
2. We set

p :=
s
∑

i=1

pi, and q :=
s
∑

i=1

qi.

The exponent eb of a braid b is the signed sum of its powers. Thus for an alternating braid
a, ea = p − q, and if b = Cka, then eb = 6k + p − q = 6k + ea. The exponent eb is closely
related to the writhe of a diagram, namely the algebraic sum of oriented crossings. Because
both of the generators σ1 and σ2 depicted in Figure 1 are negative crossings, the writhe of
the standard diagram of a closed 3–braid is w(Db) = −eb.

For a braid b ∈ B3, let b̂ denote the closure of b. Let K denote the link type represented
by b̂ and let JK(t) denote the Jones polynomial of K. We write

(8) JK(t) = αKt
M(K) + βKt

M(K)−1 + . . .+ β′Kt
m(K)+1 + α′

Kt
m(K),

so that M(K) is the highest power of t in JK(t) and m(K) is the lowest power of t in JK(t).
Now the second and next-to-last coefficients of JK(t) are βK and β′K , respectively.

We will also need the following definitions. Associated to a link diagram D and a crossing
of D are two link diagrams, each with one fewer crossing than D, called the A–resolution
and B–resolution of the crossing. See Figure 11.

B− resolutionA− resolution

Figure 11. Resolutions of a crossing

Starting with any D, let sA(D) (resp. sB(D)) denote the crossing–free diagram obtained
by applying the A–resolution (resp. B–resolution) to all the crossings of D. We obtain
graphs GA(D), GB(D) as follows: The vertices of GA(D) are in one-to-one correspondence
with the components of sA(D). For every crossing of D, we add an edge between the vertices
of GA(D) that correspond to the components of sA(D) at that crossing. In a similar manner,
construct the B–graph GB by considering components of sB(D). A link diagram D is called
adequate if the graphs GA(D), GB(D) contain no 1–edge loops, i.e. if there are no edges
with both ends at the same vertex.
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Let vA(D), eA(D) (resp. vB(D), eB(D)) denote the number of vertices and edges of GA(D)
(resp. GB(D)). The reduced graph G′

A(D) is obtained from GA(D) by removing multiple
edges connected to the same pair of vertices; similarly one has the reduced graph G′

B(D).
Let e′A(D) (resp. e′B(D)) denote the number edges of G

′
A(D) (resp. G

′
B(D)).

The following results about Jones polynomials of adequate knots are well known.

Lemma 6.1. Let D be an adequate diagram of a link K, whose Jones polynomial is written
as in equation (8). Then the top and bottom coefficients of JK(t) satisfy

αK = (−1)vB(D)+w(D)−1, βK = (−1)vB(D)+w(D)(e′B(D) − vB(D) + 1),

α′
K = (−1)vA(D)+w(D)−1, β′K = (−1)vA(D)+w(D)(e′A(D) − vA(D) + 1).

Proof. Let Z[A, A−1] denote the ring of Laurent polynomials in a variable A, with integer
coefficients. Recall that the Kauffman bracket of the diagram D, denoted by 〈D〉, is an
element in Z[A, A−1] such that

(9) JKa
(t) = (−A)−3w(D) 〈D〉

∣

∣

∣

A = t−1/4 ,

where w(D) is the writhe of D, or the algebraic sum of crossings. Now, Kauffman showed

that the first and last coefficients of 〈D〉 are (−1)vA(D)−1 and (−1)vB(D)−1, respectively. (See
[20, Theorem 6.1] for a proof.) Meanwhile, Stoimenow showed [54] that the second coefficient

is given by (−1)vA(D)(e′A(D)− vA(D) + 1), and similarly the next–to–last coefficient is given

by (−1)vB(D)(e′B(D) − vB(D) + 1). See [20, Corollary 6.3] for an alternate proof.

Next, we multiply 〈D〉 by (−A)−3w(D). As a result, all the coefficients are multiplied by

(−1)−3w(D) = (−1)w(D). Finally, to recover the Jones polynomial, we substitute A = t−1/4.
As a result, the highest powers of A will correspond to the lowest powers of t, and vice versa.
Thus the top and bottom coefficients of JK(t) are as claimed. �

Given a condition R, let δR be the characteristic function of R: its value is 1 when R is
true, and 0 when R is false. The characteristic functions εp := δp≤2 and εq := δq≤2 will be
particularly useful for expressing the Jones polynomials of 3–braids.

Lemma 6.2. Suppose that a link Ka is the closure of an alternating 3-braid

a = σp1

1 σ
−q1

2 · · ·σps

1 σ
−qs

2 ,

with pi, qi > 0. Suppose as well that p > 1 and q > 1. Then the following hold:

(a) The highest and lowest powers of t in JKa
(t) are

M(Ka) =
3q − p

2
and m(Ka) =

q − 3p

2
.

(b) The first two and last two coefficients in JKa
(t) are

αKa
= (−1)p, βKa

= (−1)p+1(s− εq), β′Ka
= (−1)q+1(s− εp), α′

Ka
= (−1)q,

where εp equals 1 if p = 2 and 0 if p > 2, and similarly for εq.

(c) The third and third-to-last coefficients in JKa
(t) satisfy

1 ≤ (−1)pγKa
≤ s(s+ 3)

2
and 1 ≤ (−1)qγ′Ka

≤ s(s+ 3)

2
.

These upper bounds are attained when s > 1 and pi, qi > 1 for all i. See Equation
(14) for a precise formula for γKa

.
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Proof. Consider the link diagram D := â obtained as the closure of a. Note that the diagram
D is alternating and reduced, i.e. it contains no nugatory crossings (here, we are using the
hypothesis that if s = 1, then p1 = p > 1 and q1 = q > 1). This implies that D is an
adequate diagram (compare [39, Proposition 5.3]). Thus we may use Kauffman’s work to
find the highest and lowest powers of A, and Lemma 6.1 to find the coefficients.

Kauffman showed that the highest and lowest powers of A in the bracket polynomial 〈D〉
are c(D) + 2vA(D) − 2 and −c(D) − 2vB(D) + 2, respectively. (See [39] for an exposition.
A proof from the graph theoretic viewpoint can be found in [19, Proposition 7.1].) In our
setting, the crossing number is c(D) = p + q, vA(D) = p + 1, and vB(D) = q + 1. Thus the
highest and lowest powers of A in 〈D〉 are 3p + q and −3q − p, respectively.

By equation (9) we multiply 〈D〉 by (−A)−3w(D) = (−A)−3q+3p. (Recall that for a closed
3–braid, w(D) = −ea = q − p.) Thus the highest power of A becomes 6p − 2q, and the

lowest becomes 2p− 6q. Then to obtain JKa
(t), replace A by t−1/4. Thus the highest power

of t in JKa
(t) corresponds to −1/4 times the lowest power of A, and vice versa:

M(Ka) =
−(2p − 6q)

4
=

3q − p

2
and m(Ka) =

q − 3p

2
.

Next, we turn our attention to the top and bottom coefficients of JKa
. In the following

calculation, we focus on the first three coefficients αKa
βKa

, and γKa
. By Lemma 6.1 and

[21, 54], these top coefficients only depend on the B–resolution of D. To find the last three
coefficients, one merely needs to interchange p with q in all the formulas.

From the B–resolution of the diagram D, one can readily compute that vB(D) = q + 1.
Thus, by Lemma 6.1, αKa

= (−1)2q−p = (−1)p. The total number of edges of GB is
eB(D) = p + q, the number of crossings in D. Out of this total number, the p edges
corresponding to the powers of σ1 will become identified to s classes of edges in e′B (with
one edge for each σ1–twist region. The q edges corresponding to the powers of σ2 all survive
in e′B, except in the special case when q = 2, when a loop of two edges running all the
way around the braid counts for only a single reduced edge in e′B. Putting it together, the
number of reduced edges will be e′B(D) = q − εq + s, hence

(10) βKa
= (−1)2q−p+1(e′B − vB + 1) = (−1)p+1(s− εq).

To find γKa
, we must calculate the third-to-last coefficient of the Kauffman bracket 〈D〉,

and then multiply by (−1)w(D) = (−1)q−p. Thus γKa
is the third-to-last coefficient of 〈D〉,

which was computed in closed form by Dasbach and Lin [21, Theorem 4.1] and Stoimenow
[54, Proposition 3.3]. According to their formula,

(11) γKa
= (−1)p

( |βKa
|(|βKa

| + 1)

2
− θ + µ− τ

)

,

where θ, µ, and τ are defined as follows. The quantity θ is always zero for reduced alternating
diagrams; this is because the circles sB do not nest on the projection plane. The quantity
µ is the number of edges in the reduced graph G′

B whose multiplicity in GB is greater than
one. By the argument preceding equation (10),

(12) µ = #{i : pi > 1} + εq = s− #{i : pi = 1} + εq.

Finally, the quantity τ is defined to be number of loops in G
′
B that consist of exactly 3

edges. In our context, one of these loops (surrounding a region of the diagram D) typically
arises for any i where qi = 1. However, in the special case when s = q = 2, two of these
regions involve the same triple of vertices in GB, and account for the same loop in G′

B.
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Furthermore, a loop of length 3 goes all the way around the braid when q = 3. All together,

(13) τ = #{i : qi = 1} − δs=q=2 + δq=3.

Thus, plugging equations (10), (12), (13) into equation (11) gives

(−1)pγKa
=

(s− εq)(s− εq + 1)

2
+ µ− τ

=
s2 + s− 2sεq

2
+ s− #{i : pi = 1} − #{i : qi = 1} + εq + δs=q=2 − δq=3

=
s2 + 3s

2
− (s− 1)εq + δs=q=2 − #{i : pi = 1} − #{i : qi = 1} − δq=3

=
s2 + 3s

2
− #{i : pi = 1} − #{i : qi = 1} − δq=3.(14)

The last equality holds because both (s − 1)εq and δs=q=2 must be 0 for s 6= 2, while on
the other hand δs=q=2 = εq for s = 2. Thus, since all terms of (14) after (s2 + 3s)/2 are
non-positive, (−1)pγKa

is always bounded above by (s2 + 3s)/2. This upper bound will be
attained whenever s > 1 and pi, qi > 1 for all i, for then all correction terms must be 0.

For the lower bound on (−1)pγKa
, observe that each of #{i : pi = 1} and #{i : qi = 1} is

at most s. In fact, each of these quantities is 0 when s = 1 (by hypothesis). Furthermore,
#{i : qi = 1} + δq=3 ≤ s when s = 2. Thus

(−1)pγKa
≥ s2 + 3s

2
− 1 ≥ 1 when s = 1,

(−1)pγKa
≥ s2 + 3s

2
− 2s ≥ 1 when s = 2,

(−1)pγKa
≥ s2 + 3s

2
− 2s− 1 ≥ 2 when s ≥ 3.

�

Let Z[t, t−1] denote the ring of Laurent polynomials with integer coefficients and G(2, t)
the group of 2 × 2 matrices with entries in Z[t, t−1]. The Burau representation ψ : B3 →
G(2, t) is defined by

(15) ψ(σ−1
1 ) =

[

−t 1
0 1

]

, ψ(σ−1
2 ) =

[

1 0
t −t

]

.

See [9, 33] for more details.2

For a braid b ∈ B3, let b̂ denote the closure of b and let eb denote the exponent of b.
As calculated in [33] (the formula is also given and used in the papers [10] and [35] where

properties of the Jones polynomial of 3–braids are discussed), the Jones polynomial of b̂ is
given by

(16) Jb̂(t) = (−
√
t)−eb · (t+ t−1 + trace(ψ(b))).

Lemma 6.3. Suppose that a link Kb is the closure of a generic 3–braid

b = Ckσp1

1 σ
−q1

2 · · ·σps

1 σ
−qs

2 ,

2Our definition of the braid generator σi, depicted in Figure 1, corresponds to Jones’ definition of σ−1

i

[33]. The literature contains many examples of both conventions: compare [10, 16] to [35, 46]. Replacing σi

with σ−1

i
produces the mirror image of a link, and affects the Jones polynomial by replacing t with t−1.
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with pi, qi > 0. Let Ka denote the alternating link represented by the closure of the alternating
braid a := σp1

1 σ
−q1

2 · · ·σps

1 σ
−qs

2 . If JKa
(t) and JKb

(t) denote the Jones polynomials of Ka and
Kb respectively, then

JKb
(t) = t−6k JKa

(t) + (−
√
t)−ea

(

t+ t−1
)

(

t−3k − t−6k
)

,

where ea is the braid exponent of a.

Proof. An easy calculation, using equation (15), will show that

ψ(C) = ψ((σ1σ2σ1)
2) =

[

t−3 0
0 t−3

]

,

and thus

(17) trace(ψ(b)) = t−3k trace(ψ(a)).

The braid exponents eb and ea satisfy eb = 6k + ea. Thus, by equations (16) and (17),

(18) JKb
(t) = t−3k(−

√
t)−ea

(

t+ t−1 + t−3k trace(ψ(a))
)

,

and

(19) JKa
(t) = (−

√
t)−ea

(

t+ t−1 + trace(ψ(a))
)

.

By eliminating trace(ψ(a)) from equations (18) and (19) we obtain

(20) JKb
(t) = t−6k JKa

(t) + (−
√
t)−ea

(

t+ t−1
)

(

t−3k − t−6k
)

,

as desired. �

We are now ready to estimate certain outer coefficients of the Jones polynomial for any
generic closed 3–braid.

Definition 6.4. Let K be a link in S3. From the Jones polynomial JK(t), we define the
following quantities. Let

ζK =

{

βK , if |αK | = 1
0, otherwise

and ζ ′K =

{

β′K , if |α′
K | = 1

0, otherwise.

Note that by Lemma 6.1, adequate links will satisfy ζK = βK and ζ ′K = β′K . This definition
gives a way to generalize approximately the same quantity.

Proposition 6.5. Let Kb be the closure of a generic 3–braid b = Ckσp1

1 σ
−q1

2 · · ·σps

1 σ
−qs

2 ,
with pi, qi > 0. Define ζKb

and ζ ′Kb
as in Definition 6.4. Then

s− 1 ≤ max
{

|ζKb
|,
∣

∣ζ ′Kb

∣

∣

}

≤ s+ 1.

Proof. For the majority of this argument, we will work under the hypothesis that p > 1 and
q > 1. At the end of the proof, we will consider the (simpler) case when p = 1 or q = 1.

So: assume that p > 1 and q > 1, and let a = σp1

1 σ
−q1

2 · · ·σps

1 be the alternating part of b.
Consider JKb

(t), as expressed as a sum of two terms in equation (20). By Lemma 6.2, the
first term, t−6k JKa

(t), is

t−6k JKa
(t) = (−1)p t(3q−p)/2−6k + (−1)p+1(s− εq) t(3q−p)/2−6k−1 + · · ·(21)

+(−1)q+1(s− εp) t(q−3p)/2−6k+1 + (−1)q t(q−3p)/2−6k.

Meanwhile, the second term on the right hand side of equation (20) expands out to

(22) (−1)ea

(

t−ea/2−3k+1 + t−ea/2−3k−1 − t−ea/2−6k+1 − t−ea/2−6k−1
)

.
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If k = 0, then the expression in (22) vanishes, and the link Kb is alternating. Thus
ζKb

= βKb
and ζ ′Kb

= β′Kb
, and the desired result is true by Lemma 6.2.

Next, suppose that k 6= 0. We claim that no generality is lost by assuming that k > 0.
Otherwise, if k < 0, the mirror image Kd of the link Kb can be represented by the braid word
d = C−kσqs

1 σ
−p1

2 σq1

1 · · ·σ−ps

2 , so the power of C will now be positive. The Jones polynomial
JKd

can be obtained from JKb
by interchanging t and t−1, so ζKb

= ζ ′Kd
and ζ ′Kb

= ζKd
, with

the maximum of the two values unaffected. Thus we may assume k > 0.
If k > 0, the monomials of (22) are listed in order of decreasing powers of t, and each

monomial has a coefficient of ±1. Furthermore, we claim that the degree of any term in
(22) is strictly higher than the degree of the lowest term in (21). This is because the last
monomial of (22) has degree −ea/2 − 6k − 1 = (q − p)/2 − 6k − 1, and

(23) p ≥ 2 is equivalent to
q − p

2
− 6k − 1 ≥ q − 3p

2
− 6k + 1.

Thus the lowest–degree term of JKb
(t) is (−1)q t(q−3p)/2−6k, and α′

Kb
= (−1)q.

From equation (23), we can also conclude that the last monomial of (22) only affects the
next-to-last monomial of (21) if p = 2. When p is even, the signs of these two monomials
are (−1)q+1 and (−1)ea+1 = (−1)p−q+1 = (−1)q+1: they have the same sign. Thus when
p = 2, the last monomial of (22) will contribute 1 to |β′Kb

|; when p > 2, no monomial of (21)

affects |β′Kb
| at all. We conclude that when k > 0,

ζ ′Kb
= β′Ka

+ (−1)q+1εp = (−1)q+1(s− εp + εp) = (−1)q+1s.

Next, consider how the top two terms of (21) might interact with the monomials of (22).
If the top degree of (22) is lower than the top degree of (21), we will have αKb

= (−1)p and
ζKb

= βKb
will be off by at most 1 from βKa

. In particular, s− 2 ≤ |ζKb
| ≤ s+ 1. If the top

degree of (22) is higher than the top degree of (21) by 2 or more, we will have αKb
= (−1)ea

and ζKb
= βKb

= 0. If the top degree of (22) is higher by exactly 1, then we will have
αKb

= (−1)ea and ζKb
= βKb

= (−1)p. If the top degree of (22) is exactly equal to the
top degree of (21), then the two monomials either add or cancel. If the top monomials add,
αKb

= (−1)p · 2 and ζKb
= 0 by Definiton 6.4. Thus, in all cases when the top monomials of

(21) and (22) do not cancel, we have 0 ≤ |ζKb
| ≤ s+ 1.

If the top monomials of (21) and (22) cancel (which can occur: see Proposition 6.7), we
have

3q − p

2
− 6k =

−ea
2

− 3k + 1, which simplifies to q = 3k + 1,

since ea = p − q. In particular, it follows that q ≥ 4. Then αKb
= βKa

= (−1)p+1s. So,
if s ≥ 2, we have |αKb

| ≥ 2, and again ζKb
= 0 by Definiton 6.4. Thus when s ≥ 2, we get

0 ≤ |ζKb
| ≤ s+ 1 in all cases. Since |ζ ′Kb

| is always equal to s if k > 0, we conclude that

s− 1 ≤ max
{

|ζKb
|,
∣

∣ζ ′Kb

∣

∣

}

≤ s+ 1 whenever s ≥ 2.

Note that the lower bound of s − 1 is only achieved when k = 0 and s = p = q = 2, i.e.,
when Kb is the figure–8 knot.

If s = 1 and the top monomials of (21) and (22) cancel, then αKb
= βKa

= (−1)p+1 and
ζKb

= βKb
= γKa

+ (−1)p+1, where γKa
is the third coefficient of JKa

(t) and (−1)p+1 comes
from the second monomial of (22). By Lemma 6.2(c),

|ζKb
| = |γKa

| − 1 ≤ s(s+ 3)

2
− 1 = 1.
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Since we get 0 ≤ |ζKb
| ≤ s+ 1 whenever the top monomials do not cancel, and since |ζ ′Kb

| is
always equal to s if k > 0, we conclude that

s− 1 ≤ max
{

|ζKb
|,
∣

∣ζ ′Kb

∣

∣

}

≤ s+ 1 whenever s = 1 and p,q ≥ 2.

To complete the proof, we need to consider the case when p = 1 or q = 1, hence s = 1.
Without loss of generality, we may assume that p ≥ q = 1 (otherwise, take the mirror image
of Kb, as above). Then Ka is the (2,p) torus link. By direct computation (for example,
using [39, Theorem 14.13] or [17, Proposition 2.1 and Example 3]), it follows that

JKa
(t) = (−1)p+1

(

t−(p−1)/2 + t−(p+3)/2 − t−(p+5)/2 + t−(p+7)/2 − . . .+ (−1)pt−(3p−1)/2
)

.

In particular, the second coefficient of JKa
(t) is 0 and every other coefficient is ±1. If k 6= 0,

we may still use Lemma 6.3 to compute the Jones polynomial JKb
(t). Thus, after multiplying

JKa
(t) by t−6k and adding in the four monomials of (22), it will follow that every coefficient

of JKb
(t) is 0, ±1, or ±2. Thus

0 ≤ max
{

|ζKb
|,
∣

∣ζ ′Kb

∣

∣

}

≤ 2 whenever p = 1 or q = 1,

which is exactly what the proposition requires for s = 1. �

6.2. Connections to volume. Proposition 6.5 and Theorem 5.6 immediately imply the
following.

Theorem 6.6. Let K be a hyperbolic closed 3–braid. From the Jones polynomial JK(t),
define ζK , ζ

′
K as in Definition 6.4. Let ζ = max {|ζK |, |ζ ′K |}. Then

4v3 · ζ − 281 < vol(S3
rK) < 4v8 (ζ + 1).

Furthermore, the multiplicative constants in both the upper and lower bounds are sharp. �

In contrast with Proposition 6.5, there exist 3–braids for which the second coefficient of
the Jones polynomial is quite different from s.

Proposition 6.7. For every s > 1 there is a knot K = Ks, represented by the 3–braid word

b = Ckσp1

1 σ
−q1

2 · · ·σps

1 σ
−qs

2 , with pi, qi > 0,

such that the second and next-to-last coefficients of the Jones polynomial JK(t) satisfy

βK =
s(s+ 3)

−2
+ 1, β′K = s.

The head and tail of the Jones polynomial for several values of s is computed in Table 1.

Proof. Fix s > 1, and let p1 = . . . = ps−1 = 2, ps = 3, q1 = . . . = qs−1 = 6, qs = 7.
Notice that p =

∑

pi = 2s+ 1 and q =
∑

qi = 6s+ 1; thus, in particular, they are both
odd. Let k = 2s and let K be the closure of the generic 3–braid

b = Ckσp1

1 σ
−q1

2 · · ·σps

1 σ
−qs

2 .

Since Ck is a pure braid, and each of σp1

1 , . . . , σ
−qs−1

2 is also a pure braid (because their

powers are even), K will have the same number of components as the closure of σ3
1σ

−7
2 .

Hence K is a knot.
The Jones polynomial JK(t) will be the sum of equations (21) and (22). Note that the

leading terms of these equations are

(−1)p t(3q−p)/2−6k = −t(16s+2)/2−12s = −t−4s+1,
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s Jones polynomial JKs

2 2 t−8 − 4 t−9 + 9 t−10 − 14 t−11+ . . . + 9 t−22 − 5 t−23 + 2 t−24 − t−25

3 3 t−12 − 8 t−13 + 20 t−14 − 39 t−15+ . . . + 20 t−34 − 9 t−35 + 3 t−36 − t−37

4 4 t−16 − 13 t−17 + 37 t−18 − 85 t−19+ . . . + 37 t−46 − 14 t−47 + 4 t−48 − t−49

5 5 t−20 − 19 t−21 + 61 t−22 − 160 t−23+ . . . + 61 t−58 − 20 t−59 + 5 t−60 − t−61

6 6 t−24 − 26 t−25 + 93 t−26 − 273 t−27+ . . . + 93 t−70 − 27 t−71 + 6 t−72 − t−73

7 7 t−28 − 34 t−29 + 134 t−30 − 434 t−31+ . . . + 134 t−82 − 35 t−83 + 7 t−84 − t−85

8 8 t−32 − 43 t−33 + 185 t−34 − 654 t−35+ . . . + 185 t−94 − 44 t−95 + 8 t−96 − t−97

9 9 t−36 − 53 t−37 + 247 t−38 − 945 t−39+ . . . + 247 t−106 − 54 t−107 + 9 t−108 − t−109

10 10 t−40 − 64 t−41 + 321 t−42 − 1320 t−43+ . . . +321 t−118 − 65 t−119 + 10 t−120 − t−121

Table 1. The head and tail of the Jones polynomial for the first few values
of s in Proposition 6.7. These values were computed independently by two
pieces of software: jpclosed.c by Nathan Broaddus and the Mathematica
package KnotTheory‘ by Dror Bar-Natan.

and

(−1)p−q t(q−p)/2−3k+1 = t(4s)/2−6s+1 = t−4s+1,

which will cancel. Thus, continuing along equations (21) and (22), one can see that the
leading monomial of JKb

(t) will be (−1)p+1s t−4s, and the second term will be

(γKa
)t−4s−1 + (−1)(p−q) t−4s−1 = (γKa

+ 1) t−4s−1.

Since s > 1 and pi, qi > 1 for all i, Lemma 6.2(c) implies that

γKa
= (−1)p

(

s(s+ 3)

2

)

=
s(s+ 3)

−2
, hence βK =

s(s+ 3)

−2
+ 1.

Now we consider the term β′K . The two lowest–degree terms of (21) are

(−1)q t(q−3p)/2−6k = −t(−2)/2−12s = −t−12s−1 and (−1)q+1s t−12s = s t−12s.

The remaining terms of (22) are

(−1)p−q+1t(q−p)/2−6k±1 = t(4s)/2−12s±1 = −t−10s±1.

Since −12s < −10s− 1 for all positive s, no term of (22) can affect either of the two lowest–
degree terms of JKb

(t). Therefore,

α′
K = (−1)q = −1 and β′K = (−1)q+1s = s.

�

Theorem 6.8. There does not exist a function f(·, ·) of two variables, together with positive
constants C1, . . . , C4 such that

C1f(βK , β
′
K) − C2 < vol(S3

rK) < C3f(βK , β
′
K) + C4

for every hyperbolic knot K. In other words, the second and next-to-last coefficients of the
Jones polynomial do not coarsely predict the volume of a knot.

Proof. Suppose, for a contradiction, that such a function f(·, ·) does exist. Then it will follow
that for every pair of knots K and L, such that βK = βL and β′K = β′L,

(24) vol(S3
rL) <

C3

C1
vol(S3

rK) +
C2C3

C1
+ C4.
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On the other hand, we shall construct an infinite sequence of such pairs Ks and Ls, such
that the volumes vol(S3rLs), vol(S3rKs), as well as the ratio vol(S3rLs)/vol(S3rKs) go
to infinity as s goes to infinity. This will contradict the existence of f .

The sequence Ks is the one given by Proposition 6.7, where we require that s ≡ 3 mod 4
and s > 10. By Proposition 6.7, these knots satisfy

βKs
=
s(s+ 3)

−2
+ 1, and β′Ks

= s.

The sequence Ls will consist of (3, . . . , 3,−3, . . . ,−3) pretzel knots, where there are

n =

(

s(s+ 3)

2
− 2

)

positive 3’s and m = (s− 1) negative 3’s.

When s ≡ 3 mod 4, it follows that n is odd, m is even, and thus Ls is indeed a knot.
It is easy to check that the standard pretzel diagram Ds of one these knots is adequate.

Computing the graphs GA(Ds), GB(Ds) gives

vA = n+ 2m, e′A = n+ 3m, vB = 2n+m, e′B = 3n+m.

Also, we may compute the writhe of Ds to be w(D) = 3m− 3n. Now, Lemma 6.1 gives

βLs
= (−1)vB+w(D)(e′B − vB + 1) = (−1)−n+4m(n+ 1) = (−1)n(n+ 1) =

s(s+ 3)

−2
+ 1,

since n is odd. Similarly,

β′Ls
= (−1)vA+w(D)(e′A − vA + 1) = (−1)m(m+ 1) = s.

Therefore, βKs
= βLs

and β′Ks
= β′Ls

for all s ≡ 3 mod 4.
Now, consider the volumes of these links. By Theorem 5.6,

4v3 s− 277 < vol(S3
rKs) < 4v8 s.

On the other hand, the pretzel diagram Ds contains (n + m) > s2/2 twist regions and is
built by joining together (n+m) > s2/2 rational tangles. Thus, by [26, Theorem 1.5],

vol(S3
rLs) ≥ v8

2

(

1 −
(

8π

11.524 + s2 4
√

2/2

)2
)3/2

(

s2

2
− 3

)

>
v8 s

2

8
for s > 10.

Hence vol(S3rLs)/vol(S3rKs) ≥ s/32. Since both volumes are eventually large enough that
the additive constants in equation (24) do not matter, this contradicts equation (24). Thus
the function f cannot exist. �
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