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Abstract. We provide a diagrammatic criterion for semi-adequate links to be hyper-
bolic. We also give a conjectural description of the satellite structures of semi-adequate
links. One application of our result is that the closures of sufficiently complicated positive
braids are hyperbolic links.

1. Introduction

The problem of determining the geometric structure of a link complement from a link
diagram is both important and hard. A related, similarly difficult, problem asks for rela-
tions between geometric and diagrammatic invariants of a link. The purpose of this paper
is to discuss these problems for the class of semi-adequate links. We give diagrammatic
criteria for such links to be hyperbolic, and state a conjecture about their satellite struc-
tures. Semi-adequate links form a very broad class of links that first appeared in the study
of Jones–type invariants [23, 29], and have since been studied considerably from the point
of view of both quantum topology and geometric topology; see [14] and references therein.

In [13], we developed a framework for establishing relations between geometric and
combinatorial link invariants. In particular, to a semi-adequate link diagram we associate
a certain graph (state graph) and a surface spanned by the link, and construct a certain
ideal polyhedral decomposition of the surface complement. We use normal surface theory
to show that combinatorial properties of the state graph dictate the structure of the
JSJ-decomposition of the surface complement, and encode geometric information of the
link complement. For instance we show that, for hyperbolic semi-adequate links, graph
theoretic invariants coarsely determine the volume of the link [13] and the geometric types
of certain essential surfaces in the link complement [15]. The machinery of [13] lends itself
naturally to the study of essential surfaces in link complements via normal surface theory.

In this paper, we focus on essential tori and annuli in link complements, and give a
diagrammatic criterion that rules them out, implying the link is hyperbolic. For links
that fail this criterion, we give a conjectural description of the satellite structures. Our
results place several known classes of hyperbolic links under a common umbrella and lead
to new constructions of such links.

To state our results, we need to briefly explain the related terminology; we give precise
definitions in Section 2. For every semi-adequate link diagram there is a corresponding
state graph G. The edges of G are in one-to-one correspondence with the crossings of
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Figure 1. Left: the (−2, 3, 3) pretzel knot. Right: the graph of the all–A
resolution contains 2–edge loops that do not belong to a single twist region.

the link diagram. One way to obtain 2–edge loops in G is from crossings in the same
twist region of the link diagram, where edges of G corresponding to crossings of that twist
region are parallel between two vertices of G. Our result concerns link diagrams for which
all the 2–edge loops of G are obtained this way.

Theorem 1.1. Suppose that D(K) is a connected, prime, semi-adequate diagram with at
least two twist regions, such that for each 2–edge loop in the corresponding state graph,
the edges belong to the same twist region. Then the link K depicted by this diagram is
hyperbolic.

Figure 1 shows an example of a connected, prime, semi-adequate diagram that doesn’t
satisfy the 2–edge loop hypothesis of Theorem 1.1. This diagram represents the (−2, 3, 3)
pretzel knot, which is known to be equivalent to the (3, 4) torus knot, hence is not hyper-
bolic. This shows that the 2–edge loop condition is necessary for Theorem 1.1. The class
of links with semi-adequate diagrams that don’t satisfy the 2–edge loop condition is quite
large, and contains plenty of hyperbolic knots (e.g. the (−2, 3, 7) pretzel) and satellite
knots (see Example 1.5).

Theorem 1.1 is reminiscent of a result of Menasco, which states that any link admitting
a connected, prime, alternating diagram with at least two twist regions is hyperbolic [24].
In fact, the hypotheses of Theorem 1.1 apply in particular to prime, alternating diagrams.
In this setting, the statement of the theorem reduces to Menasco’s result.

In addition, Theorem 1.1 generalizes Menasco’s result to large classes of non-alternating
links. For a warm-up example, consider the non-alternating pretzel link diagram of the
form P (a1, . . . , ar, b1, . . . , bs) that has r vertical bands containing a1, . . . , ar positive cross-
ings, and s vertical bands containing b1, . . . , bs negative crossings. See Figure 1 for the
example of P (−2, 3, 3), and [23, Figures 1 and 2] for the general case. If r, s ≥ 3 and
ai, bi ≥ 3, for all i, then the diagrams satisfy the hypothesis of Theorem 1.1. More
generally, one may obtain families of non-alternating Montesinos or arborescent links by
imposing similar restrictions on the rational tangles involved. Note that a classification of
hyperbolic arborescent links is already known by the work of Bonahon and Siebenmann
[6, 9].

For a sample class of non-alternating links whose hyperbolicity can be established for
the first time using Theorem 1.1, consider the family of positive or negative closed braids
with at least 3 crossings per twist region.
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Corollary 1.2. Let Bn be the braid group on n strands, with n ≥ 3, and let σ1, . . . , σn−1

be the elementary braid generators. Let b = σr1
i1
σr2
i2
· · · σrk

ik
be a braid in Bn. Suppose that

either rj ≥ 3 for all j, or else rj ≤ −3 for all j. Suppose moreover that the braid closure
Db of b is a prime diagram. Then the link K depicted by this diagram is hyperbolic.

Several other applications of Theorem 1.1 are given by Giambrone [17]. For instance,
he proves that for a sufficiently complicated braid b, the plat closure of b is hyperbolic.

The problem of determining the geometric structures of link complements from link
diagrams has been studied considerably in the literature. In addition to the work of
Menasco on alternating links, Bonahon and Siebenmann [6] classified the geometric types
of arborescent links and showed that with some explicitly described exceptions, these links
are hyperbolic. See also Futer and Guéritaud [9] for a direct proof. Adams showed that
augmented alternating links are hyperbolic [1]. He also showed that toroidally alternating
links are either composite, torus knots, or hyperbolic [2], although determining which of
the three occurs is difficult. More recently, Futer and Purcell showed that prime link
diagrams in which each twist region has at least six crossings represent either (2, q) torus
links or hyperbolic links [16]. Purcell investigated the geometric structures of certain
families of links with multiply twisted regions [27, 28]. For similar results on other classes
of knots and links, we refer the reader to Adams’ survey paper [3].

As a corollary of Theorem 1.1, we conclude that the primality of a link can be easily
read off from a diagram.

Corollary 1.3. Let D(K) be a connected, semi-adequate diagram without nugatory cross-
ings. Suppose that for each 2–edge loop in the corresponding state graph, the edges belong
to the same twist region of D(K). Then K is a prime link if and only if D(K) is prime.

Corollary 1.3 is reminiscent of some prior results for more restricted link families. For
instance, it generalizes a theorem of Menasco: if D(K) is a connected alternating diagram,
then K is prime if and only if D(K) is prime [24]. Similarly, Ozawa proved that if D(K)
is a connected positive diagram, then K is prime if and only if D(K) is prime [25].

In fact, the hypothesis on 2–edge loops in Corollary 1.3 should be unnecessary. It
is conjectured that a connected, prime, semi-adequate diagram must always represent a
prime link (see [13, Problem 10.6] and [26]). Corollary 1.3 gives a partial solution to this
conjecture.

Finally, we note that a connected, semi-adequate diagram always represents a non-split
link. See Thistlethwaite [29, Corollary 3.2] for the original proof, relying on properties
of link polynomial invariants, and Ozawa [26, Theorem 2.15] for an alternate, geometric
proof. Thus for the rest of the paper, we will assume our diagrams are connected, and
hence the link is non-split.

1.1. Volume bounds and relations. The machinery of [13] allows for connections be-
tween geometric invariants of a link complement, combinatorial properties of its diagram,
and stable coefficients of its colored Jones polynomials. The class of links of Theorem 1.1
is particularly well suited for such applications. For instance, [13, Corollary 9.4] relates the
hyperbolic volume of these links to the Euler characteristic of the corresponding reduced
state graph. (See Definition 2.2 for the terminology and notation.)
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Corollary 1.4. Suppose that K is a link with prime, semi-adequate diagram D(K) as in
the statement of Theorem 1.1. Then

vol(S3
rK) ≥ −v8 χ(G

′),

where v8 = 3.6638... is the volume of a regular ideal octahedron and G
′ is G

′

A or G
′

B

according to whether D(K) is A–adequate or B–adequate.

This corollary has applications in two directions. First, coupled with the upper volume
bounds given by Lackenby, Agol, and Thurston, [22], and combined with additional work of
Giambrone [17], it leads to two-sided bounds on vol(S3

rK) in terms of the twist number of
a semi-adequate diagram. This extends a result of Lackenby [22] and results of the authors
[10, 11, 12] to new link families. Second, it leads to two-sided bounds on vol(S3rK) in
terms of stable coefficients of the colored Jones polynomials of K, as predicted by the
Coarse Volume Conjecture [13, Question 10.13]. Details are given in Giambrone [17].

1.2. Satellite semi-adequate links. As we mentioned above, there is a conjectural
strengthening of Corollary 1.3, which removes the hypothesis on 2–edge loops. Formulating
the right conjectural strengthening of Theorem 1.1 requires some care, as there are many
non-hyperbolic semi-adequate links. For example, it is well-known that all torus links are
semi-adequate. Similarly, all planar cables of a semi-adequate diagram are semi-adequate
[7]. There are also many semi-adequate satellites, as the following construction illustrates.

Example 1.5. Recall that a satellite link is constructed from a companion knot J ⊂ S3, a
pattern link K ′ ⊂ D2×S1, and an embedding f : D2×S1 → N(J). The image K = f(K ′)
will be a non-trivial satellite whenever J is non-trivial, and K ′ is not the core of the solid
torus or contained in a ball in the solid torus. The whole construction can be performed
diagrammatically: given a diagram D(J) ⊂ R

2, and a diagram D(K ′) ⊂ [0, 1] × S1, the
blackboard framing of D(J) specifies a way to immerse the annulus I ×S1 into R2, which
gives a diagram D(K). See Figure 2.

Suppose D(J) ⊂ R2 and D(K ′) ⊂ I × S1 are both A–adequate diagrams. Consider
the graph HA(K

′) coming from K ′ (see Definitions 2.1 and 2.2). Suppose that there is a
rectangle R = I× I ⊂ I×S1, such that if we remove the state circles and segments of HA

that lie entirely in R, what remains is n ≥ 1 copies of the core curve {∗} × S1.
Now, suppose that we use the blackboard framing of D(J) to immerse the annulus

I × S1 into R2, so that the image rectangle f(R) lies in a crossing–free region of D(J).
Outside the image rectangle f(R), the graph HA of the resulting diagram D(K) will look
identical to the graph of the n–fold planar cable of J , which is known to be A–adequate.
Inside f(R), the diagram is A–adequate because D(K ′) is A–adequate. See Figure 2 for
an example, which produces the Whitehead double of the trefoil.

Conjecture 1.6. Suppose D(K) is a semi-adequate diagram of a satellite link K. Then
D(K) or its mirror image can be obtained using the construction of Example 1.5. In
particular, the satellite torus must be visible in D(K) as the regular neighborhood of an
immersed annulus.
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R
f

f(R)

Figure 2. Left: a diagram D(K ′) in an annulus. State circles of the all–A
resolution are shown in green. After removing state circles in a rectangle R,
what remains is two parallel copies of the core. Right: an embedding of this
annulus into a regular neighborhood of the trefoil produces an A–adequate
diagram of a Whitehead double.

1.3. Organization. The paper is organized as follows. In Section 2, we summarize def-
initions and the main tools from [13] that are needed in this paper. To a semi-adequate
diagram D(K), we associate a state surface SA that is essential in the complement of K.
Its complement MA = S3\\SA admits a checkerboard ideal polyhedral decomposition (see
§2.2). The intersection of an essential torus in S3

rK with MA is a collection of essential
annuli that can be studied using normal surface theory with respect to the polyhedral
decomposition. We discuss this in Section 3, where we also show that the resulting essen-
tial annuli in MA fall into two types: diagrammatically compressible and diagrammatically
incompressible (see Definition 3.2).

In Sections 4 and 5, we analyze the two types of annuli and conclude that under the
hypotheses of Theorem 1.1, neither of the two types arise as part of an essential torus.
We note that our analysis of diagrammatically incompressible annuli in Section 4 does
not require the hypotheses of Theorem 1.1. It leads to a classification of such annuli in
complements of all semi-adequate links. We expect that these results will have further
applications, including in approaching Conjecture 1.6. In Section 5, where we study dia-
grammatically compressible annuli, a key ingredient is a classification of essential product
disks in polyhedra from [13]. The main result in Sections 4 and 5 is Theorem 5.10: if a
diagram D(K) is as in the statement of Theorem 1.1, then S3

rK is atoroidal.
In Section 6, we complete the proof of Theorem 1.1 and Corollaries 1.2 and 1.3. Our

approach in this section is to rule out the possibility that S3rK might be Seifert fibered,
using Gromov norm estimates and Turaev surface methods.

2. Background and tools

We begin this section by recalling definitions of semi-adequate knots and related terms.
We also review some constructions from [13] that we will be using throughout the paper.

2.1. Definitions. For any crossing of a link diagram D := D(K), there are two resolu-
tions, called the A–resolution and B–resolution of the crossing, shown in Figure 3.
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B–resolutionA–resolution

Figure 3. A– and B–resolutions of a crossing.

A choice of A– or B–resolution for each crossing of D is called a Kauffman state [20].
The result of applying a state to D a collection of circles disjointly embedded in the
projection plane. These are called state circles.

Throughout this paper, we will be concerned only with the all–A and all–B states,
which correspond to making a uniform choice of A or B at all crossings.

Definition 2.1. Given a diagram D(K) and the all–A state of D, we construct a trivalent
graph HA as follows. For each resolved crossing of D, add an edge between resulting state
circles, shown dashed in Figure 3. Every edge of HA either belongs to a state circle of the
all–A resolution, or comes from a crossing. The latter edges are called segments.

Similarly, we define a trivalent graph HB, whose edges consist of state circles and
segments of the B–resolution. Observe that the original link diagram D(K) can be recon-
structed from the graph HA or HB.

Definition 2.2. The state graphs GA and GB are obtained from HA and HB, respectively,
by collapsing each state circle to a vertex. Removing redundant edges between vertices,
we obtain the reduced state graphs G′

A and G′

B.
Following Lickorish and Thistlethwaite [23, 29], a diagram D is said to be A–adequate

if every edge of GA has its endpoints on distinct vertices. Similarly, one can define B–
adequate diagrams using GB . A link diagram that is either A–adequate or B–adequate is
called semi-adequate.

A link K will be called A–adequate (B–adequate) if it admits an A–adequate (B–
adequate) diagram. A link that is either A–adequate or B–adequate is called semi-
adequate.

Definition 2.3. A link diagram D is called prime if any closed curve in the projection
plane that meets the diagram transversely exactly twice bounds a region of the diagram
with no crossings.

A twist region of D is a collection of bigons in D that are adjacent end to end, such
that there are no additional adjacent bigons on either end. An example of such a twist
region is shown at the top of Figure 4. A single crossing adjacent to no bigons is also a
twist region. We require twist regions to be alternating, for if D contains a bigon that
is not alternating, then a Reidemeister move removes both crossings without altering the
rest of the diagram. The number of distinct twist regions in a diagram is defined to be the
twist number of that diagram. Note that if D has exactly one twist region, it is a closed
2–braid; i.e. the standard diagram of a (2, q) torus link.

To understand the statement of Theorem 1.1, we need to explain the hypothesis that for
each 2–edge loop in the state graph, the edges belong to the same twist region of D(K).
To make this precise, we need the following definition.
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R

long short

Figure 4. Resolutions of a twist region R.

Definition 2.4. Suppose R is a twist region of a link diagram D such that R contains
cR > 1 crossings. Consider the all–A and all–B resolutions applied to R. One of the state
graphs, say GB, will inherit cR − 1 vertices from the cR − 1 bigons contained in R. We
say that this is the long resolution of R. The other graph, say GA, contains cR parallel
edges only one of which survives in G′

A. This is the short resolution of R. See Figure 4.

Throughout the paper, we will be concerned with semi-adequate diagrams where the
2–edge loops in the corresponding state graph come from short resolutions of twist regions.

Definition 2.5. Suppose that the state graph, say GA, contains a 2–edge loop. We say
that the two edges of that loop belong to the same twist region R of the diagram if first,
the edges come from resolving two crossings in R, and second, the resolution of R in GA

is the short one. If every 2–edge loop in GA has its edges in the same twist region, we say
that GA satisfies the 2–edge loop condition.

Suppose γ is a simple closed curve meeting the diagram D(K) exactly twice in two
crossings x1, x2. Adjust γ in a neighborhood of each crossing, so that after the adjustment
γ meets the diagram exactly four times, and has a subarc γi in the neighborhood of xi,
with endpoints on the projection of K. Now consider the A– and B–resolutions of the
two crossings. For each xi, exactly one of these resolutions will produce a segment that is
parallel to γi. When γ meets two crossings in a twist region, then the resolution producing
the segment parallel to γi is the short resolution of the twist region.

. . .γ2. . .. . . =⇒ . . .

γ

γ1

x1 x2

Figure 5. The property of being A–twist reduced. Whenever there is a
closed curve γ meeting the diagram as shown on the left, the crossings x1
and x2 must belong to the same twist region, as shown on the right. Note
that the twist region containing x1, x2 can lie on either side of γ.
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Definition 2.6. We say that a diagram is A–twist reduced if it satisfies the following
property. Suppose γ is a simple closed curve γ meeting the diagram exactly four times
adjacent to two crossings, as above, such that the all–A state produces segments parallel
to subarcs of γ. Then γ bounds a subdiagram consisting of a (possibly empty) collection
of bigons arranged in a row between the two crossings. See Figure 5.

The property of being B–twist reduced is defined in the same way, with the B–resolution
replacing the A–resolution. Adequate diagrams that are both A– and B–twist reduced
are twist reduced in the sense of Lackenby [22].

In the sequel, we will consider A–adequate diagrams for simplicity. The same results
hold for B–adequate diagrams, by taking a mirror image.

Lemma 2.7. Let D(K) be an A–adequate diagram such that GA satisfies the 2–edge loop
condition. Then D(K) is A–twist reduced.

Proof. Suppose that γ is a closed curve as in Definition 2.6, meeting the diagram exactly
four times adjacent to two crossings, x1 and x2. Let γi denote the subarc of γ which runs
between two points on the diagram and lies in a neighborhood of the crossing xi. Suppose
that the A–resolution of x1 and x2 produces segments parallel to γ1 and γ2. Consider how
the state circles of the all–A state intersect the region inside γ.

First, note that if some state circle runs from xi back to xi, this state circle will violate
the definition of A–adequacy. Therefore, there must be two state circles running from x1
to x2, and the two edges of GA corresponding to those crossings give a 2–edge loop. By
hypothesis, the edges belong to the same twist region R, which means the edges come
from resolving two crossings of the twist region R in GA. Then by definition there must
be a (possibly empty) collection of bigons between x1 and x2, as desired. �

2.2. Polyhedral toolbox. The main technical tool that we use is a decomposition of the
link complement into an I–bundle over a surface and a collection of ideal polyhedra [13,
Chapters 2–4]. In order to make this paper as self-contained as possible, we will review
the definitions and constructions from there that are relevant to this paper. We will also
recall the statements of some key results that are needed below. In the few occasions when
we rely on results from [13] that are not restated in this section, we will refer the reader
to the exact statement of the result we are using in that monograph. The background we
provide here should suffice for checking and absorbing the statements in these cases. The
reader need only consult the monograph [13] in order to learn the detailed proofs.

For a reader who is new to this material, we also recommend consulting the survey
paper [14] for a quick guide to the key features of the polyhedral decomposition.

Definition 2.8. A diagram D(K) determines a state surface SA, constructed as follows.
Each state circle of HA bounds a disk, and the disks associated to all the state circles
can be disjointly embedded in the 3–ball below the projection plane. (Note this collection
of disks in the lower 3–ball is unique up to isotopy.) Every crossing of D(K) gives a
segment of HA, which runs between two state circles. We connect the corresponding disks
by a half–twisted band, twisted in the direction of the original crossing. The result is a
(possibly non-orientable) surface SA, whose boundary is K.
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When D(K) is an A–adequate diagram, Ozawa [26] showed that SA is an essential
surface in S3

rK. A different proof is given in [13].

Definition 2.9. Let MA := S3
rN(SA) denote the complement of an open regular neigh-

borhood of SA. When convenient, we will also use the shorthand notation S3\\SA instead
of S3rN(SA). The boundary of MA decomposes into the parabolic locus (the remnants in

MA of the boundary tori of S3
rK), and a surface S̃A that can be identified as the frontier

of N(SA) in S3
rK. Note that S̃A is a double cover of SA, connected if and only if SA is

non-orientable.

The main technical tool of [13] that we use is a decomposition of MA into ideal polyhe-
dra. The faces of these polyhedra are checkerboard colored, white and shaded. The white
faces of each polyhedron are glued to another polyhedron, while the shaded faces lie on

S̃A. There is exactly one upper polyhedron, which occupies the 3–ball above the projection
plane. There are multiple lower polyhedra, each of which is glued along its white faces to
the upper polyhedron only. All the polyhedra are prime, in the sense that a pair of faces
share at most one edge.

The precise combinatorics of the ideal polyhedra can be read off from the diagram D(K)
and the graph HA. (See [13, Chapter 2] and [14, Section 5] for details on how to do this.)
Here, we describe the features that are salient for this paper.

The first feature we will need is information about the combinatorics of the lower
polyhedra. This information comes from subgraphs of HA, or slight modifications of
subgraphs, which we call polyhedral regions. Their precise definition is as follows.

Definition 2.10. Suppose α is an arc in the complement of HA with both endpoints on
a state circle C. Consider the subgraph of HA consisting of C and all state circles and
segments which lie on the same side of C as α. Note that α cuts the subgraph into two
components, one on either side of α. If both components contain segments, then we say
α is a non-prime arc. A collection of non-prime arcs is maximal if, once we cut along all
such arcs and all state circles, the graph decomposes into subgraphs that each contain a
segment, and no larger collection of non-prime arcs has this property. Figure 6, left, shows
an example of a graph HA with a maximal collection of non-prime arcs.

Let {α1, . . . , αn} denote a maximal collection of non-prime arcs. A polyhedral region is a
nontrivial region of the complement of the state circles and the αi, where by nontrivial we
mean the region contains segments. Each lower polyhedron corresponds to precisely one
of these polyhedral regions. Note that if HA admits no non-prime arcs, then a polyhedral
region is just a region of the complement of the state circles which contains segments.
Figure 6 shows an example.

Each white face of the polyhedra corresponds to a nontrivial (i.e. non-innermost disk)
complementary region of HA∪(∪

n
i=1αi). The white faces that belong to a lower polyhedron

are glued to corresponding white faces in the unique upper polyhedron.
Associated to each polyhedral region R, and a corresponding lower polyhedron P , we

have a clockwise map. Loosely speaking, the clockwise map φ gives us a way to associate
the lower polyhedron P with a section of the upper polyhedron.
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Figure 6. Left: A graph HA with a maximal collection of non-prime arcs
(shown in dashed red). Right: This example breaks into four distinct
polyhedral regions, as shown.

In S3rK Upper polyhedron (a) Gluing map (b) Clockwise map

Figure 7. An edge (in red) in the link complement is shown, along with
its position in the upper polyhedron, and images under the gluing and
clockwise maps.

Definition 2.11. The clockwise map φ is a homeomorphism from the white faces of
the upper polyhedron belonging to the polyhedral region R to the white faces of the
corresponding lower polyhedron P . On each white face, φ is defined by composing the
gluing map to a white face of P with a single clockwise rotation in that face.

Figure 7 shows an example of how the clockwise map compares to the gluing map.

There is a way to extend the domain of definition of the clockwise map to normal
squares, that is, normal disks with 4 sides, and we will use this multiple times in this
paper. The following is a restatement of [13, Lemma 4.8].

Lemma 2.12. Let S be a normal square in the upper polyhedron, with arcs βV and βW
in white faces V,W that belong to a polyhedral region R. Let P be the lower polyhedron
corresponding to R, with clockwise map φ. Then there is a normal square φ(S) ⊂ P ,
unique up to normal isotopy, which contains white sides φ(βV ) and φ(βW ).

Furthermore, if S is glued along V to a square T in the lower polyhedron, then φ(S)∩V
will differ from T ∩ V by a single clockwise rotation of V . �

3. Tori, annuli, and squares

In this section, we will consider essential tori embedded in the complement of a semi-
adequate knot. We will see that the state surface SA cuts these into annuli, and we will
consider properties of these annuli. In particular, we will show that the annuli decompose
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into squares, all of which are either diagrammatically compressible or diagrammatically
incompressible. This sets the stage for the next two sections, in which these two cases are
analyzed separately.

Lemma 3.1. Let D(K) be an A–adequate diagram, with all–A state surface SA. Let T be

an essential torus. Then we may isotope T such that TrS̃A is an even number of essential
annuli, half embedded in MA and half embedded in the I–bundle N(SA).

Furthermore, those essential annuli in MA are cut into normal squares by the white
faces of the polyhedral decomposition of MA, where each square has two opposite sides on
shaded faces and two opposite sides on white faces.

Proof. Isotope T to be transverse to SA and minimize the number of curves of intersection
with SA. Because SA and T are both essential, this ensures that all intersections T ∩ SA

are nontrivial simple closed curves on T . Hence T ∩ N(SA) and TrN(SA) consist of
annuli, which are essential because T is essential.

Because the annuli in the closure of TrN(SA) in MA are essential, we can put them
into normal form with respect to the polyhedral decomposition of MA. This may involve
isotopy of the boundary components of the annuli. We may isotope the adjacent annuli in
N(SA) to ensure that when we isotope annuli into normal form, we actually isotope the
entire torus.

Let E ⊂ T ∩MA be an essential annulus in normal form. Since E cannot be contained
in a single polyhedron (because it is essential), it must intersect the white faces. We claim
that no arc of intersection between E and a white face can be parallel to the boundary
of E. This is because an outermost such arc would cut off a normal bigon in an ideal
polyhedron, and our prime ideal polyhedra do not contain normal bigons [13, Proposition
3.18]. Therefore, every arc of intersection between E and a white face runs across E, from
one boundary circle to the other. These arcs cut E into normal squares, finishing the
lemma. �

We will investigate the annuli and squares of Lemma 3.1. The study of these surfaces
will naturally break into two cases: whether the squares cut off a single ideal vertex in a
white face, or whether each edge in a white face cuts off multiple ideal vertices on both
sides. This is encoded in the following definition.

Definition 3.2. Let S ⊂ MA be a surface in normal form. We say that S is diagram-
matically compressible if, in some white face W of the polyhedral decomposition, an arc
of S ∩W runs between two adjacent edges of W . In other words, S is diagrammatically
compressible in W if S ∩W cuts off an ideal vertex of W . See Figure 8. Otherwise, if no
such white face exists, we call S diagrammatically incompressible.

If S is diagrammatically compressible in some white face W , it cuts off a disk U ⊂ W
with two sides on shaded faces, one side on S, and one side on an ideal vertex. Such
a disk U is an example of what Lackenby calls a parabolic compression disk. In other
words, diagrammatically compressible surfaces are also parabolically compressible (see [22,
Page 209] for a definition). For annuli, the converse also holds: by [13, Proposition 4.21],
a parabolically compressible annulus A ⊂ MA must be diagrammatically compressible.
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Figure 8. Shown is a white face W of the polyhedral decomposition. Red
arcs (dashed) cut off a single ideal vertex of W . A surface meeting W
in such an arc is diagrammatically compressible. A surface meeting W in
the blue arc (dot-dashed) is diagrammatically incompressible, provided its
intersections with other white faces also do not cut off a single ideal vertex.

Because we will be working with annuli below, we will not need the notion of parabolic
compressibility in this paper.

Lemma 3.3. Let Q be a square in the upper polyhedron, glued to normal squares in
lower polyhedra at each of its white sides. If the white sides of Q come from different
polyhedral regions, then they each cut off a single ideal vertex in that white face. Hence Q
diagrammatically compresses in both of its white faces in the upper polyhedron.

Proof. This is a restatement of [13, Proposition 4.13]. �

In this paper, normal squares appear in decompositions of essential annuli. A square Q
in the upper polyhedron will be glued to normal squares in the lower polyhedra at each
of its white sides, and so Lemma 3.3 will be useful.

The next two sections include two cases. First, that the squares making up the annulus
are diagrammatically incompressible, and second, that they are diagrammatically com-
pressible. Lemma 3.3 puts restrictions on the diagrammatically incompressible case, and
so we investigate such annuli first.

4. Diagrammatically incompressible annuli

In this section, we determine the form of any essential annulus that intersects a polyhe-
dral region in a diagrammatically incompressible way. Then, in Lemma 4.4, we determine
how diagrammatically incompressible annuli can fit into essential tori in the link comple-
ment. We emphasize that all of the results of this section work for general A–adequate
diagrams, without any extra hypotheses.

Following Lackenby [22], we define a fused unit to be a portion of a checkerboard colored
graph with the following property. Its boundary is an essential square, with two opposite
sides in black regions and the other two sides each intersecting a white region adjacent to
a crossing, as on the left of Figure 9. In the figure, the question marks can represent any
checkerboard graph corresponding to an alternating tangle.
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Figure 9. A fused unit and an example of a cycle of three fused units.

Lemma 4.1. Let D(K) be an A–adequate diagram, and let (E, ∂E) ⊂ (MA, S̃A) be a
diagrammatically incompressible annulus. Then E lies in a single polyhedral region, and
the lower polyhedron in that region is a cycle of n ≥ 2 fused units. Moreover, portions of
E that lie in the lower polyhedron are squares encircling a fused unit, as the blue curves
in Figure 9.

Proof. Put E into normal form with respect to the polyhedral decomposition of MA. This
will cut E into a sequence of squares, alternating in upper and lower polyhedra.

Consider a square S ⊂ E in the upper polyhedron. If the two white sides of S lie in
different polyhedral regions, Lemma 3.3 implies that it cuts off an ideal vertex in some
white face, contradicting the hypothesis of diagrammatic incompressibility. Hence all
squares of E have their white sides in a single polyhedral region.

For a square S ⊂ E in the upper polyhedron, Lemma 2.12 lets us apply the clockwise
map and obtain a square φ(S) in the lower polyhedron. Consider these squares, as well
as the squares of E originally in the lower polyhedron. Label the squares in the lower
polyhedron S1, S2, . . . , S2n, where Si with even i are the clockwise images of squares from
the upper polyhedron.

By [13, Lemma 4.10], if any pair of adjacent squares Sk and Sk+1 does not have inter-
secting white sides, then those squares must cut off single vertices in each of their white
sides, implying both are diagrammatically compressible to essential product disks, which
again contradicts the hypotheses.

So suppose that each Sk and Sk+1 intersect in one, hence by [13, Lemma 4.10], both
white sides. By Lemma 2.12, the white sides of odd-numbered squares differ from those
of even-numbered squares by a clockwise rotation. This allows us to sketch the form of
the diagram, essentially following Lackenby’s proof of [22, Theorem 14].

First, suppose there are just two squares S1 and S2. Then they intersect in exactly two
white faces of the same lower polyhedron. In each white face, S2 differs from S1 by a single
clockwise rotation, as shown in Figure 10, left. Moreover, the white sides of the squares
glue up with orientations shown in that figure. But now, note that these two squares glue
to form a Möbius band, not an annulus, which is a contradiction.

So there must be at least four squares. Then S1 differs from S2 in one of its white faces
by a single clockwise rotation, and S1 differs from S2n in the other white face of S1 by
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S1

S2

S2S2n S1

Figure 10. Left: If annulus is formed of only two squares. Right: Squares
S1, S2, and S2n must be as shown.

a single clockwise rotation. The fact that S2 and S2n are disjoint [13, Lemma 4.8 (3)]
implies that they must lie in the lower polyhedron as shown in Figure 10, right. Note this
implies that S1 bounds a fused unit.

Applying the same argument to S3, S4, and S2, and continuing through all squares with
odd indices, we find each odd square bounds a fused unit, and these are arranged in a
cycle as claimed in the lemma. �

Lemma 4.2. Let D(K) be an A–adequate diagram. Suppose (E, ∂E) ⊂ (MA, S̃A) is an
embedded essential annulus such that E is diagrammatically incompressible. Then there

is a solid torus V ⊂ MA whose boundary consists of E and an annulus F ⊂ S̃A.
Furthermore, each of the annuli E,F ⊂ ∂V winds once around the meridian of V and

n times around the longitude of V , for the same integer n ≥ 2 as in Lemma 4.1. In other
words, the two curves of E ∩ F have slope 1/n on the boundary of V .

Proof. By Lemma 3.1, white faces of the polyhedral decomposition of MA cut E into
squares, alternating between lying in the upper and lower polyhedra. Denote the squares
by S1, S2, . . . , S2n, where Si for even i lies in the upper polyhedron. (Note in the previous
proof, Si for even i indicated the images of these squares in the lower polyhedron.)

By Lemma 4.1, the lower polyhedron P associated to E is a cycle of at least two fused
units, as in Figure 9. Moreover, the squares Si for i odd encircle a fused unit.

Now recall from Section 2.2 that a lower polyhedron corresponds to a polyhedral region,
i.e. a nontrivial region of the complement of the state circles and a maximal collection of
non-prime arcs. A white face in a lower polyhedron P is glued via homeomorphism to
exactly one white face in the upper polyhedron. However, shaded faces are not glued.
In a region of the upper polyhedron corresponding to a shaded face of P , there may be
additional segments and state circles in the graph HA. However, we may use information
on white faces, as well as positions of state circles appearing in the given lower polyhedron,
to sketch portions of the graph HA. Figure 11 shows the most general possible graph.

Note in particular that the white faces above and below the diagram in Figure 11 are
mapped to the white faces inside and outside the cycle of fused units. Hence they only
meet segments of HA that correspond to ideal vertices of the lower polyhedron. Thus the
only possible segments in these white faces are either between state circles as shown, or
inside the blocks labeled with question marks. However, a priori, there may be segments
on the other sides of the state circles meeting these two white faces. Such segments are
illustrated in blue in Figure 11.
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Figure 11. The graph HA must have the form shown when one of the
lower polyhedra is a cycle of fused units.
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S2 ∩ S3

S2n ∩ S2n−1

S2

S2n ∩ S1

S2n

S2

S2n

S2 ∩ S1

S2n

Figure 12. Upper polyhedron with squares S2k is as above.

The combinatorics of the upper polyhedron can be read off of the graphHA, as described
in [13, Chapter 2] or [14]. What is relevant to this discussion is that shaded faces run
along segments in so–called tentacles. A tentacle is a portion of shaded face that begins
on one side of a state circle (the “head”), runs along the right side of a segment when the
head is oriented to be up, and then runs to the right along the adjacent state circle until it
terminates at a segment. Examples of tentacles in different colors are shown in Figure 12.

The boundaries of these tentacles make up the edges of the white faces in our fused
units. Hence, we use what we know of the positions of white sides of Si for i odd to sketch
white sides of Sj for j even into the upper polyhedron. In particular, white sides in the
lower polyhedron are glued to those in the upper, with S2 glued to S1 on one side, and S3

on the other side. Therefore, these edges are as shown in Figure 12. A pair of endpoints
of white edges connect to an edge in a shaded face. Thus we may color the shaded faces
at the ends of white edges in the same color. This is also shown in Figure 12.

Consider the shaded face shown in the center of Figure 12, which is shaded green. Note
that S2n and S2 must both run through this green face, and both meet the same pair of
tentacles on either side. Because shaded faces are simply connected [13, Theorem 3.12],
these arcs on S2 and S2n must run parallel to each other, bounding a strip of green shaded
face between them. The same argument implies S2k and S2(k+1) bound a strip of shaded
face between them, for all k.

Now, notice that squares Si with even index cut out a prism from the upper polyhedron.
This prism has n sides coming from the S2k, n sides coming from these strips of shaded
face, and a top and bottom white face, each a polygon with 2n sides.
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From Lemma 4.1 and Figure 9, we see that the Si with odd index also cut out a prism
from the lower polyhedron, with n sides coming from squares S2i+1, and n sides coming
from strips of shaded face, and a top and bottom white face, each a polygon with 2n sides.

These two prisms glue along the white faces to give a solid torus V , with boundary

consisting of the annulus E, as well as an annulus F ⊂ S̃A obtained by gluing the strips
coming from shaded faces end to end. The white faces of the prisms form meridian disks
of the solid torus V .

Observe from Figure 12 that the annulus E intersects each meridian disk n times.
Observe as well that as we travel around E, the square S2n in the upper polyhedron is
glued to S1 in the lower, then S2 in the upper polyhedron, and so on — with S2n differing
from S2 by a single 1/n clockwise twist of the white face. Therefore, the annulus E
composed of these squares will intersect the longitude of V once. Since the core curve of
E intersects the meridian n times and the longitude once, with clockwise twisting, its slope
on ∂V is 1/n. The core curve of F is parallel to that of E, and has the same slope. �

Now recall that we are interested in an essential torus T , which is cut into annuli in
MA by Lemma 3.1.

Definition 4.3. Let T ⊂ S3
rK be an essential torus, decomposed into annuli as in

Lemma 3.1. We say that an annulus E ⊂ MA is adjacent to E′ ⊂ MA if there is a single
annulus in N(SA) between them.

Lemma 4.4. Let D(K) be an A–adequate diagram. Let T ⊂ S3
rK be an essential torus

in S3
rK, and let E,E′ ⊂ T ∩MA be adjacent annuli. Then at least one of E,E′ must

be diagrammatically compressible. In particular, if E is adjacent to itself, then it must be
diagrammatically compressible.

Proof. Suppose E is diagrammatically incompressible. We will examine more closely the
solid torus V and the annulus F of Lemma 4.2. Since T is a torus in S3, it is separating.
Let X be the component of (S3

rK)\\T that contains V and X\\SA denote the remnants
of X in S3\\SA. The manifold X\\SA contains V as one of its components. The annulus

F ⊂ S̃A\\T projects to some component R of SA\\T .

Case 1. Suppose R is orientable. Then it is an annulus. When we glue S̃A to itself, to

undo the cutting along SA and recover S3
rK, the annulus F ⊂ S̃A∩∂V must be glued to

another annulus F ′, which is the boundary of some other component of X\\SA. Assuming
that the adjacent annulus E′ ⊂ T ∩MA is also diagrammatically incompressible, Lemma
4.2 implies there must be a solid torus V ′ ⊂ X\\SA, with boundary ∂V ′ = E′ ∪ F ′, such
that the core curve of E′ has slope 1/n. By Lemma 4.1, n is at least 2. But then ∂E and
∂E′ are both glued onto ∂R, hence E and E′ form all of T ∩ MA. Hence X consists of
exactly two solid tori, glued along annuli of slopes 1/ni on their respective boundaries.

Case 2. Suppose R is non-orientable. Then, since F ⊂ ∂N(R) ⊂ S̃A is a double cover
of R, it follows that R must be a Möbius band. To form S3

rK from S3\\SA, we glue
appropriate boundary components of N(SA). The annulus F , as the boundary of a regular
neighborhood of a Möbius band, must be glued to itself, with the regular neighborhood
N(R) collapsing onto R. But then under this gluing, the boundary components of the
annulus E are glued only to boundary components of the annulus E. This means SA cuts
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T into only the annulus E, and V is the only component of X\\SA. Therefore, X must
be the result of gluing V to itself along an annulus with slope 1/n on its boundary.

Here is another way to think of this gluing. The regular neighborhood N(R) ⊂ N(SA)
is a solid torus. Since F double-covers the Möbius band R and runs around this solid
torus twice, the slope of F on ∂N(R) is 1/2. We conclude that X is obtained by gluing
together two solid tori along annuli whose slopes are 1/n and 1/2.

In both cases, X consists of two solid tori V1 and V2, glued along annuli of slopes 1/ni,
where each ni is at least 2. This means that X is a Seifert fibered space with base space
a disk and two singular fibers. (See Hatcher [19] for background.)

Next, we will calculate the Seifert invariants of X. For simple, oriented curves x, y on
Ti = ∂Vi, let 〈x, y〉 denote their algebraic intersection number. Also abusing notation, we
will use the same symbol to denote a curve on Ti and its homology class in H1(Ti). Let
Qi, Hi denote a pair of a cross-section curve and fiber of the fibration on Ti, oriented so
that 〈Qi,Hi〉 = 1. Let µi, λi be a meridian and longitude of Ti, chosen so that µi bounds a
disk in Vi and 〈µi, λi〉 = 1. Furthermore, we can normalize λi so that the gluing annulus,
which is foliated by fibers parallel to Hi, satisfies Hi = µi + niλi. Since Qi = aiµi + biλi

for some coefficients ai, bi, it follows that

(1) 〈Qi,Hi〉 = niai − bi = 1.

Solving for µi, we have µi = niQi − biHi. Thus the slope of each singular fiber of X is
−bi/ni, making the Euler number of X equal to

(2) e = −
b1
n1

−
b2
n2

=
−n2b1 − b2n1

n1n2
.

Since T = ∂X is incompressible, X cannot be a solid torus. Thus X admits a unique
Seifert fibration [19, Theorem 2.3], which means that its Seifert invariants are uniquely
determined modulo 1 [19, Proposition 2.1]. Since X embeds in S3 and ∂X is a single torus,
X must be the complement of a torus knot, say H. On ∂X, H may be identified with a
regular fiber of the fibration of X. Let µ, λ denote the meridian and canonical longitude
of ∂X, again with the convention that 〈µ, λ〉 = 1. Since the geometric intersection of the
meridian and H is 1, if Q is a cross section curve on ∂X, then

(3) µ = Q+ xH,

so that 〈µ,H〉 = 〈Q,H〉 = 1. A minimum genus Seifert surface for λ will be horizontal
with respect to the Seifert fibration of X. By the Claim in the proof of [19, Proposition
2.2], the boundary slope of this surface with respect to the (Q,H) framing is equal to the
Euler number e. Therefore, by equation (2),

(4) λ = n1n2Q+ (−n2b1 − b2n1)H.

Since 〈µ, λ〉 = 1, equations (3) and (4) imply

(5) −xn1n2 − n2b1 − b2n1 = 1.

By (1), we obtain n1n2a1 + n2n1a2 − (n1b2 + b1n2) = (n1 + n2), which combined with (5)
gives

n1n2(a1 + a2 + x) + 1 = (n1 + n2) ⇒ a1 + a2 + x = 1/n1 + 1/n2 − 1/n1n2 ,
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which is impossible since ai, x are integers and ni ≥ 2. �

Remark 4.5. Lemma 4.4 can also be proved using diagrammatic techniques. The idea is

as follows. From Figures 9 and 12, one can determine how the annulus F ⊂ S̃A lies in the
diagram. If two annuli F and F ′ as above are mapped to a single annulus in SA (Case 1 of
the above proof), then their cores must map to the same curve on SA. A careful analysis
of annuli F and F ′, each lying in the diagram as specified by Figures 9 and 12, yields a

contradiction. Similarly, if F is glued to itself when S̃A is mapped to SA (Case 2 of the
above proof), then the core of F must wrap around the same curve on SA twice. Again a
diagrammatic analysis will reveal that this is impossible.

5. Diagrammatically compressible annuli

Lemma 4.4 implies that the intersection of an essential torus with the corresponding
polyhedral decomposition must contain components that intersect the decomposition in
a diagrammatically compressible way. In this section, we determine information on such
annuli under the hypothesis of Theorem 1.1.

Suppose an annulus decomposes into a square that is diagrammatically compressible in
one white face, i.e. it cuts off a single ideal vertex there. Then it must be diagrammatically
compressible in every white face, either by Lemma 3.3, or by an application of the clockwise
map, Lemma 2.12, and [13, Lemma 4.10]. Diagrammatically compressible squares are
closely related to essential product disks.

Definition 5.1. An essential product disk, or EPD, is a properly embedded essential disk
in MA whose boundary meets the parabolic locus of MA twice.

When an essential product disk R lies in a single polyhedron in the polyhedral decom-
position of MA, we may think of it as a quadrilateral with two sides on shaded faces,

coming from S̃A, and two sides running over ideal vertices of the polyhedron, which cor-
respond to the parabolic locus. We may pull R off the ideal vertices into adjacent white
faces, obtaining a normal square Q, with two sides on shaded faces and two sides on white
faces. The two sides of Q on white faces each cut off a single ideal vertex; that is the
square is diagrammatically compressible in both of its white faces. Conversely, if Q is a
normal square, each of whose white sides cuts off a single ideal vertex of the ambient white
face, then pulling Q onto those ideal vertices (that is, performing a parabolic compression)
produces either an EPD or a square encircling a single ideal vertex.

Remark 5.2. Throughout this section, we will assume that the sides of normal squares
in shaded faces run monotonically through tentacles, without unnecessary backtracking.
This assumption can be easily satisfied by normal isotopy. The precise terminology from
[13] is that the sides of squares are simple with respect to the shaded faces, as in [13,
Definition 3.2].

Convention 5.3. Let Q be a normal square, and W a white face in which Q cuts off a
single ideal vertex. We may color the shaded faces met by Q orange and green, so that the
single vertex of W cut off by Q is a triangle whose three edges, in counter–clockwise order,
are orange–green–white. For instance, the right–most white face in Figure 13 satisfies this
convention.
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Figure 13. Possible forms of squares parabolically compressing to an
EPD. The square on the left is called a square in a twist region (Definition
5.5). The right–most white face satisfies Convention 5.3.

The next lemma places strict restrictions on the form of a square coming from an EPD
in the upper polyhedron. The proof relies on the hypothesis that 2–edge loops in GA

belong to twist regions (Definition 2.5), as well as the classification of EPDs into seven
combinatorial types [13, Theorem 6.4]. This proof is likely the most technical argument
of this paper, and can be omitted without missing the thread of the argument.

Lemma 5.4. Suppose a prime, A–adequate diagram is such that GA satisfies the 2–edge
loop condition. Suppose that a normal square Q parabolically compresses to an EPD in
the upper polyhedron. Then, possibly after sliding one white side of Q past an ideal vertex,
we obtain a normal square P with one of the two forms shown in Figure 13. In particular,
the boundary of P runs over distinct segments of the same twist region, with two sides on
shaded faces adjacent to the same state circle on a side of that twist region.

Proof. Given a diagrammatically compressible square Q, select one of the sides that cuts
off a single ideal vertex in a white face W . Color the two adjacent shaded faces according
to Convention 5.3.

With this labeling of shaded faces, consider the side of Q in its other white face, W ′.
This side also cuts off a single ideal vertex, but that ideal vertex may be a triangle with
opposite orientation compared to that of Convention 5.3. If this occurs, replace Q with a
new square P by sliding the white side Q ∩W ′ across the adjacent ideal vertex, so that
it lies in a new white face W ′′ and cuts off a triangle oriented in the opposite direction.
This new square P must satisfy Convention 5.3 in both of its white faces.

We now apply [13, Theorem 6.4], which applies to normal squares such as P that satisfy
Convention 5.3 in both white faces (equivalently, satisfy [13, Lemma 6.1]). This theorem
implies that the normal square P is of one of seven types, shown in [13, Figure 6.1].
Assuming that 2–edge loops of GA belong to twist regions, we may rule out all these types
except the first two, labeled A and B in [13, Figure 6.1]. These are exactly the two types
shown in Figure 13. We now describe how to rule out the remaining types.

Type C. Suppose the normal square is of type C, reproduced in Figure 14, left. The
2–edge loop shown belongs to a twist region by hypothesis, and so a twist region must
lie either on the inside of the segments shown or the outside. Note there is a segment
meeting the lower state circle on the opposite side of the 2–edge loop on the inside. This
cannot happen if the twist region lies on the inside. Hence the twist region must lie on the
outside of the two segments shown, as in Figure 14, middle. Then the orange face must
run all the way across the outside of the twist region, meeting no tentacles or non-prime
arcs, as shown in that figure. Draw an arc through the orange face all the way across the
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Figure 14. Left: A normal square of type C runs over a portion of the
upper polyhedron of the form shown. Middle: The precise form imposed
by 2–edge loop condition. Right: Dotted line gives a contradiction to the
primeness of the diagram.

twist region. On the far side, connect the arc across the state circle to the portion of the
square P in the green face. Now continue to follow P to the right. It crosses the state
circle once more, before joining the orange face where we began, as in Figure 14, right.
Replace segments of HA by crossings. We obtain a simple closed curve in the diagram of
the link that meets the link exactly twice, with crossings on either side. This contradicts
the hypothesis that the diagram is prime.

In the interest of space, we do not reproduce [13, Figure 6.1] for the analysis of the rest
of the cases. However, all the cases are handled by a variation of the above argument.

Type E . This can also be ruled out by an appeal to the primeness of the diagram.
Because the 2–edge loop in type E comes from a twist region, the orange face shown,
adjacent to the state circle at the bottom, must continue across the bottom of that state
circle, meeting no segments or non-prime arcs, until it lies directly opposite the green face
running next to the second sement of the 2–edge loop. Note that the orange face is also
directly opposite the green face on the left side of the green non-prime arc. Now we may
draw an arc through the orange face, from the point where it is opposite the non-prime
arc to the point where it is opposite the segment of the 2–edge loop. Connect the arc
across the state circle to the portion of P lying in the green face. This gives a simple
closed curve meeting HA exactly twice on state circles, which in turn gives a loop in the
diagram meeting the diagram exactly twice, again contradicting the hypothesis that the
diagram is prime.

Type G. The segments forming the 2–edge loop shown in that figure must belong to a
twist region by hypothesis, meaning there can be only segments and state circles of the
short resolution of a twist region between those two segments on one side. But on one
side of the two segments there is a segment on the opposite side of the state circle, and
on the other side there is a non-prime arc. Hence type G cannot occur.

Types D and F . Because the 2–edge loop shown belongs to a twist region, one green
tentacle must terminate in a bigon, with no additional green tentacles or non-prime arcs
connected to it. For type D, this green tentacle lies to the right in [13, Figure 6.1]. For
type F , it lies ot the left. In either case, since P runs through that tentacle, it must
meet its second ideal vertex at the end of that green tentacle shown. In other words,
at the end of that green tentacle it must cut off a single vertex in a white face, which
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defines a triangle. However, note that the triangle will have the opposite orientation from
Convention 5.3, contradicting our assumption.

It follows that our normal square P is of type A or B. To obtain Figure 13, we make
the following observations. First, because the 2–edge loop shown in either figure belongs
to a twist region, the two segments shown must bound a string of bigons, i.e. segments
and state circles from the short resolution of a twist region. In particular, there can be
no segments on the opposite side of the state circles shown between these two segments.
This implies that some face runs straight across the top of the twist region, meeting no
additional segments or state circles, and the orange face runs straight across the bottom
of the twist region, meeting no additional segments or state circles.

For type A, the green face must run across the top of the twist region. If the boundary
of P runs into the green face at the top, then it must run straight across the top, and
straight across the bottom through the orange face, and hence P is as shown on the left
of Figure 13. It may be the case for type A that the boundary of P runs down a green
tentacle, without running across the top. Then in this case, a portion of P in the orange
face runs between these segments, so the two segments form a bigon, and the EPD must
meet the ideal vertices of the bigon. Given our choice of orientation, the normal square P
will have the form of Figure 13, right.

For type B, we need to show that the green face runs across the top of the twist region.
This follows because the portion of P adjacent to the orange segment on the right is
running downstream in a tentacle which forms a bigon of the twist region. No other
tentacles or non-prime arcs can meet this bigon, or the 2–edge loop would not belong to a
twist region. Hence P meets the white face at the end of this tentacle, and joins the green
on the opposite side. It follows that the green face must run across the twist region, with
P running across as well to meet in this vertex. Thus the normal square P is as shown on
the right of Figure 13. �

The square on the left of Figure 13 has a particularly relevant form.

Definition 5.5. A diagrammatically compressible square Q with sides Q1, Q2 in shaded
faces is defined to be a square in a twist region R if it is of the form shown on the left
of Figure 13. More precisely, there are state circles C and C ′ and segments s1, s2 of HA

between C and C ′, determining R, such that:

(i) Q1 and Q2 run on adjacent shaded faces near C ′;
(ii) Q1 and Q2 run on adjacent shaded faces near C;
(iii) one side of Q, say Q1, runs on the top of the twist region along C ′ and then along

s1, while Q2 runs along s2 and then on the bottom of R along C.

Lemma 5.6. Suppose a prime, A–adequate diagram is such that GA satisfies the 2–edge
loop condition. Suppose T ⊂ S3rK is an essential torus, E ⊂ T ∩MA is a diagrammat-
ically compressible annulus, and Q ⊂ E is a normal square that parabolically compresses
to an EPD in the upper polyhedron. Then we may perturb E by a normal isotopy that
extends to T , so that Q becomes a square in a twist region.

Proof. Suppose Q parabolically compresses to an EPD. Then, by Lemma 5.4, there is a
related normal square P that has one of the two forms of Figure 13. For each of the forms,
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P may either agree with Q or be obtained from Q by moving one white side across an
ideal vertex of the upper polyhedron.

Suppose P is as on the left of Figure 13. If P and Q agree, then we are finished.
Otherwise, P differs from Q in that one of its white sides is on the opposite side of an
ideal vertex from Q. We may assume that this white side is located to the right of the
figure shown. If the ideal vertex in question does not contain the right–most segment of
the twist region of Figure 13, left, then adjusting P to form Q has no effect on the region
shown, and the diagram is as claimed. If the ideal vertex does contain the right–most
segment, then Q must have a white side on the opposite side of the corresponding ideal
vertex, which lies in the right–most bigon of the twist region shown, and Q now has the
form of a square on the right of Figure 13.

Now suppose that Q is as shown on the right of Figure 13, and either P agrees with Q,
or P is as on the left of Figure 13, as in the previous paragraph. Then the white side of
the square on the right of the figure lies in a bigon white face. This white face is glued
to a bigon in a lower polyhedron, and the annulus runs through the bigon. Isotope the
annulus through the bigon, isotoping Q to have a white side cutting off a vertex on the
opposite side of the bigon. This pulls the shaded sides of Q along as well, pulling the side
of Q in the right–most orange tentacle to only meet the head of that tentacle, and pulling
the side in the green to run downstream adjacent to a green tentacle. The isotopy can
be performed in a neighborhood of the white face in MA, affecting only the square Q and
the square in the lower polyhedron glued to Q at this face, but only in a neighborhood of
this single white face. Moreover, the isotopy may be extended into a small neighborhood

of S̃A, to extend to all of T . After this isotopy, Q has the form claimed in the lemma.
The only remaining case is that the square P has the form on the right of Figure 13,

but it differs from the original square Q in that we slid a white side of Q through an ideal
vertex. Because we were able to choose the orientation on one vertex, we may assume
that the ideal vertex in question is at the right of that figure. Notice that the side of P
that must be adjusted lies in a bigon in a twist region, with state circle C ′ on top, and
C on bottom of the twist region. The ideal vertex cut off by P is a portion of the graph
HA consisting of a small arc on C ′, a segment s connecting C ′ and C, a portion of C,
and possibly more segments. Hence when we slide over this ideal vertex, the portion of P
running through the orange tentacle adjacent s slides out of this tentacle, and a portion
of the square in the green face will be pulled through the green tentacle adjacent to s.
When finished, the result will be as claimed in the statement of the lemma. �

The next lemma will allow us to show that, assuming the 2–edge loop condition, no
diagrammatically incompressible annuli in MA come from essential tori. This is done in
Lemmas 5.8 and 5.9.

Lemma 5.7. Let D(K) be an A–adequate diagram, with all–A state surface SA, and let
T be an incompressible torus. Suppose that a normal square Q ⊂ T ∩MA lies in the upper
polyhedron, with sides Q1 and Q2 in shaded faces, which satisfies the following property.
There exists a point p on a state circle and arcs q1 ⊂ Q1 and q2 ⊂ Q2 that can be isotoped
to lie on either side of an ǫ neighborhood of p, while maintaining the condition that Q1

and Q2 are simple with respect to their shaded faces (Remark 5.2).
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Then TrS̃A consists of exactly two annuli, one in MA and one in the I–bundle N(SA).
Moreover, subarcs of q1 and q2 are glued together in T when we glue opposite sides of
N(SA), to recover S3

rK.

Proof. The point p on a state circle corresponds to a point, which we will also call p, on
the knot K. Let Np be a tubular neighborhood of p in S3. We may take this neighborhood
small enough that Np ∩ MA lies entirely in the upper polyhedron, and Np ∩ N(SA) is a
trivial I–bundle, of the form D× [−1, 1] for some disk D in SA. Moreover, we may isotope
q1 and q2 (and all of T ), if necessary, so that q1 and q2 each run through Np. Since Q has
opposite sides containing q1 and q2, and since Q lies in a ball (the upper polyhedron), we
may isotope Q relative to its boundary so that a sub-rectangle Q′ of Q has opposite sides
on q1 and q2, and lies completely in Np.

Now consider Q′. This is a rectangle in the tube Np surrounding the point p on the knot
K. It has one boundary component, say q1, on D× {−1}, and one boundary component,
q2, on D × {1}. Notice it almost encircles K to form an annulus whose core is a single
meridian, except that it is cut by N(SA). Inside N(SA), both q1 and q2 are glued to annuli
which are isotopic to vertical annuli in the I–bundle. The proof will be complete when we
show that q1 and q2 are glued to the same vertical annulus in the I–bundle.

So suppose not. Suppose q1 is glued to the annulus E1 and q2 is glued to the annulus E2.
Since E1 and E2 are both subsets of T , they are disjoint. They are also compact, connected,
and they lie inside the compact set N(SA)rNδ(K), where Nδ(K) is a sufficiently small
tubular neighborhood of K. Consider the projection π : N(SA)rNδ(K) → SA. This is a
continuous map on a compact set, hence it is proper. So π(E1) and π(E2) are compact
in SA. Since Ei is the image of a vertical annulus, it lies in a bounded neighborhood of a
core curve τi on SA, i = 1, 2.

Now, let σ be a simple arc in SA with one endpoint on p, exiting Np ∩ SA by crossing
through π(E1) and π(E2), and such that σ meets each of τ1, τ2 transversely exactly once,
and the final endpoint of σ is disjoint from π(E1) and π(E2). Note that if we restrict
the I–bundle N(SA) to σ, we obtain a trivial I–bundle over a line, which is a rectangle
R ∼= σ × [−1, 1]. Note also that R intersects both E1 and E2 in R ∩Np. In particular, an
arc of intersection of E1 ∩ R has endpoint in Np at a point on σ × {−1}, and an arc of
intersection of E2 ∩R has an endpoint in Np on σ × {1}.

Consider the other endpoint of E1 ∩R. By choice of σ, this endpoint must be either on
σ × {−1} or on σ × {1}. If E1 ∩R has both endpoints on σ × {−1}, then there is a disk
in R with boundary on E1 ∩ R and on σ × {−1}. We may isotope E1 through this disk,
removing the intersection of E1 with R, hence pushing the arc q1 away from p. Such an
isotopy is impossible under the assumption that the sides of Q were simple. Hence E1∩R
has one endpoint on σ×{−1} and one on σ×{1}. Similarly, E2 ∩R has one endpoint on
σ × {1} and one on σ × {−1}.

Because E1 and E2 are embedded, these endpoints cannot interleave. Thus either both
endpoints of E1 ∩R will lie in Np ∩R or both endpoints of E2 ∩R will lie in Np ∩R. Say
both endpoints of E2 lie in Np ∩R.

Now, E2 must connect to an annulus in MA on both of its boundary components. One
boundary component connects to an annulus containing Q. The other cannot connect to
Q because its initial endpoint on R lies interior to q1 ∩ R. So it connects to some new
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rectangle Q′′. But consider the shaded sides of Q′′. One lies parallel to q1, but interior

to q1 (i.e. closer to K) on S̃A. The other cannot also be parallel to q1 in Np, or we could
eliminate an intersection of T with SA. But Q′′ cannot intersect Q, hence Q′′ must lie

parallel to Q′ in Np, and its opposite boundary component is parallel to q2 on S̃A, but
closer to K.

Now we may repeat the entire above argument with Q′′, to obtain a square interior to
Q′′ in Np. Since each square we pick up at each step is interior to all previous squares, we
obtain an infinite sequence of squares, each lying on T . This is a contradiction.

Thus q1 and q2 are connected by a single annulus E ⊂ N(SA), which can be isotoped
to be vertical. �

Lemma 5.8. Suppose a prime, A–adequate is such that GA satisfies the 2–edge loop con-
dition. Then each diagrammatically compressible square in the upper polyhedron coming
from an essential torus must bound a single ideal vertex.

Proof. Suppose we have a square Q ⊂ T ∩MA that does not encircle a single ideal vertex.
Then Q parabolically compresses to an EPD. By Lemma 5.6, we may isotope the torus
T containing Q so that Q is a square in a twist region. By parts (i)-(ii) of Definition 5.5,
there are points p ∈ C and p′ ∈ C ′ for which the hypotheses of Lemma 5.7 are satisfied.
By the conclusion of that lemma, there is only one annulus of T ∩ MA, and the shaded
sides of Q that run near p′ (resp. p) are glued to each other in T .

However, note that between these two pairs of glued arcs, the sides of the square run
adjacent to distinct segments of HA: Q1 runs along s1, while Q2 runs along s2. By the
above paragraph, these sides of Q are glued to each other when we collapse N(SA) to SA

to recover the torus T . Hence the shaded sides of Q on S̃A have homotopic projection
to SA. The graph GA is a spine for SA, so we may homotope the arcs in SA to run over
the same edges of GA in the same order. But because the arcs run adjacent to distinct
segments of HA, they run over distinct edges (corresponding to these segments) in GA.
This is a contradiction. �

Lemma 5.9. Suppose D(K) is is a prime, A–adequate diagram such that GA satisfies
the 2–edge loop condition. Suppose an essential torus T contains a diagrammatically
compressible annulus E ⊂ T ∩MA. Then E is the only component of T ∩MA, and every
normal square comprising E encircles a single ideal vertex in its ambient polyhedron.

Proof. By Lemma 5.8, each diagrammatically compressible square in the upper polyhedron
bounds a single ideal vertex. It follows from Lemma 5.7 that each such square has one
side in a shaded face glued to the other side when we re-glue N(SA). Thus E is the only
annulus of T ∩MA.

Each square Q in the upper polyhedron is attached to a diagrammatically compressible
square Q′ in the lower polyhedron. A diagrammatically compressible square in the lower
polyhedron intersects the diagram graph exactly four times, adjacent to crossings. Because
the diagram is A–twist reduced (Lemma 2.7), the square must encircle either an ideal
vertex or a string of bigons.

Suppose the square Q′ encircles a nonempty string of bigons. Because each side in a
white face is glued to a square in the upper polyhedron, and each square in the upper



HYPERBOLIC SEMI-ADEQUATE LINKS 25

polyhedron has shaded sides glued when we reattach sides of N(SA) to form S3
rK, the

square in the lower polyhedron must also have its sides in shaded faces glued when we
form S3rK.

But now consider the way these sides run through the graph GA, which forms a spine
for the surface SA. One of the curves runs through a vertex associated with a state circle
on one side of the twist region, and the other runs through a distinct vertex on the other
side of the twist region. Because the sides in white faces are adjacent to distinct crossings,
the curves cannot be homotopic in SA, hence they cannot be glued in the square. This
contradiction implies that the square Q′ runs over a single ideal vertex. �

We are now ready to show that semi-adequate links that satisfy the hypothesis of
Theorem 1.1 have atoroidal complements.

Theorem 5.10. If D(K) is a prime, A–adequate diagram such that GA satisfies the
2–edge loop condition, then S3

rK contains no embedded essential tori.

Proof. Suppose T is an embedded essential torus in S3rK. By Lemma 3.1, we may take

T to be embedded in such a way that S̃A cuts it into an even number of essential annuli,
half embedded in MA and half embedded in the I–bundle N(SA). By Lemma 4.4, T ∩MA

must contain a diagrammatically compressible annulus E.
But by Lemma 5.9, if the essential torus gives rise to a diagrammatically compressible

annulus E, then E is the only component of T ∩ MA, and every normal square of E
encircles a single ideal vertex in its polyhedron. In that case, when we glue opposite sides
of N(SA) to recover S3rK, the sides of E will be identified to encircle knot strands, and
it follows that the torus T is actually boundary parallel, and not essential. �

6. Seifert fibered link complements

Our work in the previous sections reduces the proof of the main result to the case
of atoroidal link complements. As we remarked in the introduction, the diagram D(K)
is assumed connected, which implies that K is non-split and S3rK is irreducible. By
work of Thurston [30], an irreducible, atoroidal 3–manifold is either hyperbolic or Seifert
fibered. To finish the proof of Theorem 1.1 we need to treat the case of Seifert fibered link
complements. This is done in the following theorem.

Theorem 6.1. Let D(K) be a prime, connected, A–adequate diagram such that GA sat-
isfies the 2–edge loop condition. If S3

rK is Seifert fibered, then D(K) is the standard
diagram of a (2, q) torus link.

Proof. Let G′

A denote the reduced state graph of D(K), obtained from GA by removing
all the duplicate edges. Recall that the guts of S3rK relative to the surface SA, denoted
guts(S3

rK, SA), is the complement of the maximal I–bundle in MA = S3\\SA. In [13,
Corollary 5.19] we proved that, when all 2–edge loops in GA belong to twist regions,

−χ(guts(S3
rK, SA)) = max{−χ(G′

A), 0}.

Furthermore, the work of Agol [4], as generalized by Kuessner [21], says that guts can
be used to estimate the Gromov norm of S3

rK:

||S3
rK|| ≥ −2χ(guts(S3

rK, SA)) ≥ −2χ(G′

A).
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Recall that the Gromov norm ||M || of a 3–manifold M is positive whenever the JSJ
decomposition has one or more hyperbolic pieces [18, 5]. In particular, if S3

rK is Seifert
fibered, we have ||S3rK|| = 0, hence χ(G′

A) ≥ 0.
Next, recall that the graph GA can be given the structure of a ribbon graph [8], and

as such it can be embedded on a standard closed orientable surface (called the Tureav
surface of D(K)) so that it defines a cellulation [8, 31]. The genus of this surface is called
the Turaev genus of D(K). The Turaev genus g(D) satisfies

2g(D) = 2− v(GA) + e(GA)− f(GA) = 2− χ(G′

A) + (e(GA)− e(G′

A))− f(GA),

where v(GA), e(GA), f(GA) denote the number of vertices, edges and faces, respectively,
of the aforementioned cellulation, and e(G′

A) is the number of edges of G′

A.
Since 2–edge loops in GA belong to twist regions of D(K), for every edge in e(GA) −

e(G′

A)) there is a bigon face in f(GA) that cancels that edge. Furthermore, if D(K) has
more than one twist region — if it is not the standard diagram of a (2, q) torus link —
there must also be at least one non-bigon face. Therefore,

(e(GA)− e(G′

A))− f(GA) ≤ −1.

Furthermore, we have seen above that χ(G′

A) ≥ 0, hence

2g(D) = 2− χ(G′

A) + (e(GA)− e(G′

A)− f(GA)) ≤ 2− 0− 1.

Since g(D) is a non-negative integer, we conclude that g(D) = 0.
This in turn, implies that the diagram D is alternating; see Corollary 4.6 of [8]. Thus

D a prime, alternating diagram that represents a Seifert fibered link. Now the work of
Menasco [24] implies that D is the standard diagram of a (2, q) torus link. �

Theorem 1.1 follows immediately by combining Theorem 5.10, Theorem 6.1, and Thurston’s
hyperbolization theorem for link complements [30]. Now we finish the proofs of Corollaries
1.2 and 1.3.

Proof of Corollary 1.2. Without loss of generality, assume rj ≥ 3 for all j. Then the dia-
gram Db is a prime, A–adequate diagram and the corresponding state graph GA contains
no 2–edge loops at all. Thus Theorem 1.1 implies that K is hyperbolic. �

Proof of Corollary 1.3. In [13, Corollary 3.21], we show that for a non-split, prime link
K, any semi-adequate diagram D(K) without nugatory crossings must be prime.

Conversely, if D(K) is prime and semi-adequate, then Theorem 1.1 implies K is hyper-
bolic or a (2, q) torus link. Hence the link must also be prime. �
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