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Abstract. We prove an explicit, quantitative criterion that ensures the Heegaard surfaces
in Dehn fillings behave “as expected.” Given a cusped hyperbolic 3–manifold X, and a Dehn
filling whose meridian and longitude curves are longer than 2π(2g− 1), we show that every
genus g Heegaard splitting of the filled manifold is isotopic to a splitting of the original
manifold X. The analogous statement holds for fillings of multiple boundary tori. This
gives an effective version of a theorem of Moriah–Rubinstein and Rieck–Sedgwick.

1. Introduction

In 1997, Moriah and Rubinstein investigated the relationship between Heegaard splittings
of a cusped hyperbolic 3–manifold and the Heegaard splittings of its Dehn fillings [16]. They
showed that if one imposes a bound on the genus of the surfaces and excludes finitely many
Dehn filling slopes, then every irreducible Heegaard surface in the filled manifold is isotopic to
one of a finite collection of surfaces in the original manifold. In 2001, Rieck and Sedgwick used
topological ideas to show that any Dehn filling slope that results in a smaller genus Heegaard
surface must lie on one of a finite number of so-called “bad” slopes and “destabilization lines”
in Dehn surgery space [20]. Rieck showed that the number of bad slopes is bounded by a
quadratic function of the genus [18], while Rieck and Sedgwick showed that this number is
finite in general, independent of genus [19].

Due to this previous work, we know that if we exclude a finite number of Dehn filling
slopes, and a finite number of destabilization lines in the Dehn surgery space, any bounded–
genus Heegaard surface in a Dehn filling will be a Heegaard surface in the original manifold.
However, there has not been an effective characterization of which slopes and destabilization
lines must be excluded. As a consequence, it has been difficult to use these results to prove
explicit bounds, such as those needed in a recent paper of the authors with Cooper [6].

In this paper, we make these constraints explicit. In particular, we show the following.

Theorem 1.1. Let X be a cusped, orientable hyperbolic 3–manifold. Choose disjoint horo-
spherical neighborhoods C1, . . . , Ck about some subset of the cusps, and let si be a Dehn
filling slope on each torus ∂Ci. Let Σ be a Heegaard surface of genus g ≥ 1 for the Dehn
filled manifold M = X(s1, . . . , sk). Then we have the following.

(1) If the length `(si) satisfies `(si) > 2π(2g−1) for every i, then each core curve γi for the
filling solid torus is isotopic into Σ (although these cores may not be simultaneously
isotopic into Σ).

(2) If, in addition, the shortest longitude λi for each si satisfies `(λi) > 6(2g − 3), the
surface Σ can be isotoped into Mr(γ1 ∪ . . .∪ γk) ∼= X, and forms a Heegaard surface
for X.
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A longitude for si in item (2) is defined to be a slope λi on ∂Ci that intersects si once.
The shortest longitude is a longitude whose length is smallest among all longitudes for si.
Here the lengths si and λi are the lengths of geodesic representatives on the horospherical
torus ∂Ci, in the metric induced by the hyperbolic metric on X.

The slopes on ∂Ci that fail condition (1) of the theorem, i.e. those slopes whose core of
the Dehn filling solid torus is not isotopic into Σ, are exactly the “bad” slopes studied by
Rieck and Sedgwick [18, 19, 20]. Thus part (1) of Theorem 1.1 gives an explicit finite list
of candidates for bad slopes. Similarly, for each slope λi of length less than 6(2g − 3), the
primitive integer coordinates of the meridians that intersect λi once lie on a single line in R2;
this line is exactly the “destabilization line” corresponding to λi. Thus part (2) of Theorem
1.1 gives an explicit finite list of candidates for destabilization lines.

We note that because g ≥ 1, the hypotheses of the theorem always require that the Dehn
filling slopes satisfy `(si) > 2π. As a result, the 2π–Theorem of Gromov and Thurston [2]
implies that the manifold M = X(s1, . . . , sk) has a negatively curved metric. (Thus, in fact,
the case g = 1 is vacuous.)

Our main tool in proving Theorem 1.1 is geometry: we obtain our conclusions from area
considerations in the negatively curved metric on M . This geometric viewpoint follows the
lead of Moriah and Rubinstein’s paper [16]. We also follow their lead in using a theorem of
Pitts and Rubinstein [17, 21] that relates Heegaard surfaces to minimal surfaces in M (see
Lemma 3.8 below). The Pitts–Rubinstein result has been used in a number of applications
(e.g. [3, 12, 14, 16]), but unfortunately a complete proof of this result does not appear in
the literature. De Lellis and Pellandini have proved an important step, namely that the
“minimax method” produces a minimal surface of the appropriate genus [7]. In addition, a
survey paper by Souto [28] contains a discussion of the status of the proof, including what
remains to be done after the work of De Lellis and Pellandini. Souto claims in [28] to have
worked out the remainder of the proof, although his argument has not yet appeared. In this
work, we shall assume the Pitts–Rubinstein result, in anticipation of a full proof.

In addition to methods used by Moriah and Rubinstein, our argument takes advantage of
several other tools, some of which were unavailable in 1997.

First, we will use an effective version of the 2π–Theorem, due to the authors and Kalfa-
gianni [9, Theorem 2.1], to get explicit estimates on curvature and area in M . This result,
described in Section 2, will give us much more effective control over surfaces.

Second, we will use the notion of generalized Heegaard splittings, developed by Scharlemann
and Thompson [25], to reduce the crux of the argument to the case where Σ is strongly
irreducible. We review the relevant ideas in Section 3.

Third, our proof relies on the argument in a recent paper by Breslin [3]. In fact, we obtain
a generalization of his theorem, which is likely to be of independent interest. To simplify the
statement of our generalization, we use the following definition.

Definition 1.2. Let V be a solid torus, with a prescribed Riemannian metric. We say the
metric on V is submersible if, after lifting the metric to the universal cover Ṽ ∼= D×R, there
is a Riemannian submersion from Ṽ to its cross-sectional disk D. Recall that a smooth map
f : Ṽ → D is called a Riemannian submersion if its differential df : TpṼ → Tf(p)D is an
orthogonal projection at each point.

We note that if M has a hyperbolic metric and V ⊂ M is a fixed-radius tube about a
closed geodesic, then the metric on V is submersible. In addition, we will see in Section 2
that the negatively curved solid tori constructed using the 2π–Theorem are also submersible.
Thus the hypothesis of submersibility is relatively mild.
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Theorem 1.3. Let M be an orientable Riemannian 3–manifold whose non-compact ends (if
any) are isometric to horospherical cusp neighborhoods, and whose boundary (if any) consists
of minimal surfaces. Suppose the sectional curvatures of M are bounded above by κmax < 0.
Let Σ be a Heegaard surface for M . Let V be a solid torus in M , such that the metric on V
is submersible and its cross–sectional disk D satisfies

(1.1) area(D) > 2πχ(Σ)/κmax.

Then the core curve γ of V is isotopic into Σ. Here χ(Σ) denotes Euler characteristic.

Theorem 1.3 generalizes Breslin’s theorem in several ways. First, it does not require Σ to
be strongly irreducible. Second, it allows M to have cusps and/or boundary. Third, it allows
the metric on M to have variable curvature. Finally, the explicit hypothesis of equation (1.1)
may be easier to check in applications than Breslin’s hypothesis on the length of γ. These
improvements are obtained by modifications of Breslin’s original argument; we describe them
in Section 4.

With all of this work in hand, part (1) of Theorem 1.1 will follow immediately by applying
Theorem 1.3 to the negatively curved metric described in Theorem 2.1. Part (2) of Theorem
1.1 will follow by another geometric argument, which is given in Section 5.

Acknowledgments. We thank Marc Lackenby, Yo’av Rieck, Saul Schleimer, and Juan
Souto for a number of helpful conversations. We also thank the referee for numerous sugges-
tions that improved our exposition.

2. A negatively curved metric on the filled manifold

In this section, we begin with a cusped hyperbolic manifold X, and recall an explicit
construction of a negatively curved metric on a Dehn filling M = X(s1, . . . , sk). Following
results of the the authors and Kalfagianni in [9, Section 2], we will obtain explicit estimates
on curvature and areas in the negatively curved metric on M . These estimates are designed
to plug into equation (1.1), which will give us control over Heegaard surfaces in M .

Theorem 2.1. Let X be a complete, finite–volume hyperbolic manifold with cusps. Sup-
pose C1, . . . , Ck are disjoint horoball neighborhoods of some (possibly all) of the cusps. Let
s1, . . . , sk be slopes on ∂C1, . . . , ∂Ck, each with length greater than 2π. Denote the minimal
slope length by `min.

Then, for every ζ ∈ (0, 1), the Dehn filled manifold M = X(s1, . . . , sk) admits a Riemann-
ian metric, in which the cusp Ci is replaced by a negatively curved solid torus Vi. This metric
has the following properties:

(1) The metric on Mr
⋃

i Vi agrees with the hyperbolic metric on Xr
⋃

i Ci.

(2) The sectional curvatures of M are bounded above by ζ

((
2π

`min

)2
− 1

)
< 0.

(3) The metric on each Vi is submersible, as in Definition 1.2.

(4) The cross-sectional disk of Vi has area at least ζ

(
`min

2

`min + 2π

)
.

Proof. To construct a Riemannian metric on M satisfying (1), it suffices to construct a
negatively curved metric on each solid torus Vi, such that in a collar neighborhood of ∂Vi, it
agrees with the hyperbolic metric in a collar neighborhood of ∂Ci. This is precisely what is
done in [9, Theorem 2.1]. Thus the cusp neighborhoods Ci can be replaced by solid tori Vi,
obtaining (1). In addition, we showed in [9, Lemma 2.3 and Theorem 2.5] that the curvatures
of the resulting metric on M are bounded as claimed in (2).



4 DAVID FUTER AND JESSICA S. PURCELL

For the rest of the argument, we focus on one solid torus V = Vi, and drop the subscripts
for convenience. We describe the metric on V that was constructed in [9, Theorem 2.1]. Let
tlim = 1− (2π/`(si))2, and choose a parameter t ∈ (0, tlim). For fixed t, the metric on V can
be described in cylindrical coordinates by the equation

(2.1) ds2 = dr2 + (ft(r))2 dµ2 + (gt(r))2 dλ2,

Here, ft and gt are functions obtained by solving a certain ODE. The coordinate 0 ≤ µ ≤ 1
is measured around each meridional circle, while 0 ≤ λ ≤ 1 is measured perpendicular to µ
in the longitudinal direction. Furthermore, r0(t) ≤ r ≤ 0 is radial distance, where r = 0 on
the boundary torus ∂V and r0(t) < 0 is the unique root of the function ft(r). The radial
value r = r0(t) corresponds to the core of the solid torus V .

Observe that the expression for the metric in equation (2.1) is already diagonalized, with
the three coordinate vectors mutually orthogonal. Furthermore, if we lift the metric to the
universal cover Ṽ , the µ and λ coordinates are globally defined. Thus the projection from
Ṽ ∼= D × R to the cross-sectional disk D, defined by (r, µ, λ) 7→ (r, µ), is a Riemannian
submersion, as claimed in (3).

To prove the theorem, it remains to compute the area of a meridian disk D. Since the
coordinate λ is constant over a meridian disk, the area for fixed t will be given by∫ 1

0

∫ 0

r0(t)
ft(r) drdµ =

∫ 0

r0(t)
ft(r) dr.

By [9, Theorem 5.4 and equation (4)], we know that as t → tlim, the functions ft converge
uniformly to

ftlim(r) =
`(si)

√
1− tlim√
tlim

sinh(
√

tlim(r − r0)), where r0 = − tanh−1(
√

tlim)/
√

tlim.

Thus, as t → tlim, the area of the meridian disk limits to

lim
t→tlim

∫ 0

r0(t)
ft(r) dr =

∫ 0

r0

ftlim(r) dr

=
∫ 0

r0

`(si)
√

1− tlim√
tlim

sinh
(√

tlim(r − r0)
)
dr

=
`(si)

√
1− tlim

tlim

(
cosh(

√
tlim(−r0))− 1

)
=

`(si)
√

1− tlim
tlim

(
cosh(tanh−1(

√
tlim))− 1

)
=

`(si)
√

1− tlim
tlim

(
1√

1− tlim
− 1

)
=

`(si) · 2π/`(si)
1− (2π/`(si))2

(
`(si)
2π

− 1
)

=
`(si)2

`(si) + 2π
.

Therefore, for t sufficiently close to tlim, we obtain item (4). �
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3. Sweepouts and generalized Heegaard splittings

In this section, we review the definitions of strongly irreducible Heegaard splittings, and
untelescoping for weakly reducible Heegaard splittings. We recall the definition of a sweepout,
as well as bounded area sweepouts. For strongly irreducible Heegaard splittings, the existence
of bounded area sweepouts follows from results announced by Pitts and Rubinstein [17].
When the Heegaard splitting is not strongly irreducible, we still obtain a bounded area
sweepout after untelescoping.

None of the results in this section are original. However, since the ideas described here
are gathered from many sources, we found it helpful to write down a unified exposition.

Definition 3.1. A compression body C is constructed by taking a closed, oriented (possibly
disconnected) surface S with no S2 components, thickening it to S × [0, 1], and attaching a
finite number of 1–handles to S×{1} in a way that makes the result connected. The negative
boundary of C is ∂−C := S × {0}, and the positive boundary is ∂+C := ∂Cr∂−C.

A handlebody of genus g, constructed by attaching g 1–handles to a 3–ball, is also consid-
ered a compression body. Its negative boundary is empty, and its positive boundary is the
genus g surface ∂C.

The spine of a compression body C consists of the negative boundary ∂−C, along with the
core arcs of the attached 1–handles. In the special case where C is a handlebody, a spine is any
graph whose regular neighborhood is C. In either case, a compression body C deformation
retracts to its spine, and in fact, the complement of the spine in C is homeomorphic to
∂+C × (0, 1).

Definition 3.2. A Heegaard splitting of a compact orientable 3–manifold M is an expression
M = C1∪C2, where C1 and C2 are compression bodies glued along their positive boundaries.
The surface

Σ = C1 ∩ C2 = ∂+C1 = ∂+C2.

is called the Heegaard surface of the splitting M = C1 ∪C2. We often speak of the Heegaard
splitting and its surface interchangeably, as one determines the other.

A Heegaard splitting M = C1 ∪ C2 defines a sweepout. This is a map f : M → [−1, 1],
such that:

• f−1(−1) is a spine of C1 and f−1(1) is a spine of C2.
• For each t ∈ (−1, 1), f−1(t) is a surface isotopic to Σ = ∂+C1 = ∂+C2.

Writing Σt = f−1(t), we obtain a 1–parameter family of surfaces isotopic to Σ, interpolating
between the two spines.

Definition 3.3. A Heegaard splitting M = C1 ∪ C2 is called reducible if there are properly
embedded disks Di ⊂ Ci that are essential (i.e. ∂Di ⊂ ∂+Ci is nontrivial on ∂+Ci) and
such that ∂D1 = ∂D2 ⊂ Σ. If M is irreducible, the sphere D1 ∪ D2 must bound a 3–ball,
hence Σ is obtained by adding extra handles inside the 3–ball, a process called stabilization.
Otherwise, if the splitting is not reducible, it is called irreducible.

Following Casson and Gordon [4], we say a Heegaard splitting is weakly reducible if there
exist essential compression disks Di ⊂ Ci such that ∂D1 ∩ ∂D2 = ∅. It is strongly irreducible
otherwise.

Casson and Gordon showed that an irreducible manifold M with a non-stabilized weakly
reducible splitting must contain an incompressible surface [4]. Scharlemann and Thompson
showed that in this setting, we may always cut M along incompressible surfaces and obtain
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a strongly irreducible generalized Heegaard splitting [25]. Our description of these splittings
follows Lackenby’s paraphrase [13].

Definition 3.4. A generalized Heegaard splitting of a compact orientable 3–manifold M
is a decomposition of M into submanifolds W1, . . . ,Wm, for an even m, where each Wi is
a disjoint union of compression bodies, glued along their boundaries as follows. For each
0 < i < m/2, we have

∂−W2i ∩M◦ = ∂−W2i+1 ∩M◦, and ∂+W2i = ∂+W2i−1.

(Here, the notation M◦ indicates the interior of M .) The surface Fi = Wi∩Wi+1 is called an
even or odd surface, depending on the parity of i. By construction, each component of the
odd surface F2i−1 is a Heegaard surface of the corresponding component of (W2i−1 ∪W2i).

Using the work of Casson and Gordon [4], Scharlemann and Thompson proved that one
may start with a 3–manifold M and an irreducible splitting Σ, and construct a generalized
Heegaard splitting with the following properties:

(1) Every component of every odd surface F2i−1 is a strongly irreducible Heegaard surface
for the component of (W2i−1 ∪W2i) that contains it.

(2) Every even surface F2i is incompressible, with no 2–sphere components.
(3) Every Fi satisfies χ(Σ) ≤ χ(Fi) ≤ 0.

A generalized Heegaard splitting with these properties is called thin.
The process of constructing a generalized Heegaard splitting is called untelescoping, and

the inverse process (which recovers Σ) is called amalgamation. We describe the amalgamation
process briefly, since we will need it below.

Choose an even surface in the generalized splitting, say F2. By Definition 3.4, a component
S2 ⊂ F2 is the negative boundary of a compression body C2 ⊂ W2 and a compression body
C3 ⊂ W3. By Definition 3.1, C2 is constructed by attaching 1–handles to a surface S × {1},
which is parallel to S2 = S × {0}. Extend these 1–handles through S × [0, 1], and attach
them directly to S2. Similarly, extend the 1–handles of the compression body C3 ⊂ W3, to
attach them directly to S2 ⊂ F2. This can be done while keeping the attaching disks disjoint
from the attaching disks of the 1–handles in C2. See [13, Figure 12].

If we perform this construction for every component of F2, the resulting surface F ′
2, ob-

tained from F2 by attaching annuli, is now a Heegaard surface of W1 ∪ . . . ∪ W4. In other
words, we have obtained a generalized Heegaard splitting with fewer pieces. Continuing in
this manner, we amalgamate all the pieces and obtain a Heegaard surface for M . Although
there are various choices involved this procedure (choosing handle structures on the com-
pression bodies, choosing an order in which to amalgamate), amalgamation is guaranteed to
recover the original Heegaard surface Σ ⊂ M . See [13, Proposition 3.1].

Our goal is to work with generalized Heegaard splittings in the context of a negatively
curved metric, as constructed in Section 2.

Definition 3.5. Let M be an orientable Riemannian 3–manifold. An orientable surface
F ⊂ M is called almost minimal if F is either a minimal surface, or is the boundary of an
ε–neighborhood of a non-orientable minimal surface F ′.

We will use the following result on essential surfaces and minimal surfaces; see [8, 15, 26].

Lemma 3.6. Let M be a negatively curved Riemannian 3–manifold, whose boundary (if any)
consists of minimal surfaces. Then

(1) A connected, orientable, essential surface F ⊂ M is isotopic to an almost minimal
surface, as in Definition 3.5.
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(2) If F and G are disjoint, connected, non-parallel essential surfaces, then their almost–
minimal representatives are also disjoint.

In particular, if {W1, . . . ,Wm} form a thin generalized Heegaard splitting for M , one may
isotope the Wj into a position where each piece Mi = W2i−1 ∪W2i has minimal boundary.
A boundary surface of Mi may be part of the original boundary of M , or it may result
from cutting along a minimal surface corresponding to an even Fi, as in Lemma 3.6. (Note
that if Fi is isotopic to the orientable double cover of a non-orientable minimal surface F ′

i ,
then cutting along F ′

i is equivalent to cutting along Fi, and produces orientable, minimal
boundary.)

Every minimal surface in M satisfies an upper bound on area, related to its curvature.

Lemma 3.7. Let M be an orientable Riemannian 3–manifold whose sectional curvatures
are bounded above by κmax < 0. Let S ⊂ M be a minimal surface. Then

(3.1) area(S) ≤ 2πχ(S)/κmax.

Proof. This follows from the Gauss–Bonnet theorem, combined with the properties of min-
imal surfaces. Let λ1, λ2 denote the principal normal curvatures at a point x ∈ S, let Kx

denote the sectional curvature of M along S, and let κ denote the Gaussian curvature of S
at x ∈ S. Then the minimality of S implies that λ1 = −λ2 hence

κ = Kx + λ1λ2 ≤ Kx ≤ κmax.

Integrating over S, we obtain

κmax area(S) =
∫

S
κmax dA ≥

∫
S

κ dA = 2π χ(S),

where the last equality is the Gauss–Bonnet theorem. Dividing the previous equation by
κmax gives the desired statement. �

Note that if F is the orientable double cover of a non-orientable minimal surface F ′, as
in Definition 3.5, then choosing a sufficiently small ε–neighborhood ensures that area(F )
satisfies a bound arbitrarily close to (3.1). This will be useful for Heegaard surfaces.

The following lemma is essentially a reformulation of an announced result by Pitts and
Rubinstein [17]. As mentioned in the introduction, a complete proof of their result has not
yet appeared.

Lemma 3.8. Let M be an orientable Riemannian 3–manifold whose non-compact ends (if
any) are isometric to horospherical cusp neighborhoods, and whose boundary (if any) consists
of minimal surfaces. Suppose the sectional curvatures of M are bounded above by κmax < 0.
Let Σ be a strongly irreducible Heegaard surface for M . Then, for any ζ ∈ (0, 1), there is a
sweepout of M corresponding to Σ, such that every level surface Σt satisfies

area(Σt) ≤
2πχ(Σ)
ζ κmax

.

Proof. As described in Definition 3.2, the Heegaard surface Σ specifies a sweepout of M . In
any choice of sweepout, there is a surface Σt of maximal area. Let A be the infimum of these
maximal areas, over all sweepouts corresponding to Σ. The number A is called a minimax
value.

The work of Pitts and Rubinstein implies that there is a minimal surface F ⊂ N whose
area is the minimax value A if F is orientable, or A/2 if F is non-orientable [17]. Furthermore,
Σ is constructed by taking an almost minimal surface corresponding to F , and then possibly
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attaching a single tube. Both of these operations (taking the boundary of an ε–neighborhood,
attaching a tube) can be achieved while increasing the area A by an arbitrarily small amount.
Thus, Lemma 3.7 guarantees that for any ζ ∈ (0, 1), there is a sweepout whose level surfaces
satisfy

area(Σt) ≤ 2πχ(Σ)/ζ κmax,

as desired. �

4. Core of Dehn filling and Heegaard surfaces

The goal of this section is to prove Theorem 1.3, which was stated in the introduction.
Most of the work here goes into proving the following, slightly simpler statement.

Theorem 4.1. Let M be an orientable Riemannian 3–manifold whose non-compact ends (if
any) are isometric to horospherical cusp neighborhoods, and whose boundary (if any) consists
of minimal surfaces. Suppose the sectional curvatures of M are bounded above by κmax < 0.
Let {W1, . . . ,Wm} be a thin generalized Heegaard splitting of M , with separating surfaces
Fi = Wi ∩Wi+1.

Let V be a solid torus in M , such that the metric on V is submersible. If a cross–sectional
disk D of V satisfies

(4.1) area(D) >
2π χ(Fi)

κmax
∀i,

then the core curve γ of V is isotopic into one of the odd surfaces Fi.

The statement of Theorem 4.1 is similar to Theorem 1.3, with the single difference that
a Heegaard surface Σ has been replaced by a thin generalized Heegaard splitting. In our
applications, this will be the generalized splitting obtained by untelescoping Σ. Furthermore,
by amalgamating the generalized splitting to recover Σ, we will see that Theorem 1.3 follows
quickly from this statement.

For the remainder of the section, we will use the definitions and notation of Theorem 4.1.
In particular, M will denote a negatively curved 3–manifold, with a generalized Heegaard
splitting {W1, . . . ,Wm}. As in the theorem, V will denote a submersible solid torus in M ,
whose cross-sectional disk satisfies (4.1).

The proof of Theorem 4.1 is essentially due to Breslin, and follows the same line of argu-
ment as in his paper [3]. We need to make slight modifications to his argument to accommo-
date manifolds with boundary, generalized Heegaard splittings, and the metric of variable
negative curvature. However, the spirit of the argument is the same. Where our argument
differs from his, we walk through the details carefully.

The proof breaks down into the following claims:
(1) The core curve γ of V is isotopic into the complement of the even surfaces. This means

that we can work with a single odd surface S = Fi, which is strongly irreducible in
its component. We will show this in Lemma 4.3.

(2) The Heegaard surface S = Fi contains a simple loop homotopic to γn for some n.
The geometric proof of this claim, based on [3, Lemma 2], appears in Lemma 4.4.

(3) There is an embedded annulus A ⊂ M , such that one component of ∂A is on S and
the other component of ∂A is on ∂N(γ), a tubular neighborhood of γ. The argument
is nearly the same as that of [3, Lemma 1], and is recalled in Lemma 4.6.

(4) The loop ∂A ∩ ∂N(γ) is isotopic to γ, hence γ is isotopic into S through A. The
proof is identical to [3, Lemma 5], which we restate in Lemma 4.7.
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The following lemma is useful for both incompressible surfaces and strongly irreducible
Heegaard surfaces. The proof is inspired by [3, Claim 1].

Lemma 4.2. Let M and V be as in Theorem 4.1. Suppose that F is a compact, orientable
surface embedded in M , such that

area(F ) < area(D),

where D is the cross-sectional disk in V . Then V rF contains a closed curve that is essential
in V .

Proof. If F ∩ V contains a closed curve that is essential in V , we may homotope this curve
to one side of F , into V rF , satisfying the conclusion of the lemma. Thus we may assume
that F ∩ V does not contain an essential curve.

Consider lifts of F ∩ V in Ṽ , the universal cover of V . Since F ∩ V does not contain an
essential curve, there is a lift F̃ of F ∩ V in Ṽ that is isometric to F ∩ V . Because Ṽ is a
ball, any connected component of F̃ must separate Ṽ . We want to show that the two ends
of Ṽ are contained in the same component of Ṽ rF̃ .

Let D be a cross-sectional disk of Ṽ . By Definition 1.2, there is a Riemannian submersion
f : Ṽ → D. Because Riemannian submersions reduce area, and area(F ∩ V ) < area(D), the
projection of F̃ must miss some point x ∈ D. Then the fiber {x} × R ⊂ Ṽ is disjoint from
F̃ , hence no component of F̃ can separate the ends of Ṽ .

The lift of a meridian disk to Ṽ consists of a disjoint family of disks Dj , for j ∈ Z, where a
deck transformation maps Dj to Dj+1. For a natural number n, let R = Rn be the component
of Ṽ r(D−n ∪Dn) that has compact closure. Because F is compact, there are finitely many
lifts F̃1, . . . , F̃k of F ∩ V that intersect the closure of R. Each component F̃i splits R into
two pieces, one of which does not separate the ends of Ṽ . Thus the set Ṽ r(F̃1 ∪ · · · ∪ F̃k)
contains a component that intersects both D−n and Dn. In other words, there is a path from
D−n to Dn that is disjoint from the complete preimage of F ∩ V . Since n was arbitrary, it
follows that some component of the preimage of V rF in Ṽ has non-compact closure. The
projection of this component to V must contain a non-trivial curve. �

Using Lemma 4.2, we can show that the core curve γ of V is disjoint from the even,
incompressible surfaces in the generalized Heegaard splitting.

Lemma 4.3. Let M and V be as in Theorem 4.1. Let F = F2 ∪ F4 ∪ . . . ∪ Fm−2 be the
union of the even surfaces in the generalized Heegaard splitting of M , and suppose (following
Lemma 3.6) that each even Fi has been isotoped to be almost minimal in M . Suppose that
the cross-sectional disk of V satisfies

area(D) > 2π χ(Fi)/κmax ∀i.
Then some component V ′ of V rF is a solid torus, isotopic in M to V itself. Furthermore,
each component of V rV ′ is a trivial I–bundle over a subsurface of ∂V .

Proof. By Lemma 3.6, each even Fi is isotopic to a minimal surface, or is the boundary of
an ε–neighborhood of a non-orientable minimal surface. Then Lemma 3.7 implies that for
sufficiently small ε, we can ensure the area of Fi is bounded above by 2πχ(Fi)/κmax + δ, for
arbitrarily small δ. In particular, we have

area(Fi) < area(D).

Consider the curves of intersection F ∩ ∂V . If one of these curves is a meridian of V , it
must bound a disk in some Fi, because Fi is incompressible. Pass to an innermost disk in Fi,
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among all disks whose boundary is a meridian curve on ∂V . This disk must be a meridian
of V , because M is negatively curved, hence irreducible. But then V rF cannot contain a
curve that is essential in V , contradicting Lemma 4.2. Therefore, every curve of F ∩ ∂V is
either trivial in ∂V , or else essential in V .

As a preliminary step for the proof, we isotope trivial curves of F ∩ ∂V off V , through
balls, as follows. If any curve of F ∩ ∂V is trivial in ∂V , at least one such trivial curve must
be innermost in F . This curve must bound a disk D0 ⊂ F and a disjoint disk D1 ⊂ ∂V .
Because M is irreducible, we may isotope D0 past D1, to remove this curve of intersection.
If any trivial curves remain, repeat this procedure with another innermost curve. After this
sequence of isotopies, any remaining curves of F ∩ ∂V are essential in V .

Now, consider a component A0 of F ∩V (if any). Since each component of F is essential in
M , and every curve of ∂A0 is essential in V , the component A0 must itself be incompressible
in V . Since π1(A0) ↪→ π1(V ) ∼= Z and F is 2–sided, this means A0 is an annulus. As all
annuli in a solid torus are boundary–parallel, F consists entirely of boundary–parallel annuli.
Each boundary–parallel annulus A0 cuts off a boundary–parallel solid torus in V .

After removing all of these boundary–parallel pieces (if any), we find a component V ′ of
V rF that is isotopic to V itself. Now, undo the isotopies through balls that removed the
trivial curves of intersection of F ∩ ∂V in the preliminary step of the proof. Each of these
isotopies modifies V ′ by pushing a disk on the boundary into or out of V ′. In particular,
these isotopies preserve the property that the component V ′ of V rF is isotopic to V itself.
They also preserve the property that each component of V rV ′ is boundary-parallel. �

Recall the thin generalized splitting {W1, . . . ,Wm} of M , with surfaces Fi = Wi ∩Wi+1.
By Lemma 4.3, we know that there is a solid torus V ′ ⊂ V , which is isotopic to V itself, and
is disjoint from every even surface F2i. This means that V ′ is contained in some submanifold
W2i−1 ∪W2i, in the complement of the even surfaces. For the rest of this section, we take W
to be the connected component of W2i−1 ∪W2i containing V ′.

The following lemma, and its proof, was inspired by [3, Lemma 2].

Lemma 4.4. Let M and V be as in Theorem 4.1, and let V ′ be as in Lemma 4.3. Let
S ⊂ F2i−1 be a strongly irreducible Heegaard surface for the submanifold W that contains
V ′. Then, after an isotopy of S, there is a simple closed curve δ ⊂ S ∩ V ′ that is essential
in V ′.

Proof. By Equation (4.1), the cross–sectional disk D of V satisfies the strict inequality
area(D) > 2πχ(S)/κmax. Thus, for some ζ ∈ (0, 1) near 1, we have

area(D) > 2πχ(S)/(ζκmax).

For this value of ζ, Lemma 3.8 implies that there exists a sweepout f : W → [−1, 1] corre-
sponding to S, such that every level surface St satisfies

(4.2) area(St) ≤ 2πχ(Σ)/(ζκmax) < area(D).

Let V ′ ⊂ V ∩W be the solid torus guaranteed by Lemma 4.3, which is isotopic to V .

Claim 4.5. For every t ∈ (−1, 1), some component of V ′rSt contains a closed curve that is
essential in V ′.

Proof of claim. By Equation (4.2) and Lemma 4.2, we know that some component of V rSt

contains a closed curve that is essential in V . What needs to be shown is that this curve can
be taken to lie in V ′.
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Let Gt = St ∩ V ′. Since ∂V ′ consists of sub-surfaces of ∂V and sub-surfaces of F =
F2 ∪ F4 ∪ . . . ∪ Fm−2, and since St is disjoint from F , we know that ∂Gt ⊂ ∂V , i.e. Gt is
properly embedded in V .

Since V contains an essential closed curve in the complement of St, it also contains such
a curve in the complement of Gt. Furthermore, by Lemma 4.3, V rV ′ consists of trivial I–
bundles over subsurfaces of ∂V . Thus we may homotope the essential closed curve through
the interior of V , away from these boundary–parallel pieces and into V ′. �

For each t ∈ (−1, 1), let Ht = f(S × [−1, t)) ⊂ W and Jt = f(S × (t, 1]) ⊂ W . Note
the closure of Ht is the compression body below St, and the closure of Jt is the compression
body above St. Define

EH := {t ∈ (−1, 1) : Ht ∩ V ◦ contains a closed curve that is essential in V ′},
EJ := {t ∈ (−1, 1) : Jt ∩ V ◦ contains a closed curve that is essential in V ′}.

By Claim 4.5, we know that every t ∈ (−1, 1) is contained in either EH or EJ .
Since each of Ht ∩ V ◦ and Jt ∩ V ◦ is open in W , we know that both EH and EJ are

open sets. Furthermore, for t close to −1, Ht is a small regular neighborhood of a spine of
W2i−1, hence these values of t must be contained in EJ . Similarly, for t close to 1, Jt is a
small regular neighborhood of a spine of W2i, hence these values of t must be contained in
EH . Since both EH and EJ are open and non-empty, and their union (−1, 1) is connected,
it follows that EH ∩ EJ 6= ∅.

Let r ∈ EH ∩ EJ . Then, by construction, Hr ∩ V ◦ contains an essential loop that we call
αH , and Jr ∩V ◦ contains an essential loop that we call αJ . There exist integers n, m so that
(αH)n is homotopic to (αJ)m in V , and thus there is an immersed annulus A in V ′ with
boundary components (αH)n and (αJ)m. This implies that some loop A ∩ Sr is non-trivial
in A, and hence, by taking a sub-loop, if necessary, there exists an embedded essential loop
in A ∩ Sr, which must therefore be essential in V ′. Since the sweepout surface Sr is isotopic
to S, we are done. �

The rest of the proof follows from two lemmas, whose topological proofs are due to Breslin.
We need only check that his proofs carry through in our setting. The first is [3, Lemma 1].

Lemma 4.6. Let the submanifold W and the Heegaard surface S ⊂ F2i−1 be as in Lemma
4.4. Let γ be the core curve of V , as in Theorem 4.1. Then, possibly after isotoping γ, there
is a regular neighborhood N(γ) and an embedded annulus A in WrN(γ) with ∂A = α ∪ α′,
where α is a simple essential nonmeridional loop in the boundary of N(γ) and α′ ⊂ S.

Proof. By Lemma 4.4, we may isotope S so that S ∩ V ′ contains a simple loop α that
is essential in V ′, where V ′ ⊂ V is the solid torus of Lemma 4.3. Recall the sweepout
f : W → [−1, 1], which was constructed in the proof of Lemma 4.4. This map has the
property that f−1(t) = St is isotopic to S for each t ∈ (−1, 1), while the sets f−1(±1) consist
of the spines of the two compression bodies.

The next step is to use the Rubinstein–Scharlemann graphic. For closed manifolds, the
graphic is defined in [22]. However, we need to use the Rubinstein–Scharlemann graphic for
manifolds with boundary, as in [23]. In particular, one modification is that we only consider
the part of the sweepout that runs from S−1+ε to S(1−ε), for some ε > 0 sufficiently small.
This way, we avoid problems as the sweepout meets the boundary of W .

Let g : V ′ → [0, 1] be a smooth function that gives a sweepout of the solid torus. That
is, for all s ∈ (0, 1), g−1(s) is a surface isotopic to ∂V ′, while g−1(1) = ∂V ′, and g−1(0) is
a closed curve isotopic to γ, the core of V . Isotope γ to be g−1(0). We will consider the
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function gt = g|St∩V ′ , and apply work of Cerf [5] to isotope f and g so that gt is Morse for
all but finitely many t, and near–Morse otherwise. The Rubinstein–Scharlemann graphic G
is the set of points (t, s) ∈ [−1, 1]× [0, 1] such that s is a critical value of gt. While care must
be taken for applications of the graphic for manifolds with boundary (compare [22] and [23]),
to apply Breslin’s proof we only need the result from Cerf theory that if (t1, s1) and (t2, s2)
are in the same component of ([−1 + ε, 1− ε]× [0, 1])rG, then the surface St1 is isotopic to
St2 via an isotopy that takes the loops in g−1

t1
(s1) to the loops in g−1

t2
(s2).

Using the graphic described above, we obtain [3, Lemma 4]. According to that lemma,
one of two conclusions must hold for some t ∈ (−1, 1):

(1) St ∩ ∂V ′ contains a loop that is essential and non-meridional on ∂V ′, or
(2) St ∩ V ′ does not contain an essential loop of St.

The proof of [3, Lemma 4] works verbatim with the slight modification to the sweepout
that was mentioned above. In addition to the Rubinstein–Scharlemann graphic, it uses
Scharlemann’s No Nesting Lemma [24]. Note that this lemma applies equally well to 3–
manifolds with and without boundary.

In case (1) above, we are essentially done with the proof of Lemma 4.6, as follows. Let
N(γ) = g−1[0, 1 − ε] be a solid torus slightly inside V ′. Let α′ ⊂ St ∩ g−1(1) be the loop
guaranteed by conclusion (1), and let α be the projection of α′ to ∂N(γ) = g−1(1− ε). Then
the product annulus between α and α′ satisfies the lemma.

In case (2) above, there is a t ∈ (−1, 1) so that St ∩ V ′ does not contain an essential loop
of St, and thus each loop in St ∩ ∂V ′ bounds a disk in St. By Lemma 4.4, another sweepout
surface Sr has the property that Sr ∩ V ′ contains a simple loop αr that is essential in V ′.
Since Sr and St are isotopic, there is an embedded annulus A with one boundary component
equal to αr ⊂ Sr and the other equal to some αt ⊂ St.

Because all loops of St ∩ ∂V ′ bound disks on St, we may isotope A to avoid these disks,
hence αt is disjoint from St ∩ ∂V ′. The loop αt must therefore be contained in the interior
of V ′ or disjoint from V ′. Because St ∩ V ′ contains no essential loop of St, and because αt is
isotopic to the essential loop αr, we must have αt in WrV ′. Isotope A slightly, if necessary,
so that αr is contained in the interior of V ′. Then A is an annulus embedded in W with
∂A = αr ∪ αt with αr ⊂ V ′ and αt ⊂ (WrV ′). Thus A meets ∂V ′ in an essential loop α′t.
Use the embedded annulus bounded by αt and α′t to isotope St so that St ∩ V ′ contains a
loop that is essential and nonmeridional in ∂V ′. This puts us back into case (1), hence the
proof is complete. �

We have seen that there is an embedded annulus in W with one boundary component on
a neighborhood of γ and one on our Heegaard surface S = F2i−1. This annulus must wrap
around some power of γ. The final step toward proving Theorem 4.1 is to show that in fact,
we may take the annulus to wrap exactly once around γ.

Lemma 4.7. Let W be a 3–manifold with Heegaard surface S, and let γ be a simple loop in
W with regular neighborhood N(γ). Let α be an essential nonmeridional loop in N(γ), and
α′ a loop in S. If there is an embedded annulus A ⊂ W disjoint from N(γ), with boundary
α ∪ α′, then γ is isotopic into S.

Proof. This is [3, Lemma 5], and Breslin’s proof goes through verbatim. We note that his
proof uses a thin position argument of Schultens [27], modified slightly by Breslin. The
argument holds for manifolds with or without boundary, and indeed Schultens’ original
application concerned manifolds with boundary. Hence we refer the reader to [3, Lemma 5]
for the proof. �
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The referee informs us that Lemma 4.7 can also be proved via a straightforward application
of the Daisy Lemma [10].

Proof of Theorem 4.1. Recall that S ⊂ F2i−1 is a component of one of the odd surfaces in a
generalized Heegaard splitting of M . Now, the theorem follows by Lemmas 4.6 and 4.7. �

The above results also give a quick proof of Theorem 1.3, which was stated in the intro-
duction.

Proof of Theorem 1.3. Let Σ be a genus g Heegaard surface of M . If Σ is irreducible, then,
as described in Section 3, we may untelescope Σ to a thin generalized Heegaard splitting
{W1, . . . ,Wm}. By property (3) of thinness, the cross-sectional disk D of the submersible
solid torus V satisfies

area(D) >
2πχ(Σ)
κmax

≥ 2π χ(Fi)
κmax

∀i.

Thus, by Theorem 4.1, the core curve γ of V is isotopic into some odd surface F2i−1.
Now, we assume γ ⊂ F2i−1, and amalgamate the generalized Heegaard splitting to recover

Σ. At certain times during the amalgamation process, we will need to attach handles to a
partially amalgamated surface containing γ. Each time we do this, a small isotopy ensures
that γ is disjoint from the disks along which we attach handles. Thus, after the amalgamation
is complete, we have γ ⊂ Σ.

Meanwhile, if Σ is reducible, then we destabilize Σ to an irreducible Heegaard surface Σ′

of genus h < g, apply the above argument to Σ′, and then stabilize back to genus g. Since
stabilizations are unique, this approach recovers the desired result for Σ. �

5. Assembling the pieces

In this section, we complete the proof of Theorem 1.1. The following lemma will permit
us to apply the results of Section 4.

Lemma 5.1. Let C1, . . . , Ck be disjoint cusp neighborhoods of a hyperbolic 3–manifold X,
and let si be a slope on cusp Ci. Suppose that the shortest slope length is `min > 2π(2g−1), for
some g ≥ 2. Then the Dehn filling M = X(s1, . . . , sk) admits a negatively curved metric as
in Theorem 2.1, with curvatures bounded by κmax < 0, such that the area of a cross–sectional
disk of every Dehn filling solid torus satisfies

area(D) >
2π(2g − 2)
|κmax|

.

Proof. If `min > 2π(2g − 1), then Theorem 2.1 implies that for every ζ ∈ (0, 1), the Dehn
filled manifold M admits a Riemannian metric with sectional curvatures bounded by κmax =
ζ(4π2/`min

2 − 1), and with cross–sectional disks of area at least ζ`min
2/(`min + 2π), where

`min > 2π(2g − 1).

Since the above inequality is strict, we may find ζ near 1 such that `min > (2π/ζ2)(2g−2+ζ2).
Select this value of ζ for the application of Theorem 2.1.

Then for any cross sectional disk D,

area(D) ≥ ζ`min
2

`min + 2π
=

ζ(`min − 2π)
1− 4π2/`min

2 ≥ ζ2(`min − 2π)
|κmax|

>
ζ2

(
2π
ζ2 (2g − 2 + ζ2)− 2π

)
|κmax|

=
2π(2g − 2)
|κmax|

.
�
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Proof of Theorem 1.1. Let Σ be a Heegaard surface of genus g for the Dehn filled manifold
M = X(s1, . . . , sk). By Theorem 2.1, M admits a metric with sectional curvatures bounded
by κmax < 0, which means g ≥ 2. By Lemma 5.1, the area of a cross–sectional disk of each
Dehn filling solid torus satisfies area(D) > 2πχ(Σ)/κmax. Note that the solid tori constructed
in Theorem 2.1 are submersible, as desired. Thus, by Theorem 1.3, we conclude that each
core γi of the ith solid torus is isotopic into Σ, as required for conclusion (1).

We will prove conclusion (2) by induction on k. That is, let Σ be a Heegaard surface
for M = X(s1, . . . , sk). In the following argument, we will show that the core γk of the
kth solid torus can be isotoped off Σ in such a way that Σ becomes a Heegaard surface for
Mrγk

∼= X(s1, . . . , sk−1). This argument works for arbitrary k. Hence by induction, Σ
becomes a Heegaard surface for X.

In the following argument, we may also assume without loss of generality that Σ is irre-
ducible. Otherwise, as in the proof of Theorem 1.3, we simply destabilize Σ to an irreducible
surface Σ′, apply the argument to Σ′, and stabilize at the end to recover Σ.

With these preliminaries out of the way, we assume that Σ is irreducible in X(s1, . . . , sk),
and untelescope Σ to a thin generalized Heegaard splitting {W1, . . . ,Wm}. Let V = Vk

be the kth Dehn filling solid torus, with the negatively curved metric of Theorem 2.1. By
Lemma 5.1, the cross-sectional disk D of V satisfies

area(D) >
2πχ(Σ)
κmax

≥ 2π χ(Fi)
κmax

,

for each surface Fi of the generalized splitting. Thus, by Theorem 4.1, the core curve γk

of V = Vk is isotopic into some odd surface F2i−1. Recall that S = F2i−1 is a strongly
irreducible Heegaard surface of the submanifold W = W2i−1 ∪W2i.

After γk has been isotoped into S, consider the surface SrN(γk) ⊂ W , where N(γk) is a
small tubular neighborhood of γk contained in W . Note SrVk ⊂ WrVk. Let {D1, . . . , Dn}
be a collection of disjoint, non-parallel compression disks for SrN(γk) in W , which is maxi-
mal with respect to inclusion. Since S is strongly irreducible, all of the Dj must be contained
in the same compression body, say W2i−1. Let S′ ⊂ W2i−1 be the surface obtained after com-
pressing SrN(γk) along all of the Dj .

Claim 5.2. Each component of S′ is either a sphere, a closed surface parallel to ∂−W2i−1,
or an annulus parallel to N(γk).

Proof of claim. First, suppose that a component of S′ is closed and not a 2–sphere. Since
we have compressed SrN(γk) along a maximal collection of disks, this component must be
incompressible in W2i−1. But the only incompressible surfaces in a compression body are
parallel to the negative boundary ∂−W2i−1.

Next, suppose that a component of S′ is a surface with boundary, and call this component
R. Since ∂(SrN(γk)) consists of two curves, both parallel to γk, ∂R must be a union of one
or two curves parallel to γk. Since the surface S has genus at most g, and we obtained R by
cutting S along γk and then compressing, the genus of R is at most g − 1.

Suppose, for a contradiction, that R is an essential surface in WrN(γk): that is, not an
annulus parallel to N(γk). Then, since ∂W = F2i−2∪F2i is a union of incompressible surfaces,
the component R must also be essential in X(s1, . . . , sk−1). Isotope the cores γ1, . . . , γk−1

until they intersect R minimally, and let R◦ = Rr(γ1 ∪ . . . ∪ γk−1).
We claim that R◦ must be incompressible in the original cusped hyperbolic manifold X.

To see this, suppose that an essential curve α ⊂ R◦ bounds a compression disk D0 ⊂ X.
By passing to an innermost sub-disk if needed, we may assume that the interior of D0 is
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disjoint from R. But R is incompressible in X(s1, . . . , sk−1), hence α also bounds a disk
D1 ⊂ R. Since α = ∂D1 is an essential curve in R◦, the disk D1 must be punctured two or
more times by the γi. On the other hand, D0 is disjoint from all the cores γi, and has the
same boundary as D1. Isotoping these cores through the ball co-bounded by D0 and D1,
past D1, will reduce the intersection number between R and γ1 ∪ . . . ∪ γk−1, contradicting
the construction of R◦. Therefore, R◦ is incompressible in X.

Recall that by construction, R◦ has a boundary component on N(γk). Thus, if R◦ is a
boundary-parallel annulus, then so is R, a contradiction. Thus R◦ is incompressible and
boundary–incompressible in X.

Now, remove the horospherical cusps C1, . . . , Ck from both X and R◦, and consider ∂R◦,
which is a union of b closed curves on ∂C1, . . . , ∂Ck. The curves of ∂R, which run parallel
to γk, must be one or two longitudes of the filling slope sk. Meanwhile, every other curve of
∂R◦ is a meridian of some γj (for 1 ≤ j ≤ k − 1), hence is in the isotopy class of the filling
slope sj .

By the hypotheses of Theorem 1.1, the shortest longitude of sk has length `(λk) > 6(2g−3).
Each filling slope sj for 1 ≤ j ≤ k − 1 also has length

`(sj) > 2π(2g − 1) > 6(2g − 1) > 6(2g − 3).

We conclude that the total length `(∂R◦) of all the curves of ∂R◦ must satisfy

b · 6(2g − 3) < `(∂R◦) ≤ 6|χ(R◦)| ≤ 6 (2(g − 1) + b− 2) = 6(2g + b− 4),

where the second inequality is a theorem of Agol [1, Theorem 5.1] and Lackenby [11, Lemma
3.3]. Comparing the first and last terms, we obtain

b · (2g − 3) < 2g + b− 4
2gb− 2g − 4b + 4 < 0

2(g − 2)(b− 1) < 0,

which is a contradiction since g ≥ 2 and b ≥ 1. This contradiction proves the claim. �

Recall that we obtained S′ from S by compressing along a maximal collection of disks
{D1, . . . , Dn}. By strong irreducibility of S, all of these disks are contained in the same
compression body W2i−1. Because all of these disks are disjoint from γk, we may isotope γk

into W2i−1 while staying disjoint from {D1, . . . , Dn}.
We claim that W2i−1rN(γk) is itself a compression body. This can be seen by building

the compression body “downward” from its positive boundary S = ∂+W2i−1. We thicken
the surface S into S × [0, 1] ⊂ W2i−1, and attach a 2–handle along each curve on S × {0}
corresponding to ∂Dj for each j. After attaching the 2–handles, the resulting negative
boundary is exactly the surface S′, with its two boundary curves joined together. By Claim
5.2, the surface obtained after attaching 2–handles consists of spheres, closed surfaces parallel
to ∂−W2i−1, and a single torus isotopic to ∂N(γk). Thus, after capping off each 2–sphere
with a 3–ball, we obtain a compression body W ′

2i−1, satisfying

∂+W ′
2i−1 = ∂+W2i−1 = S, ∂−W ′

2i−1 = ∂−W2i−1 ∪ ∂N(γk).

We have just shown that the core curve γk may be isotoped off the generalized splitting
surface, into W2i−1, in such a way that the submanifolds

{W1, . . . ,W2i,W
′
2i−1,W2i+2, . . . ,Wm}

form a thin generalized Heegaard splitting of Mrγk = X(s1, . . . , sk−1). After amalgamating
this generalized splitting, we obtain a Heegaard surface Σ′ ⊂ Mrγk.
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Recall that, by [13, Proposition 3.1], amalgamation produces a unique Heegaard surface.
Thus Σ′ is isotopic in M = X(s1, . . . , sk) to the surface Σ obtained by amalgamating the
splitting {W1, . . . ,Wm}. In other words, we have isotoped Σ into X(s1, . . . , sk−1), in such a
way that it is still a Heegaard surface. Repeating the above argument for the core γk−2 ⊂
X(s1, . . . , sk−1), and so on, completes the proof of Theorem 1.1. �
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