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Abstract. The study of rod complements is motivated by rod packing structures in crys-

tallography. We view them as complements of links comprised of Euclidean geodesics in

the 3-torus. Recent work of the second author classifies when such rod complements admit

hyperbolic structures, but their geometric properties are yet to be well understood. In this

paper, we provide upper and lower bounds for the volumes of all hyperbolic rod complements

in terms of rod parameters, and show that these bounds may be loose in general. We introduce

better and asymptotically sharp volume bounds for a family of rod complements. The bounds

depend only on the lengths of the continued fractions formed from the rod parameters.

1. Introduction

The present work is motivated by the notion of rod packing structures in crystallography.
In 1977, O’Keeffe and Andersson observed that many crystal structures can be described as
a packing of uniform cylinders, representing linear or zigzag chains of atoms or connected
polyhedra [24]. In 2001, O’Keeffe et al. classified some of the simplest so-called rod packings
in terms of arrangements in Euclidean space [25]. Rod packings have also appeared in the
biological science and materials science literature [27, 10, 23, 9].

A rod packing structure exhibits translational symmetry along each dimension in a three-
dimensional Euclidean space, it is thus natural to view a rod packing structure as a geodesic
link in the 3-torus, whose covering space is the three-dimensional Euclidean space. In this
paper, we use tools from 3-manifold geometry and topology to study the complements of
these geodesic links, called rod complements. In particular, Thurston’s geometrisation theorem
implies that each rod complement can be decomposed into geometric pieces. Indeed, each
rod complement with three or more linearly independent rods is hyperbolic or has a unique
hyperbolic rod complement component in its JSJ decomposition [21, 20, 5]. This means that
geometric invariants such as the hyperbolic volume could be used to classify and distinguish
rod complements. However, we need to know how geometry relates to the vector descriptions
of rods in the 3-torus, which aligns with the descriptions of rods in crystallography. This is
still unknown in general.

In previous work, the second and third authors used vector description and the theory of
links in the 3-sphere to identify an infinite family of rod complements that admit complete
hyperbolic structures [21]. Following this, the second author provided a complete classification
of the geometric structures on rod complements in the 3-torus [20]. As a consequence, checking
the hyperbolicity of a rod complement reduces to a linear algebra problem. While [21, 20]
provide a convenient characterisation of when a rod complement is hyperbolic, they do not
give further information on the metric. In this paper, we provide more information on the
hyperbolic structures of rod complements via the study of their volumes.
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The Mostow–Prasad rigidity theorem states that a complete hyperbolic metric on a finite-
volume hyperbolic 3-manifold is unique, so hyperbolic volume is a topological invariant. In the
crystallographic setting, the uniqueness of hyperbolic structures allows us to associate each
rod packing structure with a real number, namely the volume. When volumes are distinct, this
provides a simple way to distinguish rod packing structures and avoid the more complicated
symmetry descriptions that are often used in chemistry, see [25] for examples.

For a rod complement in the 3-torus, each rod has an associated direction in the unit cube
fundamental region of the 3-torus. We encode the direction of each rod by integer vector
coordinates, which we call rod parameters. Our most general result provides upper and lower
volume bounds in terms of the number of rods and their rod parameters.

Theorem 3.2. Let R1, R2, . . . , Rn be disjoint rods in the 3-torus whose complement is a
hyperbolic 3-manifold M . After applying a linear homeomorphism and renumbering, if
necessary, we may assume that there is a positive integer k < n such that Rk+1, Rk+2, . . . , Rn

are exactly the (0, 0, 1)-rods. Suppose that Ri has direction vector (pi, qi, zi), for i = 1, 2, . . . , n.
Then we have the inequalities

n vtet < Vol(M) ≤ 8 vtet

 ∑
1≤i<j≤k

|piqj − pjqi|+
∑

1≤i≤k

(gcd(pi, qi)− 1)

 ,

where vtet ≈ 1.01494 is the volume of the regular ideal tetrahedron.

The lower bound is due to a result proved by Adams, which applies to any cusped hyperbolic 3-
manifold [1]. Such a bound can be loose in general; indeed, we find families of rod complements
for which the number of rods is fixed at n = 3, but for which the volumes approach infinity.

The upper bound uses more recent results of Cremaschi and Rodŕıguez Migueles [6, Theo-
rem 1.5], which can be applied to many complements of geodesic links in Seifert fibred spaces,
see also [7]. Again, such a bound can be loose, even when restricted to rod complements; there
are families of rod complements for which the volumes are bounded but for which the right
side of the inequality above grows to infinity.

Thus, while Theorem 3.2 provides reasonable initial bounds that may be strong in certain
cases, they are somewhat unsatisfying in general. It would be desirable to have upper and
lower volume bounds that depend linearly on the same quantity. For example, hyperbolic
volumes of 2-bridge knots [18], alternating knots [22], and highly twisted knots [15] are known
to be bounded above and below by linear functions of the number of twist regions. For all
of these knot complements, the upper bound is asymptotically sharp. The lower bound is
asymptotically sharp in the 2-bridge case [18], and sharp, realised by the Borromean rings, in
the alternating case [2, Theorem 2.2]. Similarly, there are upper and lower volume bounds
for adequate knots in terms of coefficients of coloured Jones polynomials [8, 15, 14]. There
are also upper and lower volume bounds for fibred 3-manifolds in terms of a quantity related
to the action of the monodromy map [4], with analogous results for cusp volumes [17]. One
would like to obtain such results for rod complements.

While we have not obtained coarse volume bounds of this form in general, we do find improved,
asymptotically sharp volume bounds for infinite families of rod complements in terms of
the lengths of the continued fractions formed from their rod parameters. These lengths of
continued fractions can remain the same when rod parameters increase significantly.



VOLUME BOUNDS FOR HYPERBOLIC ROD COMPLEMENTS IN THE 3-TORUS 3

Theorem 5.7. Let R1, R2, . . . , Rn be disjoint rods in the 3-torus whose complement is M ,
where n ≥ 3. Suppose that Rn has direction vector (0, 0, 1) and for i < n, Ri has direction vector
(pi, qi, 0), with (pi, qi) ̸= (pi+1, qi+1) for i = 1, 2, . . . , n− 2 and (pn−1, qn−1) ̸= (p1, q1). Suppose
that R1, R2, . . . , Rn−1 are positioned from top to bottom in the unit cube representation of
the 3-torus. Let [ci1; ci2, . . . , cimi ] be a continued fraction expansion for pi/qi. Then M is
hyperbolic and its volume satisfies the asymptotically sharp upper bound

Vol(M) ≤ 2 voct

n−1∑
i=1

mi.

Suppose in addition that

C := min
1≤i≤n−1

j≥2

{|cij |, |ci1 − c(i−1)1|} ≥ 6,

where c01 is interpreted as c(n−1)1. Then the volume satisfies the lower bound

Vol(M) ≥
(
1− 4π2

C2 + 4

)3/2

2 voct

n−1∑
i=1

mi.

Theorem 5.7 leads to the following consequences.

Corollary 5.9. There exists a sequence of hyperbolic rod complements with bounded volume,
but for which the upper bound of Theorem 3.2 grows to infinity.

Corollary 5.10. There exists a sequence of hyperbolic rod complements, each with three
rods, whose volumes grow to infinity.

Other works related to geometry and periodic links include [11], in which Evans, Robins, and
Hyde studied 3-periodic links using energy functions. In [12], Evans and Schröder-Turk use
2-dimensional hyperbolic geometry to study triply periodic links embedded in the 3-dimensional
Euclidean space.

The structure of the paper is as follows.

• In Section 2, we introduce some terminology, notation and foundational results that
are used throughout the paper. These pertain to rod complements, continued fractions
and homeomorphisms from the n-dimensional torus to itself.

• In Section 3, we provide general volume bounds for all hyperbolic rod complements in
the 3-torus (Theorem 3.2). The upper bound is in terms of the rod parameters, while
the lower bound is only in terms of the number of rods.

• In Section 4, we introduce the notion of nested annular Dehn filling in the 3-torus.
• In Section 5, we use the notion of nested annular Dehn filling to provide more refined
volume bounds for a particular class of rod complements (Theorem 5.7). This is
sufficient to exhibit a family of rod complements with bounded volumes for which the
upper bound of Theorem 3.2 grows to infinity (Corollary 5.9) and another family with
bounded number of rods whose volumes grow to infinity (Corollary 5.10).

• In Section 6, we conclude with brief discussion of open questions that are motivated
by the present work.
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2. Preliminaries

2.1. Rod complements. We consider the 3-torus T3 as the unit cube [0, 1]× [0, 1]× [0, 1]
in 3-dimensional Euclidean space, with opposite faces glued identically, as in [21, 20]. Its
universal cover is R3 and it inherits the Euclidean metric from R3.

A rod is the projection of a Euclidean straight line with rational slope in R3 to T3 under the
covering map.

For n a positive integer, an n-rod complement is the complement of n disjoint rods in the
3-torus. When n is unspecified, we refer to such a manifold simply as a rod complement.

Let p, q, z be integers, not all zero, with gcd(p, q, z) = 1. A (p, q, z)-rod is a geodesic in T3

that has (p, q, z) as a tangent vector. We call (p, q, z) a direction vector of the rod, where we
consider (p, q, z) only up to a change of sign. We call the integers p, q, z the rod parameters of
the rod. A standard rod is a (1, 0, 0)-rod, a (0, 1, 0)-rod, or a (0, 0, 1)-rod.

A rod complement is said to be hyperbolic if it admits a complete hyperbolic structure; for
further details on hyperbolic geometry, see for example [26]. In previous work, the second
author classified exactly when rod complements are hyperbolic, Seifert fibred or toroidal.

Theorem 2.1 (Hui, [20]). Let R1, R2, . . . , Rn be disjoint rods in T3. The rod complement
T3 \ (R1 ∪R2 ∪ · · · ∪Rn) is:

(1) hyperbolic if and only if {R1, R2, . . . , Rn} contains three linearly independent rods and
each pair of disjoint parallel rods are not linearly isotopic in the complement of the
other rods;

(2) Seifert fibred if and only if all rods have the same direction vector; and
(3) toroidal if

(a) the direction vectors of the rods all lie in the same plane; or
(b) there exist two distinct rods that are linearly isotopic in the complement of the

other rods.

In case (3)(b), suppose without loss of generality that Rn−1 and Rn are linearly isotopic in the
complement of the other rods. Then an essential torus encircling the linearly isotopic rods will
cut the rod complement into a solid torus containing Rn−1 and Rn, and a new rod complement
with rods R1, R2, . . . , Rn−1. So if there were three linearly independent rods to begin with,
there would be a unique hyperbolic rod complement appearing as a component of the JSJ
decomposition; see [5, Theorem 19]. The upshot of this discussion is that rod complements
are very commonly hyperbolic, in a certain sense.

Observe that in a hyperbolic rod complement, there may be several rods with the same
direction vector, provided that for any two such rods, at least one other rod intersects the
linear annuli bound by them. Two or more rods with the same direction vector are said to be
parallel.
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2.2. Continued fractions. Let p, q be nonzero relatively prime integers. The rational number
p/q can be expressed as a finite continued fraction

p

q
= [c1; c2, . . . , cm] := c1 +

1

c2 +
1

c3 +
1

. . . +
1

cm

,

where c1 is an integer and c2, . . . , cm are non-zero integers. The integers c1, c2, . . . , cm are
called coefficients or terms of the continued fraction and the number m is called the length of
the continued fraction.

Observe that a continued fraction expansion for a given rational number is not unique. For
example, the rational number 7

4 can be expressed in several ways, including [1; 1, 3], [1; 1, 2, 1]
and [2;−4]. The upper bound of Theorem 5.7 is strengthened by using continued fraction
expansions that have minimal length. In particular, if m ≥ 2, we do not allow cm = 1 in the
continued fraction expansion above.

Note that the length of the continued fraction [0] = 0
1 is one. For convenience, we define the

“empty” continued fraction [ ] = 1
0 and consider its length to be zero.

The rational numbers whose continued fraction expansions we consider arise as slopes on
the 2-torus. We consider the 2-torus T2 as the unit square [0, 1] × [0, 1] in 2-dimensional
Euclidean space, with opposite faces glued identically. Its universal cover is R2 and it inherits
the Euclidean metric from R2.

Let p and q be integers, not both zero, with gcd(p, q) = 1. A simple closed geodesic on T2

is said to have slope p/q or to be a (p, q)-curve if it is isotopic to the projection of a line in
R2 with slope q

p . Observe that our definition of slope on the torus is the reciprocal of the

corresponding slope on the plane. We defined slope of simple closed geodesics in this way
because of our choices of notations in Section 4.

2.3. Homeomorphisms of the n-torus. The following are useful results concerning homeo-
morphisms of the n-dimensional torus Tn. The statements are well-known, but short proofs
have been provided for completeness.

Lemma 2.2. For n ≥ 2, an element A ∈ GL(n,Z) induces a homeomorphism from Tn to
itself.

Proof. The element A ∈ GL(n,Z) gives rise to a homeomorphism from Rn to itself that sends
the integer lattice Zn to itself. In particular, it takes the standard basis of Rn to a basis
formed by the columns of A, whose coordinates are integers. This produces a new fundamental
domain for the torus. The induced homeomorphism simply maps the standard fundamental
domain of the torus to this new fundamental domain via A. □

In fact, it is known that when n = 2 or n = 3, GL(n,Z) is the mapping class group of Tn.
(The result for n = 2 appears in [13, Theorem 2.5] while the result for n = 3 follows from work
of Hatcher [19].)
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Remark 2.3. Given a rod complement in the 3-torus that contains an (a, b, c)-rod R, there
exists an element of GL(3,Z) that sends (a, b, c) to (0, 0, 1). By Lemma 2.2, we may change
the fundamental region of the 3-torus to ensure that R is a (0, 0, 1)-rod. In the rest of the
paper, we often assume without loss of generality that one of the rods in a rod complement
has direction vector (0, 0, 1).

Lemma 2.4 (Bézout’s lemma in n-dimensions). Let n ≥ 2 be an integer. Suppose that
an = (a1n, a2n, . . . , ann)

⊺ is a nonzero vector in Zn ⊂ Rn with gcd(a1n, a2n, . . . , ann) = 1.
Then there exist vectors a1,a2, . . . ,an−1 in Zn such that det(a1,a2, . . . ,an) = 1.

Proof. We prove the result by induction on n. Suppose that a2 = (a12, a22)
⊺ is a nonzero

vector in Z2 with gcd(a12, a22) = 1. By Bézout’s lemma, there exist integers a11, a21 such that
a11a22− a21a12 = 1. So defining a1 = (a11, a21)

⊺ leads to det(a1,a2) = 1. This proves the base
case n = 2.

Now let n ≥ 3 be an integer. Suppose that an = (a1n, a2n, . . . , ann)
⊺ is a nonzero vector in Zn

with gcd(a1n, a2n, . . . , ann) = 1. Without loss of generality, suppose that ann ̸= 0 so that the
vector ãn := (a2n, a3n, . . . , ann)

⊺ is nonzero. Let

d := gcd (a2n, a3n, . . . , ann) .

Since gcd(a1n, d) = gcd(a1n, a2n, . . . , ann) = 1, by Bézout’s lemma, there exist integers s and t
such that sd− ta1n = 1.

Set a11 = s and

(a21, a31, . . . , an1) :=
t

d
ã ⊺
n =

t

d
(a2n, a3n, . . . , ann) .

Since 1
d ãn ∈ Zn−1 and gcd

(
a2n
d , a3nd , . . . , ann

d

)
= 1, by induction there exist ã2, ã3, . . . , ãn−1 in

Zn−1 such that det
(
ã2, ã3, . . . , ãn−1,

1
d ãn

)
= 1.

Now define a1 := (s, t
d ã

⊺
n)⊺,a2 := (0, ã ⊺

2 )
⊺, . . . ,an−1 := (0, ã ⊺

n−1)
⊺. Then by expanding along

the first row, we find that

det(a1,a2, . . . ,an−1,an)

= a11 det(ã2, . . . , ãn−1, ãn) + (−1)1+na1n det
(
t
d ãn, ã2, . . . , ãn−1

)
= sd det

(
ã2, . . . , ãn−1,

1
d ãn

)
+ (−1)(1+n)+(n−2)a1nt det

(
ã2, . . . , ãn−1,

1
d ãn

)
= sd− a1nt

= 1.

This concludes the induction. □

Proposition 2.5. For fixed n ≥ 2, all 1-rod complements in the n-torus are homeomorphic.

Proof. Let R be a rod in the n-torus whose fundamental region is [0, 1]n. Suppose an =
(a1n, a2n, . . . , ann)

⊺ is the direction vector of R. We may translate the rod R so that it
intersects the origin. As R is a simple closed curve, we must have gcd(a1n, a2n, . . . , ann) = 1.
By Lemma 2.4, there exist vectors a1,a2, . . . ,an−1 in Zn ⊂ Rn such that

det(a1,a2, . . . ,an) = 1.
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Hence, the matrix (a1,a2, . . . ,an) lies in GL(n,Z) and by Lemma 2.2, it induces a homeo-
morphism that maps the (0, 0, . . . , 0, 1)-rod to the an-rod. Therefore, any 1-rod complement
Tn \R is homeomorphic to Tn \Rz, where Rz represents a standard (0, 0, . . . , 0, 1)-rod. □

3. Volume bounds for all rod complements

In this section, we obtain upper and lower bounds on the volumes of all hyperbolic rod
complements.

Proposition 3.1. An n-rod complement in the 3-torus with k ≥ 1 parallel rods is an (n−k)-rod
complement in the Seifert fibred space T2

k × S1, where T2
k is a torus with k punctures.

Proof. Let M be an n-rod complement in the 3-torus with k parallel rods R1, R2, . . . , Rk.
Suppose that these parallel rods have direction vector (a, b, c), where a, b, c are integers such
that gcd(a, b, c) = 1. By Lemma 2.4, there exist integers f, g, h, p, q, r such that

det

a f p
b g q
c h r

 = 1 ⇒

a f p
b g q
c h r

 ∈ GL(3,Z).

By Lemma 2.2, such a matrix represents an orientation-preserving homeomorphism of T3

sending the rods with direction vectors (1, 0, 0), (0, 1, 0), (0, 0, 1) to rods with direction vectors
(a, b, c), (f, g, h), (p, q, r), respectively.

Define T ⊂ T3 to be a 2-torus spanned by the vectors (f, g, h) and (p, q, r). Note that
T \ (R1 ∪ R2 ∪ · · · ∪ Rk) is a k-punctured torus. As the homeomorphism represented by
the above matrix sends the standard fundamental region of the 3-torus to the fundamental
region spanned by the vectors (a, b, c), (f, g, h), (p, q, r), M is homeomorphic to an (n− k)-rod
complement in the Seifert fibred space T \ (R1 ∪R2 ∪ · · · ∪Rk)× S1. □

Theorem 3.2. Let R1, R2, . . . , Rn be disjoint rods in the 3-torus whose complement is a hy-
perbolic 3-manifold M . After applying a linear homeomorphism and renumbering, if necessary,
we may assume that there is a positive integer k < n such that Rk+1, Rk+2, . . . , Rn are exactly
the (0, 0, 1)-rods. Suppose that Ri has direction vector (pi, qi, zi), for i = 1, 2, . . . , n. Then we
have the inequalities

n vtet < Vol(M) ≤ 8 vtet

 ∑
1≤i<j≤k

|piqj − pjqi|+
∑

1≤i≤k

(gcd(pi, qi)− 1)

 ,

where vtet ≈ 1.01494 is the volume of the regular ideal tetrahedron.

Proof. From Theorem 2.1, we deduce that n ≥ 3. Adams proved that an n-cusped hyperbolic
3-manifold M with n ≥ 3 satisfies the inequality Vol(M) > nvtet, which is the desired lower
bound [1, Theorem 3.4].

We obtain the upper bound using a result of Cremaschi and Rodŕıguez-Migueles [6, Theorem 1.5].
They prove that for a link L in an orientable Seifert fibred spaceN over a hyperbolic 2-orbifold O
in which L projects injectively to a filling geodesic multi-curve L ⊆ O, one has the volume
bound

Vol(N \ L) < 8 vtet i(L,L).
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Here, i(L,L) denotes the geometric self-intersection number of L.
In our particular setting, Proposition 3.1 asserts thatM is homeomorphic to a k-rod complement
in the Seifert fibred space

N = (T \ (Rk+1 ∪Rk+2 ∪ · · · ∪Rn))× S1,

where T ⊆ T3 is a 2-torus such that the intersection number between Rn and T is 1. Denote
by L the k-component link R1 ∪ R2 ∪ · · · ∪ Rk in N . Here, Ri is a (pi, qi, zi)-rod with
(pi, qi) ̸= (0, 0) for i = 1, 2, . . . , k.

Let P : N → T \ (Rk+1 ∪Rk+2 ∪ . . .∪Rn) be the bundle projection map. Note that the link L
projects to L, a union of k rods in the base space T \ (Rk+1 ∪ Rk+2 ∪ · · · ∪ Rn), which is a
2-torus in T3 with n− k punctures. The rod Ri projects to a (pi, qi)-curve on this punctured
torus.

After a small deformation of the rods, we may ensure that their projections intersect transversely,
with at most two arcs meeting at each intersection point. Any pair of projections P(Ri) and
P(Rj) intersect at least |piqj − pjqi| times; see for example [13, Section 1.2.3]. The (pi, qi)-curve
P(Ri) intersects itself at least gcd(pi, qi)− 1 times. Hence, the total geometric intersection
number of P(L) is ∑

1≤i<j≤k

|piqj − pjqi|+
∑

1≤i≤k

(gcd(pi, qi)− 1) .

Thus, applying the result of Cremaschi and Rodŕıguez-Migueles leads to the upper bound. □

Remark 3.3. The upper volume bound in Theorem 3.2 depends on the choice of rod
that is sent to the (0, 0, 1)-rod via a homeomorphism of T3. For example, if we consider
four rods R1, R2, R3, R4 with direction vectors (2, 4, 3), (5, 7, 1), (9, 8, 6), (0, 0, 1), respectively,
Theorem 3.2 will give us an upper volume bound 8 vtet × 50. Using the constructive proof
of Lemma 2.4, we obtain the following matrices in GL(3,Z) that map (0, 0, 1) to R1, R2, R3,
respectively. 1 0 2

0 −1 4
0 −1 3

 1 0 5
0 1 7
0 0 1

 −4 0 9
−4 −1 8
−3 −1 6


By taking the inverses of these matrices and computing the new rod parameters, we now
obtain upper volume bounds of 8 vtet × 116, 8 vtet × 114, and 8 vtet × 132, respectively. We
naturally take the minimum among all such choices to obtain a suitable upper bound.

4. Nested annular Dehn filling in the 3-torus

We will show that neither the upper nor lower bound of Theorem 3.2 can be part of a two-sided
coarse volume bound in terms of the given parameters. That is, we exhibit a family of rod
complements with fixed number of cusps whose volumes grow to infinity as well as a family of
rod complements with bounded volume for which the intersection number in the upper bound
of Theorem 3.2 grows to infinity. For both of these results, we use the machinery of annular
Dehn filling.

Definition 4.1 (Annular Dehn filling). Let A be an annulus embedded in a 3-manifold M ,
with boundary curves L+ and L−. Let µ± denote a meridian of ∂N(L±) and let λ± denote a
longitude of ∂N(L±) that is parallel to ∂A.
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Figure 1. A (1, 1)-curve on the standard rods with direction vectors (1, 0, 0),
(0, 1, 0) and (0, 0, 1), respectively.

For an integer n, define (1/n)-annular Dehn surgery to be the process of drilling N(L+) and
N(L−) from M , performing (+1/n)-Dehn filling on ∂N(L+) and performing (−1/n)-Dehn
filling on ∂N(L−).

The surgery can be realised by cutting along A, performing n Dehn twists along the core of A
in the anticlockwise direction (where the induced orientation puts L+ on the right of the core
of A), and then regluing; see for example [3, Section 2.3].

If the curves L± are already drilled, such as in the case of a link complement, define (1/n)-
annular Dehn filling along A to be the process of performing (+1/n)-Dehn filling on L+ and
performing (−1/n)-Dehn filling on L−, where the framing on the link components is as above.

In our case, we perform annular Dehn filling on an annulus bounded by a pair of parallel rods
in the 3-torus. Note that parallel rods bound many annuli in T3. The following result confirms
that the resulting link is well defined, regardless of our choice of annulus.

Lemma 4.2. Let R+ and R− be parallel rods in T3 that form the boundary of two non-isotopic
annuli A+ and A− with disjoint interiors. Suppose that A+ is the annulus oriented with R+

on the right of the core, under the induced orientation from T3. Then (1/n)-annular Dehn
filling on A+ and (−1/n)-annular Dehn filling on A− result in homeomorphic manifolds.

More generally, suppose that A1 and A2 are disjoint annuli with A1 cobounded by rods R0 and
R1, with R1 to the right, and A2 cobounded by R1 and a rod R2, with R1 to the left. Let M be
the result of performing (1/n)-annular Dehn filling on A1 followed by (1/m)-annular Dehn
filling on A2. Then M is also the result of performing (−1/n)-Dehn filling on R0, followed
by (1/(n−m))-Dehn filling on R1, followed by (1/m)-Dehn filling on R2, when R0 ̸= R2. If
R0 = R2, then the Dehn filling coefficient on R0 = R2 is 1/(m− n).

Proof. Let N+ be the manifold obtained by 1/n-annular Dehn filling A+ and let N− be
the manifold obtained by −1/n-annular Dehn filling A−. The fact that N+ and N− are
homeomorphic follows from the fact that the link complements have the same Dehn surgery
coefficients. Thus, the results of the Dehn fillings must be homeomorphic.

To prove the more general statement, we again consider the Dehn surgery coefficients. Annular
Dehn filling first along A1 gives surgery slope µ+nλ on R1 and µ−nλ on R0, where µ denotes
a meridian and λ is parallel to ∂A1. Then performing 1/m-annular Dehn filling along A2

adjusts the surgery slope on R1 by subtracting m longitudes, giving µ+ (n−m)λ. It gives a
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surgery slope of µ+mλ on R2 when R0 ̸= R2. When R0 = R2, the slopes combine as on R1

to give µ− (n−m)λ. □

Definition 4.3. Let m be an even positive integer. Consider a unit cube fundamental
region of T3. For each i = 1, 2, . . . , m2 , let (R

+
2i−1, R

−
2i−1) be a pair of (1, 0, 0)-rods bounding

a vertical xz-plane annulus within the unit cube, with R+
2i−1 above and R−

2i−1 below. Let

(R−
2i, R

+
2i) be a pair of (0, 1, 0)-rods bounding a vertical yz-plane annulus with R−

2i above and

R+
2i below. A rod R is said to be sandwiched along the xy-plane by nested pairs of rods with

order (R+
1 , R

−
2 , . . . , R

+
m−1, R

−
m) if and only if R lies in an xy-plane and the rods are positioned

from top to bottom in the unit cube in the order

(R+
1 , R

−
2 , . . . , R

+
m−1, R

−
m, R,R+

m, R−
m−1, . . . , R

+
2 , R

−
1 ).

Similarly, for m an odd positive integer, we can say R is sandwiched along the xy-plane by
nested pairs of rods with order (R+

1 , R
−
2 , . . . , R

−
m−1, R

+
m) if and only if R lies in an xy-plane

and the rods are positioned from top to bottom in the unit cube in the order

(R+
1 , R

−
2 , . . . , R

−
m−1, R

+
m, R,R−

m, R+
m−1, . . . , R

+
2 , R

−
1 ).

See the top-left picture of Figure 2 for an example of a rod sandwiched by nested pairs of rods
with m = 3.

Lemma 4.4. Let p and q be integers with gcd(p, q) = 1. Suppose that [c1; c2, . . . , cm] is a
continued fraction expansion of p/q. If m is even, consider a (1, 0, 0)-rod Rx sandwiched along
the xy-plane by nested pairs of rods with order

(R+
1 , R

−
2 , . . . , R

+
m−1, R

−
m).

If m is odd, consider a (0, 1, 0)-rod Ry sandwiched along the xy-plane by nested pairs of rods
with order

(R+
1 , R

−
2 , . . . , R

−
m−1, R

+
m).

Sequentially apply (1/ci)-annular Dehn filling to the pair (R+
i , R

−
i ) of rods, starting with

i = m and ending with i = 1. Then the rod Rx for m is even (respectively, Ry for m odd) is
transformed to a (p, q, 0)-rod.

Proof. We will focus on the case when the length m of the continued fraction is odd. The
argument for m even follows similarly.

Starting with the (0, 1, 0)-rod Ry and applying (1/cm)-annular Dehn filling to (R+
m, R−

m)

transforms the (0, 1, 0)-rod Ry to a (cm, 1, 0)-rod R(1). See the first and second pictures of
Figure 2 for an example.

The (cm, 1, 0)-rod R(1) intersects the annulus bounded by R−
m−1 and R+

m−1 a total of cm times.

Applying (1/cm−1)-annular Dehn filling to (R+
m−1, R

−
m−1) transforms the (cm, 1, 0)-rod R(1)

into a (cm, 1 + cmcm−1, 0)-rod R(2). See the second and third pictures of Figure 2 for an
example. Observe that the ratio of the rod parameters satisfies

1 + cmcm−1

cm
= cm−1 +

1

cm
.

The (cm, 1 + cmcm−1, 0)-rod R(2) intersects the annulus bounded by R+
m−2 and R−

m−2 a total

of 1+ cmcm−1 times. Applying (1/cm−2)-annular Dehn filling to (R+
m−2, R

−
m−2) transforms the
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(cm, 1 + cmcm−1, 0)-rod R(2) into a (cm + (1 + cmcm−1)cm−2, 1 + cmcm−1, 0)-rod R(3). See the
third and fourth pictures of Figure 2 for an example. Now observe that the ratio of the rod
parameters satisfies

cm + (1 + cmcm−1)cm−2

1 + cmcm−1
= cm−2 +

cm
1 + cmcm−1

= cm−2 +
1

cm−1 +
1

cm

Continuing in this way, we apply (1/cm−3)-annular Dehn filling, (1/cm−4)-annular Dehn filling,
and so on, until we finally apply (1/c1)-annular Dehn filling. Each successive annular Dehn
filling prepends a term to the continued fraction expansion for the ratio of the rod parameters.
Hence, the final rod R(m) has direction vector (p, q, 0), where p/q = [c1; c2, . . . , cm]. □

Note that Lemma 4.4 holds for any continued fraction expansion of p/q, without any restriction
on the signs of the terms.

Definition 4.5. Let p and q be integers with gcd(p, q) = 1. Suppose that [c1; c2, . . . , cm] is a
continued fraction expansion of p/q. Define (p, q)-nested annular Dehn filling to be the process
of performing the sequence of (1/ci)-annular Dehn fillings from i = m to i = 1 on the rod
Rx or Ry, as described in Lemma 4.4. The rod Rx or Ry is called the core rod of the nested
annular Dehn filling. The rods R+

i and R−
i for i = 1, 2, . . . ,m are called the filling rods of the

nested annular Dehn filling.

For example, consider (p, q)-nested annular Dehn filling with (p, q) = (5, 3), using the continued
fraction expansion p/q = 5/3 = [1; 1, 2]. Since the number of terms is odd, we start with a
(0, 1, 0)-rod Ry sandwiched along the xy-plane by nested pairs of rods with order (R+

1 , R
−
2 , R

+
3 ),

as shown in the top-left picture of Figure 2. After applying (1/2)-annular Dehn filling to the
pair of innermost red rods (R+

3 , R
−
3 ), we obtain the rod complement shown in the top-right

picture of Figure 2. Then after applying (1/1)-annular Dehn filling to the pair of green rods
(R+

2 , R
−
2 ), we obtain the rod complement shown in the bottom-left picture of Figure 2. Finally,

after applying a (1/1)-annular Dehn filling to the outermost pair of red rods (R+
1 , R

−
1 ), we

obtain the rod complement shown in the bottom-right picture of Figure 2. The result is a
single rod with direction vector (5, 3, 0).

Remark 4.6. Any rod that does not intersect the annulus used in annular Dehn filling is
unaffected by the filling. In particular, such rods maintain their direction vectors. This
straighforward observation is crucial for our use of annular Dehn fillings below.

5. Asymptotically sharp volume bounds

With nested annular Dehn filling introduced in the last section, we can now proceed to show
some asymptotically sharp volume bounds for a family of rod complements.

Lemma 5.1. Let R1, R2, . . . , Rn be disjoint rods in T3 with n ≥ 3. Suppose that Rn has
direction vector (0, 0, 1) while each of the other rods Ri has direction vector of the form (pi, qi, 0).
If any two neighbouring rods, ordered by z-coordinate, are not parallel, then the rod complement
T3 \ (R1 ∪R2 ∪ · · · ∪Rn) is hyperbolic.
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−1
2

+1
2

(0, 1, 0)

+1
1

−1
1

(2, 1, 0)

−1
1

+1
1

(2, 3, 0) (5, 3, 0)

Figure 2. The (5, 3)-nested annular Dehn filling on the (0, 1, 0)-core rod. The
vector under each 3-torus is the direction vector of the corresponding black rod
(up to ambient isotopy).

Proof. The direction vectors of rods R1, R2, Rn are linearly independent, since R1 and R2 are
not parallel, and Rn is orthogonal to the plane spanned by the direction vectors of R1 and R2.
Since no two neighbouring rods are parallel, each pair of disjoint parallel rods are not linearly
isotopic in the complement of the other rods. Thus, the result follows from Theorem 2.1. □

Definition 5.2. A standard rod complement is the complement of a finite number of rods
in T3, each with direction vector (1, 0, 0), (0, 1, 0) or (0, 0, 1).

A standard parent manifold of a rod complement T3 \ (R1 ∪R2 ∪ · · · ∪Rn) is a standard rod
complement from which T3 \ (R1 ∪R2 ∪ · · · ∪Rn) can be obtained after a finite sequence of
Dehn fillings.

Proposition 5.3 (Standard parent manifolds exist). Let R1, R2, . . . , Rn be disjoint rods in T3

with n ≥ 3. Suppose that Rn has direction vector (0, 0, 1) while each of the other rods Ri has
direction vector of the form (pi, qi, 0). Suppose that pi/qi has a continued fraction expansion
with mi terms. Let E denote the number of (pi, qi, 0)-rods with even mi and let O denote the
number of (pi, qi, 0)-rods with odd mi. Then there exists a standard rod complement M with

E (1, 0, 0)-core rods and O (0, 1, 0)-core rods together with 2
∑n−1

i=1 mi filling rods such that
T3 \ (R1 ∪R2 ∪ · · · ∪Rn) can be obtained by applying (pi, qi)-nested annular Dehn filling to the
core rods of M for i = 1, 2, . . . , n− 1.

Proof. For i = 1, 2, . . . , n− 1, since gcd(pi, qi) = 1, Lemma 4.4 and Definition 4.5 ensure that
the (pi, qi, 0)-rod Ri can be obtained by applying a (pi, qi)-nested annular Dehn filling to one
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of the E +O core rods. The 2mi filling rods sandwiching the core rod will be removed in the
process of Dehn filling. Observe that a (pi, qi)-nested annular Dehn filling does not affect the
isotopy classes of rods disjoint from the associated annuli. Hence, after applying n− 1 nested
annular Dehn fillings on the E +O = n− 1 core rods, we obtain a 3-manifold homeomorphic
to T3 \ (R1 ∪R2 ∪ · · · ∪Rn). □

Proposition 5.3 provides an explicit procedure to obtain a standard parent manifold of a
rod complement with the particular form for which the result applies. The manifold M in
Proposition 5.3 is a standard parent manifold of T3 \ (R1 ∪R2 ∪ · · · ∪Rn). Note that for each
sandwich of a nested annular Dehn filling, the outermost pair of filling rods are (1, 0, 0)-rods.
Between each pair of adjacent (possibly the same) sandwiches, the bottom filling rod of the
top sandwich is linearly isotopic to the top filling rod of the bottom sandwich, so there is a
natural choice of essential plane annulus between these two filling rods. To obtain a hyperbolic
standard parent manifold, we cut along any such essential plane annuli in M . An example of
a hyperbolic standard parent manifold is shown in Figure 4.

Lemma 5.4. Consider a standard parent manifold M with exactly one (0, 0, 1)-rod and m ≥ 2
additional rods, which alternate between (1, 0, 0)-rods and (0, 1, 0)-rods. Then M is hyperbolic
and can be decomposed into m regular ideal octahedra. Thus, its volume is Vol(M) = mvoct,
where voct ≈ 3.66386 is the volume of the regular ideal octahedron.

Proof. The fact that M is hyperbolic follows from Theorem 2.1. Alternatively, one can
construct the hyperbolic structure directly as follows. Cut M along an xz-plane torus, a
yz-plane torus, and all xy-plane tori that contain (1, 0, 0)-rods or (0, 1, 0)-rods. We obtain m
three-dimensional balls, each with six arcs removed from the boundary. By shrinking these
arcs, one obtains m ideal octahedra; see Figure 3.

We can assign a complete hyperbolic metric on M by setting each ideal octahedron to be
regular. Such a polyhedron has dihedral angles equal to π/2. The gluing of the octahedra
identifies four such dihedral angles around each edge and tiles each cusp by Euclidean squares,
so one obtains a complete hyperbolic structure; see [26, Theorem 4.10]. The volume of M is
then mvoct, the sum of the volumes of the octahedra. □

Lemma 5.5. Let M be a hyperbolic standard parent manifold. The fundamental region of the
torus cusp boundary corresponding to each filling rod of M is a Euclidean rectangle formed by
gluing two squares corresponding to cusp neighbourhoods of ideal vertices of octahedra. The
meridian forms one of the sides of the rectangle, running along one edge of each square. The
longitude forms the other side of the rectangle, running along an edge of one of the squares.
Finally, there exists a choice of horoball neighbourhoods with disjoint interiors for the rod
complement such that the meridian has length 2 and the longitude has length 1.

Proof. Consider how the octahedra in the proof of Lemma 5.4 fit together. Since the rod
complement can be decomposed into ideal octahedra, the cusps corresponding to the filling
rods are tiled by Euclidean squares that are cusp neighbourhoods of the ideal vertices of the
octahedra.

Note that each horizontal rod R meets exactly two octahedra: one above the xy-plane
containing R, which we cut along to obtain the decomposition, and one below. The meridian µ
runs once through each and can be isotoped to run through the xz- or yz-plane as in the left
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µ
λ

m

Figure 3. Left: The complement of rods in a standard parent manifold can be
decomposed into ideal octahedra. Shown are the meridian µ and the longitude
λ for the green rod on the bottom. Right: The midpoint m of an ideal edge in
a hyperbolic ideal triangle.

of Figure 3. Hence, it lies on faces of the two octahedra. Thus, the meridian forms a closed
curve running along one edge in each of the two squares corresponding to the two octahedra.

The longitude may be isotoped to run through a single octahedron, say the one above the
xy-plane containing R, as in the left of Figure 3. Thus, it forms one side of a cusp square.
Finally, observe that the square is glued to itself by the identity, with one side glued to the
opposite side. The cusp is a Euclidean rectangle, comprised of two squares, with the meridian
running along the long edge of the rectangle and the longitude running along the short edge.

It remains to argue that the lengths of the meridian and the longitude are 2 and 1, respectively.
To do so, we show that we can choose horoballs about the cusps of M with disjoint interiors
such that when we intersect with the ideal octahedra, the boundary of the intersection is a
collection of squares, each with side length 1. The horoball expansion we use is the same as
that appearing in [26, Lemma 7.22] or [16, Lemma 3.7]. That is, each edge e of the octahedron
borders two triangular faces. The midpoint of the edge e with respect to one of the triangles is
the unique point on the edge e that lies on a perpendicular hyperbolic geodesic running from
the opposite vertex to e; see the right of Figure 3. Since our ideal octahedron is regular, the
midpoints obtained from either adjacent triangle agree. When the vertices of the ideal triangle
are placed at 0, 1 and ∞, the midpoint has height 1. If we place a regular ideal octahedron
containing a side with vertices at 0, 1, and ∞, the midpoints of each of the edges meeting
infinity also have height 1. This remains true after applying a Möbius transformation taking
any vertex to infinity. Thus, we may expand horoballs about each ideal vertex to the height of
the midpoints of the four edges meeting that vertex. This gives a collection of horoballs that
are tangent exactly at the midpoints of edges, with disjoint interiors. The boundary of each
horoball meets the octahedron in a square of side length 1. Finally, since the octahedra are
glued in such a way that cusp squares glue to cusp squares with the same side lengths, this
gluing must preserve this choice of horoballs. Hence, these define horoball neighbourhoods
with disjoint interiors and lengths as claimed. □

Lemma 5.6. Let M be a hyperbolic standard parent manifold, with slope 1/n on one of the
horizontal rods. Then in the horoball neighbourhood described in Lemma 5.5, the length of the
slope is

√
n2 + 4.

Proof. The slope 1/n runs once along a meridian and n times along the longitude. In the
universal cover of the cusp torus, it can be lifted to an arc with one endpoint at (0, 0) and the
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other at (2, n). The meridian and longitude are orthogonal, with the meridian of length 2 and

the longitude of length 1. Hence, length of the slope is
√
n2 + 22. □

We are now ready to prove the coarse volume bound discussed in the introduction.

Theorem 5.7. Let R1, R2, . . . , Rn be disjoint rods in the 3-torus whose complement is M ,
where n ≥ 3. Suppose that Rn has direction vector (0, 0, 1) and for i < n, Ri has direction
vector (pi, qi, 0), with (pi, qi) ̸= (pi+1, qi+1) for i = 1, 2, . . . , n− 2 and (pn−1, qn−1) ̸= (p1, q1).
Suppose that R1, R2, . . . , Rn−1 are positioned from top to bottom in the unit cube representation
of the 3-torus. Let [ci1; ci2, . . . , cimi ] be a continued fraction expansion for pi/qi. Then M is
hyperbolic and its volume satisfies the asymptotically sharp upper bound

Vol(M) ≤ 2 voct

n−1∑
i=1

mi.

Suppose in addition that

C := min
1≤i≤n−1

j≥2

{|cij |, |ci1 − c(i−1)1|} ≥ 6,

where c01 is interpreted as c(n−1)1. Then the volume satisfies the lower bound

Vol(M) ≥
(
1− 4π2

C2 + 4

)3/2

2 voct

n−1∑
i=1

mi.

Proof. By Lemma 5.1, the manifold M must be hyperbolic.

We construct standard parent manifolds with ideal octahedral decompositions. By Propo-
sition 5.3, there exists a standard rod complement N with n − 1 core rods and

∑n−1
i=1 2mi

filling rods such that M can be obtained by applying a (pi, qi)-nested annular Dehn filling to
each of the core rods of N . Observe that the outermost pair of filling rods for each nested
annular Dehn filling are (1, 0, 0)-rods. Each of the two outermost filling rods for each nested
annular Dehn filling will be linearly isotopic to an outermost filling rod for another nested
annular Dehn filling. By cutting along the essential annuli arising from all of these linear
isotopies, we obtain a standard parent manifold Np with exactly one (0, 0, 1)-rod, namely Rn,
and alternating (1, 0, 0)-rods and (0, 1, 0)-rods.

By Lemma 5.4, Np has a decomposition into
∑n−1

i=1 2mi regular ideal octahedra and it admits
a complete hyperbolic structure.

We obtain M = T3 \ (R1 ∪ R2 ∪ · · · ∪ Rn) by Dehn filling the standard parent manifold Np.
Since Dehn filling decreases volume [29], we obtain the bound

Vol(M) < Vol(Np) = voct

n−1∑
i=1

2mi.

Furthermore, this bound is asymptotically sharp. Taking larger and larger values for the
coefficients cij of the continued fraction expansion while fixing the lengths mi will produce
Dehn fillings of the same parent manifold whose volumes converge to that of the parent
manifold.

For the lower bound, we consider the slopes of the Dehn filling. These are of the form 1/cij for
filling components with 2 ≤ j ≤ mi. For the outermost filling rods, the coefficient of the Dehn
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filling combines the 1/ci1 from one side with −1/c(i−1)1 from the other side, as in Lemma 4.2.
Thus, the slope is 1/(ci1 − c(i−1)1).

By Lemma 5.5, for any integer ℓ, the length of the slope 1/ℓ on a filling rod is
√
ℓ2 + 4. So

under the hypotheses required for the lower bound, the minimum length slope will be at least√
62 + 4 > 2π. We may now apply a theorem of Futer, Kalfagianni and Purcell, which states

that if the minimum slope length is larger than 2π, then the volume change under Dehn filling
is a multiple of the volume of the unfilled manifold [15, Theorem 1.1]. In our case, this leads to

Vol(M) ≥
(
1− 4π2

C2 + 4

)3/2

2 voct

n−1∑
i=1

mi. □

Remark 5.8. The upper bound of Theorem 5.7 motivates one to seek an efficient expression
for such rod complements, with the complexity measured by

∑n−1
i=1 mi, the sum of the lengths

of the continued fractions. One may simultaneously switch each (pi, qi, 0)-rod to a (qi, pi, 0)-rod,

which may change
∑n−1

i=1 mi. Recall that we allow negative terms in our continued fractions,
as per the discussion in Section 2.2. Typically, one obtains shorter continued fractions this
way than if one restricts to using positive integers as terms.

Corollary 5.9. There exists a sequence of hyperbolic rod complements with bounded volume,
but for which the upper bound of Theorem 3.2 grows to infinity.

Proof. For n a positive integer, let R
(n)
1 be an (n, 1, 0)-rod, let R2 be a (0, 1, 0)-rod, and let

R3 be a (0, 0, 1)-rod. These rods satisfy the hypotheses of the first part of Theorem 5.7. Note

that the continued fraction associated to the rod R
(n)
1 is n/1 = [n]. Thus, in the notation of

Theorem 5.7, we have m1 = 1 for any choice of n and we also have m2 = 1. So the upper
bound of Theorem 5.7 implies that

Vol
(
T3 \ (R(n)

1 ∪R2 ∪R3)
)
≤ 4 voct.

On the other hand, we have (p1, q1) = (n, 1) and (p2, q2) = (0, 1), so |p1q2 − p2q1| = n, which
is unbounded as n grows to infinity. □

Corollary 5.10. There exists a sequence of hyperbolic rod complements, each with three rods,
whose volumes grow to infinity.

Proof. Define the sequence of rational slopes

pk/qk = [k; k, k, . . . , k︸ ︷︷ ︸
k terms

].

for k ≥ 6. For example, we have

p6/q6 = [6; 6, 6, 6, 6, 6] = 53353/8658,

p7/q7 = [7; 7, 7, 7, 7, 7, 7] = 927843/129949,

p8/q8 = [8; 8, 8, 8, 8, 8, 8, 8] = 18674305/2298912.

Let R
(k)
1 be a (pk, qk, 0)-rod, let R2 be a (0, 1, 0)-rod, and let R3 be a (0, 0, 1)-rod. Let

Mk = T3 \ (R
(k)
1 ∪ R2 ∪ R3) be the associated rod complement. Using the notation of
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Theorem 5.7, we have m1 = k, m2 = 1, and C = k ≥ 6. So Theorem 5.7 implies that

Vol(Mk) ≥
(
1− 4π2

k2 + 4

)3/2

2 voct (k + 1) >

(
1− 4π2

62 + 4

)3/2

2 voct k > 0.01091k.

Since the right side grows to infinity with k, the volume of Mk also grows to infinity. □

Figure 4. The standard parent manifold of T3 \ (R(7)
1 ∪ R2 ∪ R3), the rod

complement appearing in the proof of Corollary 5.10. The black rod is the
core rod with direction vector (0, 1, 0); the green (0, 1, 0)-rod that lies on the
boundary of the unit cube is R2; the blue (0, 0, 1)-rod is R3.

6. Further discussion

Our results on the volumes of rod complements suggest various natural questions worthy of
further exploration, such as the following.

Question 6.1. Do there exist two-sided coarse volume bounds for all rod complements in
terms of the rod parameters?

By Corollaries 5.9 and 5.10, such bounds cannot depend only on the number of rods nor on the
number of intersections of the rods in a particular projection. It would be natural to wonder
whether two rod complements with the same rod parameters have volumes with bounded ratio.

Question 6.2. Does hyperbolic volume distinguish rod complements up to homeomorphism?

It would be surprising if any two rod complements with the same hyperbolic volume were
necessarily homeomorphic. It is well-known that hyperbolic volume does not distinguish
hyperbolic 3-manifolds in general. In particular, mutation of cusped hyperbolic 3-manifolds can
change its homeomorphism class, but necessarily preserves the hyperbolicity and volume [28].
An example of mutation involves cutting along an essential embedded 4-punctured sphere
bounding a tangle in a ball, rotating the ball via a certain involution, and then regluing.
Mutation can also be performed with respect to surfaces of other topologies that possess a
suitable involution. It is not immediately obvious whether rod complements contain such
embedded essential surfaces along which mutation can be performed.

Question 6.3. Does there exist a rod complement with a non-trivial mutation?
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