
Preprint

Riemann Normal Coordinate expansions

using Cadabra

Leo Brewin

School of Mathematical Sciences
Monash University, 3800

Australia

29-Nov-2008

Abstract

We present the results of using the computer algebra program Cadabra
to develop Riemann normal coordinate expansions of the metric and
other geometrical quantities, in particular the geodesic arc-length. All
of the results are given to sixth-order in the curvature tensor.

1 Introduction

In a previous paper [1] we demonstrated, through a series of simple exam-
ples, how a new computer algebra program, Cadabra ([2], [3], [4], [5]) could
be employed to do the kinds of tensor computations often encountered in
General Relativity. The examples were deliberately chosen to be simple. So
it is reasonable to wonder how Cadabra might handle much more challenging
computations. To explore this question we put Cadabra to the task of com-
puting the Riemann normal coordinate expansions of the metric and other
geometrical quantities, in particular the geodesic arc length. Such computa-
tions are known to be, at higher orders, very demanding and prohibitively
difficult to compute by hand. Here we will show that Cadabra handles these
computations with ease.

There is also a direct practical purpose to these calculations. We are de-
veloping ([6], [7]) an approach to numerical relativity that uses a lattice,
similar to that used in the Regge calculus ([8], [9], [10]), as way to record

1

the metric (through the table of leg-lengths) and topology (through the con-
nections between vertices) of the spacetime. Central to that approach is the
use of Riemann normal coordinates in the computation of the Riemann cur-
vatures given just the leg-lengths and (some) angles. For this to work we
need an equation that links the curvatures to the geodesic arc-length (the
leg-lengths). The result is equation (11.21) in section (11).

The basic idea behind Riemann normal coordinates is to use the geodesics
through a given point to define the coordinates for nearby points. Let the
given point be O (this will be the origin of the Riemann normal frame) and
consider some nearby point P . If P is sufficiently close to O then there exists
a unique geodesic joining O to P . Let va be the components of the unit
tangent vector to this geodesic at O and let s be the geodesic arc length
measured from O to P . Then the Riemann normal coordinates of P relative
to O are defined to be xa = sva. These coordinates are well defined provided
the geodesics do not cross (which we can always ensure by choosing the
neighbourhood of O to be sufficiently small).

One trivial consequence of this definition is that all geodesics through O are
of the form xa(s) = saa and that the va are constant along each geodesic.
This implies, by direct substitution into the geodesic equation, that Γcab = 0
at O which in turn implies that gab,c = 0 at O. Suppose now that we were
to expand the metric as a Taylor series in xa about O. In that series there
would only be the zero, second and higher derivatives of the gab. Thus the
leading terms of the metric could be expressed as a sum of a constant part
plus a curvature part. If the curvature is weak this can be interpreted as
an expansion of the metric in powers (and derivatives) of the curvature.
Likewise one can imagine similar expansions of other geometrical quantities
(e.g. geodesics, arc length) in terms of a flat space part plus a curvature
contribution.

Higher order expansions are extremely tedious to compute by hand. Some
hardy souls ([11], [12], [13]) have endured the journey (Müller et al ([14])
venture as far as 11-th order expansions for the metric (i.e. to terms involving
the 8-th derivative of the curvatures, the notion of order will be defined in
the following section). However most people settle for just the first two non-
trivial curvature terms (i.e. R and ∇R).

As we will see, the easiest expansion to compute is that for the metric in
powers of the curvatures and its derivatives. Much more challenging is the
expression that allows the Riemann normal coordinates to be constructed
from a given set of coordinates. This later calculation involves the solution
of a two point boundary value problem – not a job for the faint-hearted.

2

The expansion of the metric in Riemann normal form can be found in many
articles. For those with a mathematical bent see ([15], [16], [17]) and in
particular the elegant exposition by Gray ([18], [19]). For applications in
physics see ([20], [21], [22]).

2 Conformal coordinates

Each algorithm given later in this paper yields polynomial approximations
to particular geometric quantities (e.g. the metric). Higher order approxi-
mations are obtained by recursive application of the algorithms.

In this section we will define what we mean when we say that the polynomial
Sε is an expansion of S up to and including terms of order O (εn). We will
do so by introducing a conformal transformation of the original metric.

Consider some neighbourhood of O and let ε be a typical length scale for
O (for example, ε might be the length of the largest geodesic that passes
through O and confined by the neighbourhood). Construct any regular set
of coordinates xa (i.e. such that the metric components are non-singular) in
the neighbourhood of O and let the coordinates of O be xa?. We will use the
word patch to denote the neighbourhood of O in which these coordinates are
defined. Now define a new set of coordinates ya by

xa = xa? + εya

and thus
ds2 = gab(x)dxadxb = ε2gab(x? + εy)dyadyb

Now define the conformal metric ds̃ by ds̃ = ds/ε2. This leads to

ds̃2 = gab(x? + εy)dyadyb = g̃ab(y, ε)dy
adyb

and
g̃ab = gab , g̃ab,c = εgab,c , g̃ab,cd = ε2gab,cd at O

where the partial derivatives on the left are with respect to y and those on
the right are with respect to x. Since gab(x?) does not depend on ε we have
the general result that

g̃ab,i1i2i3···in = O (εn) at O (2.1)

3

From this it follows, by simple inspection of the standard equations, that

Γ̃abc,i1i2i3···in = O
(
εn+1

)
at O (2.2)

R̃a
bcd,i1i2i3···in = O

(
εn+2

)
at O (2.3)

There are now two ways to look at the patch. We can view it as patch of
length scale ε with a curvature independent of ε. Or we can view it as patch
of fixed size but with a curvature that depends on ε (and where the limit
ε → 0 corresponds to flat space). This later view is useful since in using it
we can be sure that the series expansions around flat space are convergent
(for a sufficiently small ε).

We will use these conformal coordinates for the remainder of this paper. As
there is no longer any reason to distinguish between xa and ya we replace
ya with xa. The xa will now be treated as generic coordinates (but keep in
mind that we are working in a conformal gauge).

Finally, when we say that Sε is an expansion of S up to and including terms
of order O (εn) we mean that

0 < lim
ε→0

|S − Sε|
εn+1

< M

for some finite positive M i.e. if S were expanded as a Taylor series in ε
around ε = 0 then S and Sε would differ by terms proportional to εn+1.

3 Riemann Normal Coordinates

Suppose, as is almost always the case, that our coordinates xa are not in
Riemann normal form. How might we transform to a local set of Riemann
normal coordinates? If we were to appeal to the simple definition ya =
sva we would soon encounter a hurdle. The quantities va are rarely known
explicitly but must instead be computed by solving a two-point boundary
value problem. This is non-trivial but it can be dealt with in stages. First
construct a Taylor series expansion for an arbitrary geodesic passing through
O. This solution to the initial value problem will depend on two integration
constants, xa and ẋa, being the respective values of xa(s) and dxa/ds at s = 0.
Next use a fixed-point iterative scheme to produce successive approximations
to ẋa so that the geodesic passes through both points O and P . Then finally
compute va as dxa/ds at s = 0. This is exactly the plan which we will follow.

4

It is well known that Riemann normal coordinates can always be constructed
locally around any non singular point (see [19]). Thus we will not concern
ourselves here with issues such as existence and convergence but rather we
will focus our attention on developing algorithms for expressing various quan-
tities in Riemann normal form.

3.1 The initial value problem

Our aim here is to obtain a Taylor series, about the point O, for solution of
the geodesic equation

0 =
d2xa

ds2
+ Γabc(x)

dxb

ds

dxc

ds

subject to the initial conditions xa(s) = xa and dxa/ds = ẋa at s = 0.

We choose s = 0 at O and we write the Taylor series for xa(s) as

xa(s) = xa|s=0 + s
dxa

ds

∣∣∣∣
s=0

+
∞∑
n=2

sn

n!

dnxa

dsn

∣∣∣∣
s=0

The second and higher derivatives can be obtained by successive differentia-
tion of the geodesic equation leading to

xa(s) = xa + sẋa −
∞∑
n=2

sn

n!
Γai1i2i3···inẋ

i1ẋi2ẋi3 · · · ẋin (3.1)

where the Γai1i2i3···in , known as generalised connections, are defined recur-
sively by

Γai1i2i3···in = Γa(i1i2i3···in−1,in) − nΓap(i2i3···in−1Γ
p
i1in) (3.2)

Note that the use of round brackets (...) denotes total symmetrisation over
the included indices (see Appendix A for more details).

A convenient shorthand for equation (3.2) in terms of covariant derivatives
can be obtained if you ignore (in this context alone) the single upper index.
This leads to the compact notation

Γai1i2i3···in = Γa(i1i2;i3i4i5···in) (3.3)

5

3.2 The boundary value problem

Here we seek to juggle ẋa so that the geodesic passes through not only O but
also P . Suppose that the coordinates of P are xa + ∆xa where xa are the
coordinates of O. The solution (3.1) already passes through O so we have
only now to force it to pass through P . Let sP be the geodesic distance from
O to P . Then our challenge is to solve

∆xa = sP ẋ
a −

∞∑
n=2

snP
n!

Γai1i2i3···inẋ
i1ẋi2ẋi3 · · · ẋin

for ẋa in terms of ∆xa and the generalised connections.

Put ya = sP ẋ
a (this introduces the Riemann normal coordinates) and re-

arrange the equation into the form

ya = ∆xa +
∞∑
n=2

1

n!
Γai1i2i3···iny

i1yi2yi3 · · · yin (3.4)

We now plan to solve this equation for ya by constructing a sequence of
approximations yam to ya. In principle we could imagine that ya has been
found and that we have expanded it as a infinite series in powers of ε (i.e.
as a power series in the curvatures). We will choose yam to be the Taylor
polynomial of ya to order εm. That is, yam is a polynomial in the curvatures
(and its derivatives) up to and including terms of order O (εm). We can
compute yam by truncating both side of (3.4) to terms no higher than O (εm).
But note that the Γai1i2i3···in are of order O (εn−1). The upshot is that the
infinite series may be truncated at n = m while still retaining all terms up
to and including εm. Thus we have

yam = ∆xa + Tmε

(
n=m∑
n=2

1

n!
Γai1i2i3···iny

i1
my

i2
my

i3
m · · · yinm

)

Where Tmε is a simple truncation operator (it deletes all terms of order
O (εm+1) or higher). This is a marginal improvement on (3.4) (at least we
have a finite series) but it is still a non-linear equation for yam. But fortu-
nately we can do better. Notice, once again, that Γai1i2i3···in = O (εn−1) and
this allows us to use lower order estimates for ya in the product terms on the
right hand side. This leads to

yam = ∆xa + Tmε

(
n=m∑
n=2

1

n!
Γai1i2i3···iny

i1
m−n+1y

i2
m−n+1y

i3
m−n+1 · · · yinm−n+1

)
(3.5)

6

Now we see that yam appears only on the left hand side and thus we can use
this equation to recursively compute yap for p = 2, 3, 4, · · ·. Here are the first
few yam. We start with the lowest order approximation,

ya0 = ∆xa

and as there are no ε1 terms in (3.4) we have

ya1 = ya0 = ∆xa

Now set m = 2 in equation (3.5) to obtain

ya2 = ∆xa + T 2
ε

(
1

2!
Γai1i2y

i1
1 y

i2
1

)
= ∆xa +

1

2
Γai1i2∆x

i1
1 ∆xi21

and once more, with m = 3, with the result

ya3 = ∆xa + T 3
ε

(
1

2!
Γai1i2y

i1
2 y

i2
2 +

1

3!
Γai1i2i3y

i1
1 y

i2
1 y

i3
1

)
= ∆xa +

1

2
Γai1i2∆x

i1∆xi2 +
1

6

(
Γabi1Γ

b
i2i3 + Γai1i2,i3

)
∆xi1∆xi2∆xi3

This process may seem simple but looks can be deceiving – the higher order
yam contain a profusion of terms that, when computed by hand, are largely
unmanageable beyond m ≈ 7. We will return to this point later when we
discuss the use of Cadabra to perform these computations.

This completes our first objective – to find a way to transform from any
non-singular set of coordinates to a local set of Riemann normal coordinates.
The question we now pose is – what form does the metric take in these
coordinates? This is the subject of the second next section. But first we
shall take a short moment to introduce some new notation.

4 Notation

The calculations we are undertaking are flooded with expression such as

Γai1i2i3···in+1 = Γa(i1i2i3···in,in+1) − (n+ 1)Γap(i2i3···inΓpi1in+1)

in which long stretches of indices like i1i2i3 · · · in abound. This is tedious to
write and, in the authors opinion, rather untidy. Here we propose a variation

7

on the notation that is both easy to read and write while not detracting from
the meaning in the expression. The proposal is that a sequence of indices
such as i1i2i3 · · · in be replaced with a single index of the form i. In this
notation the previous equation could be written as

Γabcd = Γa(bc,d) − (n+ 1)Γap(cΓ
p
bd)

where c contains n > 0 indices. In cases where the number of hidden indices
needs to be made clear we will either say so in words (as we did in the
previous example) or we will include the number as a subscript, for example

Γabcnd = Γa(bcn,d)
− (n+ 1)Γap(cnΓpbd)

This version is however, not as clean as the previous version.

For equations like

0 = Γabc,i1i2i3···inA
i1Ai2Ai3 · · ·Ain

we will write
0 = Γabc,dA

.d

We chose this notation of single dot in A.d because of its suggestive form
(of multiplication of as many copies of A as required to exhaust the indices
within d). Here is another common construction(

· · ·
((

Γabc,i1A
i1
)
,i2
Ai2
)
,i3
Ai3 · · ·

)
,in

Ain

How might we tidy this up? By including a dot before the derivative index
d, like this

Γabc,.dA
.d

These simple changes brings some degree of normalcy to the printed form but
those gains rapidly pale into insignificance when we ask Cadabra (in section
(11)) to display the results for the sixth order Riemann normal expansions.
These results contain expressions with symmetries in some of the indices
which when printed can stretch over many A4-pages. The reason is in part
that the expressions are inherently long but also because Cadabra does not
use the round-bracket notation to denote symmetrisation over a set of indices.
Instead it uses the fully expanded form which, on paper, can lead to an n!
explosion in otherwise similar looking terms. We will try to minimise this
problem as follows. Suppose we have an object Aabcde which we know to
be symmetric on the indices (cde). We create an arbitrary Ba and instruct

8

Cadabra to simplify the expression AabcdeB
cBdBe as much as possible. Then

we set Ba equal to one just prior to printing the expression. But how do we
convey to the reader that this operation has been performed? The expression
that we are trying to print will always be the right hand side of some equation
such as Dabcde = Aab(cde) and thus Dabcde is also symmetric on (cde). So
when we print this equation we will include the round brackets on the left
hand side. Thus we would display the results as Dab(cde) = Aabcde and we
would understand that the right hand side should be symmetrised over (cde).
Clearly this notational device should only ever be used at the end of the
calculations.

Our final notational device concerns cases where we want to exclude an index
from symmetrisation. The normal practise is to exclude an index by enclosing
it in a pair of vertical lines. In our variation we will place a dot above
the excluded index. Thus, where other authors might write (ab|c|d|e|fg) to
signify symmetrisation over only a, b, d, f and g, we will write (abċdėfg).

Though these variations might appear to make only marginal improvements
in the printed equations they have made it considerably easier for the author
in creating the LaTeX code for this document.

5 The metric in Riemann normal form

In the preceding section we chose to distinguish between generic and Riemann
normal coordinates by using the symbols xa and ya respectively. We will now,
for notational convenience and to accord with convention, revert to using
xa for the Riemann normal coordinates while stripping ya of any special
meaning.

Our aim in this section is to express the metric in Riemann normal form.
This will take the form of an infinite series in powers of the curvature tensor
and its derivatives. We start by writing out the Taylor series for the metric
around xa = 0

gab(x) = gab +
∞∑
n=1

1

n!
gab,c x

.c

where c contains n indices and gab are constants (e.g. gab = diag(1, 1, 1, · · ·)).

Our present task is to express the partial derivatives of the metric in terms
of the Riemann tensor. From the standard definition of a metric compatible
connection we have

gab,cd = (gaeΓ
e
bc + gebΓ

e
ac),d

9

and since gab,cd is totally symmetric in cd we also have

gab,cd =
(
gaeΓ

e
b(c

)
,d) +

(
gebΓ

e
a(c

)
,d)

Two points should be noted, first, the connection appears only in the form
Γab(c,d), second, the left hand side contains derivatives one order higher than
in the corresponding terms on the right hand side. The upshot is that we can
use this equation to recursively compute all of the metric derivatives solely
in terms of the Γab(c,d) and the constants gab. In this way we could express
the above Taylor series for the metric in terms of the connection. But we
can go one stage further – the derivatives of the connection must surely tie
in with the curvatures. Thus we are led to review the standard definition for
the curvature, which after a series of derivatives, can be written in the form

Ra
(bcḋ,e) = Γad(bc,e) − Γa(bc,e)d +

(
Γai(cΓ

i
bḋ

)
,e) −

(
ΓaidΓ

i
(bc

)
,e)

Can we use this to eliminate the connection and its derivatives from the
metric? Yes, but only after we specialise to the Riemann normal coordinates.

Recall that, in Riemann normal coordinates, all geodesics through O are of
the form

xa(s) = sva

which upon substitution into the geodesic equations leads to

0 = Γa(bc) at O

It follows, by recursion on equation (3.3), that

0 = Γa(bc,d) at O (5.1)

We also know that Γabc,ed is separately symmetric in its first pair of indices
and in the remaining (n + 1) lower indices (assuming e contains n indices).
Thus using equation (A.7) we have

0 = (n+ 3)Γa(bc,ed) = 2Γad(b,ce) + (n+ 1)Γa(bc,e)d

We can use this to eliminate the Γa(bc,e)d term in the previous equation for
the curvature. The result, after a minor shuffling of terms is

(n+ 3)Γad(b,ce) = (n+ 1)
(
Ra

(bcḋ,e) −
(
Γai(cΓ

i
bḋ

)
,e) +

(
ΓaidΓ

i
(bc

)
,e)

)
(the reason for rearranging the terms will become clear in a moment). Note
also that the last term in the previous equation can be eliminated by equation
(5.1) and the product rule.

10

In summary, the equations of interest are

gab(x) = gab +
∞∑
n=1

1

n!
gab,c x

.c (5.2)

gab,cd =
(
gaeΓ

e
b(c

)
,d) +

(
gebΓ

e
a(c

)
,d) (5.3)

(n+ 3)Γad(b,ce) = (n+ 1)
(
Ra

(bcḋ,e) −
(
Γai(cΓ

i
bḋ

)
,e)

)
(5.4)

We use these equations as follows. First, equation (5.4) is used to recursively
compute the Γab(c,ed) in terms of the Riemann tensor and its partial deriva-
tives (this was the reason behind the shuffling of terms noted above). Note
that e in equation (5.4) contains n hidden indices. The Γab(c,d) are then sub-
stituted into (5.3) which in turn is used to recursively express all of the gab,c
in terms of the Riemann tensor and its partial derivatives. When the dust
settles we will have a finite series expansion for the metric in terms of the
Riemann tensor and its partial derivatives. The result, accurate to O (ε4), is

(5.5)gab (x) = gab −
1

3
xcxdRacbd −

1

6
xcxdxe∂cRadbe +O

(
ε4
)

We conclude this section by introducing one final variation to the algorithm
just given – an option to re-express the metric in terms of the covariant rather
than partial derivatives of the curvatures.

It is not hard to see that after a series of covariant derivatives one would
obtain an equation of the form, in any coordinate frame,

Ra
(bcḋ;e) = Ra

(bcḋ,e) +Qa
(bcḋe) (5.6)

where Qa
(bcḋe) is a function of the Γabc, the Ra

bcd and their partial derivatives.
If this is going to sit nicely with our algorithm given above then we will need
to show, in the Riemann normal frame, that this equation only contains
connection terms of the form Γpq(r,s). Fortunately this is rather easy to do.

Each term of the form Γpqr,s in Q arose during one round of covariant dif-
ferentiation. Thus at least one of the indices q, r and all of the indices in
s must be drawn from the index list e. If both q and r are contained in e
then the term is of the form Γp(qr,s) and thus will vanish when we specialise
to the Riemann normal frame. This completes the proof. If we re-arrange
the above equation into the following form

Ra
(bcḋ,e) = Ra

(bcḋ;e) −Q
a
(bcḋe) (5.7)

11

we can use it to recursively compute all of the partial derivatives of the cur-
vatures in terms of their covariant derivatives. The Qa

(bcḋe) will contain lower
order derivatives of the curvatures and partial derivatives of the connection
all of which can be eliminated (in favour of covariant derivatives) using previ-
ously computed results. For the first two derivatives we find that the partial
and covariant derivatives are equal but differences do appear in higher order
derivatives. More details will be given in a later section.

These calculations, as simple as they may appear, are exceedingly tedious to
do except for the first few terms. The recursive nature of the calculations
requires frequent substitution of one result into another which causes an
explosion in the number of terms that must be handled. Not only is this
tedious but its is also extremely prone to human error. Calculations of this
kind are clearly best left to a computer. We shall return to this point later
on.

6 The inverse metric in Riemann normal form

Most of the hard work is now behind us and we can now develop algorithms
for Riemann normal expansions for other interesting quantities, in this in-
stance the inverse metric gab(x). In the previous section we used 0 = gab;c as
our starting point. On this occasion we start with 0 = gab;c. Then, following
a path similar to that used in the previous section, we arrive at the following
equations

gab(x) = gab +
∞∑
n=1

1

n!
gab,c x

.c (6.1)

gab,cd = −
(
gaeΓbe(c

)
,d) −

(
gebΓae(c

)
,d) (6.2)

(n+ 3)Γad(b,ce) = (n+ 1)
(
Ra

(bcḋ,e) −
(
Γai(cΓ

i
bḋ

)
,e)

)
(5.4)

These equations can be used to construct the series expansion for gab(x),
which to O (ε4) is

(6.3)gab (x) = gab +
1

3
xcxdRa

c
b
d +

1

6
xcxdxe∂cR

a
d
b
e +O

(
ε4
)

12

7 Generalised connections

In section 3.1 we saw that the generalised connections Γabcd arose from succes-
sive differentiation of the geodesic equation and that they can be computed
recursively using

Γabcd = Γa(bc,d) − (n+ 1)Γap(cΓ
p
bd) (3.2)

where the index list c contains n > 0 indices, or directly using

Γabcd = Γa(bc;d) (3.3)

Here are the first three generalised connections

(7.1)Γa(bc)(x) = Γa bc

(7.2)Γa(bcd)(x) = ∂bΓ
a
cd − 2 Γa beΓ

e
cd

(7.3)Γa(bcde)(x) = −Γf bc∂fΓ
a
de − 4 Γf bc∂dΓ

a
ef + ∂bcΓ

a
de

+ 2 Γa fgΓ
f
bcΓ

g
de + 4 Γa bfΓ

f
cgΓ

g
de − 2 Γa bf∂cΓ

f
de

and when we specialise to Riemann normal coordinates we obtain

Γa(bc)(x) =
2

3
xdRa

bdc +
1

12
xdxe (2∇bR

a
dec + 4∇dR

a
bec +∇aRdbec) +O

(
ε4
)

(7.4)

(7.5)Γa(bcd)(x) =
1

2
xe∇bR

a
ced +O

(
ε4
)

(7.6)Γa(bcde)(x) = O
(
ε4
)

13

8 Geodesics

When first we spoke of Riemann normal coordinates we restricted our at-
tention to the geodesics that passed through the point O. Now we wish to
be somewhat less restrictive. We would like to know how to construct any
geodesic in the neighbourhood of O. Here we will once again be building
solutions of the geodesic equations and as before we will consider two sepa-
rate cases, first, the geodesic initial value problem and second, the geodesic
boundary value problems.

Most of the machinery that we need to tackle these questions has already
been developed. Here we apply the formalism developed in sections 3.1 and
3.2 to the metric in Riemann normal form as obtained in section 5.

8.1 Geodesic initial value problem

Consider a point P distinct from O. At P we can assume that the generalised
connections do not vanish (which is generally true, the exception being flat
space). Thus the coordinates xa in the neighbourhood of P do not constitute
a Riemann normal frame relative to P . But as P lies in the patch for O we
know that the metric is non-singular at P and thus we should be able to
construct a new set of Riemann normal coordinates, ya, with P as the origin.

We have seen this problem once before, in section 3.2. Using equation (3.1)
and the generalised connections from section 7 we find

xa (s) = xa + sẋa − 1

24
s2ẋbẋc

(
8xdRa

bdc + 2xdxe∇bR
a
dec + 4xdxe∇dR

a
bec

+ xdxe∇aRdbec

)
− 1

12
s3ẋbẋcẋdxe∇bR

a
ced +O

(
ε4
)

(8.1)

8.2 Geodesic boundary value problem

Consider now the case where we have three distinct points O, P and Q. In
this section we seek to compute the geodesic that passes through P and Q.
We use the equation (3.5) of the generalised connections from section 7 to
obtain

14

(8.2)xa (s) = xa + sxa1 + s2xa2 + s3xa3 +O
(
ε4
)

(8.3)

xa1 (s) = ∆x a +
1

3
xb∆x c∆x dRa

cbd +
1

12
xbxc∆x d∆x e∇dR

a
bce

+
1

6
xbxc∆x d∆x e∇bR

a
dce +

1

24
xbxc∆x d∆x e∇aRbdce

+
1

12
xb∆x c∆x d∆x e∇cR

a
dbe

(8.4)xa2 (s) = −1

3
xb∆x c∆x dRa

cbd −
1

12
xbxc∆x d∆x e∇dR

a
bce

− 1

6
xbxc∆x d∆x e∇bR

a
dce −

1

24
xbxc∆x d∆x e∇aRbdce

(8.5)xa3 (s) =

(
−1

12

)
xb∆x c∆x d∆x e∇cR

a
dbe

9 Geodesic arc-length

Since we now have explicit expressions for the metric and the geodesic that
joins the points P and Q we can compute the length of that geodesic by way
of the integral

LPQ =

∫ Q

P

(
gab(x)

dxa

ds

dxb

ds

)1/2

ds

We have, to this point, taken s to be the proper distance along the geodesic.
However, after careful inspection of the geodesic path (3.1) we see that any
uniform scaling of s is allowed. Thus we can re-scale s so that s = 0 at P and
s = 1 at Q (of course, the parameter s no longer measures proper distance).
Furthermore we know that the integrand is constant along the geodesic and
can thus be evaluated at any point which we shall chose to be P . Thus the
integral is trivial and we have

L2
PQ = gab(x)

dxa

ds

dxb

ds

∣∣∣∣
P

Using our previous results we obtain

15

L2
PQ = gab∆x

a∆x b − 1

3
xaxb∆x c∆x dRacbd −

1

12
xaxb∆x c∆x d∆x e∇cRadbe

− 1

6
xaxbxc∆x d∆x e∇aRbdce +O

(
ε4
)

(9.1)

10 Cadabra

No matter how determined one might be, the recursive nature of the preced-
ing equations will wreak havoc with one’s sanity should one dare to venture
beyond the first few terms. For the good of all concerned it is far better
to leave such calculations to computer programs such as Cadabra. In this
section we discuss some particular issues we encountered when writing our
Cadabra programs.

The examples given in the previous paper [1] actually arose from our earlier
investigations of Cadabra as a tool to compute Riemann normal expansions.
Thus it is no surprise that the techniques given in that paper are well suited
to (most of) our current needs but with two exceptions. First, we need to
develop Cadabra code for the truncation operator Tmε introduced in section
(3.2). Second, we need to extend the ideas given in [1] to allow Cadabra to
compute the symmetrised derivatives of arbitrary tensors, such as Ra

b(cḋ;e).
We shall deal with these issues in the following sections after which we will
present the final Cadabra generated expressions (to O (ε6) and in all their
gory detail).

10.1 Truncation of polynomials

In section (3.2) we introduced a truncation operator Tmε . Here we discuss
how we constructed that operator in our Cadabra code. It happens to be
an extremely useful piece of code and is used extensively throughout our
Cadabra code.

Suppose you are asked to extract the leading terms from an expression such
as

P a(x) = ca + cabx
b + cabcx

bxc + cabcdx
bxcxd

A standard approach would be to compute the derivatives of P a(x) at x =
0. This approach would be rather simple to code in Cadabra. However a

16

minor issue does pop up. Unless otherwise told, Cadabra will assume that
all objects have non-zero derivatives. Thus if Cadabra were instructed to
compute d/ds of the above expression it would dutifully do so but it would
treat the x’s and the coefficients cab as possibly depending on s. Cadabra can
be coaxed to restrict the derivative operators to act only on specific objects
by using the ::Depends property and the @unwrap algorithm.

A better solution, one that does not involve derivatives, is to use Cadabra’s
::Weight property and the @keep_weight algorithm. The idea is to assign
weights to nominated objects (through the ::Weight property) and then
extract terms matching a chosen weight (using the @keep_weight algorithm).
Here is a small piece of Cadabra code that does the job.

x^{a}::Weight(label=xterms,value=1).

poly:= c^{a}
+ c^{a}_{b} x^{b}
+ c^{a}_{b c} x^{b} x^{c}
+ c^{a}_{b c d} x^{b} x^{c} x^{d};

term00:=@(poly): @keep_weight!(term00){xterms}{0};
term01:=@(poly): @keep_weight!(term01){xterms}{1};
term02:=@(poly): @keep_weight!(term02){xterms}{2};

The first line identifies the xa terms as our target (which we name as xterms
so that they can be distinguished from other targets decalared by other in-
stances of ::Weight). The next three lines then extract the 0th, 1st and
2nd terms in the expression poly. The result would be exactly as if we had
written

term00:=c^{a};
term01:=c^{a}_{b} x^{b};
term02:=c^{a}_{b c} x^{b} x^{c};

The truncated polynomial (in this case a quadratic) could then be computed
simply as @(term00)+@(term01)+@(term02).

10.2 Symmetrised covariant derivatives

Let va be a tensor field and suppose we wish to compute va;b at the origin
of the Riemann normal frame, O. Construct any geodesic through P and an
auxiliary field Aa throughout the patch containing O. Let the geodesic be

17

parametrised by the proper distance s and described by xa = xa(s) with unit
tangent vector Da = dxa/ds. We choose Aa so that it is auto-parallel along
the geodesic. Thus we have

dva
ds

= va,bD
b

0 = ∇D D
a =

dDa

ds
+ ΓabcD

bDc

0 = ∇D A
a =

dAa

ds
+ ΓabcA

bDc

from which it follows that

va;bA
aDb =

dn(vaA
a)

dsn
at O

where b contains n indices. Thus any higher order covariant derivative can
be obtained simply by expanding the right hand side, one derivative at a
time, while using the parallel transport conditions listed above to eliminate
derivatives in Aa and Da. The Cadabra code for this is much the same. Each
successive covariant derivative is obtained by applying d/ds to the previous
result then using substitutions to eliminate the newly introduced derivatives
of Aa and Da. Comparing coefficients of AaDb across the equals sign will
then reveal an expression for va(;b), the fully symetrised covariant derivative
of va at O.

Note that 0 = Γa(bc,d) at O in Riemann normal coordinates and thus 0 =
dnDa/dsn. This can be used to considerably simplify the above computa-
tions.

This idea can be easily extended to other cases. For example, suppose we
require vab(c;de) at O. In this case we would introduce two auxiliary fields,
Aa and Ba, each constrained to be auto-parallel along the chosen geodesic.
Then following the above procedure we obtain

vab(c;de)A
aBbDcDdDe =

d2(vabcA
aBbDc)

ds2
at O

10.3 Symmetrised derivatives of the Riemann tensor

By inspection of equation (5.4) we see that the only derivatives of the Rie-
mann tensor that enter our calculations are of the form Ra

(bċd,e) and Ra
(bċd;e).

18

According to the prescription given above we can compute the covariant
derivatives in terms of the partial derivatives by the following procedure.

0 = ∇D D
a =

dDa

ds

0 = ∇D B
a
b =

dBa
b

ds
+ ΓadcB

d
bD

c − ΓdbcB
a
dD

c

Ra
(bċd;e)B

c
aD

bDdDe =
dn

dsn
(
Ra

bcdB
c
aD

bDd
)

This is not exactly what we want – it yields the covariant derivatives in terms
of the partial derivatives. We need instead, the partial derivatives expressed
in terms of the covariant derivatives. In section 5 we provided one solution
to this problem. There we argued that the equations could be re-written in
the form

Ra
(bcḋ,e) = Ra

(bcḋ;e) −Q
a
(bcḋe) (5.7)

where Qa
(bcḋe) contains all the lower order symmetrised partial derivatives of

Ra
bcd. This algorithm certainly works but it is computationally expensive. If

for the moment we label the equation for the n-th derivative as En then our
algorithm entails a whole hierarchy of substitutions of Ej into Ek for j < k.
For example, to compute E4 we need to substitute E1 into E2, then E1 and
E2 into E3, and finally, E1, E2 and E3 into E4. Our code took about 4 seconds
to compute the first four derivatives but with one extra derivative this time
grew to 11 minutes. We did not bother to compute the sixth derivative (in
fact for the results given here we only need the first three derivatives).

It seems reasonable to ask : is there a better way? Indeed there is and the
changes required are very simple.

The auxiliary field Ba
b can be freely chosen so there is nothing stopping us

from setting Ba
b to be constant throughout the neighbourhood of O. Thus

every partial derivative of Ba
b is zero at O. What use is this to us? Consider

the equation (
Ra

bcdB
c
aD

bDd
)

;eD
e =

dn

dsn
(
Ra

bcdB
c
aD

bDd
)

This is clearly true for any Ba
b and Da = dxa/ds (and in any coordi-

nate frame). In our Riemann normal frame we have 0 = dnDa/dsn and
we have chosen 0 = Ba

c,e. Thus the right hand side can be reduced to

19

Ra
bcd,eB

c
aD

bDdDe. This leads to the following modified scheme (after swap-
ping the left and right hand sides)

0 = Da
;bD

b =
dDa

ds
(10.1)

∇D B
a
b = Ba

b;cD
c = ΓadcB

d
bD

c − ΓdbcB
a
dD

c (10.2)

Ra
bcd,eB

c
aD

bDdDe = (Ra
bcdB

c
a) ;eD

bDdDe (10.3)

This algorithm computes all the partial derivatives directly, without requiring
any substitutions from previous results. It took less than 10 seconds to
compute the first five derivatives which is a dramatic improvement over our
previous algorithm (11 minutes).

In our Cadabra code we compute all of the symmetrised partial derivatives
(using the above algorithm) before we compute the metric expansion (equa-
tions (5.2, 5.3, 5.4)). In this way we obtain a series expansions for the metric
in terms of the covariant derivatives of the curvatures.

11 Expansions to sixth order

All of our O (ε6) Cadabra programs were not overly demanding on compu-
tational resources, taking less than 2 minutes to run (on a MacOSX with an
Intel cpu) and requiring less than 13 Mbyte of memory.

The Cadabra codes and several support scripts are available from the author’s
web site http://users.monash.edu.au/~leo.

The metric

180gab (x) = 180 gab−60xcxdRacbd−30xcxdxe∇cRadbe+8xcxdxexfRacgdRbegf

− 9xcxdxexf∇cdRaebf + 4xcxdxexfxgRachd∇eRbfhg

+ 4xcxdxexfxgRbchd∇eRafhg − 2xcxdxexfxg∇cdeRafbg +O
(
ε6
)

(11.1)

The inverse metric

20

http://users.monash.edu.au/~leo

180gab (x) = 180 gab + 60xcxdRa
c
b
d + 30xcxdxe∇cR

a
d
b
e

+ 12xcxdxexfRa
cdgR

b
efg + 9xcxdxexf∇cdR

a
e
b
f

+ 6xcxdxexfxgRa
cdh∇eR

b
fgh + 6xcxdxexfxgRb

cdh∇eR
a
fgh

+ 2xcxdxexfxg∇cdeR
a
f
b
g +O

(
ε6
)

(11.2)

Generalised connections

180Γa(bc)(x) = 120 xdRa
bdc + 15xdxe (2∇bR

a
dec + 4∇dR

a
bec +∇aRdbec)

+ xdxexf (32Ra
degRfbcg − 16Ra

bdgRecfg − 8Ra
dbgRecfg

+ 18∇dbR
a
efc + 18∇deR

a
bfc − 8Ra

gdbRecfg + 9∇a
dRebfc)

+ xdxexfxg (16Rdbch∇eR
a
fgh + 6Ra

deh∇bRfcgh

+ 16Ra
deh∇fRgbch − 8Ra

bdh∇eRfcgh − 4Ra
dbh∇eRfcgh

− 4Rdbeh∇cR
a
fgh − 8Rdbeh∇fR

a
cgh − 4Rdbeh∇fR

a
gch

+ 6∇debR
a
fgc + 4∇defR

a
bgc − 5Ra

deh∇hRfbgc

− 4Ra
hdb∇eRfcgh − 4Rdbeh∇aRfcgh − 4Rdbeh∇fR

a
hgc

+ 3∇a
deRfbgc) +O

(
ε6
)

(11.3)

180Γa(bcd)(x) = 90xe∇bR
a
ced

+ 3xexf (8Ra
ebgRfcdg + 32Ra

begRfcdg − 8Ra
bcgRedfg

+ 18∇ebR
a
cfd + 6∇bcR

a
efd + 24Ra

gebRfcdg + 3∇a
bRecfd)

+ 10xexfxg (2Rebch∇dR
a
fgh + 2Rebch∇hR

a
fgd

+ 4Rebch∇fR
a
dgh + 4Rebch∇fR

a
hgd + 2Rebch∇aRfdgh

+ 2Ra
beh∇cRfdgh + 4Ra

beh∇fRgcdh −Ra
beh∇hRfcgd

+2Ra
heb∇cRfdgh+4Ra

heb∇fRgcdh−Ra
heb∇hRfcgd)+O

(
ε6
)

(11.4)

18Γa(bcde)(x) = 8xfRa
bcgRfdeg

+ xfxg (2Ra
bch∇dRfegh + 4Ra

bch∇fRgdeh −Ra
bch∇hRfdge

+ 2Rfbch∇dR
a
geh + 10Rfbch∇dR

a
hge + 4Rfbch∇gR

a
deh

+ 8Rfbch∇hR
a
dge + 2Rfbch∇aRgdeh + 12Rfbch∇dR

a
egh

+ 6Ra
bfh∇cRgdeh + 6Ra

hfb∇cRgdeh) +O
(
ε6
)

21

(11.5)

(11.6)3Γa(bcdef)(x) = xg (2Ra
bch∇dRgefh + 3Rgbch∇dR

a
efh) +O

(
ε6
)

(11.7)Γa(bcdefg)(x) = O
(
ε6
)

Partial derivatives of the Riemann curvature tensor.

(11.8)Ru
(bcv̇,a) = ∇aR

u
bcv

(11.9)Ru
(cdv̇,ab) = ∇abR

u
cdv

(11.10)2Ru
(dev̇,abc) = 2∇abcR

u
dev −Rvabf∇cR

u
def +Ru

abf∇cRvdef

5Ru
(efv̇,abcd) = 5∇abcdR

u
efv − 7Rvabg∇cdR

u
efg + 7Ru

abg∇cdRvefg

(11.11)

Riemann normal coordinates

(11.12)ya = ∆xa + yabc∆x
b∆xc + yabcd∆x

b∆xc∆xd + yabcde∆x
b∆xc∆xd∆xe

+ yabcdef∆x
b∆xc∆xd∆xe∆xf +O

(
ε6
)

(11.13)2yabc = Γa bc

(11.14)6yabcd = Γa beΓ
e
cd + ∂bΓ

a
cd

(11.15)24yabcde = 2 Γa bf∂cΓ
f
de + Γa fgΓ

f
bcΓ

g
de + Γf bc∂fΓ

a
de + ∂bcΓ

a
de

360yabcdef = −4 Γa bgΓ
g
chΓ

h
diΓ

i
ef + 2 Γa bgΓ

g
ch∂dΓ

h
ef + 3 Γa bgΓ

g
hiΓ

h
cdΓ

i
ef

+ 6 Γa bgΓ
h
cd∂hΓ

g
ef − 6 Γa bgΓ

h
cd∂eΓ

g
fh + 9 Γa bg∂cdΓ

g
ef

+ 4 Γa ghΓ
g
bcΓ

h
diΓ

i
ef + 13 Γa ghΓ

g
bc∂dΓ

h
ef

+ Γg bcΓ
h
dg∂hΓ

a
ef − 4 Γg bcΓ

h
dg∂eΓ

a
fh + 7 ∂gΓ

a
bc∂dΓ

g
ef

+ 2 ∂bΓ
a
cg∂dΓ

g
ef + 3 Γg bcΓ

h
de∂gΓ

a
fh + 3 Γg bcΓ

h
de∂fΓ

a
gh

+ 6 Γg bc∂dgΓ
a
ef − 3 Γg bc∂deΓ

a
fg + 3 ∂bcdΓ

a
ef

(11.16)

22

360yabc = 120xdRa
bdc + 15xdxe (2∇bR

a
dec + 4∇dR

a
bec +∇aRdbec)

+ xdxexf (32Ra
dgeRgbfc − 16Ra

bgdRgefc − 8Ra
dgbRgefc

+ 18∇dbR
a
efc + 18∇deR

a
bfc + 8Ra

gdbRgefc + 9∇a
dRebfc)

+xdxexfxg (16Rhbdc∇eR
a
fhg +6Ra

dhe∇bRhfgc+16Ra
dhe∇fRhbgc

− 8Ra
bhd∇eRhfgc − 4Ra

dhb∇eRhfgc − 4Rhdeb∇cR
a
fhg

− 8Rhdeb∇fR
a
chg − 4Rhdeb∇fR

a
ghc + 6∇debR

a
fgc + 4∇defR

a
bgc

+ 5Ra
dhe∇hRfbgc + 4Ra

hdb∇eRhfgc − 4Rhdeb∇aRhfgc

+ 4Rhdeb∇fR
a
hgc + 3∇a

deRfbgc)

(11.17)

1080yabcd = 90xe∇bR
a
ced+3xexf (8Ra

egbRgcfd+32Ra
bgeRgcfd−8Ra

bgcRgefd

+ 18∇ebR
a
cfd + 6∇bcR

a
efd + 56Ra

gebRgcfd + 3∇a
bRecfd)

+ 10xexfxg (2Rhbec∇dR
a
fhg + 4Rhbec∇hR

a
fgd + 4Rhbec∇fR

a
dhg

+ 8Rhbec∇fR
a
hgd −Rhbec∇aRhfgd + 2Ra

bhe∇cRhfgd

+ 4Ra
bhe∇fRhcgd +Ra

bhe∇hRfcgd + 4Ra
heb∇cRhfgd

+ 8Ra
heb∇fRhcgd + 2Ra

heb∇hRfcgd)

(11.18)

432yabcde = 8xfRa
bgcRgdfe + xfxg (2Ra

bhc∇dRhfge + 4Ra
bhc∇fRhdge

+Ra
bhc∇hRfdge + 2Rhbfc∇dR

a
ghe − 10Rhbfc∇dR

a
hge

+ 4Rhbfc∇gR
a
dhe + 28Rhbfc∇hR

a
dge + 2Rhbfc∇aRhdge

+ 12Rhbfc∇dR
a
ehg + 6Ra

bhf∇cRhdge + 18Ra
hfb∇cRhdge)

(11.19)

(11.20)360yabcdef = xg (2Ra
bhc∇dRhegf + 3Rhbgc∇dR

a
ehf)

Geodesic arc-length

23

(11.21)L2
PQ = fab∆x

a∆xb + fabc∆x
a∆xb∆xc + fabcd∆x

a∆xb∆xc∆xd

+ fabcde∆x
a∆xb∆xc∆xd∆xe +O

(
ε6
)

180fab = 180 gab − 60xcxdRcadb − 30xcxdxe∇cRdaeb

+ xcxdxexf (8RgcdaRgefb − 9∇cdReafb)

+ 2xcxdxexfxg (4Rhcda∇eRhfgb −∇cdeRfagb)

(11.22)

180fabc = −15xdxe∇aRdbec + xdxexf (8RgdeaRgbfc − 9∇daRebfc)

+ xdxexfxg (4Rhadb∇eRhfgc + 4Rhdea∇bRhfgc + 4Rhdea∇fRhbgc

− 3∇deaRfbgc)

(11.23)

540fabcd = −3xexf (44RgaebRgcfd + 3∇abRecfd)− 5xexfxg (8Rhaeb∇cRhfgd

+ 9Rhaeb∇hRfcgd + 20Rhaeb∇fRhcgd − 6Rhefa∇bRhcgd)

(11.24)

(11.25)54fabcde = xfxgRhafb∇cRhdge

12 Discussion

The value of any new computational tool comes not just in being able to do
routine computations, computations that we could do by hand, but rather
in giving us the option to perform computations we would not otherwise
undertake. New tools should open new opportunities for research. Cadabra
seems to be such a tool.

13 Acknowledgements

I am very grateful to Kasper Peeters for his many helpful suggestions. Any
errors, omissions or inaccuracies in regard to Cadabra are entirely my fault
(I hope there are none).

24

Appendix A. Symmetrisation of tensors

The totally symmetric part of a tensor Ai1i2i3···in is commonly defined by

A(i1i2i3···in) =
1

n!
(Ai1i2i3···in + Ai1i2i3···in + Ai1i2i3···in + · · ·)

where the sum on the right hand side includes every permutation of the
indices of i1i2i3 · · · in. If the tensor Ai1i2i3···in happens to be symmetric in
every pair of indices then we observe

A(i1i2i3···in) = Ai1i2i3···in

From the above definition it is very easy to establish the following theorems

A(i1i2i3···(j1j2j3···jm)···in) = A(i1i2i3···j1j2j3···jm···in) (A.1)

A(i1i2i3···inBj1j2j3···jm) = A((i1i2i3···in)B(j1j2j3···jm)) (A.2)

nA(i1i2i3i4···in) = Ai1(i2i3i4···in) + Ai2(i1i3i4···in) + Ai3(i1i2i4···in) + · · ·
+ Ain(i1i2i3···in−1)

(A.3)

nA(i1i2i3i4···in) = A(i2i3i4···in)i1 + A(i1i3i4···in)i2 + A(i1i2i4···in)i3 + · · ·
+ A(i1i2i3···in−1)in

(A.4)

Suppose now that we have Ai1i2i3···in = A(i1i2i3···in), that is, Ai1i2i3···in is totally
symmetric. Then for any Bj we have

(n+ 1)A(i1i2i3···inBj) = Aji2i3···inBi1 + Ai1ji3···inBi2 + Ai1i2j···inBi3

+ · · ·+ Ai1i2i3···in−1jBin

(A.5)

and

(n+ 1)A(i1i2i3···in,j) = Aji2i3···in,i1 + Ai1ji3···in,i2 + Ai1i2j···in,i3
+ · · ·+ Ai1i2i3···in−1j,in + Ai1i2i3···in,j

(A.6)

All of the above are very easy to prove but one result which requires just a
little more thought is the following.

Suppose Ai1i2j3j4j5···jn is symmetric in the pair i1i2 and symmetric in all the
indices j3j4j5 · · · jn. That is, it is symmetric under the interchange of any
pair of i’s and any pair of j’s but it is not necessarily symmetric when any i

25

is swapped with any j. What can we say about A(i1i2j3j4j5···jn)? Here is the
result

nA(i1i2i3···in) = 2Ain(i1i2i3···in−1) + (n− 2)A(i1i2i3···in−1)in (A.7)

The proof is very easy. Begin by writing out n!A(i1i2i3···in) in full. Then
partition the terms into two disjoint sets, one set in which in appears in
one of the first two index slots, the other set in which in appears in any of
the remaining n − 2 slots. The terms in the first set are exactly those that
define Ain(i1i2i3···in−1) while those in the second set define A(i1i2i3···in−1)in . The
above equation follows by simply counting the number of terms in each set
(2(n− 1)! and (n− 2)(n− 1)! respectively) and the simple observation that
n!A(i1i2i3···in) equals the sum of the terms from both sets.

Finally we note that if Q = Ai1i2i3···inx
i1xi2xi3 · · ·xin then we have

Q,i1i2i3···in = n!A(i1i2i3···in) (A.8)

Q = A(i1i2i3···in)x
i1xi2xi3 · · ·xin (A.9)

References

[1] L. Brewin, A brief introduction to Cadabra: a tool for tensor
computations in General Relativity. In preparation, 2009.

[2] K. Peeters, Introducing Cadabra: a symbolic computer algebra system
for field theory problems, arXiv:hep-th/0701238.

[3] K. Peeters, A field-theory motivated approach to symbolic computer
algebra, arXiv:cs/0608005v2.

[4] K. Peeters, Cadabra: a field-theory motivated symbolic computer
algebra system, Computer Physics Communications 176 (2007) no. 8,
550–558.

[5] K. Peeters. The Cadabra home page.
http://www.aei.mpg.de/~peekas/cadabra/.

[6] L. Brewin, Long term stable integration of a maximally sliced
Schwarzschild black hole using a smooth lattice method, Classical and
Quantum Gravity 19 (2002) 429–455.

26

http://arxiv.org/abs/arXiv:hep-th/0701238
http://arxiv.org/abs/arXiv:cs/0608005v2
http://dx.doi.org/doi:10.1016/j.cpc.2007.01.003
http://dx.doi.org/doi:10.1016/j.cpc.2007.01.003
http://www.aei.mpg.de/~peekas/cadabra/

[7] L. Brewin and J. Kajtar, A Smooth Lattice construction of the
Oppenheimer-Snyder spacetime. In preparation, 2009.

[8] A. P. Gentle, Regge calculus: a unique tool for numerical relativity,
Gen. Rel. Grav. 34 (2002) 1701–1718, gr-qc/0408006.

[9] T. Regge, General Relativity without coordinates, Il Nuovo Cimento
XIX (1961) no. 3, 558–571.

[10] R. Willimas and P. Tuckey, Regge calculus : A bibliography and a
brief review, Classical and Qunatum Gravity 9 (1992) 1409–1422.

[11] A. Hatzinikitas, A note on Riemann normal coordinates,
arXiv:hep-th/0001078v1.

[12] K. Higashijima, E. Itou, and M. Nitta, Normal Coordinates in Kahler
Manifolds and the Background Field Method, Prog.Theor.Phys. 108
(2002) 185–202, arXiv:hep-th/0203081v3.

[13] Y. Yamashita, Computer calculation of tensors in riemann normal
coordinates, General Relativity and Gravitation 16 (1984) no. 2,
99–110.

[14] U. Müller, C. Schubert, and A. E. van de Ven, A Closed Formula for
the Riemann Normal Coordinate Expansion, Gen.Rel.Grav 31 (1999)
1759–1768, arXiv:gr-qc/9712092v2.

[15] S. Chern, W. Chen, and K. Lam, Lectures on Differential Geometry.
World Scientific, Singapore, 2000.

[16] I. Chavel, Riemannian Geometry. A modern introduction, 2nd ed.
Cambridge University Press, Cambridge., 2006.

[17] L. P. Eisenhart, Riemannian Geometry. Princeton University Press,
Princeton, 1926.

[18] A. Gray, The volume of a small geodesic ball of a Riemannian
manifold, Michigan.Math.J. 20 (1973) 329–344.

[19] T. Willmore, Riemannian Geometry. Oxford University Press, Oxford,
1996.

[20] E. Calzetta, S. Habib, and B. Hu, Quantum kinetic field theory in
curved spacetime: Covariant Wigner function and Liouville-Vlasov
equations, Phys.Rev.D 37 (1988) no. 10, 2901–2919.

27

http://arxiv.org/abs/gr-qc/0408006
http://arxiv.org/abs/arXiv:hep-th/0001078v1
http://arxiv.org/abs/arXiv:hep-th/0203081v3
http://arxiv.org/abs/arXiv:gr-qc/9712092v2

[21] A. Petrov, Einstein Spaces. Pergamon Press, Oxford, 1969.

[22] A. I. Nesterov, Riemann normal coordinates, Fermi reference system
and the geodesic deviation equation, Classical and Quantum Gravity
16 (1999) 465–477, arXiv:gr-qc/0010096v1.

28

http://arxiv.org/abs/arXiv:gr-qc/0010096v1

	Introduction
	Conformal coordinates
	Riemann Normal Coordinates
	The initial value problem
	The boundary value problem

	Notation
	The metric in Riemann normal form
	The inverse metric in Riemann normal form
	Generalised connections
	Geodesics
	Geodesic initial value problem
	Geodesic boundary value problem

	Geodesic arc-length
	Cadabra
	Truncation of polynomials
	Symmetrised covariant derivatives
	Symmetrised derivatives of the Riemann tensor

	Expansions to sixth order
	Discussion
	Acknowledgements
	Symmetrisation of tensors

