
Notation

I find it tiresome to continually read and write long tensor expressions such as

Γabc,i1i2i3···inA
i1i2i3···in

So I propose a small change in notation. I will use single greek letters to denote strings of indices
while reserving roman letters for single indices. In this notation the previous line would be written as

Γabc,βAβ

The number of indices inside β is unknown but usually that would not be a problem. The number n
in the old notation normally serves only to remind us that we have an unknown long series of indices.
The value of n is usually unknown and of little concern. Thus it seems reasonable to remove n from
the picture.

How might we deal with something like

Γabc,i1i2i3···inA
i1Ai2Ai3 · · ·Ain ?

I propose writing
Γabc,βA.β

The single dot reminds us that we are to multiply n copies of the object A, one for each of the normal
indices in β.

Here is another common construction(
· · ·

((
Γabc,i1A

i1
)
,i2
Ai2

)
,i3
Ai3 · · ·

)
,in

Ain

How might we tidy this up? By including a dot before the derivative index β, like this

Γabc,.βA.β

I had also thought of writing a bar underneath any letter to denote arbitrary length indices. The
advantage is that it places no constraints on the choice of index and it provides a better visual clue
than roman versus greek letters. Its main weakness is that it mght make the equation look a little
clutterd. Maybe that’s a weak objection. Here is how it would look

Γabc,.dA.d

Symmetrised covariant differentiation

Computing symmetrised covariant derivatives is a rather mundane process. The first two symmetrised
covariant derivatives of a tensor such as va can be computed using

va;b = va,b − Γcabvc

va;(bc) = va,bc − 2Γda(bvd,c) − Γdbcva,d + Γda(bΓ
e
c)dve + ΓdaeΓ

e
bcvd − Γda(c,b)vd

One can readily appreciate that the higher order computations are tedious and unwieldly. So the
obvious question is : How might we train Cadabra to do these computations? One approach is simply
to provide all the standard rules but there is (in my opinion) a very elegant trick that makes the



Cadabra code rather simple. The essence of the trick is to introduce carefully chosen fields so that
the successive covariant derivatives can be calculated by doing little more than successive ordinary
differentiation.

Consider a geodesic passing through a point P . Let s be the arc length measured from P and let
Da(s) be the unit tangent vector on the geodesic. Now let Aa(s) be a vector field on the geodesic such
that its covariant derivative along the geodesic is zero, that is

0 = ∇D Aa =
dAa

ds
+ ΓabcAbDc

Now contract the first equation above with AaDb,

va;bA
aDb = va,bA

aDb − ΓcabvcAaDb

= va,bA
aDb + va

dAa

ds

=
dva
ds

Aa + va
dAa

ds

=
d (vaAa)

ds

Thus the first covariant derivative can be computed by one round of ordinary differentiation. This
result also shows how we can compute higher order derivatives. Since 0 = ∇DDa we can easily see
that

va;bA
aDb =

dn (vaAa)
dsn

Thus any higher order covariant derivative can be obtained simply by expanding the right hind side,
one derivative at a time, while using the parallel transport condition to eliminate derivatives in Aa and
Da. The Cadabra code for this is is much the same. Each successive covariant derivative is obtained
by applying d/ds to the previous result then using substitutions to eliminate the newly introduced
derivatives of Aa and Da.

Riemann normal coordinates

Consider any point P in some space and some arbibrary geodesic through that point. If we choose
Riemann normal coordinates, centred on P and covering a neighbourhood of P , then the gedoesic
maybe written as

xa(s) = sAa

where Aa is a constant and s is the proper distance along the gedoesic from P to the typical point
xa(s) on the geodesic. Evidently the coordinates have be chosen so that xa = 0 identifies the point P .

Since xa(s) describes a geodesic, it must be a solution of the geodesic equation, that is

0 =
d2xa

ds2
+ Γabc

dxb

ds

dxc

ds

This applies everywhere on the geodesic. After repeated differentiations and using 0 = dAa/ds we
find

0 = Γabc,aA.a

This is not the usual form in which this result is found, usually it is written as

0 = Γa(bc,i1i2i3···in)
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This last form is valid only at P whereas the previous equation applies everywhere along the geodesic.

You might wonder why this last result does not apply at all points along the geodesic. Consider any
other point, say Q. Then there is only one geodesic joining P to Q. Thus at Q you do not have
the freedom to argue that Aa is arbitrary and thus peel away the factors of Aa from the second last
equation. The second last equation is true at Q but only for a specific choice of Aa.

Turn attention now to computing somthing like dn
(
vaA

.a
)
/dsn. Since we know that the derivatives

dnAa/dsn vanish at P in the RNC we have

dn
(
vaA

.a
)

dsn
=
dnva

dsn
A.a = va;.bA

.aA.b = va,.bA
.aA.b

where we have used d(...)/ds = (...);aAa = (...),aAa. Again this is valid along the geodesic but if we
evaluate the expression at P we know that the Aa are arbitrary, thus we have

v(a;b) = v(a,b)

Symmetrised derivatives in Riemann normal coordinates

Here is a challenge : express the symmetrised higher order covariant derivatives of vab in terms of the
partial derivatives of vab and the connection Γabc. The result becomes rather unwieldly after only a
few derivatives are taken.

We will follow the method outlined above with the extra feature that we will adapt our computations
to Riemann normal coordinates. Our starting point is the scalar function Q = vabA

aAb. We will take
higher ordre directional derivatives of Q along a geodesic through a point P . Let’s be specific. Let
Aa be the unit tangent to the geodesic and let s be the proper distance measured along the geodesic
from P .

In Riemann normal coordinates the geodesic through P is described by

xa(s) = sAa

and the Aa are constant along the geodesic, that is, for all n > 0

0 =
dnAa

dsn

Also, since Aa is the unit tangent to the geodesic, we have

0 = Aa;bA
b

We will use the above extensively in the following calculations.

dnQ

dsn
=
dn

dsn

(
vabA

aAb
)

=
dn−1

dsn−1

(
vab,cA

aAbAc
)

= vab,cA
aAbA.c

This result only applies in the Riemann normal frame at the point P .
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We can now repeat the same calculation but this time using covariant derivatives rather than partial
derivatives

dnQ

dsn
=
dn

dsn

(
vabA

aAb
)

=
dn−1

dsn−1

(
vab;cA

aAbAc
)

= vab;cA
aAbA.c

This result is general, it applies in all frames at P .

Clearly both results must yield the same value at P , thus we must have

vab;cA
aAbA.c = vab,cA

aAbA.c

at P and only in the Riemann normal frame at P . Since the Aa may be freely chosen at P we see that

v(ab;c) = v(ab,c)

at P and in the Riemann normal frame.

Symmetrised derivatives of the Riemann tensor

Put vab = RacbdB
cd and choose Bab to be parallel transported along the geodesic. Thus we have

(RapbqBpq);cA
aAbA.c = (RapbqBpq),cA

aAbA.c

But since 0 = Bab
;cA

c we can drag the Bpq through the derivatives on the left hand side to obtain

Rapbq;cB
pqAaAbA.c = (RapbqBpq),cA

aAbA.c

The right hand side can be expanded and the derivatives of B eliminated using the parallel transport
condition. In this way this particular form of symmetrised covariant derivative of the Riemann tensor
can be expressed soley in terms of its partial deriavtives and those of the connection.

When we expand the right hand side we will interpret the derivatives in two different ways. Every
derivative is of the form Q,cA

c. When acting on objects like Rabcd and Γabc we use the derivative as
written, that is, as a chain rule. But on objects like Aa and Bab we will compute this derivative as a
directional derivative, as follows

Aa,bA
b =

dAa

ds
= 0

Bab
,cA

c =
dBab

ds
= −ΓadcBdbAc − ΓbdcBadAc

Can we get the inverse result? That is, can we express the symmetrised partial derivatives of the
Riemann tensor in terms of its covariant derivatives? Yes, but this time we take Bab to be constants
along the geodesic. That is we have

Aa,bA
b =

dAa

ds
= 0

Bab
,cA

c =
dBab

ds
= 0

Bab
;cA

c =
dBab

ds
+ ΓadcBdbAc + ΓbdcBadAc
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We can also retrace out steps, rerurning to

(RapbqBpq);cA
aAbA.c = (RapbqBpq),cA

aAbA.c

and since dBab/ds = 0 we see that

Rapbq,cB
pqAaAbA.c = (RapbqBpq);cA

aAbA.c

(note that the equation has been swapped left to right). And once again we can expand the right
hand side using the equations given above for the covariant derivatives of Bab.
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