Learning Hybrid Bayesian Networks by MML

Rodney T. O'Donnell, Lloyd Allison, and Kevin B. Korb

home1 home2
and the


Also see:
 Ind. Inf.

AI2006, Springer Verlag, LNCS Vol.4304, pp.192-203, 2006.

Abstract. We use a Markov Chain Monte Carlo (MCMC) MML algorithm to learn hybrid Bayesian networks from observational data. Hybrid networks represent local structure using conditional probability tables (CPT), logit models, decision trees or hybrid models, i.e., combinations of the three. We compare this method with alternative local structure learning algorithms using the MDL and BDe metrics. Results are presented for both real and artificail data sets. Hybrid models compare favourably to other local structure learners, allowing simple representations given limited data combined with richer representations given massive data.

[doi:10.1007/11941439_23]['06], isbn:978-3-540-49787-5.
Coding Ockham's Razor, L. Allison, Springer

A Practical Introduction to Denotational Semantics, L. Allison, CUP

free op. sys.
free office suite
~ free photoshop
web browser

Also see:

© L. Allison   http://www.allisons.org/ll/   (or as otherwise indicated),
Faculty of Information Technology (Clayton), Monash University, Australia 3800 (6/'05 was School of Computer Science and Software Engineering, Fac. Info. Tech., Monash University,
was Department of Computer Science, Fac. Comp. & Info. Tech., '89 was Department of Computer Science, Fac. Sci., '68-'71 was Department of Information Science, Fac. Sci.)
Created with "vi (Linux + Solaris)",  charset=iso-8859-1,  fetched Tuesday, 16-Jul-2024 13:14:52 AEST.