
The Modelling Language Zinc

Maria Garcia de la Banda, Kim Marriott, Reza Rafeh, and Mark Wallace

Clayton School of IT, Monash University, Australia
{mbanda, marriott, reza.rafeh, wallace}@mail.csse.monash.edu.au

Abstract. We describe the Zinc modelling language. Zinc provides set
constraints, user defined types, constrained types, and polymorphic pred-
icates and functions. The last allows Zinc to be readily extended to dif-
ferent application domains by user-defined libraries. Zinc is designed to
support a modelling methodology in which the same conceptual model
can be automatically mapped into different design models, thus allowing
modellers to easily “plug and play” with different solving techniques and
so choose the most appropriate for that problem.

1 Introduction

Solving combinatorial problems is a remarkably difficult task which requires
the problem to be precisely formulated and efficiently solved. Even formulating
the problem precisely is surprisingly difficult and typically requires many cycles
of formulation and solving. Efficiently solving it often requires development of
tailored algorithms which exploit the structure of the problem, and extensive
experimentation to determine which technique or combination of techniques is
most appropriate for a particular problem. Reflecting this discussion, modern
approaches to solving combinatorial problems divide the task into two (hopefully
simpler) steps. The first step is to develop the conceptual model of the problem
which specifies the problem without consideration as to how to actually solve
it. The second step is to solve the problem by mapping the conceptual model
into an executable program called the design model. Ideally, the same conceptual
model can be transformed into different design models, thus allowing modellers
to easily “plug and play” with different solving techniques [4].

Here we introduce a new modelling language, Zinc, specifically designed to
support this methodology. There has been a considerable body of research into
problem modelling which has resulted in a progression of modelling languages
including AMPL [2], Localizer [6], OPL [7], and specification languages includ-
ing ESRA [1] and ESSENCE [3]. We gladly acknowledge the strong influence
that OPL has had on our design. Our reasons to develop yet another modelling
language are threefold.

First, we want the modelling language to be solver and technique indepen-
dent, allowing the same conceptual model to be mapped to different solving
techniques and solvers, i.e., be mapped to design models that use the most appro-
priate technique, be it local search, mathematical modelling (MIP), Constraint
Programming (CP), or a combination of the above. To date the implemented

F. Benhamou (Ed.): CP 2006, LNCS 4204, pp. 700–705, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

The Modelling Language Zinc 701

languages have been tied to specific underlying platforms or solving technologies.
For example, AMPL is designed to interface to MIP packages such as Cplex and
Xpress-MP, Localizer was designed to map down to a local search engine, and
ESSENCE and ESRA are designed for CP techniques. Of the above, only OPL
was designed to combine the strengths of both MIP and CP, and now the most
recent version of OPL only supports MIP.

Second, we want to provide high-level modelling features but still ensure that
the Zinc models can be refined into practical design models. Zinc offers struc-
tured types, sets, and user defined predicates and functions which allow a Zinc
model to be encapsulated as a predicate. It also allows users to define “con-
strained objects” i.e., to associate constraints to a particular type thus specify-
ing the common characteristics that a class of items are expected to have [5].
It supports polymorphism, overloading and type coercion which make the lan-
guage comfortable and natural to use. However, sets must be finite, and re-
cursion is restricted to iteration so as to ensure that execution of Zinc pro-
grams is guaranteed to terminate. Zinc is more programming language like
than the specification based approaches of ESSENCE and ESRA. These pro-
vide a more abstract kind of modeling based on first-order relations. Currently,
they do not support variables with continuous domains or, as far as we can
tell, functions or predicates. Furthermore, only limited user-defined types are
provided.

And third, we want Zinc to have a simple, concise core but allow it to be
extended to different application areas. This is achieved by allowing Zinc users
to define their own application specific library predicates, functions and types.
This contrasts with, say, OPL which provides seemingly ad-hoc built-in types
and predicates for resource allocation and cannot be extended to model new
application areas without redefining OPL itself since it does not allow user-
defined predicates and functions.

2 Zinc

Zinc is a first-order functional language with simple, declarative semantics. It
provides: mathematical notation-like syntax; expressive constraints (finite do-
main and integer, set and linear arithmetic); separation of data from model;
high-level data structures and data encapsulation including constrained types;
user defined functions and constraints.

As an example of Zinc, consider the model in Figure 1 for the perfect squares
problem [8]. This consists of a base square of size sizeBase (6 in the figure) and
a list of squares of various sizes squares (three of size 3, one of size 2 and five
of size 1 in the figure). The aim is to place all squares into the base without
overlapping each other.

The model defines a constrained type PosInt as a positive integer and declares
the parameter sizeBase to be of this type. A record type Square is used to model
each of the squares. It has three fields x, y and size where (x, y) is the (unknown)
position of the lower left corner of the square and size is the size of its sides.
The first constraint in the model ensures each square is inside the base (note

702 M.G. de la Banda et al.

type PosInt = (int:x where x>0);
PosInt: sizeBase;
record Square=(var 1..sizeBase: x, y; PosInt: size);
list of Square:squares;

constraint forall(s in squares)
s.x + s.size =< sizeBase+1 /\
s.y + s.size =< sizeBase+1;

predicate nonOverlap(Square: s,t) =
s.x+s.size =< t.x \/ t.x+t.size =< s.x \/
s.y+s.size =< t.y \/ t.y+t.size =< s.y;

constraint forall(i,j in 1..length(squares) where i<j)
nonOverlap(squares[i], squares[j]);

predicate onRow(Square:s, int: r) =
s.x =< r /\ r < s.x + s.size;

predicate onCol(Square:s, int: c) =
s.y =< c /\ c < s.y + s.size;

assert sum(s in squares) (s.size^2) == sizeBase^2;
constraint forall(p in 1..sizeBase)

sum(s in Squares) (s.size*holds(onRow(s,p))) == sizeBase /\
sum(s in Squares) (s.size*holds(onCol(s,p))) == sizeBase;

output(squares);

5

6

4

3

2

1

1 2 3 4 5 6

Fig. 1. Perfect Squares model

that \/ and /\ denote disjunction and conjunction, respectively). The model
contains three user-defined predicates: nonOverlap which ensures two squares
do not overlap, while onRow and onCol ensure the square is, respectively, on a
particular row or column in the base.

The squares provided as input data are assumed to be such that they fit in
the base exactly. To check this assumption, the model includes an assertion that
equates their total areas.

The last constraint in the model is redundant since it is derived from the
assumption that the squares exactly fill the base: the constraint simply enforces
each row and column in the base to be completely full.

Data for the model can be given in a separate data file as, for example:

sizeBase=6;
squares = [(x:_,y:_,size:s) | s in [3,3,3,2,1,1,1,1,1]];

Let us now look at the more interesting features of Zinc.

Types: Zinc provides a rich variety of types: integers, floats, strings (for output),
Booleans, arrays, sets, lists, tuples, records, discriminated union (i.e. variant
records) and enumerated types. All types have a total order on their elements,
thus facilitating the specification of symmetry breaking and of polymorphic pred-
icates and functions. In the case of compound types this total order is the natural
lexicographic ordering based on their component types.

The Modelling Language Zinc 703

A useful feature of Zinc is that arrays are not restricted to integer indexes,
they are actually maps from virtually any type to any other type. Similarly, Sets
can be of any data type as long as they are finite.

In order to allow natural mathematical-like notation, Zinc provides automatic
coercion from integers to floats, from sets to lists, from lists to arrays and from
tuples to records with the same field types. A set is coerced to a list with its
elements in increasing order, and a list of length n is coerced to an array with
index set 1..n.

One of the novel features of Zinc is that types, such as PosInt in the perfect
squares model in Figure 1, can have an associated constraint on elements of that
type. Effectively, whenever a variable is declared to be of constrained type, the
constraint is implicitly placed in the model.

Variables: All variables must be declared with a type except for local variables
occurring in an array, list or set comprehension. The reason for requiring explicit
typing is that automatic coercion and separate datafiles precludes complete type
inference.

Variables have an associated instantiation which indicates whether they are
parameters of the model whose value is known before performing any solving of
the model, or decision variables whose value is known only after. Variables are,
by default, assumed to be parameters, and are declared to be decision variables
by adding the var keyword before their type definition. This keyword can only
be applied to integers, floats, enumerated types, Booleans, and sets. Lists of
variable length are not allowed.

Expressions: Zinc provides all the standard mathematical functions and oper-
ators, many of which are overloaded to accept floats and integers.

List, set and array comprehensions provide the standard iteration constructs
in Zinc. Examples of their use are shown in the preceding example. Other it-
erations such as forall, exists, sum and product are defined as Zinc library
functions using foldl(Fun, List, Init), which applies the binary function Fun to
each element in List (working left-to-right) with initial accumulator value set to
Init. For instance,

constraint forall(list of bool: L) = foldl(’/\’,L,true);
function int: sum(list of int: L) = foldl(’+’,L,0);
function float: sum(list of float: L) = foldl(’+’,L,0);

foldl and foldr are the only higher-order functions provided by Zinc. User-
defined higher-order functions and predicates are not allowed in Zinc.

Constraints: Zinc supports the usual constraints over integers, floats, Booleans,
sets and user defined enumerated type constants. All constraints, including user-
defined constraints, are regarded as Boolean functions and can be combined using
the standard Boolean operators. Higher-order constraints can also be readily
defined, which is useful, for example, to define functions such as the built-in
function holds which returns 1 if the constraint holds, and 0 otherwise.

704 M.G. de la Banda et al.

The standard global constraints, such as alldifferent, are provided. Note
that thanks to the existence of a total order on the elements of any type, the
alldifferent global constraint works for lists of any type, including records.

User-defined Predicates and Functions: One of the most powerful features
of Zinc is the ability for users to define their own predicates and functions,
such as nonOverlap, onRow and onCol, in the perfect square model in Fig-
ure 1. Zinc supports polymorphic types and context-free overloading. Although
the average modeller may not use these facilities, it allows standard modelling
functions to be defined in Zinc itself. We have previously seen an example of
how the library function sum is overloaded to take either a list of integers or
a list of floats, and how the library function alldifferent is polymorphically
defined for lists of any type. As another example of polymorphism, consider
the polymorphic predicate between (with polymorphic types being indicated
by $T):

predicate between($T: x,y,z) =
(x =< y /\ y =< z) \/ (z=<y /\ y=<x);

which applies to numeric and non-numeric types, lists, tuples, records and sets!
User-defined functions and predicates are instantiation-overloaded in the sense

that a definition can take both parameters and decision variables.

3 Conclusion and Future Work

We have presented a new modelling language Zinc designed to allow natural,
high-level specification of a conceptual model. Unlike most other modelling lan-
guages, Zinc provides set constraints, constrained types, user defined types, and
polymorphic predicates and functions. The last allows Zinc to be readily ex-
tended to different application domains by user-defined libraries.

One of the main aims of developing Zinc is that a Zinc model can be mapped
into design models that utilize different solving techniques such as local search
or tree-search with propagation based solvers. Currently, we are implementing
three mapping modules to map the Zinc models into design models in ECLiPSe
for three different solving techniques: constraint programming, local search and
mathematical methods.

References

1. P. Flener, J. Pearson, and M. Ågren. Introducing ESRA, a relational language for
modelling combinatorial problems. In LOPSTR, pages 214–232, 2003.

2. R. Fourer, D. M. Gay, and B. W. Kernighan. AMPL: A Modeling Language for
Mathematical Programming. Duxbury Press, 2002.

3. A.M. Frisch, M. Grum, C. Jefferson, B. Martinez-Hernandez, and I. Miguel. The
essence of ESSENCE: A constraint language for specifying combinatorial problems.
In Fourth International Workshop on Modelling and Reformulating Constraint Sat-
isfaction Problems, pages 73–88, 2005.

The Modelling Language Zinc 705

4. C. Gervet. Large scale combinatorial optimization: A methodological viewpoint, vol-
ume 57 of Discrete Mathematics and Theoretical Computer Science, pages 151–175.
DIMACS, 2001.

5. B. Jayaraman and P. Tambay. Modeling engineering structures with constrained
objects. In PADL, pages 28–46, 2002.

6. L. Michel and P. Van Hentenryck. Localizer: A modeling language for local search.
In Proc. Principles and Practice of Constraint Programming - CP97, pages 237–251,
1997.

7. P. Van Hentenryck, I. Lustig, L.A. Michel, and J.-F. Puget. The OPL Optimization
Programming Language. MIT Press, 1999.

8. E. W. Weisstein. Perfect square dissection. From MathWorld –A Wolfram Web
Resource, http://mathworld.wolfram.com/PerfectSquareDissection.html, 1999.

	Introduction
	Zinc
	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

