
ViMer: A Visual Debugger for Mercury

M. Cameron, M. Garcı́a de la Banda, K. Marriott, and P. Moulder
School of Comp. Sci and Soft. Eng

Monash University, 3800
Australia

{mcam,mbanda,marriott,pmoulder}@csse.monash.edu.au

ABSTRACT
ViMer is a visual debugging environment for Mercury pro-
grams which has three main contributions. First, it employs
a new execution tree representation, the layered AND-OR
tree, which we believe provides a better way of visualizing
backtracking in AND-OR-like trees. Second, it uses incre-
mental constraint-solving to efficiently draw and incremen-
tally update the visualization of the execution tree. And
finally, it borrows techniques from standard tracers (such as
the use of spy points to reduce the amount of tree nodes, and
the placement of restrictions on the amount of information
stored at each node) that help keep the tool efficient while
still providing enough information for debugging.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Language Classifica-
tions—Constraint and logic languages; D.3.4 [Programming
Languages]: Processors—Debuggers

Keywords
execution trees, visualization, incremental tree layout

1. INTRODUCTION
There has been a significant amount of research into de-

bugging of logic and constraint logic programming languages
(see for example, [3, 16, 12] and their references). In particu-
lar, this research has resulted in several sophisticated visual
debugging tools such as the Transparent Prolog Machine [7]
(TPM) developed for Prolog, Explorer [16] developed for Oz,
APT [6] developed for CIAO, and the Execution Tree Viewer
(ETV) [1] developed for PrologIV. However, the picture is
far from perfect, and in practice most LP programmers use
simple textual debuggers (also called tracers) little better
than those provided twenty years ago.
One reason for this might be the usual reluctance by

programmers to stop using already-familiar environments.
However, we believe there are three other reasons for their

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPDP’03, August 27–29, 2003, Uppsala, Sweden.
Copyright 2003 ACM 1-58113-705-2/03/0008 ...$5.00.

lack of acceptance by programmers in the logic program-
ming community. The first reason is that none of the trees
employed by these tools to display execution flow is ideal:
TPM and APT employ AORTA trees (a variant of AND-OR
trees) which do not provide adequate visualization of the ex-
ecution of non-deterministic programs, while Explorer and
ETV use SLD trees which are good for displaying the execu-
tion of non-deterministic programs but are not well-suited
for displaying execution of deterministic programs. The sec-
ond problem not adequately addressed in those tools is how
to efficiently re-layout the execution tree when this is dis-
played incrementally. This is particularly problematic for
AND-OR tree based visualizations in which backtracking
can greatly modify the tree not only by adding but also by
eliminating nodes. And finally, we believe these tools store
and manipulate too much information. ETV and APT are
off-line tools, i.e., they compute the complete execution tree
and the variable values associated to each node before cre-
ating the visualization. TPM and Explorer can both in-
crementally display the execution tree as it is created but
both still store too much information about nodes in the
tree (Explorer can forget some information, but only a level
at a time).
This paper presents ViMer, a debugging environment for

Mercury specifically designed to overcome the problems iden-
tified above thanks to three novel features. First, ViMer
uses a new representation for the execution tree, the layered
AND-OR tree. It is similar to an AORTA diagram for deter-
ministic programs, but uses “redo” layers to visualize back-
tracking, which we believe provide a more intuitive and com-
plete visualization. Second, it uses incremental constraint-
solving algorithms to efficiently recompute the layout of the
execution tree as it is built incrementally. This allows op-
timal utilization of limited screen space at every point in
the visualization. And finally, it borrows several techniques
from standard tracers that help keep the tool practical, i.e.,
reasonably efficient while still providing enough information
for debugging.
In particular, like Explorer and TPM, ViMer builds the

execution tree incrementally as the user steps through the
execution. Unlike previous tools, ViMer uses two mech-
anisms that obviate the need for memorizing every vari-
able binding information across the whole execution: “spy
variables” which involves selective memorization of variable
bindings, and a ‘retry’ command which involves limited re-
execution of the tree.
Furthermore, ViMer allows the user to indicate the predi-

cates of interest, similarly to how most tracers provide “spy-

56



Compiled Mercury Program

graphical constraint
solving toolkit

Qoca

Internal Trace
External debugger

interface
Tree ConstructionEvent Processor

graphical user interface
Tk

User Interface

ViMer Debugger

Figure 1: Overview of ViMer

points” (also known as break-points), with execution of other
predicates remaining hidden. This behaviour, which is com-
monly supported by standard tracers and by more sophisti-
cated monitoring tools such as Opium [5], is vital to reduce
the size of the internal tree data structures, the amount of
communication between the debugger and the instrumented
program, and the size of the tree shown to the user.
The rest of the paper proceeds as follows. Section 2 pro-

vides an overview of the Mercury language and its support
for ViMer. Section 3 provides a brief look at earlier ap-
proaches for visualizing execution and details the approach
taken by ViMer: the layered AND-OR tree. Section 4 de-
tails the choices made in ViMer to increase efficiency, while
Section 5 explains how constraint solving is used to visualize
the tree. Section 6 quickly reports on the status of the imple-
mentation and presents other features. Section 7 presents
the results of our experimental evaluation, and Section 8
concludes.

2. OVERVIEW OF MERCURY AND ViMer
The logic programming language Mercury [18] has been

designed to support programming in the large. It requires
the programmer to declare the type, mode and determinism
of each exported predicate. This information is used to pro-
vide stricter error checking at compile time, and to create
specialized more efficient versions of the predicates, called
procedures. Modifications to the original source code include
literals being normalized and reordered, clauses being trans-
formed into a single clause disjunction, and disjunctions in
which only one branch is known to succeed (since selection is
based on the value of a ground variable) being transformed
into switches.
When debugging is enabled, the execution of a Mercury

program is represented as a sequence of events. These events
can be placed into two categories: external and internal.
External events (call, redo, exit, fail and exception) deal
with the execution moving from one procedure to another.
Internal events (disjunctions, negations, if-then-elses and
switches) illustrate the flow of execution internal to the pro-
cedure. Information about each event includes a unique ID,
the associated procedure call and predicate, the depth of the
call, the type of the event (call, disjunction, etc.), the line
number of the related literal within the source code, and
information about the event’s location within the original
clause.
Mercury provides a quite flexible external debugger inter-

face which allows its users to, for example, step through each

event, examine its details and those of the current program
state, skip a fixed number of steps, jump to the next event
matching given criteria (e.g. only about a given set of proce-
dures), and re-execute from a particular event1. The exter-
nal interface also allows the debugger to obtain the names
and values of the variables associated to the last event.
Figure 1 shows the three major components of ViMer and

how they interconnect with (a) Mercury’s external debug-
ger interface and (b) the C++ constraint solving toolkit
QOCA [11], which was specifically designed for interactive
graphical applications. The event processor module is re-
sponsible for receiving the event information and determin-
ing the necessary adjustments to the tree structure (if any).
The tree construction module supports the storage, con-
struction and manipulation of the internal tree represen-
tation, and uses QOCA to compute the tree layout. Its
implementation is very generic and it is used for displaying
both the execution tree and data structures. Finally, the
user interface module uses the Tcl/Tk graphical toolkit [13]
to implement the system’s user interface and draw the exe-
cution tree on-screen. The current implementation consists
of approximately 12000 lines of newly-written and 1500 lines
of modified Mercury code.
It is important to mention that the Mercury distribution

already includes three debuggers. The first is a standard
procedural tracer. The second is a declarative debugger
built on top of the tracer which, upon indication from the
user of an incorrect trace event, attempts to find a parent
event which caused the error by using the programmer as
an oracle. The third and final debugger is Morphine [9], a
programmable command line interface which can be used
both for interactively monitoring and debugging Mercury
executions.
These debuggers are textual in nature and mostly orthog-

onal to ViMer since they focus on different problems. Fur-
thermore, they could be combined with ViMer to obtain a
more powerful and flexible tool. In the case of the stan-
dard procedural tracer, the combination would allow the
user to build and explore the tree using the perhaps more
familiar trace environment. In the case of the declarative
debugger, the combination could be used to better pinpoint
the cause of a bug by, for example, highlighting the path
traversed backwards in search of the event that caused the
error. In the case of Morphine, the combination can be per-

1Re-execution is not correct in the presence of side-effects
such as I/O. In those cases a warning is issued and the user
is required to confirm the re-execution.

57



formed through Morphine’s flexible collect predicate (as il-
lustrated by [8]) and would provide the user with enormous
flexibility regarding event storage, manipulation and visu-
alization. For example, it can be used to highlight events
associated to particular predicates, store and display the
value of variables of interest, etc. Such combinations are,
however, outside the scope of this paper.
The following sections look in detail at the more novel

aspects of ViMer.

3. THE LAYERED AND-OR TREE
This section presents the new execution tree representa-

tion used by ViMer: the layered AND-OR tree. It first pro-
vides a brief look at the two most common approaches for
visualizing execution trees: SLD-trees and AND-OR trees.
It then presents a variation of AND-OR trees, the AORTA
diagrams, which are the basis of our layered trees. Then, the
basic characteristics of the layered AND-OR tree and their
application to deterministic executions are presented. Fi-
nally, the characteristics of layered AND-OR trees are com-
pared to those of the AORTA diagrams for the case of non-
deterministic programs.

3.1 Earlier approaches for visualizing execu-
tion

The aim of the visualization is to provide the user with
a compact and clear view of the execution flow. Most vi-
sualization tools for logic programs are based on (variations
of) either SLD trees [10] or AND-OR trees [2]. SLD-trees
display conjunctions vertically and disjunctions horizontally
while AND-OR trees display both conjunctions and disjunc-
tions horizontally by alternating AND and OR nodes. Fig-
ure 2 uses both approaches to illustrate the execution of goal
a for a simple deterministic program (i.e., all its predicates
have at most one answer) which contains some backtracking.

Both formats have advantages and disadvantages. SLD-
trees provide a very clear representation of non-deterministic
programs since backtracking simply leads to new branches in
the tree. This is true not only for shallow backtracking (the
kind represented in Figure 2 where a solution is ultimately
found for the predicates) but also for deep backtracking,
i.e., that in which no answers are found for a predicate and
execution revisits a previously successful call in search of
alternative solutions. That is why a variation of the SLD-
tree is commonly used in constraint logic programming to
visualize variable choices: each layer in the tree represents
a variable and each node represents a choice of value for
that variable. Therefore, each successful branch will show
one possible solution. This is the visualization used, for
example, in [17].
However, executions with little backtracking yield a thin,

tall SLD tree, which achieves neither a compact represen-
tation nor good insight into the execution flow. This is a
particular problem for Mercury, since most Mercury proce-
dures are deterministic. AND-OR trees, on the other hand,
give rise to broader trees when representing the execution
of deterministic code (see Figure 2). They also make it eas-
ier to identify the beginning and end of a particular pred-
icate call since this corresponds to the subtree under the
associated node. However, as detailed in [14] they have sev-
eral problems, such as their inability to display execution

a:− b, c, fail.
a:− d, e.

d:− f,g.
e.

c.
b

c

b d

f

SLD tree

e

gfail

a

AND−OR tree

b

e

a

or

and

and

fail

d

c

f g

and

Figure 2: SLD versus AND-OR tree formats

of non-deterministic code which might imply the deletion of
previously successful branches.
For example, let us modify the program of Figure 2 by

eliminating the fail literal from the first clause of predi-
cate a. Let us then assume that after successfully obtaining
the first answer for predicate a, the execution proceeds exe-
cuting some other goal z but, at some point, an error causes
the execution to backtrack until it finds the second solution
for a. Then, the tree already displayed for z will have to be
deleted to allow for the new execution. Furthermore, even
if no new solution was found, one needs to at least mark the
displayed tree in some way to indicate the failure. These
deficiencies led the authors of [7] to define the AORTA di-
agram: a variation of the AND-OR tree better suited to
display execution of non-deterministic code.
AORTA diagrams differ from AND-OR trees in two main

ways. First, nodes are replaced by procedure status boxes,
which indicate the goal status (succeeded, failed, etc.), how
many clauses are in the definition of the procedure, and
which clause is being processed. A ‘tick’ in the boxes repre-
sents successful execution, a cross represents failure, a ques-
tion mark represents an unknown outcome due to current
execution. The boxes of all procedures in the body of a
clause are connected to a smaller box representing the clause
itself. The second modification is to use the clause branch
in place of the OR nodes, thus allowing AORTA diagrams
to “somewhat” remove an extra layer of nodes2. Clause
branches ended in a horizontal line indicate failure, those
ending in a box indicate they have been tried (the box it-
self might contain a tick, a question mark, etc.), and those
with no entry represent untried clauses. Figure 3 shows the
AORTA diagram associated to the search tree in Figure 2.

2The layer is not really eliminated but the small size of the
clause nodes allows a reduction in space. The layer can be
completely eliminated by using “the long distance view”.

58



a

f g

b c d e

fail

Figure 3: AORTA diagram

AORTA diagrams have some appealing aspects: they pro-
vide a more compact format and produce meaningful trees
when visualizing deterministic code. However, as we will see
in Section 3.3, they can still be confusing when dealing with
deep backtracking.

3.2 Layered AND-OR tree: Basic representa-
tion

Our visualization format, the layered tree, is also based on
the AND-OR tree. However, layered trees use three basic
node types: regular predicate call nodes, disjunct nodes,
and switch nodes. While call nodes are used to visualize
external events (call/redo, and exit/fail/exception), disjunct
and switch nodes are used to visualize internal events3. The
tree is constructed entirely from trace information.
The process of building the basic tree for a program execu-

tion that does not involve backtracking is relatively simple.
Events may result in the addition of nodes to the tree, a
change in a node’s status, or a change in the current node
(where execution is presently at). Each call event produces a
new node (labelled with the predicate name), which is added
to the tree. The logical context of the call (e.g. whether it is
made from within a negation or disjunction) is also shown,
using lighter-coloured icon nodes as parents. In all cases the
new node becomes the current node. On an exit or fail or ex-
ception event, the current point moves back up the tree, and
the status of nodes below this point are changed to exited
or failed or exception thrown, accordingly.
Like AORTA trees, layered trees display success and fail-

ure indicators at nodes. This is done by using the colour of
the vertical bar above each node: blue denotes called but
not yet exited, green denotes called and exited successfully,
red denotes called and failed, and orange denotes called and
exited with an exception. The predicate name is used to rep-
resent each node in the tree, and the current node is drawn
in blue. We believe colour provides a clearer view and is a
reasonable approach now that colour monitors are common-
place. Note that since our screenshots are published here in
black and white, these indicators are not visible. We have in-
stead thickened any called but not yet exited (usually blue)
nodes to highlight the current state of execution, and anno-
tated exited nodes with a tick or cross to indicate success
or failure (as in Figure 6). Layered trees provide no infor-

3The external debugger interface in released versions of Mer-
cury does not include enough information to accurately in-
clude if-then-else nodes in the tree. We have added the
necessary support to our private version of Mercury, but
haven’t yet modified ViMer to make use of this information.

mation regarding clauses which have not been explored yet.
We believe this information is not very useful, clutters the
screen, and can become a serious problem in the presence
of a high number of clauses. Furthermore, disjunct nodes
are used to represent the different clauses. This is because
Mercury’s compiler merges all clauses of a predicate into a
single clause with a disjunction.

3.3 Backtracking
Let us now look at the issue of visualizing deep backtrack-

ing, i.e., a situation in which a redo event occurs and execu-
tion revisits a previously successful predicate call in search
of alternative solutions. The difficulty lies in the fact that,
as opposed to the case of SLD-trees, part of the AND-OR
tree already displayed has to be modified (erased, marked,
etc.) to reflect the fact that it has been backtracked over.
The only previous work that provided a detailed represen-
tation of backtracking in AND-OR tree based formats was
the Transparent Prolog Machine’s AORTA tree backtrack-
ing representation.
Let us use the program shown in Figure 4 to illustrate

this mechanism. Tree A in Figure 5 shows the AORTA tree
representing the execution flow up to the point in which both
a(X) and c(X) have succeeded, binding X to 1, and the call
to b(1) has subsequently failed due to the failure of d(1).

a(X) :− c(X).

p :− a(X), b(X).

b(X) :− d(X), e(X).

c(1).

c(2).

c(3).

d(2).

d(3).

e(3).

Figure 4: Example logic program with backtracking

?p

a

c

b

d e

p

?p

b

d

a

c

b

d e

?p

a

c

b

d

?

Tree A Tree B Tree C

Tree D Tree E

a

c

b

d e

?p

?

Figure 5: AORTA trees for example program with
backtracking

59



Tree D Tree E

Tree A Tree B Tree C

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Figure 6: Layered trees for example program with backtracking

Up to this point, the execution flow is very clear since it
has been strictly left-to-right. But once backtracking takes
place the diagram already displayed needs to be modified.
And the modification not only consists in adding new nodes,
as is the case in SLD-trees, but also in modifying already
displayed nodes. Firstly, the visualization has to show how
the execution backtracks to the last choice-point left at c(X),
and succeeds when trying its second clause. Tree B shows
the associated AORTA tree. Note how in this representation
it is already difficult to distinguish between nodes which are
currently live (p, a and c) and those which have already
been backtracked over (b and d).
Tree C shows the execution up to the point in which a(X)

has finished successfully binding X to 2, and the call b(2)
has also finished with a fail b event after call to e(2) fails.
Note that the ghost status boxes behind nodes b and d use
depth to distinguish between an old call to the literals (b(1)
and d(1)) and the current one (b(2) and d(2)). AORTA
diagrams allow the user to step through these different calls
by mouse-clicking on the ghost. This rewinds the execution
replay to the time point when the previous invocation oc-
curred. Note that even though ghost status boxes are useful
in indicating that backtracking has occurred, they do not
provide a clear link identifying which ghost nodes are asso-
ciated with the same “redo layer” in the tree, that is, which
nodes become hidden together since the moment execution
started to backtrack (first redo event) until the moment for-
ward execution was resumed (first non-redo event). In the
example, this means that the ghost node associated to b

cannot be linked to that associated to d. Furthermore, since
nodes are not erased, if the tree corresponding to the second
invocation is different from that associated to the first one,

it can be difficult to see which nodes correspond to which
invocation.
Tree D shows the execution up to the point in which b(2)

has failed, execution returns to the last choice-point left by
the disjunction within c(X), and successfully exits binding
X to 3. Once again, it is difficult to distinguish between
nodes which are currently live (p, a and c) and those which
have already been backtracked over (b, d and e). Finally,
Tree E shows the execution up to the point in which a(X)

exits binding X to 3, and b(3) succeeds. A ghost box is now
present behind the e node, since more than one invocation
of e/1 now exists. Again, a quick look at the tree gives
no clue regarding when and how this backtracking occurred
and whether it is related to that of nodes b and d.
Our tool provides a different backtracking representation

which addresses the above concerns: the execution tree is
layered, that is, it is divided into numbered redo-layers, each
of which represents the tree state before one or more redo
events. This provides a clear link between prior invocations
of a predicate, whilst also only showing the specific related
subtree for each call. Furthermore, all nodes backtracked
over in a single redo-layer are erased from the displayed tree
and integrated into a single backtrack (or ghost) node rep-
resenting that layer. Let us illustrate this by considering
the layered trees in Figure 6 which show the same execution
steps as those in Figure 5.
As you can see, both formats produce a similar Tree A.

Layered Tree B is, however, quite different from the AORTA
one: since the subtree resulting from the invocation of b(1)
has been backtracked over and no longer forms part of the
current proof tree, it is erased from the display and replaced
by a single backtrack node. This node is labelled with its

60



Figure 7: Three redo-layers after execution of example logic program

redo frame number, that indicates which layer of the tree
(and which backtracking event) it is associated with. Lay-
ered Tree C is also quite different from the corresponding
AORTA tree. First, the position of its single backtrack node
clearly indicates when the backtracking occurred. Second,
the tree associated to b(2) is a completely new tree which
contains no nodes associated to previous invocations thus
avoiding any confusion and reducing the complexity of the
displayed tree. Tree D shows again the advantages of eras-
ing the part of the tree which has been backtracked over,
resulting in a tree which clearly shows the fact that the
third choice in the disjunction is being tried. Finally, Tree
E provides the ViMer tree associated to the success of p.
ViMer also provides a mechanism for moving between the

different redo-layers, both during execution and once it is
complete. We believe this provides a better understanding
of the execution flow during backtracking, with each inter-
mediate layer representing a failed proof tree, and the final
layer representing the final proof tree. Figure 7 shows the
three layers produced by the complete execution.
We would like to finish this section by discussing three

issues. Firstly, we believe our modifications to the AORTA
tree are orthogonal to the particular choice of visual repre-
sentation (treemaps, hyperbolic trees, 3D, etc.) since our
modifications indicate how nodes connect to each other.
However, we believe 3D visualization would be the most ad-
equate representation where each of the different redo-layers
could be actually displayed using the third dimension.
Secondly, we would like to mention a related form of

tree visualization, the re-computation tree, presented in [15]
as a modified version of the AND-OR tree. The modifi-
cations are specifically designed to represent parallel exe-
cutions combining both AND- and OR-parallelism, and in
which goal re-computation is used during AND-parallel ex-
ecution, i.e., if the AND-parallel goal (a&b) is executed, b
is recomputed for each answer of a. The re-computation
tree associates a special node to each (re)computation, dis-
playing a different solution for a together with the complete
execution of b. Two slight variations of the re-computation
tree (the C-tree and the VACE tree) are also presented dif-
fering mainly on how the common parts of a’s execution
are displayed. There exists a clear relationship between the
(re)computation nodes in the re-computation tree and the
ghost nodes in our layer tree, which each (re)computation
node essentially corresponding to a redo layer. However,

while re-computation nodes only appear in AND-parallel
conjunctions, our redo-layers can appear in any conjunction.
Thus, we believe it is best to only show the most recent layer
with the previous nodes collapsed into a single ghost node
which indicates the position at which backtracking occurred.
The final issue is the display of built-ins. Mercury has very

few built-ins, since most built-ins traditionally provided by
other Prologs are actually provided as library predicates in
Mercury, and are thus treated by ViMer as any other pred-
icate. Two standard Mercury built-ins are true and fail,
which Mercury treats as an empty conjunction and disjunc-
tion, respectively. As a result, there is no event specifi-
cally associated with them, and they are not visualized by
ViMer. Built-in unifications and comparisons do not by de-
fault generate a trace event, but recent releases of mercury
provide a compile-time option to generate events for these
predicates, which then appear to ViMer as normal predi-
cates. Higher-order built-ins, such as call(p), are treated
in Mercury identically to p by itself, and are therefore also
treated identically by ViMer (there is no separate node for
call as distinct from p). Finally, it is interesting to note
that in Mercury the usual predicates for returning all solu-
tions to a goal, such as solutions, are defined in a library
and are therefore displayed using the default mechanism.
This means that each solution gives rise to a different redo
layer. We are currently investigating alternative representa-
tions for these predicates, perhaps by treating the different
choices similarly to a conjunction. Such a specialised rep-
resentation might also be useful for other highly-disjunctive
predicates, such as those used for variable labelling in con-
straint logic programming applications.

4. TRACER-RELATED TECHNIQUES
Any debugger needs to traverse the large quantities of

events usually produced by real-sized programs and store
their associated information. In order to have an idea of the
overhead introduced by this, we used Mercury’s external de-
bugger interface to perform five tests on two different Mer-
cury programs. The first example program is an insertion-
sort program sorting a list of twenty words. Its execution
involves 657 events. The second is a program which solves
a logic puzzle. Its execution involves 17,712 events. Note
that both of these executions are small, with real-sized Mer-
cury programs easily producing thousands or even millions
of events. The following table shows the results (in seconds)

61



of executing these programs in the following five situations:
with debugging disabled; with debugging enabled but not
run through the external debugging interface; with debug-
ging enabled without sending any trace events (i.e., jumping
to the last event); tracing all events (i.e., jumping from event
to event until execution’s end) without requesting any infor-
mation about each trace event; and tracing all events and
requesting basic information about that event.

Test Sort Puzzle
Debugging disabled 0.258s 0.254s
Debugging enabled 0.259s 0.258s
Trace none 0.343s 0.409s
Trace all 0.782s 12.437s
Trace all and collect 0.977s 18.231s

Table 1: Timings for the external debugger interface

It is clear from the table that obtaining a complete trace of
a Mercury program’s execution is too time consuming even
for simple examples. This conclusion can be reached even
before the unavoidable overhead of visualizing such nodes is
taken into account. Thus, any tool (visualizer or not) which
is based on collecting, storing and manipulating execution
nodes must reduce the number of events processed as much
as possible. Furthermore, in order to be able to keep mem-
ory consumption down to a reasonable level, it must also
reduce the amount of information stored for each event. In
order to achieve this we have made three implementation
decisions which are borrowed from the techniques used by
standard tracers.
First, we decided that program execution would proceed

step by step in increments indicated by the user, as opposed
to off-line tools in which, as mentioned before, the program
is first executed to completion and then presented to the
user. Our choice, also taken by other visualization tools
(e.g., [17, 16, 7]), results in an execution tree which is lazily
and incrementally displayed as the user steps through the
execution.
Second, we decided to allow the programmer to use spy-

points to focus on particular parts of the program. In order
to do this, our tool presents the user with a list of predi-
cates/functions from which to select. Call or redo events for
procedures not in the selected set will not be watched for or
processed; no node is created for call/redo events not in the
selected set.
Spy-points will not only reduce the amount of time taken

by Mercury’s external debugger interface in processing the
events, but they will also reduce the size of ViMer’s internal
data structures representing the tree, the amount of commu-
nication between the debugger and the instrumented pro-
gram (since the external debugger interface will only send
events for predicates of interest), and the size of the tree
shown to the user.
Note that the spy-points can be set dynamically, i.e., they

can be added and removed during execution. In our imple-
mentation, changing spy-points does not affect the existing
tree: clearly we can’t in general add nodes for calls that we
didn’t previously trace, so keeping all existing nodes (even
nodes for procedures removed from the set of spy-points) is
the simplest and most consistent behaviour for this set. We
have not experimented with the hiding of nodes associated
with removed spy-points.

It is surprising to note that previous graphical debuggers
have not provided this mechanism. The only visualization
we know of which used this idea is that of [8] which illus-
trated how to collect different graphical views from Mercury
programs by using Morphine (essentially a convenient prolog
interface to Mercury’s external debugger interface).
The final technique borrowed from textual tracers (and

perhaps the more controversial) is due to the fact that re-
membering variable values at each point in the program
can be very expensive, especially for large recursive data
structures if one records whole values rather than just the
changes. For that reason, ViMer only stores variable bind-
ing information for the nodes in the currently-live branch,
discarding this information as execution proceeds. In other
words, the only variable bindings whose value is automati-
cally available are those that are currently live (i.e. variables
local to a scope not yet exited), like in traditional procedural
debuggers for imperative languages.
ViMer provides two ways of accessing variable bindings

for nodes that are no longer on the active branch. The
simplest (conceptually) is for the programmer to specify
“spy variables”, i.e. program variables whose value is to be
memorized each time that variable’s scope is entered. The
more sophisticated is to use the ‘retry’ facility of Mercury
to perform limited re-execution in order to recalculate these
values. This facility uses the external debugger interface’s
‘retry’ command to re-execute the smallest possible subtree
of the execution tree which will get us to the selected node,
i.e. re-executing from the closest common ancestor of the
program’s current position and the desired point. Because
the places of interest tend to be close to the current point
of execution, this typically involves much less work than
re-executing the whole program. However, the current im-
plementation of ‘retry’ in the Mercury debugging interface
requires running the subtree to completion before restarting
it. In the extreme case where the closest common ancestor
is the root node (‘main’), this can require more work than
simply stopping and restarting the program. On the other
hand, ‘retry’ can handle I/O better than simply restarting.
For example, it can “table” the results of reads to ensure
that the variables have the same values as in the first exe-
cution.
The algorithm used for adjusting and reconstructing the

execution tree when the retry command is invoked is rela-
tively straightforward: delete all children of the node, re-
set the node status to in-progress (i.e. change its colour on
screen), and remove the redo layers that hadn’t yet occurred
at the initial call event of the selected node. In other words,
ensure that the only nodes and redo layers left in the tree
are those that were present at the initial call event of the
selected node.
Note that, whole slabs of execution can be skipped and

then later accessed by using the retry command. For exam-
ple, one might skip a subtree (corresponding to ‘step over’ /
‘next’ in procedural debuggers), or skip until the next spy-
point/breakpoint is reached. The point about “skipping”
this execution is not just about not initially showing it to
the user, but also about being noticeably faster and using
less memory: the underlying debugging machinery needn’t
send trace events, and the graphical debugger needn’t pro-
cess or remember them, let alone manipulate tree layouts or
whatever information about an execution that the debugger
usually provides the user.

62



5. TREE DRAWING
Displayed trees are continually changing shape due to

their incremental display, the exploration of different redo
layers, and the use of re-execution. Thus, we need a tree
display mechanism that will not only allow relatively fast
drawing of the tree, but also efficient updating. Further-
more, we would like the layout to remain reasonably sta-
tionary, i.e., parts of the tree structure common between
increments should not unnecessarily move in position.
In order to do this we made use of the constraint-solving

toolkit QOCA, which was specifically designed for interac-
tive graphical applications [11]. Importantly, QOCA’s so-
lutions are differentially updated: finding a new solution
after adding or removing constraints involves less work than
finding a new solution from scratch.
The rules currently used for determining the layout of the

tree are as follows. First, the vertical position of each node is
fully determined by the node’s depth in the tree since there
is a fixed vertical distance between a parent and its children.
Second, the set of constraints on the x coordinates of nodes
are (from strongest to weakest):

G: (Gap) Neighbouring nodes must be no closer than a
certain distance.

L,R: (Left/Right) Parent nodes must lie between their left-
most and right-most children.

S: (Siblings) The distance between the left-most and right-
most children of a given parent is minimized.

H: (Half-way) Minimize the distance from a parent to
half-way between its left-most and right-most children.

Constraint G ensures that nodes remain well spaced apart,
and do not overlap. Constraint L,R forces a parent node to
lie horizontally between its children. Optimization function
S groups siblings as closely together as possible. Finally,
optimization function H places a parent node as close to
the middle of its children as possible, along the x-axis. A
combination of these constraints is applied to each node in
the tree, producing an aesthetically pleasing and clear tree
layout. QOCA is then used to obtain a suitable solution and
determine co-ordinate values for each tree node. As nodes
are added to the tree, made visible, or hidden from view,
the constraints are added or removed from QOCA.
Notice that we are not using the standard tree drawing

convention for layered ordered trees which is to require that
each parent node is centered between its children [4]. Our
drawing convention has the advantage that the layout can
be narrower than that obtained with the standard conven-
tion since we ultimately allow the parent to be placed any-
where between its children. On the other hand computing
the layout with our convention does seem to require a linear
programming approach rather than the use of a specialized
linear time algorithm such as those developed for the stan-
dard convention. One of the advantages of using a generic
linear constraint solving approach is that we can easily ex-
periment with different tree drawing conventions while with
standard tree drawing algorithms the convention is hard-
wired into the algorithm.
Although a complete description of the algorithms used is

out of the scope of this paper, let us give a brief overview
of the procedure for making a node visible. Consider the
example tree and constraints already applied to it, as shown
in Figure 8, Tree A. Each constraint has been labelled using
the above letters (G, L, R, S, H). Let us assume we wish

to add and make visible a new node, F, as a child to node
B and to the right of its sibling A. Tree B illustrates the
constraints present after the new node is added. Note that
constraints G and R relating to node A are removed, and
six new constraints are added.

Tree B

B

A F E

R

H

C

D

Previous constraints
New constraints

Tree A

A

B

E

C

D

L,R

* G

L

G,S G

Figure 8: Constraints used to add a node

The result is an efficient adjustment of graphical con-
straints as the displayed tree changes shape and size. Fur-
thermore, QOCA will retain the basic shape and structure of
the tree during updates, preventing sudden changes in lay-
out when possible. There is, however, still room for improve-
ment: ViMer sometimes processes tree changes one change
at a time, whereas some calculations can benefit from being
delayed as late as possible: in effect performing the calcula-
tion once per batch of updates instead of once per update.

6. CURRENT STATUS
As mentioned before, the current implementation consists

of approximately 12000 lines of newly-written and 1500 lines
of modified Mercury code, and provides other features which
are commonly supported by other visual debugging tools
such selective hiding/expansion of subtrees, display of vari-
able values, and source code display. The first feature allows
the user to select a node, and hide (or collapse) the entire
sub-tree beneath it, thus not displaying any events resulting
from this predicate call. The user may also select a collapsed
node and expand either a single layer, or the entire subtree
below.
The second feature allows the user to access the value of

variables in the current node by right-clicking on it. The
user is then presented with the list of variables associated to
that node and can choose to view a textual or tree represen-
tation. The former is a standard textual display. The latter
uses a tree structure with functors as node names. List are
treated specially, with each list element appearing as a child
of a special <<list>> node. Figure 9 shows the same value
displayed using the textual and tree formats. Note that the
tree is drawn using the same algorithms used for drawing
the execution tree. Also note that the user is allowed to
expand and collapse components of the displayed term tree
structure. We would like to extend this system to be able
to use type specific representation of values. We could then
incorporate tailored visualizations like those used in tools
such as Grace [12]. Unfortunately, no information about

63



Figure 9: Variable drawing

Figure 10: Source code display

64



Figure 11: Part of the layered AND-OR tree for the second example

the type of the variable (other than the type’s name) can be
obtained via the external debugger interface yet.
The final feature allows the user to select which mod-

ules to display and displays the source code of each selected
module in a separate window. The line number and module
information associated with each event is used to highlight
the relevant line of the code during execution, as illustrated
in Figure 10.
This understanding could be further improved by illus-

trating the connection between the execution flow and the
actual procedure generated by the compiler. This would im-
ply having two screens per module, one showing the source
code and another showing a high level version of the com-
piled code. Future work will investigate implementation of
such a mechanism.

7. SYSTEM EVALUATION
During the later stages of its development, the debugger

was shown to Mercury developers at Melbourne University,
who provided feedback about the tool and changes they felt
were necessary. Many of these changes were subsequently
implemented. We have found the tool to provide a much
clearer understanding of the execution flow of Mercury pro-
grams than standard text-based traces. The interface is ef-
fective and intuitive, and the tool runs efficiently, even when
visualizing larger programs.
In order to test the tool’s ability to debug real Mercury

programs, ViMer was run on several small and large Mer-
cury programs, including those with a wide range of non-
determinism and backtracking. The tool was also tested
on a Mercury ray-tracer program, which provided an excel-
lent example of a large-sized Mercury program. Different
sections of the ray-tracer’s execution, and some large data
structures created by the program were visualized quite suc-
cessfully. Furthermore, our visual debugger was used to de-
bug itself, both for testing purposes, and in two cases, to
successfully locate bugs in the tool itself.
Regarding efficiency in extracting trace information, and

construction and drawing of execution trees, we wish to de-
vise some performance tests that would accurately reflect
processing delays experienced by users of the tool. Typically,
we would imagine that users would advance execution by as
many as several hundred events, then explore some sections
of the tree (by expanding collapsed branches). Therefore,
we measured (a) the time required to extract the first 500
events and construct the internal tree representation and (b)
the time required to expand each parent node and explore
the entire tree, for two example programs. Tests were con-
ducted on an AMD 1.2 GHz processor with 1GB of RAM.

The first example program we tested was the logic puzzle
example used in Section 4, which is largely non-deterministic.
Jumping to the 500th event under the debugger takes 1.3
seconds (elapsed time), and results in a layered AND-OR
tree containing 62 nodes. If, instead, one takes 500 steps
(one by one), the maximum time taken for a step is 0.06
seconds (the average time taken for a step was 0.007 sec-
onds).
The second example program we tested was the debugger

itself. In this example, jumping to the 500th event of its
execution took 2.2 seconds, and resulted in a tree contain-
ing 229 nodes. If, instead, one proceeds step by step, the
maximum time taken for a step is 0.45 seconds. (The av-
erage time taken for a step was 0.017 seconds.) Figure 11
shows part of the layered AND-OR tree displayed during
the execution of the second example program.
For larger programs, one would usually select some spy-

points of interest rather than visualizing the whole execution
tree (which would be much too large to fit on screen). If this
results in only a small number of nodes on screen (i.e. few
communicated trace events and little tree layout work) then
the elapsed time will be very close to the time corresponding
to the ‘Trace none’ test in Table 1. In order to test this, we
set a single spypoint on a recursive predicate and jumped to
event number 50,000. This took 3.9 seconds, creating a tree
containing 138 nodes. Considering that for 17,712 events
the timings taken from the external debugger interface was
0.409 seconds, and that of those more than 138 events (reg-
ular call nodes usually correspond to several events) were
actually traced and their information requested (last test of
Table 1), the overhead introduced by ViMer seems indeed
quite reasonable.
Regarding how long is required to access old variable val-

ues using re-execution, it’s hard to give a good feel for it. In
the worst case, it can be comparable to the time taken to
run the whole program. In practice, the nodes one is inter-
ested in tend to be close to the current node. As an average
case analysis, suppose that the execution tree is an n-ary
tree of uniform depth. Clearly the average case depends
on the probability distribution of accesses, though it’s not
clear what the true distribution is. If the current node and
the node we wish to access are independently uniformly dis-
tributed about the tree, then the smallest subtree containing
both those nodes will on average be comparable to the size
of the whole tree. At the other extreme, if the probability
of a retry requiring an amount W of work is something like
e−W , then the average amount of work required is a constant
independent of the total tree size.

65



In our experience using ViMer, the time taken by retry has
been usually less than 0.1 seconds, and rarely more than a
second.
Note that our tool relies heavily upon reducing the amount

of visible nodes by spying a subset of the defined predicates
and by collapsing nodes. This not only aids the user in
visualizing such large and complex trees, but also reduces
processor time required for tree drawing. Our second ex-
ample program illustrated how display times can increase
substantially when more than a few hundred nodes are visi-
ble, however we do not expect that users would want to com-
pletely expand such a large and complex tree. Note that the
delay involved in extracting trace information and construct-
ing the internal tree representation is comparatively small.
There is, however, room for improvement in the current al-
gorithm, which only supports incremental update of the tree
one node at a time. This creates inefficiencies when adding
or hiding several nodes at once between updates of the user
display, since some constraints will be added and then re-
moved without being used to obtain coordinate values. We
plan to modify the algorithm to remove this inefficiency.

8. CONCLUSIONS
We have presented the layered AND-OR tree, a tree specif-

ically designed to visualize the execution of programs which,
like Mercury’s, are mostly deterministic but can contain
non-deterministic predicates. We believe this tree provides
a better understanding of the execution flow during deep
backtracking, with each intermediate layer representing a
failed proof tree, and the final layer representing the final
proof tree. We have also shown how to use incremental
constraint-solving capabilities to efficiently draw and incre-
mentally update the layered tree, obtaining an aesthetically
pleasing and clear tree layout.
Finally, our tool borrows several techniques from standard

traces to obtain a realistic tradeoff between efficiency and
usefulness. In particular, our tool does not require the entire
execution to finish for it to work, it allows the use of “spy
points” to specify which predicates’ events are visualized in
the tree, and only allows direct access to variables in nodes
appearing in the currently live branch. The effect of the
latter decision is softened by allowing the user to set up spy
points on variables whose values will then be remembered
even if not in the currently live branch, and providing re-
execution mechanisms that allow the user to go back to any
node already appearing in the tree.

9. ACKNOWLEDGEMENTS
We would like to thank David Jeffery for his involvement

in the design of early versions of the tool.

10. REFERENCES
[1] Bouvier, P. Visual tools to debug prolog IV programs.

In Analysis and Visualization Tools for Constraint
Programming: Constraint Debugging, pp. 177-190, 2000.

[2] Bratko, I. Prolog: Programming for Artificial
Intelligence, Addison-Wesley, Singapore, pp. 302-329,
1993.

[3] Deransart, P., Hermenegildo M., and Maluszynski, J.
Analysis and Visualization Tools for Constraint
Programming: Constraint Debugging. Lecture Notes in
Computer Science, 1870, Springer Verlag, 2000.

[4] Di Batista, G., Eades, P., Tamassia R., and Tollis, I.G.
Graph Drawing: Algorithms for the Visualization of
Graphs. Prentice Hall, 1999.

[5] Ducassé, M. Opium: An extendable trace analyser for
Prolog Journal of Logic Programming 39(4), pp.
177-223, December, 1999.

[6] Carro, M. and Hermenegildo, M. The APT tool. In
Analysis and Visualization Tools for Constraint
Programming: Constraint Debugging, pp. 237-252, 2000.

[7] Eisenstadt, M. and Brayshaw, M. The Transparent
Prolog Machine (TPM): an execution model and
graphical debugger for logic programming. Journal of
Logic Programming 5(4), pp. 277-342, December, 1988.

[8] Jahier, E. Collecting Graphical views of a Mercury
program. In 2000 International Workshop on
Automated Debugging.
http://xxx.lanl.gov/abs/cs.SE/0010038

[9] Jahier, E. and Ducassé Morphine 0.2 User and
Reference Manuals. IRISA, Rennes, 1999

[10] LLoyd, J.W. Foundations of Logic Programming,
Springer-Verlag, New York, 1987.

[11] Marriott, K., Chok, S.S. and Finlay, A. A tableau
based constraint solving toolkit for interactive
graphical applications. In Principles and Practice of
Constraint Programming - CP ’98, pp. 340-354, 1998.

[12] Meier, M. Debugging constraint programs. In
Principles and Practice of Constraint Programming -
CP ’95, pp. 204-221, 1994.

[13] Ousterhout, J. Tcl and the Tk Toolkit, Massachusetts:
Addison-Wesley, 1994.

[14] Pain, H. and Bundy, A. What stories should we tell
novice Prolog programmers. In Artificial Intelligence
Programming Environments, Wiley, New York, 1987.

[15] Vaupel, R., Pontelli E. and Gupta G. Visualization of
And/Or-Parallel Execution of Logic Programs. In L.
Naish (Ed.), Proceedings of the 14th International
Conference on Logic Programming, Cambridge, pp.
271-285. MIT Press, July 8-11, 1997.

[16] Schulte, C. Oz Explorer: A visual constraint
programming tool. In L. Naish (Ed.), Proceedings of the
14th International Conference on Logic Programming,
Cambridge, pp. 286-300. MIT Press, July 8-11, 1997.

[17] Simonis, H. and Aggoun, A. Search-Tree Visualisation.
In Analysis and Visualization Tools for Constraint
Programming: Constraint Debugging, pp. 191-208, 2000.

[18] Somogyi, Z., Henderson, F. and T. Conway. The
execution algorithm of mercury, an efficient purely
declarative logic programming language. In Journal of
Logic Programming 29(1-3), pp. 17-64, 1996.

66


