
Dunnart: A Constraint-based Network Diagram
Authoring Tool

Tim Dwyer, Kim Marriott, and Michael Wybrow

Clayton School of Information Technology, Monash University, 3800, Australia
{Tim.Dwyer,Kim.Marriott,Michael.Wybrow}@infotech.monash.edu.au

Abstract. We present a new network diagram authoring tool, Dunnart,
that provides continuous network layout. It continuously adjusts the lay-
out in response to user interaction, while still maintaining the layout
style and, where reasonable, the current layout topology. The diagram
author uses placement constraints, such as alignment and distribution,
to tailor the layout style and can guide the layout by repositioning dia-
gram components or rerouting connectors. The key to the flexibility of
our approach is the use of topology-preserving constrained graph layout.

1 Introduction

Producing well laid out network diagrams is not easy and extremely tedious for
any but the simplest networks. While automatic graph layout algorithms can
provide high-quality layout [4], in many situations users would like the ability to
interactively control and fine-tune the layout with similar flexibility to that pro-
vided in standard diagram authoring tools. Although some general purpose di-
agramming tools, such as Microsoft Visio1 and Omnigraffle,2 provide automatic
graph layout, the integration of graph layout into these tools is quite unsatisfac-
tory. Similar concerns apply to the network layout tool yEd.3 The issue is that
these tools use static graph layout algorithms which are not well-matched to
the inherently interactive nature of diagramming tools. They provide only “once
off” graph layout and allow little flexibility for the author to tailor the resulting
layout by, say, requiring that certain nodes are aligned.

We believe that a better model for integrating automatic graph layout into
diagramming tools is continuous network layout. In this model the graph-layout
engine runs continuously to improve the layout in response to user interaction.
The author uses placement constraints, such as alignment and distribution, to
tailor the layout style and can guide the layout by repositioning diagram com-
ponents or rerouting connectors. Importantly, layout should be fast enough to
allow the diagram author to immediately see the effect of their changes. Thus,
continuous network layout requires efficient dynamic graph layout techniques
that support placement constraints.
1 “Layout Assistant for Visio”, Tom Sawyer Soft., http://www.tomsawyer.com/lav/
2 “Omnigraffle”, The Omni Group, http://www.omnigroup.com/omnigraffle/
3 “yEd”, yWorks, http://www.yworks.com/products/yed/

Continuous network layout was introduced in GLIDE [13]. However, the
spring-based layout algorithm used by GLIDE was not robust or powerful enough
to truly support the model. Here we present a new network diagram authoring
tool, Dunnart,4 that provides continuous network layout and which uses a re-
cently developed topology preserving constrained graph layout algorithm [7].
This provides considerably more robust and powerful automatic layout than is
possible with unconstrained optimisation techniques such as those underlying
GLIDE.

Dunnart supports a variety of different layout styles, arbitrary clusters of
nodes, and placement tools such as alignment, distribution and separation. Dun-
nart’s layout engine continuously adjusts the layout in response to user interac-
tion, ensuring that the diagram remains “tidy” by, for instance, removing object
overlap, while still maintaining the layout style and user imposed placement
constraints. Figure 1 illustrates the use of Dunnart.

One of the most interesting innovations in Dunnart is a simple, readily under-
stood physical metaphor for layout adjustment : Poly-line connectors and cluster
boundaries act like rubber-bands, trying to shrink in length and hence straighten.
Like physical rubber-bands, the connectors and cluster boundaries are impervi-
ous in that nodes and other connectors cannot pass through them. This means
that layout adjustment preserves the general structure of the network draw-
ing, i.e. its topology, and so changes are smooth and predictable. Changes to
the topology only occur as the result of explicit direction by the author and for
common user editing actions, such as moving objects during direct manipulation
or resizing a node, the diagram topology is preserved.

Usability concerns have guided the design of Dunnart from its beginning
and we have carefully considered the design of the constraint-based placement
tools including how to provide adequate feedback about constraint interaction
(especially in the case of inconsistency) and how to ensure that the diagram
is not too cluttered by visual representation of constraints (See Fig. 2). One
important factor improving usability is that layout adjustment occurs in real-
time, providing immediate feedback about the effect of user changes.

2 Related Work

Our work brings together research into constraint-based diagramming editors
and research into graph drawing. Since the very infancy of diagram authoring
tools there has been interest in allowing the author to specify persistent layout
relationships on the diagram components, e.g. [14, 12, 8]. Previous systems have
explored constraint solving techniques and user interaction for constraint-based
placement tools. However, apart from GLIDE [13], these were not designed for
network diagrams and none provided automatic network layout in the sense that
we are discussing.

GLIDE was the first constraint-based diagramming tool explicitly designed
for network diagrams. It introduced continuous network layout and provided
4 Dunnart, http://www.dunnart.org/

2

Kittiwake

Arctic
Fox

Brunnich's
Guillemot

Capelin

Polychaetes

Glaucous
Gull

Eider
Duck

Fulmar

Ringed
Seal

Black
Guillemot

Baleen
Whale

Primary
Producers

Benthic
Crustaceans

Beluga

Pelagic
Crustaceans

Bearded
Seal

CodBenthic
Fish

Little
Auk

Amphipods,
Krill,

Prawns

Mussels
Snails

Polar
Cod

Squid

Harp
Seal

Pelagic
Invertebrates

Polar
Bear

(a) Organic layout style

Kittiwake

Arctic
Fox

Brunnich's
Guillemot

Capelin

Polychaetes

Glaucous
Gull

Eider
Duck

Fulmar
Ringed
Seal

Black
Guillemot

Baleen
Whale

Primary
Producers

Benthic
Crustaceans

Beluga

Pelagic
Crustaceans

Bearded
Seal

Cod
Benthic
Fish

Little
Auk

Amphipods,
Krill,

Prawns

Mussels
Snails

Polar
Cod

Squid

Harp
Seal

Pelagic
Invertebrates

Polar
Bear

(b) Layered layout style

Kittiwake

Arctic
Fox

Brunnich's
Guillemot

Capelin

Polychaetes

Glaucous
Gull

Eider
Duck

Fulmar

Ringed
Seal

Black
Guillemot

Baleen
Whale

Primary
Producers

Benthic
Crustaceans

Beluga

Pelagic
Crustaceans

Bearded
Seal

Cod

Benthic
Fish

Little
Auk

Amphipods,
Krill,

Prawns

Mussels
Snails

Polar
Cod

Squid

Harp
Seal

Pelagic
Invertebrates

Polar
Bear

(c) Flow layout style

Kittiwake

Arctic
Fox

Brunnich's
Guillemot

Capelin

Polychaetes

Glaucous
Gull

Eider
Duck

Fulmar

Ringed
Seal

Black
Guillemot

Baleen
Whale

Primary
Producers

Benthic
Crustaceans

Beluga

Pelagic
Crustaceans

Bearded
Seal

Cod

Benthic
Fish

Little
Auk

Amphipods,
Krill,

Prawns

Mussels
Snails

Polar
Cod

Squid

Harp
Seal

Pelagic
Invertebrates

Polar
Bear

(d) Final layout

(a) The author initially calls the
structural layout tool with or-
ganic layout style. Note how var-
ious automatic refinement con-
straints such as non-overlap of
nodes keep the layout tidy.

(b) The author tries the lay-
ered layout style. This gener-
ates a set of horizontal alignment
constraints with separation con-
straints between them. The sepa-
ration constraints keep the layers
in order and enforce a minimum
spacing (adjustable by the user)
between layers. The author has
added a vertical alignment con-
straint to several nodes to im-
prove the layout.

(c) Unhappy with the result, the
author now tries the flow lay-
out style. This generates style
constraints requiring that di-
rected edges be downward point-
ing. The minimum separation be-
tween nodes connected by di-
rected edges can be adjusted us-
ing a slider. Note that the ver-
tical alignment constraint was
maintained when switching lay-
out styles.

(d) Reasonably happy, the au-
thor now fine-tunes the layout.
They first add two new horizon-
tal alignment constraints. They
then cluster together three seal
species and two types of gull. As
a result the position of several
nodes and edges are automat-
ically updated to remove over-
lap with the clusters. Finally, the
author repositions the “Beluga”
and “Arctic Fox” nodes to im-
prove the clarity of the diagram.

Fig. 1. Example of interactive network layout with Dunnart. Network data from the
Many Eyes “Arctic food chain” visualisation, http://www.many-eyes.com/.

3

(a) Guidelines are bold in the regions be-
tween attached objects and are signifi-
cantly faded outside those regions. This
helps to reduce clutter while still allow-
ing the user to attach objects to guide-
lines. The four vertical alignment con-
straints (represented by the guidelines) are
involved in a horizontal distribution con-
straint which requires them to be equally
spaced. The user is currently adjusting
the distribution spacing (about the high-
lighted guideline) by dragging a handle on
right-side of the distribution indicator.

(b) The six alignment constraints have
horizontal separation constraints between
them. The minimum separation distance
may be adjusted by dragging a handle on
the separation indicator. Note that three
constraints are currently active (high-
lighted in red) while the other two have
some slack. The grey band on the right
edge of the page shows that a page-
containment constraint is not satisfied.
This results from the user indirectly push-
ing a shape outside the page while drag-
ging another shape.

(c) Flow layout has been enabled, con-
straining all directed edges to point down-
ward. A cycle of directed edges causes a
constraint conflict. Dunnart drops one of
the conflicting constraints, and highlights
this as well as the set of affected nodes.

(d) The widgets in the “Layout Proper-
ties” window control the structural layout
setting. They also allow the user to ad-
just the ideal edge length, and toggle gen-
eration of non-overlap and page-boundary
constraints.

Fig. 2. Screenshots showing the visual representations of constraints in Dunnart.

high-level placement constraints (called VOFs) which the author could add to
control the layout and which the layout engine endeavoured to satisfy during
subsequent changes to the layout. However GLIDE had two serious limitations.
The first was a lack of robustness. GLIDE used springs to approximately enforce
layout constraints which effectively meant the constraints were solved by min-
imising a goal function that contains an error term for each constraint. In the
case of conflicting forces, such as, for example, alignment of nodes in a network

4

with springy connectors, the so called “constraints” would simply not be satis-
fied, or worse, the whole system could become unstable and not converge to a
local minimum. The second limitation was that GLIDE provided little automatic
network layout. While it did allow the user to manually impose VOFs to control
edge length, when used in combination with other user-specified VOFs this led
to conflicting forces and unsatisfied constraints.

Our techniques for network layout draw upon recent research into graph
drawing. One relevant area of research is dynamic graph layout [2] which fo-
cuses on stable re-layout of changing graphs, or interactive navigation of large
graphs [10]. Most such systems are based on unconstrained force-directed layout
in which the forces between nodes are modified in response to user interaction.
However, in these systems the level of user control over the layout is very limited
(i.e., alignment or distribution of nodes is not supported) and, because of the
underlying optimisation techniques, it would be difficult to provide more.

Our work is also related to collaborative graph-layout tools in which the user
can interact with the optimisation engine to improve the layout and escape local
minima by providing user hints [11], such as repositioning a node. This is also
true in the continuous network layout model, since user interaction can guide the
layout engine away from undesired local minima. The fundamental difference is
that Dunnart is a generic network diagramming tool, while collaborative graph
layout is intended to allow the user to improve the layout obtained with a single
specialised layout engine. Thus, user hints are quite restrictive and depend on
the underlying layout algorithm. For example, the systems of [11, 1] are built on
top of a layered graph-drawing algorithm for directed graphs, while the Giotto
system [3] is built on top of an orthogonal graph layout engine.

Dunnart is based upon so called constrained graph layout algorithms which
perform graph layout subject to various kinds of layout constraints [9, 5]. It
uses a recent algorithm for topology preserving constrained graph layout [7]
designed for dynamic graph layout. This has previously been used for interactive
visualisation of large networks [6]. Here we demonstrate its usefulness in a new
application area: authoring.

3 Background: Constrained Graph Layout

In this section we briefly review the algorithm for topology preserving con-
strained graph layout. It is described more fully in [7]. The algorithm works on
network diagrams. These can contain: basic graphic shapes, such as rectangles
and ellipses, which are treated as rectangular nodes in the diagram; connectors,
which form the edges in the diagram and may be directed; and container shapes,
which contain a set of nodes and so specify node clusters in the diagram.

A layout for a network diagram gives a position for each node in the diagram
and a route for the paths, i.e. edge routes and cluster boundaries, in the network.

5

Constrained graph layout allows constraints on the placement of nodes. These
are required to be separation constraints in a single dimension.5 The layout
must also satisfy various refinement constraints to ensure that it is “tidy.” The
refinement constraints are:
– no two nodes overlap;
– the nodes inside the region defined by the boundary of each cluster are exactly

the nodes in the cluster;
– every path is valid and tight where a valid path is one in which no segment

passes through a node and a tight path is one in which the path “wraps”
tightly around each node corner in the path.
Topology-preserving constrained graph layout uses the P-stress (for path-

stress) goal function to measure the quality of a layout. P-stress modifies the
standard stress function to penalise nodes that are too close together, but not
nodes that are more than their ideal distance apart, thus eliminating long range
attraction which can cause issues in highly constrained problems. P-stress also
tries to make the length of each path in the network no more than its ideal length.
This has the effect of straightening edges and making clusters more compact and
circular in shape.

The basic algorithm to find a layout that minimises P-stress and which sat-
isfies the layout constraints is:
(1) Find a position for the nodes satisfying the layout constraints by projecting

the current position of the nodes on to the placement constraints and then
using a greedy heuristic to satisfy the non-overlap constraints and cluster
containment constraints (modeled using a rectangular box).

(2) Perform edge routing using an incremental poly-line connector routing algo-
rithm [15] to compute poly-line routes for each edge, which minimise edge
length and amount of bend. The cluster boundary is obtained using the con-
vex hull of the cluster.

(3) Optimise the layout by iteratively improving the current layout using gradi-
ent projection to reduce P-stress. This preserves the topology of the initial
layout.

As noted previously, unlike force-directed layout, constrained graph layout tech-
niques ensure that the generated layouts really do satisfy all of the layout con-
straints (unless the constraints are infeasible).

4 Dunnart

Dunnart is intended to be a generic diagramming tool that supports most dia-
gram types, including network diagrams. The original motivation for Dunnart
was to explore usability issues in constraint-based diagramming tools. Thus, us-
ability has been a focus of its design from the beginning. Feedback from its
5 Separation constraints have the form u + d ≤ v or u + d = v where u and v are

variables representing horizontal or vertical position of a node and d is a constant
giving the minimum separation required between u and v.

6

use—for constructing a wide variety of diagrams including UML diagrams and
biological networks—has greatly improved the interface design. We now look at
its more novel aspects.

A primary usability consideration was when and how much the layout engine
should change the layout in response to user interaction. Typically, when first
constructing a network diagram, the user will try different layout styles and, for
each style, wants the tool to automatically find a good layout. Then, once the
basic layout and style is chosen, the user will fine-tune the layout. During fine-
tuning, it is important that changes made by the layout engine are predictable
and controllable by the author. To support these two use cases, Dunnart provides
two kinds of network layout: structural layout and layout adjustment. We now
look at these.

4.1 Structural layout

Dunnart provides a structural layout tool which is free to completely rearrange
the layout so long as the user-specified placement constraints remain satisfied. It
is explicitly invoked by the author to re-layout the network. The other function
of the structural layout tool is to impose a layout style on the diagram. Dunnart
currently provides three layout styles: organic, flow and layered (shown in Fig. 1).
It could be extended with other layout styles. The only requirement is that
the aesthetic constraints imposed by the style must be able to be modelled
using separation constraints so that the layout aesthetic can be maintained in
subsequent interaction.

Organic layout is the most basic style since it does not impose any style
constraints. It simply calls the constrained graph layout algorithm sketched in
Sect. 3. Flow-style layout is the same except that the tool adds style constraints
ensuring that the start node of each directed edge is above its end node.

Structural layout can also use external graph layout algorithms to find a
layout and determine the style constraints. As an example of this, structural
layout with the layered style uses the Graphviz6 library implementation of the
Sugiyama algorithm. This determines a layer for each object in the network, the
ordering of objects on each layer and a routing for connectors through the layers
which minimises crossings. An alignment placement constraint is generated for
each layer and a separation constraint between each pair of layers keeps them
a minimum distance apart and preserves the layer order. Currently, existing
placement constraints are initially ignored in this style and only imposed in the
subsequent layout adjustment step.

Style constraints behave like author specified placement constraints. Thus,
the author is free to modify the layout by removing style constraints. Using
constraints to model layout style is one of the reasons Dunnart is very flexible. It
means that, unlike most previous diagramming tools, layout styles are not brittle
and the author is free to tailor the layout style by adding placement constraints

6 Graphviz, AT&T Research, http://www.graphviz.org/

7

Table 1. Computation of new feasible layout after common kinds of user interaction.
Note that this step is always followed by topology-preserving layout optimisation.

Add graphic object: Node repair followed by edge routing repair.
Delete graphic object: Edge routing repair.
Add connector: Automatically or manually route connector.
Delete connector: Nothing—layout remains feasible.
Add/modify cluster: Node repair followed by edge routing repair.
Delete cluster: Nothing—layout remains feasible.
Cut/Copy (to clipboard): Copy nodes to clipboard and perform edge routing repair.
If cutting, delete graphic objects and connectors.
Paste (from clipboard): Add nodes to canvas and perform node repair. Then perform
edge routing repair (based on connector routing in clipboard for pasted connectors).
Add a placement constraint: Node repair followed by edge routing repair. However,
nodes that have moved too far because of the placement behave as if cut and pasted.
Delete a placement constraint: Nothing—layout remains feasible.

to the diagram before calling the structural layout tool, or by subsequently
modifying the placement and style constraints.

4.2 Layout Adjustment

The second kind of automatic layout provided in Dunnart is called layout ad-
justment. This supports fine-tuning of the layout and runs continuously during
interaction. Changes made by the layout engine during layout adjustment need
to be predictable and (reasonably) continuous. Consequently, we believe layout
adjustment should preserve the topology of the starting layout as far as possible.

We now describe how the layout is updated after the main kinds of user inter-
action provided in Dunnart. For most interactions this has two steps. First, find
a new feasible layout satisfying the placement, style and refinement constraints
that changes the topology of the current layout as little as possible. Second,
perform step (3) of the layout algorithm (Sect. 3) to optimise the layout while
preserving its topology. Table 1 gives details of how the new feasible layout is
found for different kinds of user interaction. We make use of two techniques.

The first is node position repair. This is done using step (1) of the layout
algorithm (Sect. 3) to compute new position for the nodes which satisfies the
placement and style constraints as well as the non-overlap and cluster contain-
ment constraints.

The second technique, which we call rubber-banding, is for repairing edge
routes. The issue is that the route may have become invalid because it now
passes through a graphic object or is no longer tight and so should be shortened
by straightening and merging some adjacent segments. As much as possible we
want to preserve the current route. Rubber-banding finds a new edge route by
tracing the original connector path—object corner by object corner—until the
destination object is reached. At all stages the connector acts like a rubber-
band, fitting snugly around objects encountered so far on the route. The rubber-
banding implementation uses the connector routing algorithm to dynamically
route from the start object to the current object corner while preserving as

8

Table 2. Implementation of user actions providing live feedback during manipulation.

Dragging objects: Simply add terms to the goal function for each node v being ma-
nipulated of form (yv − yd)2 + (xv − xd)2 where (xd, yd) is the new desired position
of node v.
Horizontal resizing of a node: The node to be resized is internally replaced by two
artificial nodes which correspond to the left and right boundary edges of the original
node’s bounding box. Separation constraints couched in terms of these nodes are
generated to maintain non-overlap between the bounding box and the other nodes.
The width is changed by dragging the two artificial nodes to the required width, and
updating the appearance of the node.
Vertical resizing of a node: Analogous to horizontal resizing.
Simultaneous vertical and horizontal resizing of a node: Achieved by resizing in small
horizontal and vertical increments.
Tuning of goal function: The user can use sliders to change parameters of the goal
function, such as the desired edge length.

Fig. 3. Manual connec-
tor routing. The au-
thor “threads” the end-
point of the connector
between the objects to
specify the topological
route for the connector.

much of the previous route as possible. More exactly,
the last vertex in the route is removed from the route
whenever the bend angle around the vertex becomes
180◦ or more, and routing proceeds from the preceding
vertex.

Rubber-banding is also used for manual specifi-
cation of connector routes. Connectors are typically
created by specifying their start and end object, in
which case automatic connector routing is used to de-
termine a shortest-path route. However, the author is
also free to specify the topological route of a connector.
The author starts from an object and then threads the
connector through the objects to the destination ob-
ject with rubber-banding computing the route to the
current cursor location. This is shown in Fig. 3.

The remaining user interactions are kinds of direct
manipulation of the diagram. A strength of Dunnart
is that the layout engine is fast enough to provide “live” feedback during direct
manipulation. With live feedback, all objects and connectors in the diagram have
their position and routing updated immediately in response to user manipula-
tion. Direct manipulation is guaranteed not to change the topology of the layout.
Details of the process—essentially achieved by performing step (3) of the layout
algorithm with a modified P -stress goal function—are given in Table 2.

Clearly topology-preservation means that when dragging objects the author
cannot move objects through connectors or other objects, since this changes
the topology. This may make it difficult or impossible for the author to achieve
their objective of, say, snapping an object to an alignment guideline because
the alignment guideline keeps moving away from the object being dragged. For
this reason, Dunnart allows the author to temporarily escape from continuous
layout adjustment during object dragging by depressing a modifier key. This
suspends any current layout activity and causes those objects not being directly

9

manipulated to maintain their current position. The user is now free to move
objects through connectors and other objects or to add or remove an object from
a container shape. This allows the user to quickly and easily modify the topology
of the diagram.

Depressing the modifier key also breaks the selected objects free from place-
ment and style constraints involving non-selected objects. Dunnart treats this as
if the objects have been cut and pasted into their new location. The only differ-
ence is that connectors between the manipulated objects and non-manipulated
objects are treated as new, automatically routed connectors.

4.3 Understanding constraints

Placement constraints are the primary method for the author to tailor the lay-
out without having to explicitly position objects. The placement tool sets up
a persistent relationship that is maintained in subsequent interaction until the
author explicitly removes it rather than a once-off position adjustment. Dunnart
provides standard placement tools: horizontal and vertical alignment and dis-
tribution, horizontal and vertical separation (sequencing) that keeps objects a
minimum distance apart horizontally or vertically while preserving their relative
ordering, and an “anchor” tool that allows the user to fix the current position
of a selected object or set of objects.

Like most constraint-based diagramming tools, there is a graphical represen-
tation for each placement relation in the diagram. A potential usability issue
for constraint-based layout tools that utilise such visual representations is that
they clutter the diagram. To reduce clutter we have chosen to use an explicit
visual representation only for user-created placement constraints and some style
constraints but not for refinement constraints since the objects themselves and
their behaviour during manipulation provide sufficient feedback. To further re-
duce clutter, the visual representation for constraints is by default very faded,
leaving the actual diagram components clearly visible (see Fig. 2).

Another well-known usability issue of constraint-based layout tools is that
users can find it difficult to understand interaction between the constraints.
Immediate feedback during direct manipulation helps this considerably since it
allows the author to quickly notice unexpected interaction between the objects
being manipulated and other parts of the diagram. As a more sophisticated way
to understand constraint interaction, Dunnart also provides a query tool dubbed
“Information Mode.” This tool finds the path of constraints between two objects
and illustrates this to the user by highlighting the relevant constraint indicators.

The extreme kind of unexpected interaction between constraints is when the
author tries to perform an action which will give rise to inconsistent constraints.
For instance: the author may try to add a downward pointing connector which
creates a cycle of downward edges; try to apply a placement tool which gives
rise to an inconsistent constraint; or use the modifier key to move an object to
an infeasible position. To allow the author to understand the problem, Dunnart
highlights the placement and style constraints and objects associated with the
subset of separation constraints causing the inconsistency.

10

Table 3. Indicative running times on an average (Dual Core 2GHz) PC for various
sized randomly generated directed networks with flow style. For each graph we give the
number of nodes and edges. Note that the number of separation constraints imposing
downward edges is |E|. We give the time to find (a) a feasible layout after adding a
new alignment constraint; and (b) the average rate of layout updates during dragging
of a random node and the time for the layout to converge following the movement.

(a) Feasibility

|V | |E| Feasibility
repair

(seconds)

59 62 0.19
105 117 0.84
156 167 1.96
230 276 5.16

(b) Direct manipulation

|V | |E| Layout Time to
frame rate converge

(frames/sec) (seconds)

59 62 15.83 0.94
105 117 11.72 1.75
156 167 8.59 4.50
230 276 2.21 7.26

5 Performance

One of the most important requirements of Dunnart is that the layout algorithms
are fast enough for interactive layout. Table 3(a) lists for network diagrams of
various sizes the time taken to complete node position and edge routing repair
after the addition of a new alignment constraint. Up to a few seconds are required
to layout networks of around 250 nodes. We have found that the dominating cost
of this process is finding the initial connector routing.

Perhaps more interesting, is the speed of topology-preserving layout adjust-
ment, especially during direct manipulation. Table 3(b) shows the average num-
ber of layout updates per second while the user drags a random node slowly to
the four corners of the screen and back to the centre. It also shows the time taken
for the layout to converge, once the user has stopped dragging the object. As
expected, because the layout optimisation algorithm generally starts from a so-
lution close to the optimal solution it converges quite quickly, allowing real-time
feedback during manipulation of graphs with up to 100–150 nodes. It is worth
noting that layout occurs in separate thread so that Dunnart is still responsive
while layout adjustment is taking place. Furthermore, layout adjustment typi-
cally finds a near optimal solution very rapidly, and the majority of time is spent
moving nodes only very slightly.

6 Conclusion

We have described Dunnart, a new network diagram authoring tool that provides
powerful automatic graph layout, yet still allows the user total layout flexibility.
Topology preserving constrained graph layout provides predictable behaviour
during editing and allows the author to use placement constraints to control and
improve the layout.

The underlying graph layout engine is fast enough to provide live update
of the layout during direct manipulation for networks with up to 100 nodes.

11

This is more than sufficient for the kind of diagrams that are typically created
with interactive authoring tools. For larger networks we believe that a combina-
tion of fast layout techniques (for an overview layout) and topology preserving
constrained graph layout (for the detailed view) is the right approach [6].

There are a number of extensions to Dunnart that we intend to investigate.
One is orthogonal connector routing. We want to explore further use of Dunnart
in particular application areas, such as biological networks and concept maps.

References

1. Böhringer, K.F., Paulisch, F.N.: Using constraints to achieve stability in automatic
graph layout algorithms. In: CHI’90: Proceedings of the SIGCHI conference on
Human Factors in Computing Systems. pp. 43–51. ACM Press (1990)

2. Brandes, U., Wagner, D.: A bayesian paradigm for dynamic graph layout. In: GD
1997. LNCS, vol. 1353, pp. 236–247. Springer (1998)

3. Bridgeman, S.S., Fanto, J., Garg, A., Tamassia, R., Vismara, L.: InteractiveGiotto:
An algorithm for interactive orthogonal graph drawing. In: GD 1997. LNCS, vol.
1353, pp. 303–308. Springer (1998)

4. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms
for the Visualization of Graphs. Prentice-Hall, Inc. (1999)

5. Dwyer, T., Koren, Y., Marriott, K.: IPSep-CoLa: An incremental procedure for
separation constraint layout of graphs. IEEE Transactions on Visualization and
Computer Graphics 12(5), 821–828 (2006)

6. Dwyer, T., Marriott, K., Schreiber, F., Stuckey, P.J., Woodward, M., Wybrow, M.:
Exploration of networks using overview+detail with constraint-based cooperative
layout. IEEE Transactions on Visualization and Computer Graphics (InfoVis 2008)
To appear 2008

7. Dwyer, T., Marriott, K., Wybrow, M.: Topology preserving constrained graph
layout. In: GD 2008. LNCS, Springer, to appear 2009

8. Gleicher, M.: Briar: A constraint-based drawing program. In: CHI’92: Proceedings
of the SIGCHI conference on Human Factors in Computing Systems. pp. 661–662.
ACM Press, New York (1992)

9. He, W., Marriott, K.: Constrained graph layout. Constraints 3, 289–314 (1998)
10. Huang, M.L., Eades, P., Lai, W.: Online visualization and navigation of global

web structures. The International Journal of Software Engineering and Knowledge
Engineering 13(1), 27–52 (2003)

11. do Nascimento, H.A.D., Eades, P.: User hints for directed graph drawing. In: GD
2001. pp. 205–219. Springer, London (2002)

12. Nelson, G.: Juno, a constraint-based graphics system. In: SIG-GRAPH 85 Confer-
ence Proceedings. ACM Press (1985)

13. Ryall, K., Marks, J., Shieber, S.M.: An interactive constraint-based system for
drawing graphs. In: ACM Symposium on User Interface Software and Technology.
pp. 97–104 (1997)

14. Sutherland, I.E.: Sketchpad: A Man-Machine Graphical Communication System.
Ph.D. thesis, Massachusetts Institute of Technology (1963)

15. Wybrow, M., Marriott, K., Stuckey, P.J.: Incremental connector routing. In: GD
2005. LNCS, vol. 3843, pp. 446–457. Springer (2006)

12

