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Abstract—We investigate the cognitive impact of various layout features—symmetry, alignment, collinearity, axis alignment and
orthogonality—on the recall of network diagrams (graphs). This provides insight into how people internalize these diagrams and what
features should or shouldn’t be utilised when designing static and interactive network-based visualisations. Participants were asked
to study, remember, and draw a series of small network diagrams, each drawn to emphasise a particular visual feature. The visual
features were based on existing theories of perception, and the task enabled visual processing at the visceral level only. Our results
strongly support the importance of visual features such as symmetry, collinearity and orthogonality, while not showing any significant
impact for node-alignment or parallel edges.

Index Terms—Network diagrams, graph layout, perceptual theories, visual features, diagram recall, experiment.

1 INTRODUCTION

Network diagrams (also called node-link diagrams and graphs) are
widely used to visualise relational data. Visualisation relies on the
human viewer building an internal cognitive structure. The design
of effective visualisations relies on understanding what information is
contained in this internal representation [42]. The work reported here
investigates how people internalise graph drawings, and, in particu-
lar, whether visual features of network diagrams impact their internal
representation.

Better understanding of the internal representation provides funda-
mental insight into the effective use of network diagrams for informa-
tion visualisation. We wish to find which kinds of visual features are
preserved in the internal representation and thus noticed at the visceral
level. One reason is that these features can be effective at presenting
additional information, or conversely, if a layout inadvertently con-
tains these features, they may subconsciously detract from efficient
interpretation of the network. A second reason, and our original mo-
tivation for this research, is to better understand which visual features
should be preserved during interactive network visualisation applica-
tions or when showing a dynamic network. In such applications we
do not want to the user to notice unnecessary changes to the layout,
i.e. we wish to preserve the user’s mental map [28] of the diagram.
A third reason is that understanding which visual features are noticed
is useful when designing layouts that facilitate the visual comparison
of networks by emphasising the similarities and differences between
them.

While designers of network layout and graph drawing algorithms
focus on embodying well-known layout aesthetics in their algorithm
design and empirical HCI researchers study the way in which these
aesthetics influence users’ interpretation of graphs, there are few stud-
ies that attempt to determine how network diagrams are represented
internally. Of course, we cannot ever know the exact cognitive nature
of a person’s internal representation (or mental model [24]), but we
can make reasonable judgements based on appropriate data.

Our broad experimental aim is to try to establish what cognitive
structures people build when reading and internalising a graph draw-
ing. Our starting point was to identify visual features relevant to net-
work diagrams that we speculated would be important when these di-
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agrams are internalised. Unlike most other studies, we did not use
as our starting point the layout aesthetics that are commonly used by
graph drawing algorithm designers (and which are assumed to lead
to good performance). Rather our research is driven by existing per-
ceptual theories. From these theories, we identified six visual features:
symmetry, alignment of nodes, collinearity of edges, axis alignment of
edges, parallel edges and orthogonality. Most, but not all, correspond
in some way to typical graph layout aesthetics.

Our experimental task was to ask participants to reproduce a small
network diagram from memory after seeing it briefly. The task was
deliberatively low-level and did not involve any higher level cognitive
processing tasks, for example, graph interpretation or analysis. Similar
recall tasks are a standard method for investigating internal mental
representations, e.g chunking [14, 18].

We performed two analyses on the data. In the first analysis we
analysed how the visual features in the diagram impacted the correct-
ness of recall. In the second analysis we investigated the extent to
which the visual features were preserved in the participants’ drawings.

2 BACKGROUND

2.1 Graph drawing aesthetics

The many graph layout algorithms that have been devised over sev-
eral decades [4] have typically been designed in accordance with the
intuitions of algorithm designers. Over the years, a set of assumed
‘graph drawing aesthetics’ has emerged, defining the criteria by which
the ‘goodness’ of the drawing produced by a layout algorithm can be
assessed [5, 12, 37]. Such aesthetics include, for example, a min-
imum number of edge crossings, as few edge bends as possible, a
display of symmetric sub-structures, and large angles between edges
incident at a node. Some empirical work has been done in assess-
ing graph drawings, investigating whether the aesthetic criteria used
by algorithm designers do indeed assist with comprehension. Find-
ings include overwhelming evidence for the benefits of reducing edge
crossings [22, 47, 36] and some evidence for the reduction of bends
and depiction of symmetry [36], placement of important nodes at the
top of the graph [23] and large angles between incident edges [22].
All these studies have been conducted by asking participants to an-
swer graph-based questions on a variety of presented graph drawings,
each carefully controlled for the aesthetic criteria.

More recently, layout of graphs has been investigated by asking
participants to produce their own graph drawings from given graphs
(so as to depict clusters [45] and to support given tasks [15]) and to
create graph drawings from adjacency lists [38]. Like the compre-
hension empirical studies, these experiments all revealed support for
the minimisation of edge crossings, with support for depiction of clus-
ters [45, 38] and grid-based layout [38]. There was little support for
uniform edge lengths [45].

Our work is fundamentally different from these previous studies be-
cause we are interested in understanding the internal representation of
network diagrams, not the most effective way to present a network.



As a result our starting point are the low-level visual features that per-
ceptual theories suggest might be important, not the aesthetic criteria
commonly used in graph layout.

2.2 Internalisation of diagrams
Research on internal (i.e. cognitive) representations has existed for
many years: Johnson-Laird [24] proposed the existence of ‘mental
models’ of logical propositions that facilitate reasoning and explana-
tion, and much subsequent research (e.g., Stenning [43]) has been built
upon this idea. Shepard and Metzler [41] demonstrated that inter-
nal models of diagrams were not, however, internally represented as
propositions, but were ‘mental images’. Kosslyn and Pomerantz [25]
summarise the central ideas of this imagery theory thus:

• An image is a spatial representation like that underlying the ex-
perience of seeing an object during visual perception. These im-
ages may be generated from underlying abstract representations,
but the contents of these underlying representations are accessi-
ble only via generation of a surface (experienced) image.

• Only a finite processing capacity is available for constructing and
representing images. This limits the amount of detail that may
be activated at any one moment.

Palmer [32] addresses the problem that we cannot know the actual
form of someone’s internal representation, and defines informational
equivalence as being the extent to which two representations (internal
and/or external) embody the same information. Subsequent extensive
research has investigated the use of such internal diagrammatic repre-
sentations in reasoning and problem solving [21, 43], and the benefit
of externalizing these models to assist in learning [13, 1] and think-
ing [6, 8] has been demonstrated. Asking users to draw their mental
models (i.e., externalise them) provides a means by which we can look
at the form of these models, acknowledging, of course, the transcrip-
tion process may not be exact. Palmer [32] acknowledges that cogni-
tive psychology can only aspire to informational equivalence between
its models and the actual mental representation inside the head.

2.3 Mental map preservation
Misue et al. [28] were among the first researchers to identify the impor-
tance of layout stability (which they called mental map preservation)
in interactive network diagram visualisation and layout adjustment.
They suggested a number of possible ways to do this that have since
been tried: preserving orthogonal ordering (such as in [31]), minimis-
ing node movement (e.g., [19]) and preserving topology (e.g., [7, 16]).

Purchase et al. [39] studied whether limiting node movement to pre-
serve the mental map in force-directed layouts for dynamically chang-
ing graphs had an effect on efficiency and accuracy in answering ques-
tions about the graph structure across the lifetime of the network. They
found that participants performed better with low node position preser-
vation or with a high amount, but not so well for a medium amount.
This seemed to be because the medium condition often led to crowded
tangled layouts whereas the low preservation condition quickly re-
vealed changes in the network structure from relayout and the high
condition preserved a reasonable spacious and stable layout.

Lam et al. [27] determined the degree to which various individual
geometric transformations could be applied before impacting recog-
nizability of small networks. While the networks in this study were
not designed to contain visual features such as we discuss here, their
results suggest it could be interesting to investigate how visual features
impact recognizability after transformations and whether transforma-
tions that preserve visual features improve recognizability.

Our work differs from preceding research in that we wish to exper-
imentally identify low-level visual features of a network diagram that
are recalled (either sub-consciously or consciously) by the viewer and
so should, where possible, be preserved in the layout.

2.4 Perception of network diagrams
There are many existing theories of perception that relate to the per-
ception of network diagrams. Bennett et al. [5] present a comprehen-
sive overview of all the aesthetic criteria proposed, each with support

from existing literature on perception. The three main theories that are
relevant here are Norman’s levels of processing, the Gestalt laws of
perceptual organisation, and pre-attentive processing (sometimes re-
ferred to as the pop-out phenomenon).

Norman divides the process of perception into three levels: visceral,
behavioural and reflective [30]. The lowest level is visceral—this is
fast, automatic, makes quick judgements, and includes the basic per-
ceptual operations of distinguishing objects. The behavioural level is
not conscious: it uses the output of the visceral level, and acts on it, but
typically as a result of inherent skills built up with practise. It is this
level where the usability or understandability of a stimulus is most im-
portant [5]. The highest level, reflective thought, does not have access
to the low-level signals received by the visceral level: it reflects on
what is happening at the behavioural level, attempts to find meaning
in it, and attempts to influence it. This high level is strongly affected
by context, including the culture and experience of the perceiver, and
the viewing circumstances [5].

The Gestalt theorists studied the way in which we perceive the form
of objects, and provided a set of perceptual rules describing funda-
mental perceptual phenomena and the patterns that we see in visual
stimuli [10, 46]. The laws can be summarized as follows [10]:

Proximity: Things that are close together are grouped together
Similarity: Things that look “similar” are grouped together
Common Fate: Things that appear to move together are grouped to-

gether.
Good Continuation: Perceptual organisation will tend to preserve

spatial continuity rather than yielding abrupt changes. For in-
stance, four line segments in an X shape will be seen as two
straight lines rather than as two V shaped lines.

Closure: Closed shapes are preferred to open shapes.
Relative size, surroundedness, orientation and symmetry: These

effect perceptions of which objects are seen as figures on a
background. Other things being equal, the smaller of two areas
will be seen as (a) figure against a larger background. This
effect is enhanced if the larger area surrounds the smaller area,
the smaller object has a vertical or horizontal orientation or the
smaller object is symmetric.

There is evidence that people remember figures as more symmetric
and closed than they really are [44] and that symmetry may aid recall
of abstract patterns [40, 26] (though see [9]).

Nesbitt and Friedrich [29] considered the Gestalt Laws in the con-
text of the development of an automatic layout algorithm for evolving
graphs, and introduce the additional rules:

Simplicity: Every stimulus pattern is seen in such a way that the re-
sulting structure is as simple as possible

Familiarity: Things are more likely to form groups if the groups ap-
pear familiar or meaningful.

Connectedness: Things that are physically connected are perceived
as a unit.

They do not mention symmetry, although this Gestalt rule is given
some prominence by Ware [46] who regards it as a separate law: Sym-
metric things appear to be grouped together.

Pre-attentive processing occurs before conscious attention, and is
thus associated with Norman’s visceral level. This processing identi-
fies the most prominent objects in a scene: these objects are said to
‘pop-out’, and to become the focus of attention. The pop-out objects
are typically all similar in form, and clearly different from the sur-
rounding objects, thus conforming to the Law of Similarity. Colour is
one of the most obvious pre-attentive features: if there are three yellow
objects within a scene that is otherwise entirely blue, these three ob-
jects will immediately command the attention of the viewer. Ware [46]
provides a comprehensive list of pre-attentive features; those that are
most relevant to the research reported here are line orientation, line
length, line co-linearity, spatial grouping, 2D position and shape.



3 EXPERIMENTAL METHOD
3.1 Experiment overview
We used a memory recall task to investigate the internal representation
of network diagrams. We were particularly interested in investigat-
ing the effect of various visual features on their recall. This approach
is supported by Palmer [33], who explains that Gestalt theorists sug-
gested that the goodness property of Gestalt patterns provided an im-
portant means of investigating the way in which visual information is
internally represented. Garner’s extensive experimental research sup-
ported this view, including the conclusion that pattern goodness [. . . ]
influence[s] memory processes as simple as those involved in immedi-
ate reproduction and free recall [20].

We created eight layouts of four small graphs, each version con-
forming to one of six clearly defined experimental visual features.
Three additional control versions conformed to none of these features.
Participants were shown each one of these 44 drawings for three sec-
onds, after which they were asked to draw what they had seen on a
tablet PC, taking as long as they needed to do so.

We anticipated that network diagrams containing these visual fea-
tures would be easier for participants to internalise and recall, and that
we would see their presence in the drawings created by the partici-
pants.

3.2 The six experimental features
Our experimental aim was to try to establish whether the cognitive
structures people build when reading graph drawings correspond to
features suggested by perceptual theories. To do this, we first iden-
tified those layout features that we thought (based on our knowledge
of perception) might be important in building internal cognitive struc-
tures of a graph.

We defined the following six visual features of graph drawings as
our experimental conditions:

Symmetry: the nodes and edges of symmetric sub-graphs are dis-
played in a symmetric pattern (Gestalt law of Symmetry).

Collinearity: edges incident at the same node are drawn such that
they appear as a continuous line going through the node (Gestalt
law of Continuity, pre-attentive co-linearity)

Node-alignment: nodes are placed such that an imaginary straight
line could be drawn through the centre of them all (Gestalt law
of Proximity and Good Continuation)

Parallel: two or more edges that do not share nodes are placed paral-
lel to each other (pre-attentive parallelism)

Horizontal-vertical: edges are, as much as possible, placed horizon-
tally or vertically (Gestalt Law of Orientation, pre-attentive edge
orientation, [2])

Orthogonal: Edges are, as much as possible, horizontal and vertical
and placed at right-angles. This feature is a composite of the
collinearity, parallel and horizontal-vertical features.

A seventh control feature was a graph representation that included
none of these six features—there were therefore seven experimental
conditions.

In our pilot studies, participants often mentioned familiar shapes
created by closed contours (for example, a butterfly, a house, an person
pushing a pram). These perceptions relate to the Laws of Familiarity
and Closure [46]; however, they are impossible to control for in the
production of stimuli for this experiment, as they are highly context
and user dependent.

3.3 The experimental stimuli
We chose four graph structures of similar size, but with differing com-
plexity. Graph 1 (nodes=5, edges=6) comprised two closed contours
connected by one node; graph 2 (n=5, e=5) had one closed contour,
and a two-node tail; graph 3 (n=5, e=6) was two closed contours con-
nected by two nodes, and graph 4 (n=6, e=6) comprised one closed
contour, and a one-node and a two-node tail attached to one of the
contour nodes.

Fig. 1. Examples of large graph stimuli used in pilot tests.

Each graph was drawn once according to each of the seven experi-
mental features. Three of the features (symmetry, horizontal-vertical,
control) were also drawn with an alternative topology, and one of these
(control-alternative-topology) was also drawn with one edge crossing.
Table 1 shows the 44 experimental drawings.

The drawings were created carefully, ensuring that each drawing
embodied only one of the six features (or none at all in the case of the
control). For example, when there was more than one horizontal edge,
we ensured that these were not seen as parallel; symmetry had to be
avoided in all but the symmetric drawings.

3.4 Design considerations
The nodes in our stimuli are not labelled. It is easier to create a map-
ping between the original stimulus and a participant’s drawn graph if
node labelling is used. However, as the experiment was focussed on
the layout of the drawings, and visual features, we did not want the
process of internalising and remembering the graphs to be affected by
the need to remember labels. We also felt that if labels were used (even
alphabetic characters), the graphs may be interpreted as having some
semantic meaning, and that any meaning assigned to the graph may
impact its reproduction (either positively or negatively). We therefore
used unlabelled nodes, to encourage participants to focus on the form
of the graph drawing.

We originally designed the experiment with graphs of a much larger
size (n=7–9, e=9–11) (see Figure 1), and gave the participants 25s to
look at the drawings before drawing them. While many pilot partici-
pants were able to recreate some aspects of the stimuli, the drawings
were mostly so incorrect that it was impossible to do any reasonable
node mapping between the stimuli and the sketched graphs. It was
clear that graphs of this size were too hard, and all pilot participants
said that they thought that increasing the viewing time would not have
made their task easier or improved their performance. We were very
surprised by the difficulty that these participants had in comparison
with our own performance in pre-pilot trails: it was clear that we had
underestimated the effect that our personal expertise in graph drawing
would have on task performance when compared with those without
such expertise.

Larger graphs would have permitted some perception at the be-
havioural level. Having decided to use smaller graphs, we switched
our focus to the visceral level, and fast, immediate perception. This
required a substantial decrease in the time given to participants to look
at the drawings, down to 3 seconds.

Participants had as much time as they liked to redraw the
drawings—we did not limit this time as we wished to make sure that
they had the opportunity to remember as much of the drawings as they
could. However, in an attempt to capture their immediate perception
of the drawings, they were advised that it would be easier to remember
the diagram if they drew it quickly.

Given that the length of time for looking at the drawing and recreat-
ing it was to be so short, we needed to ensure that the memory of one
drawing would not influence the next. In between each drawing, the
participants were asked to count aloud the number of differences in a
visual spot the difference puzzle. This was displayed for 10 seconds,
ensuring that the visual memory buffer was cleared before presenta-
tion of the next drawing. Pilot tests revealed that it was important that
these spot-the-difference puzzles were easy, as participants became
frustrated if they could not find any differences in the allocated time.



Table 1. The 44 experimental drawings.

Feature Graph 1 (g1) Graph 2 (g2) Graph 3 (g3) Graph 4 (g4)

Collinear (Col)

Control (Cont)

Control (with an edge crossing) (ContAC)

Orthogonal (Orth)

Horizontal and Vertical (HV)

Horizontal and Vertical (alternative topology) (HVA)

Node alignment (NAlign)

Parallel lines (Par)

Symmetry (Sym)

Symmetry (alternative topology) (SymA)



Fig. 2. SketchNode in sketch mode.

This was a within-participants experiment, with each participant’s
performance using one experimental condition being compared with
their own performance on the other conditions, and all participants
seeing all 44 stimuli. Within participant experiments are subject to
the learning effect, whereby the participants’ performance improves
over time as they have more practise in the task. We addressed this by
presenting 8 practise tasks at the start of the experiment—these were
randomly rotated and flipped versions of a subset of the experimental
stimuli, and the participants did not know that they would not be in-
cluded in the data collection. We presented the stimuli in a different
random order for each participant.

3.5 Experimental equipment
Our experiment focussed on the visceral level: the instantaneous per-
ception of the drawings. The participants were shown the drawings for
only 3 seconds, and then asked to recreate them from memory.

We chose 3 seconds by referring to the principle that the visual
sensory buffers can store information for approximately 200 ms [11],
and that information stored in visual short term memory will usually
be lost within 20 seconds if there is insufficient time for processing
and rehearsal of the stimulus ([34] as discussed in [3]). We wished to
ensure that the participants had sufficient time to perceive the whole
drawing, but insufficient time to process and rehearse it so as to better
understand (and hence remember) it, ensuring that their recreation of
the drawing was simply based on their initial visual perception.

It was important, therefore, that the facilities that they used to create
their drawings were easy and natural to use, and that their memory was
not inhibited by the use of an awkward graph drawing interface.

We used SketchNode, a graph-drawing sketch tool that allows users
to draw graphs on a tablet PC using a stylus [35] (Figure 2). Nodes and
edges could be drawn with a stylus on the tablet screen, laid flat, thus
allowing the same hand-movements as pen-and-paper, a more natural
interaction than using an editing tool. Edges could be created at any
time. Unlike pen-and paper, SketchNode allows nodes (or groups of
nodes) to be selected and relocated (with corresponding movement of
attached edges), and nodes and edges to be erased. It thus has the
advantages of pen-and-paper, as well as the benefits of graph editing
software.

While we could have used a more formal graph editing system (e.g.,
yEd Graph Editor), and were aware that if we did so, matching the
graph drawings produced against the stimuli would be easier, we chose
to use a sketching system in our experiment. Our pilot studies revealed
that a formal mode of interaction was too laborious, clumsy, and unin-
tuitive for the participants to be able to draw the graphs as quickly as
they needed to before their memory of the stimuli faded.

SketchNode provided several useful experimental facilities: it au-
tomatically saved the participants’ drawings as text and images, and
created a log file which recorded all actions performed through the
interface.

The stimuli were presented on a desktop screen, with the tablet PC
placed horizontally on the desk in front. The experimental program

displayed the stimuli for 3 seconds each, displayed the filler tasks for
10 seconds each, and allowed the user to take a break after each block
of eight drawings—the length of the break was determined by the par-
ticipant who indicated when they were ready to proceed with the ex-
periment again.

3.6 Experimental procedure

The experiment was conducted on a one-to-one basis between the ex-
perimenter and 25 participants recruited via the Monash University
weekly news email to all staff and students. The participants varied
widely in age (19 to 60, median 24, mean 28.9) and background (in-
cluding Arts, Business, Biology, Education, Engineering). This was
as we wished it: as our research question is based on general human
perceptual theories, we did not seek participants with any particular
knowledge or experience with network diagrams.

Participants were first introduced to the concept of a graph as a set
of nodes connected by links, and were trained in the use of SketchN-
ode, and given as much time as they needed to get used to it. They
then did a small demonstration version of the experiment with five
network diagrams created specifically for this purpose—this allowed
the participant to get used to the rhythm of the experiment. Some par-
ticipants did this demonstration experiment more than once, until the
experimenter was sure that they were comfortable with the experimen-
tal process and the equipment.

For each task, the participants were asked to Copy the diagram as
exactly as you can. They were also told (and later reminded) that they
would find it easier if they drew the diagram quickly.

Each experiment lasted approximately 45 minutes. Of the 1100 data
points, one was lost because a participant was momentarily distracted
and could not remember the previous diagram, and nine were possi-
bly affected by a minor distraction. These nine data points have been
retained in the analysis.

The participants’ drawings were stored both in the xml format
(.gml) used by SketchNode and as image files. A log file was gen-
erated for each participant that recorded the time and nature of all
actions: creating and moving nodes and edges, and use of the undo
facility.

4 DATA ANALYSIS AND RESULTS

4.1 Pre-analysis data preparation

It was inevitable that the hand-sketched drawings produced by the par-
ticipants using SketchNode would look very different from the formal
stimuli created in yEd. While SketchNode includes functionality for
automatically recognising nodes and edges from the input strokes, we
found that they were often misrecognised. We therefore defined prin-
ciples for identifying nodes and edges in the participants’ drawings
(Table 2).

4.2 Analysis 1

Analysis 1 focussed on the effect the visual features had on correct
recall of the stimuli. A correct drawing is one in which there is a
single obvious mapping between the individual nodes and edges in the
drawing and those of the stimulus, and the drawing is topologically
equivalent, i.e., they have the same layout if nodes are allowed to move
but may not pass through edges. Note that this implies that the drawing
is logically correct in that it represents the same abstract relational
information.

The null hypothesis is that the visual features would not impact the
correctness of recall.

Each of the 1099 participant drawings was visually scrutinised for
correctness, with the decisions agreed by two members of the research
team. 789 drawings (72%) were correct with respect to this criterion.
The distribution of these drawings to each graph condition and feature
is given in Table 4.

As the data was not normally distributed, we used non-parametric
analysis methods. A Friedman test was used to determine whether
there was any overall main effect of condition on performance, and,



Table 2. Principles for interpreting the sketched drawings.
Principle Example Outcome

We ignore the SketchNode
automatic object recogni-
tion, and consider only the
visual image; e.g. if nodes
or edges are small, they are
recognised by SketchNode
as labels; long edges with
many bends are recognised
as nodes.

p10,g2-ContA is recog-
nised by SketchNode as
six nodes (including a
large triangular one) and
two labels (the smaller
edges), but we considered
it as five nodes and five
edges. Note that we use the
notation p j,gi-c to refer to
the drawing by participant
j of graph i with condition
c.

We interpret an edge to
be a sketched line that
touches the boundaries of
two circles (even if that line
has not been recognised by
SketchNode as an edge).

The internal edge that goes
through a node in p16,
g2-SymA is visually inter-
preted as two edges con-
necting three nodes.

We do not attempt to
second-guess what a par-
ticipant intended—we take
the drawing as it stands.

Whilst we may guess that
the participant intended to
place a node where the ends
of two edges touch each
other in p4,g4-Cont, we
still classify this drawing as
incorrect.

However, we do change
the drawing when there are
two edges connecting two
nodes: we remove one of
these edges (as in p11,g3-
HVA).

If two strokes cross, but are
incident at the same node,
we do not consider them as
crossing edges. We assume
that these crossed stroked
are a consequence of the
free-hand drawing action.

We consider the topology
of p1,g3-ContAC as if the
cross did not exist and the
edge connected with the
node cleanly.

if a significant effect was found, a post-hoc pairwise comparison non-
parametric test (the Nemenyi test [48].) identified where the signif-
icant differences lie. In all cases, a significance value of 0.05 was
used. We tested for the effect of both the 11 conditions (treating the
alternate topology stimuli separately) and the 7 visual features (aggre-
gating over those stimuli based on the same features).

The results for the 11 conditions are presented in Figure 3, and for
the 7 features in Figure 4. In terms of conditions we find the following
to be statistically significant:

• Cont is worse than all except HV, ContA, ContAC

• ContA is worse than all except HV, ContAC

• ContAC is worse than all except NAlign, HV, HVA

• Sym is better than HV

• SymA is better than HV

And for the feature analysis we find:

• Cont is worse than all except HV

• Sym is better than HV

Table 3. Determining drawing correctness.
Error Example Original

No obvious single map-
ping between the nodes and
edges (g1-hv-a)

Not topologically equiva-
lent (g1-contAC)

Logically, hence topologi-
cally, incorrect (g2-cont)

Table 4. Number of correct drawings for graph conditions and features.
Graph Condition Feature
Orth 80 80
Col 83 83
HV 82 150
HVA 68 -
NAlign 76 76
Par 80 80
Sym 95 184
SymA 89 -

4.3 Analysis 2
The second analysis investigated to what degree the visual features
in the stimuli were preserved in the participants’ drawings in order
to investigate whether the visual features were recalled (either sub-
consciously or consciously) by the participant. The analysis relied on
mapping the nodes and edges in the stimuli to the participant’s draw-
ing so as to determine if the visual features associated with particular
nodes and edges were preserved. This meant it could only be per-
formed on those drawings that had been identified as correct in the
previous analysis (n=789).

The null hypothesis is that the participants did not try and preserve
the features but rather tried only to place the nodes as close as possible
to their original position in the stimuli. This is, in part, motivated by
the common practice of trying to minimise node movement in order
to preserve the mental map. In the null hypothesis the placement of
each node is independent, and hence if a feature is preserved it is only
as a by-product of node positioning. We wished to determine if the
features were preserved significantly more often than this.

We chose to use a bootstrapping test [17] because it is relatively
simple and because an analytical testing of the distribution of features
under the null hypothesis is difficult. The basic idea was to consider
the differences (offsets) in node positions between all of a participant’s
drawings and the corresponding stimuli. Then use these offsets to ran-
domly generate 1000 new sample drawings from the stimuli for each
valid participants drawing. For each condition, we then used a metric
designed to measure preservation of that feature and see whether the
feature was preserved significantly more in the participant’s drawing
than would be expected from the randomly generated drawings.

We used the metrics described below in our analysis. In participant
drawings the edges were not drawn as straight lines directly between
nodes. In our metric calculations we used the centre of the node as its
position and also as the endpoint of each edge starting or ending at the
node.



Fig. 3. Analysis 1 results for conditions. χ2(d f = 10, p < 0.05) = 18.31.

Fig. 4. Analysis 1 results for visual features. χ2(d f = 6, p< 0.05)= 12.59.

Horizontal: = abs(cos(a)), where a is the angle between the
edge(e2) and the x-axis (Used for Orth, Horizontal and Vertical
stimuli) — Figure 5(a).

Vertical: = abs(sin(b)), where b is the angle between the edge(e3)
and the y-axis (Used for Orth, Horizontal and Vertical stimuli)
— Similarly to Figure 5(a).

Parallel: = abs(sin(m0−m4)), where e0 and e4 are the parallel pairs,
m0 is the slope of the first edge (e0) and m4 is the slope of the
second edge (e4) (Used for Parallel) — Figure 5(b).

Collinear: = (d12+d20−s)/s, where (n1,n2,n0) are the nodes which
are on a continuous line s formed by the edges, di j is the length of
the edge between ni and n j , and s is the distance between the first
(n1) and the last (n0) node (Used for Collinear) — Figure 5(c).

Node-alignment: Similar to the collinear metric. However, the con-
tinuous line s is formed by joining the nodes rather than joining
the edges (Used for Node-Align) — Figure 5(d).

Symmetry: A symmetry feature is given by a set of nodes NS which
lie on the line of symmetry and a set of node pairs NP in which

the nodes in each pair lie on opposite sides of the line of symme-
try. We compute the midpoints NM of each of the node pairs in
NP and then find the line of total least squares fit L through the
points in NM and NS as an estimate of the line of symmetry. The
symmetry metric of this feature is the root mean square error of
this fit. Figure 5(e) shows the calculation for a symmetry in a
graph in which single nodes (NS = {n0,n1,n2,n3,n4}) should be
on the symmetry line while node pairs (NP = node0,1) lie on the
opposite sides of this line and their midpoint (NM = midn0−n1 )
will be on the symmetry line. (Used for Symmetry)

Orthogonality: = abs(1− sin(mi)), where mi is the angle between
two orthogonal edges, m1 for e0 and e2, m2 for e3 and e4 (Used
for Orth) — Figure 5(f).

(a) HV (g1-hv) (b) Par (g1-par)

(c) Col (g1-col) (d) NAlign (g1-nalign)

(e) Sym (g2-sym) (f) Orth (g1-orth)

Fig. 5. Metrics used to calculate feature preservation on participant
drawings: (a) horizontal and vertical, (b) parallel lines, (c) collinear,
(d) node alignment, (e) symmetry, (f) orthogonal.

The analysis proceeded as follows.

1. For each correct drawing we identified the mapping between
nodes in the drawing and the stimuli. Node mapping was semi-
automatic with hand correction, agreed upon by two members of
the research team.

2. For each correct drawing we translated and performed a uniform
rescaling into the coordinate frame of the stimulus, since the par-
ticipant drawings were often varying sizes, and drawn in differ-
ent areas of the tablet screen. The transformation was chosen to
minimize the distance between the node positions in the stimu-
lus and the drawing. We did not perform rotation. The resulting
diagrams were called the normalized valid drawings.

3. For each feature F we developed a metric MF (d) to measure
the preservation of that feature in a normalized valid drawing d
relative to the stimuli. This was a non-negative measure with 0
indicating full preservation and larger numbers less preservation.



Fig. 6. Example of a participant’s drawing (left), the representation of
that drawing that we use for analysis (red, overlaid), the equivalent rep-
resentation of the original stimulus (green), and ten overlaid randomly
generated drawings using the original stimulus combined with random
(x,y) pair differences from drawings produced by that participant.

4. For each feature F we got a measure of its preservation MF
which was simply the sum of MF (d) for each normalized valid
drawing d of a stimuli with that feature, across all participants.

We used bootstrapping to generate a distribution for MF under the
null hypothesis and measure the significance of feature preservation in
the participants’ drawings.

5. We collected for each participant p the set Sp of (x,y) pair dif-
ferences between the position of a node in the stimuli and its
position in the normalized valid drawing.

6. For each valid drawing drawn by participant p for stimulus d,
we generated a numbered set of 1000 random drawings Rp,d by
randomly selecting an offset pair from Sp to move each node
in d, e.g., Figure 6.

7. For each feature, we calculated the set of 1000 M′F preservation
measures values, where each was the sum of the metric values
for each correspondingly numbered random drawing in Rp,d with
that feature.

8. For each feature, we then calculated the probability (p-value) of
getting values of M′F <MF , which represents the feature not hav-
ing been preserved purely by chance.

The following tables show the results of the analysis described
above. These tables include the metric significance as well as average
metric values for the participant and random graphs for each condi-
tion and feature, respectively. Table 5 shows that Orth, Col, Sym and
SymA conditions have significance at 0.05. Table 6 shows that Orth,
Col and Sym features have significance at 0.05 and HV at 0.10.

A statistically significant result here, such as for the orthogonal,
collinear and symmetry features, indicates that the (correct) participant
drawings exhibited significantly more presence of the given feature
than was seen in the corresponding 1000 randomly generated draw-
ings for that participant and drawing—effectively significantly more
than would be expected by chance if that participant were solely re-
producing the stimuli based on preserving node positions.

5 DISCUSSION

The first analysis supports our hypothesis that the presence of visual
features will aid accurate recall of a network diagram. We found that
all features other than horizontal and vertical (HV) performed signif-
icantly better than the control. Also, we found that symmetry per-
formed significantly better than horizontal and vertical.

The second analysis provided support for the hypothesis that visual
features in the stimulus would be recalled. Orthogonality, collinear-
ity and symmetry are preserved with high significance (p < 0.01) and
there is some indication (p = 0.07) that horizontal and vertical edges
are preserved. There is no support for preservation of node-alignment
or parallel edges: this suggests that these visual features were not no-
ticed either consciously or subconsciously by many of the participants.

Table 5. Metric significance and values for graph conditions.

Condition
Significance Participant graphs Random graphs

p-value Average (Std.Dev.) Average (Std.Dev.)
Collinear < 0.001 0.01 (0.01) 0.03 (0.03)
HoriVert-1 0.1603 0.37 (0.07) 0.41 (0.14)
HoriVert-2 0.1275 0.51 (0.09) 0.56 (0.09)
NodeAlign 0.5036 0.01 (0.01) 0.01 (0.01)
Orthogonal < 0.001 0.4 (0.17) 0.64 (0.22)
Parallel 0.9744 0.14 (0.05) 0.15 (0.06)
Symmetry-1 < 0.001 380.78 (173.72) 1106.62 (294.6)
Symmetry-2 < 0.001 357.94 (183.32) 1498.19 (433.21)

Table 6. Metric significance and values for graph features.

Feature
Significance Participant graphs Random graphs

p-value Average (Std.Dev.) Average (Std.Dev.)
Colliear < 0.001 0.01 (0.01) 0.03 (0.03)
HoriVert 0.0671 0.43 (0.09) 0.47 (0.13)
NodeAlign 0.5036 0.01 (0.01) 0.01 (0.01)
Orthogonal < 0.001 0.4 (0.17) 0.64 (0.22)
Parallel 0.9744 0.14 (0.05) 0.15 (0.06)
Symmetry < 0.001 369.73 (179.9) 1296.02 (396.98)

Of course, a caveat is that the node-alignment and parallel edges used
in our stimuli involved only a few nodes or were visually separated
by other edges: if they were more prominent it is likely that they may
have been preserved.

Together, these results are useful for visualization practitioners who
may wish to selectively employ or exclude certain visual features so
as to emphasise and highlight particular data in their visualizations
without giving implied significance to other unimportant information.

6 CONCLUSION

Our experimental conditions were carefully chosen to relate to existing
theories of perception, in the expectation that using stimuli that em-
phasise visual features reported to be prominent in perception would
assist in internalising and recalling network diagrams.

Our results confirm that presence of visual features based on well-
known perceptual theories do indeed lead to better recall than for di-
agrams without any of these features. This was true for all the fea-
tures we considered, other than horizontal and vertical edges. More
interestingly, the results show that users notice—either consciously or
subconsciously—certain visual features and preserve these when cor-
rectly recalling graphs they have seen. The strongest of these visual
features are symmetry, collinearity and orthogonality. There is also
some support for horizontal and vertical edges.

Perhaps surprisingly, two visual features based on well-established
perceptual theories—node-alignment and parallel lines—are not sig-
nificantly preserved by participants in their correctly recalled draw-
ings. This could possibly mean that they aid recall but participants are
not consciously aware of them and thus do not reproduce these fea-
tures in their drawings. Or it could be that the stimuli we used were
just not complex enough to demonstrate their use effectively.

The latter point relates to experimental design: our pilot tests
showed that larger graphs that showed the visual features to their ad-
vantage were too difficult for participants to remember correctly, and
that displaying the stimuli for more than 3 seconds made the overall
task too easy. An experiment with larger and more complex stim-
uli which emphasise the visual features to a greater or lesser extent
would be unlikely to be able to use the same memorise-and-reproduce
procedure—alternative methodologies could include asking partici-
pants if they have seen particular drawings before or asking them to
rank them in order of ease of memorising.

There is still much work to be done on the analysis of this rich
dataset. It will be interesting to consider common graph drawing aes-
thetics (e.g., angular resolution or orthogonal ordering) and see how
these might be preserved between the stimuli and participant’s draw-
ings. Analysis of the process (log and video) data will allow us to
investigate the order in which the graph elements were drawn, and



whether any of the visual features were drawn during an initial period
of confidence. We may also look at whether participants introduced
any visual features into diagrams where these features did not exist,
for example, linking objects in some way to aid memory.

We believe our work is an important first step in understanding the
internal representation of network diagrams. This is interesting in its
own right but also has significant implications for how to layout net-
work diagrams in information visualisation applications. It suggests
visual features that can be used to emphasise relationships between
nodes in a static layout, and which visual features should be preserved
when visualising dynamic network diagrams or when comparing two
networks. In particular it suggests that in dynamic network diagram vi-
sualisation applications as well as preserving the approximate location
of nodes it is important to preserve visual features such as symmetry,
collinearity and orthogonality.
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