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Abstract. We present two randomized algorithms to bound the bisec-
tion width of random n-vertex cubic graphs. We obtain an asymptotic
upper bound for the bisection width of 0.174039n and a corresponding
lower bound of 1.325961n. The analysis is based on the differential equa-
tion method.

1 Introduction

Given a graph G = (V,E) with |V | = n and n even, a bisection of V is a
partition of V into two parts each of cardinality n/2, and its size is the number
of edges crossing between the parts. A minimum bisection is a bisection of V
with minimal size. The size of a minimum bisection is called the bisection width
and the min bisection problem consists of finding a minimum bisection in a
given G. In the same manner, we can also consider a maximum bisection, i.e.
a bisection that maximizes the number of crossing edges. A related problem is
that of finding the largest bipartite subgraph of a graph, i.e. a bipartite subgraph
with as many edges as possible. This problem is known as the Max Cut Problem
(see for example [6]). Given a graph, the size of a maximum bisection is clearly
a lower bound on the size of a Max Cut in the graph.

The min bisection problem has received a lot of attention, as the bisection
width plays an important role in finding lower bounds to the routing performance
of a network. The decisional version of the problem is known to be NP-complete
[6], even for cubic graphs [3]. On the other hand, several exact and heuristic
positive results are known (see for example [4]). In this paper, we deal with the
problem of estimating the typical size of minimum and maximum bisections of
random cubic graphs.

It is shown in [10] that all cubic graphs have bisection width at most n
4 +

O(
√
n log n), and there are cubic graphs with bisection width of at least n
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Our first result is an asymptotic bound on the bisection width of random cubic
graphs. We refer the reader to [8], for the definitions of u.a.r. (uniformly at
random) and a.a.s. (asymptotically almost surely). For such statements, n → ∞
and we restrict n to even integers.

Theorem 1 The bisection width of a random cubic graph on n vertices is a.a.s.
smaller than 0.174039n.

We actually give two quite different proofs of approximately equal upper
bounds; the other is 0.17451n (see Theorem 3).

Regarding the size of the maximum bisection, we are not aware of any non-
trivial lower bounds. Our second result provides an asymptotic bound on the
maximum bisection of random cubic graphs.

Theorem 2 The maximum bisection of a random cubic graph with n vertices
is a.a.s. greater than 1.325961n.

Notice that, as the number of edges in a cubic graph is 1.5n, then we have a
1.131255 randomized approximation to the Max Cut and Max Bisection prob-
lems on cubic graphs. For Max Bisection the best known approximation ratio is
1.4313 [16] and for Max Cut the best known approximation ratio is 1.1383 [7].

We conjecture that the largest balanced bipartite subgraph of a random cubic
graph is a.a.s. almost the same size as the largest bipartite subgraph. We can
state this even more strongly, as follows.

Conjecture 1 For every ε > 0, a.a.s. the largest bipartite subgraph of a random
cubic graph has a 2-coloring with the difference in the numbers of vertices of the
two colors less than εn.

2 Greedy Algorithms for Minimum Bisection

In this section we prove Theorems 1 and 2. Given a random cubic graph, and
given a partial assignment of colors red (R) and blue (B) to its vertices, we clas-
sify the non-colored vertices according with the number of their colored neigh-
bors:

A vertex is of Type (r, b) if it has r neighbors colored R and b neighbors
colored B.

We will consider the greedy procedure Simple greedy given in Figure 1 to find
a.a.s. a balanced partition (R,B) with small bisection. The algorithm colors
vertices in pairs to maintain balancedness. It repeatedly uses three operations.
Op1 consists of choosing one vertex of type (1, 0) and one of type (0, 1) u.a.r.,
and coloring each the same as its colored neighbor. Op2 consists of choosing one
vertex of type (2, 0) and one of type (0, 2) u.a.r., and coloring each the same
as its colored neighbors. Op3 consists of choosing two non-adjacent vertices of
type (1, 1) u.a.r., and coloring one with R and one with B.
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Initial step: select two non-adjacent vertices u.a.r., color one with R
and the other with B

Phase 1: repeat
if there are vertices of both types (2,0) and (0,2) then perform Op2;
else if there are vertices of both types (1,0) and (0,1) then perform Op1;
until no new vertex is colored

Phase 2: repeat
if there are vertices of both types (1,0) and (0,1)then perform Op1;
else if there are at least two vertices of type (1,1) then perform Op3;
until no new vertex is colored

Phase 3: repeat
if there are vertices of both types (3,0) and (0,3)

then choose one of each type at random, and color each
the same as its colored neighbor;

if there are vertices of both types (2,1) and (1,2)
then choose one of each type at random, and color each
with the majority of its colored neighbors;

until no new vertex is colored
color any remaining uncolored vertices, half of them R and half B,
in any manner, and output the bisection R, B.

Fig. 1. Algorithm simple min greedy for Min Bisection

Note that the size of the bisection is the number of bicolored edges, with one
vertex of each color.

One method of analyzing the performance of a randomized algorithm is to
use a system of differential equations to express the expected changes in vari-
ables describing the state of the algorithm during its execution. An exposition
of this method is in [13], which includes various examples of graph-theoretic
optimization problems. For purposes of exposition, we continue for the present
to discuss Algorithm simple min greedy, without giving full justification. After
this, in order to reduce the complexity of the justification, it is in fact a different
but related algorithm which we will analyze to yield our claimed bounds. We
call this variation of algorithm a deprioritized algorithm as in [15], where this
technique was first used, though Achiloptas [1] used a related idea to different
effect.

We use the pairing model to analyze n-vertex cubic graphs, generated u.a.r.
Briefly, to generate such a random graph, it is enough to begin with 3n points
in n cells, and choose a random perfect matching of the points, which we call a
pairing. The corresponding pseudograph (possibly with loops or multiple edges)
has the cells as vertices and the pairs as edges. Any property a.a.s. true of the
random pseudograph is also a.a.s. true of the restriction to random graphs, with
no loops or multiple edges, and this restricted probability space is uniform (see
for example [2,14] for a full description).

Without loss of generality, when stating such asymptotic results, we restrict
n to being even to avoid parity problems. We consider Algorithm simple min
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greedy applied directly to the random pairing. As discussed in [13], the random
pairing can be generated pair by pair, and at each step a point p can be chosen
by any rule whatsoever, as long as the other point in the pair is chosen u.a.r.
from the remaining unused points. We call this step exposing the pair containing
p.

At each point in the algorithm, let Zrb represent the number of uncolored
vertices of type (r, b). To analyze the algorithm, when a vertex is colored we
immediately expose all pairs involved in that vertex. In this way, the numbers
Zrb are always determined.

At any time, let W denote the number of points not yet involved in exposed
pairs. These are the points available for the pairs that will be exposed during
the next step. Then W = 3Z00 + 2Z01 + 2Z10 + Z02 + Z20 + Z11.

Consider what happens when a vertex u is newly colored R and one of the
pairs containing a point p in that cell is exposed. The other point will lie in some
vertex v. Let drb denote the expected contribution to the increment ∆(Zrb) in
Zrb due to the change in the status of v. Then, up to terms O(1/W ),

d00 = −3Z00

W,
, d01 = −2Z01

W
, d02 = −Z02

W
, d03 = 0, d11 =

2Z01 − Z11

W
,

d12 =
Z02

W
, d10 =

3Z00 − 2Z10

W
, d20 =

2Z10 − Z20

W
, d30 =

Z02

W
, d21 =

Z11

W
.

The error term O(1/W ) is due to adjustments occurring when v happens to be
the same as u (and also saves us from specifying whether the variables refer to
the graph before or after coloring u).

The corresponding equations when a vertex is colored B form a symmetric set
with these: they are the same but with the index pair on all variables swapped.
Therefore, the expected increments due to a dual step, consisting of one new
pair from a vertex of each color, is d̄r,b:

d̄00 = −6Z00

W
, d̄01 =

3Z00 − 4Z01

W
, d̄02 =

2Z01 − 2Z02

W
, d̄11 =

2Z01 + 2Z10 − 2Z11

W
,

d̄12 =
Z02 + Z11

W
, where W = 3Z00 + 2Z01 + 2Z10 + Z02 + Z20 + Z11. (1)

Symmetrically corresponding variables have symmetrically corresponding equa-
tions. Note that d̄03 and its symmetric mate are not required, since vertices of
type (0, 3) are just colored in phase 3 with the color of all their neighbors and
therefore are not incident with any bicolored edges.

The rest of our discussion, until considering the deprioritized algorithm, is
mainly motivation but also includes some derivations of formulae used later. The
difficulty of analysis is caused by the prioritization in phases 1 and 2. In phase
1 the algorithm performs one of two types of operations on a pair of vertices, in
each case coloring them the same as their neighbors. If vertices of types (0, 2)
and (2, 0) exist, these have priority (Op2), while if they don’t, but at least one
of each of types (0, 1) and (1, 0) exist, then these are treated (Op1). In practice,
for a random graph there are never very many vertices of types (0, 2) and (2, 0);
as soon as there are some of each, they are processed, and the number of new
ones arising tends to be less than the number used up. Which leaves a few of
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one type or the other, waiting for the matching ones to be created. To proceed
with the discussion, we assume that a given iteration in phase 1 performs Op1
with probability φ, and therefore Op2 with probability 1 − φ.

Define

θ =
2Z01 − 2Z02

W
.

Due to Op1, there are two pairs exposed from each vertex. Thus the expected
number of new vertices of type (0,2) arising from this is 2d̄02 = 4Z01−4Z02

W = 2θ.
At the moment, we make the assumption that we have the rb-symmetry: for all i
and j, Zij = Zji (later we will see how to remove it). With this last assumption,
there also are 2θ new vertices of type (2,0) it is also 2θ. So each iteration of phase
1 performing Op1 gives rise on average to 2θ steps performing Op2 in order to
keep Z02 and Z20 constant.

However, these iterations with Op2 cause further vertices of types (0,2)
and (2,0). In Op2, one pair is exposed from each vertex, which gives expected
increase of θ to Z02 and to Z20. Following from this, we expect θ extra steps
of Op2. For θ < 1, the expected number of iterations of Op2 executed by the
algorithm for each Op1, is

∑∞
i=0 2θ(θ)i = 2θ

1−θ .
As the probability of Op2 will be 2θ

1−θφ = 1 − φ, and we can conclude that

φ =
1 − θ

1 + θ
. (2)

Using this, we can compute the expected increments of the random variables Zij

in each iteration in phase 1.

E [∆(Zij)] = φ(2d̄ij − δ01) + (1 − φ)(d̄ij − δ02) = (1 + φ)d̄ij − φδ01 − (1 − φ)δ02
(3)

for any i, j with i ≤ j and i + j = 3, where −δpq = 1 if (p, q) = (i, j), and 0
otherwise. The equations for i > j are the symmetric ones.

In (3) we may use d̄ij as given in (1) but with d̄11 = (4Z01 − 2Z11)/W
by rb-symmetry. Without justification at this point, we may express the above
expected increments as a set of differential equations, where each E [∆(Zij)] is
expressed as the differential Z ′

ij (all as functions of the number t of iterations).
If we scale both time and the variables by dividing by n, and denote Zij/n by
zij and W/n by w, then the equations are

z′
00=−(1 + φ)

6z00

w
, z′

01=(1 + φ)
3z00 − 4z01

w
− φ, z′

02=(1 + φ)
2z01 − 2z02

w
+ (φ − 1),

z′
11=(1 + φ)

4z01 − 2z11

w
, z′

12=(1 + φ)
z02 + z11

w
, where w=3z00 + 4z01 + 2z02 + z11,

by rb-symmetry, φ = 1−θ
1+θ and θ = 2z01−2z02

w . The initial conditions at x = t/n =
0 are

z00(0) = 1, z01(0) = 0, z02(0) = 0, z03(0) = 0, z11(0) = 0, z12(0) = 0. (4)
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Note that by the way we defined φ in (2), z′
02 ≡ 0 and hence z02 ≡ 0. We are

interested in the point that z01 first goes negative, which by numerical solution
occurs when

x = x1 ≈ 0.41178, z00 ≈ 0.002405, z11 ≈ 0.046633, z12 ≈ 0.063700. (5)

The whole algorithm “takes off” at the start because the derivative of z01 is
strictly positive, so a.a.s. phase 1 does not quickly use up all vertices to be
processed.

At this point, since z01 and z02 are both 0, phase 2 is entered. The sit-
uation is similar to phase 1, but now the operation with highest priority is
Op1. The other operation, Op3, is such that two vertices of type (1, 1) are ran-
domly chosen and colored, one B and one R. Following the discussion above, let
θ2 = 3Z00−4Z01

W . Then, due to Op3, there is one pair exposed from each of two
vertices of type (1, 1), and the expected number of new vertices of type (0,1)
arising from this is 2d̄01 = 4Z01−4Z02

W = 2θ2, where two vertices of type (1, 1) are
used in this operation. In Op1, the expected number is 2θ2. Letting φ2 denote
the probability that at a given time Op3 is performed in phase 2, the probability
of Op1 will be θ2

1−2θ2
φ2 = 1 − φ2, giving

φ2 =
1 − 2θ2
1 − θ2

.

In place of (3) we now have

E [∆(Zij)] = φ2(d̄ij − δ11) + (1 − φ2)(2d̄ij − δ01) = (2 − φ2)d̄ij − φ2δ11 − (1 − φ2)δ01.
(6)

To set the differential equations, let Y be a random variable that keeps track
of the number of times Op3 is performed, and let y = Y/n. This is needed for
record-keeping because each such operation causes two bicolored edges. Then

z′
00=−(2 − φ2)

6z00

w
, z′

01=(2 − φ2)
3z00 − 4z01

w
+ (φ2 − 1), z′

02=(2 − φ2)
2z01 − 2z02

w
,

z′
11=(2 − φ2)

4z01 − 2z11

w
− 2φ2, z′

12=(2 − φ2)
z02 + z11

w
, y′ = φ2,

with w as before and with initial conditions given by (5) and z01 = z02 = 0.
By the choice of φ2, z01 ≡ 0, so z02 ≡ 0. The point of interest is

x2 = sup{x : z11 > 0, w > 0, θ2 < 1}. (7)

Numerically, we find that θ2 does not reach 1 before z11 reaches 0, which clearly
must therefore hold at x2. This corresponds to the beginning of phase 3. During
phase 3 the number of bicolored edges created is 2 for every pair of vertices of
types (1, 2) and (2, 1) (using rb-symmetry) and at most 6 for every other pair
colored except types (0, 3) and (3, 0), which give none. Since z01 = z02 = z11 = 0
at x2, our upper bound for the size of the bisection is thus (6z00 + 2z12 + 2y)n
where the variables are evaluated at x2. Solving numerically, we find

z00(x2) + 2z12(x2) + 2y(x2) < 0.1740381057, (8)
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where the constant is correct to ten decimal places.
Now we are in position to carry out the formal analysis via a deprioritized

algorithm. For a given sufficiently small ε > 0, consider the deprioritized algo-
rithm in Figure 2. Notice that pre-phase 1 ensures a good supply of vertices of
types (0, 1), (1, 0), (0, 2) and (2, 0).

Pre-phase 1: do the following �εn� times:
select two non-adjacent type (0,0) vertices u.a.r.,
color one with R and the other with B;

Phase 1: while all of Z01, Z10, Z02 and Z20 are non-zero
let θ = 2Z01−2Z02

W
and φ = 1−θ

1+θ
;

with probability φ perform Op1;
otherwise perform Op2;

Pre-phase 2: do �εn� steps as in Pre-phase 1;
Phase 2: while Z01 > 0, Z10 > 0 and Z11 > 1

let θ2 = 3Z00−4Z01
W

and φ2 = 1−2θ2
1−θ2

;
with probability φ2 perform Op3;
otherwise perform Op1;

Phase 3: as for Algorithm simple min greedy.

Fig. 2. Algorithm deprioritized min greedy for Min Bisection

The expected changes in the variables Zij for each edge exposed are given
in (1). In pre-phase 1, the derivation of (2) applies, but with φ redefined 1 at
all times, and with different terms in the equations for z′

00 and z′
01 due to the

fact that the vertex being processed is type (0, 0) rather than (0, 1) or (0, 2).
At this stage, we entirely avoid using the rb-symmetry assumption. Referring
back to (1), this requires only the adjustment of the formulae for z′

11 and w. The
result is

z′
00=1 − 12z00

w
, z′

01=2
3z00 − 4z01

w
, z′

02=2
2z01 − 2z02

w
,

z′
11=2

2z01 + 2z10 − 2z11

w
, z′

12=2
z02 + z11

w
, w=3z00 + 2z01 + 2z10 + z02 + z20 + z11.

Other derivatives z′
ji are the symmetric versions of z′

ji (with indices swapped);
z′
03 and z′

30 are not needed. It follows that the unique solution must be the
symmetric one, which satisfies zij(t) = zji(t) for all i, j and t, as well as the
stated equations.

Let zij(t/n) denote Zij/n after t steps. Thus the previous equations give the
expected one-step change in the variables Zij with error O(1/n). This error is
due to the changing value of the variables between when one vertex of type (0, 0)
is chosen and the next. This applies with initial conditions given in (4). We write
z̃ij(x) for the (unique) solutions of this initial value problem, 0 ≤ x ≤ ε. We may
now apply the differential equation method (using, for example, [12, Theorem 1]
or [13, Theorem 5.1]) to deduce that during pre-phase 1, we have a.a.s.
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Zij(t) = nz̃ij(t/n) + o(n) (9)

for each i and j, where Zij(t) is the value of Zij after t steps. This applies until
either t = �εn� or one of the derivatives approaches a singularity, which we can
prevent by restricting to a domain in which θ > −1 + ε and w > ε, or the
differential equations no longer apply for some other reason, which in this case
only occurs if Z00 reaches 0. Note that the derivatives are all O(1), so z̃00(x)
stays close to 1 for x < ε assuming that ε > 0 is sufficiently small. We conclude
that a.a.s.

Zij(t0) = nz̃ij(t0/n) + o(n), t0 := �εn�. (10)

We also note that z′
01 must be strictly positive, and so z̃01 and hence z̃02 are

strictly positive on (0, ε). Thus, in particular, for sufficiently small ε1 = ε1(ε) > 0,

z̃01(ε) ≥ ε1, z̃02(ε) ≥ ε1. (11)

Now consider phase 1. Arguing as above, the expected changes in the Zij are
given, with error O(1/W ), by the right hand sides of the equations in (2), with

w = 3z00 + 2z01 + 2z10 + z02 + z20 + z11, φ =
1 − θ

1 + θ
, θ =

2z01 − 2z02
w

,

and the replacement equation

z′
11 = (1 + φ)

2z01 + 2z10 − 2z11
w

to avoid the rb-symmetry assumption. Again the symmetrically reversed func-
tions have symmetrically reversed equations (except that θ stays the same).
Continue the definition of the functions z̃ij(x) for x > ε by the solution of these
equations with initial conditions given by the values of these functions at x = ε
as determined above.

Note that setting zij = zji for all i and j in the equations, except in the
definition of θ, again makes the formulae for z′

ij and z′
ji identical, despite the

asymmetrical definition of θ. It follows that again the unique solution is sym-
metric, with z̃ij = z̃ji. We deduce that the equations (2) are satisfied, with the
symmetric definitions of w and z11, and we may restrict attention to the variables
appearing there.

Again applying the differential equation method, we deduce that (9) holds
a.a.s. as long as the solution set z̃ij stays within a predefined closed domain
which does not contain singularities of the derivatives, and also the variables
Z01 and Z02 stay positive. We may select the domain D satisfying z̃01 ≥ ε1,
z̃02 ≥ ε1, w > ε and θ > 1 − ε. By (11), the first two of these inequalities hold
at x = ε, and the other two also hold for ε sufficiently small by boundedness
of derivatives. Arguing by continuity, z′

01 as given in (2) is strictly positive for
x < δ, where δ > 0 is an absolute constant independent of ε. By definition of
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θ, z′
02 is identical to 0, and so z̃02 ≡ z̃02(ε). Thus, for ε sufficiently small, the

solution set z̃ij stays within D for x < δ, and can only leave D when, for x > δ,

z̃01 = ε1, w = ε or θ = 1 − ε. (12)

Note that for ε and ε′ sufficiently small, the initial conditions for z̃ij are
arbitrarily close to (4). Let us denote the solutions with initial conditions (4) by
z̄ij . By standard theory of first order systems of differential equations, it follows
that the functions z̃ij can be made arbitrarily close to z̄ij in the domain D,
by taking ε and ε1 sufficiently small. By numerical computation, the conditions
corresponding to (12) are not reached by the solution z̄ij , until x approaches x1
given in (5), at which point z̄01 reaches 0. It follows that, as ε and ε1 → 0, the
exit point of the z̃ij from D also tends towards x1, and the values are given in
the limit by the values of z̄ij in (5).

A similar argument applies for phase 2, and at this point we also introduce
the variable y, to keep track of the number Y of times Op3 is performed. The
conclusion is that there is a deprioritized algorithm in which the values of the
variables Zij are a.a.s. z̃ijn + o(n), where the functions z̃ij and ỹ solve (2).
They can be made arbitrarily close to z̄ij for all x < x2 − δ′, where x2 is given
in (7) and δ′ is an arbitrary positive quantity. Additionally, Y = yn+ o(n) a.a.s.
Note that |z̄ij(x2 − δ′) − z̄ij(x2)| = O(δ′) since the derivatives are all bounded.
Examining phase 3 as for Algorithm simple min greedy, it follows that the size
of the bisection produced is a.a.s.

(z00(x2) + 2z12(x2) + 2y(x2))n + O(δ′n),

where δ′ can be chosen arbitrarily small. By (8), this completes the proof of
Theorem 1.

3 Maximum Bisection

Let us consider the maximization version of the bisection problem, Max Bisec-
tion, i.e. given a connected cubic graph with n vertices, for n even, find a bisection
which maximizes the number of crossing edges. In general, the problem is also
known to be NP-complete, even for cubic graphs, moreover for the particular
case of cubic graphs, the problem can be approximated with an approximation
ratio of 0.847 [9]. For motivation on the problem, see [5].

Let us consider the variation Simple max greedy of the Algorithm 1 Simple min
greedy, obtained by changing the meaning of Op1 and Op2. In the Simple max
greedy algorithm, Op1 consists of choosing one vertex of type (1, 0) and one of
type (0, 1) u.a.r., and coloring each opposite to its colored neighbor. Op2 consists
of choosing one vertex of type (2, 0) and one of type (0, 2) u.a.r., and coloring
each opposite to its colored neighbors. Op3, as before, consists of choosing two
non-adjacent vertices of type (1, 1) u.a.r., and coloring one with R and one with
B. Also, in phase 3, change equal and majority, by different and minority.

Let us say that an edge is fully colored when both its ends are finally colored.
A fully colored edge is monocolored if both ends have the same color and bicolored



Bisection of Random Cubic Graphs 123

if both ends have different color. So the monocolored edges by Min greedy get
bicolored by Max greedy and vice versa, whenever the vertices of the graph are
treated in the same order (which happens with the same probability, in both
cases). That is, every edge that counts in the bisection for one algorithm does
not count in the other and vice versa. Therefore, taking into account that the
total number of edges in a cubic graph is 1.5n, we have proved Therorem 2.

4 The Comb Swapping Algorithm

In this section we include a different approach that provides an independent
verification of approximately the same bound as in the previous section. Its
proof is just sketched, since it gives a slightly weaker result.

Let us recall that Robinson and Wormald proved that asymptotically almost
all random cubic graphs are Hamiltonian [11]. The proof gave a contiguity result
which permits us, for the purpose of proving any statement to be true a.a.s., to
assume that a random cubic graph with n vertices (n even) is given as the union
of a Hamiltonian cycle and perfect matching chosen u.a.r. (See [14].) Given such
a graph G we can construct an initial bisection, by placing n/2 consecutive
vertices in the cycle on one side, say the R side, and the remaining n/2 on the
B side.

Given an arbitrary bisection (R,B) of G, define an R-comb to be a maximal
path of vertices in R such that each is adjacent to at least one vertex in B, and
such that this property also holds in the initial bisection. In a symmetric way
we can define a B-comb. The length of a comb is the length of the corresponding
path. An R-comb and a B-comb of length k are compatible if there is no edge
joining a vertex in one to a vertex in the other. To swap a compatible pair of
combs, swap each vertex in the B-comb into R, and each vertex in the R-comb
into B. Notice that by swapping two compatible combs of length k, we decrease
the bisection size by k−2. We will consider the algorithm in Fig. 3, where K > 2
is a constant to be fixed later. At any step of the algorithm, let Yi be a random

Given a random cubic graph as a hamiltonian cycle + a perfect matching.
Construct an initial bisection (R, B), by breaking the Hamiltonian cycle
in two disjoint paths of length n − 1. Set k = K.
while k ≥ 2

while there is a compatible R-comb and B-comb of length k
swap the two combs.

endwhile
k = k − 1

endwhile

Fig. 3. The comb swapping algorithm for Min Bisection
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variable counting the number of B-combs of length i (i ≤ k). We will consider
only the B point of view, as R has the same equations.

Initially, the expected bisection size is n/4, and the expected number of
B-combs of length i is asymptotically E [Yi] ∼ 2−i−3n. So, at this point, the
expected contribution to the bisection of combs with length bigger than d is
(1 + o(1))

∑n
i=d+1 i2

−i−3n. This tends quickly to 0 as d → ∞, showing that our
bounds will not improve much by considering very long combs.

Let k be fixed. During phase k, the maximum comb length is k. Let
s =

∑k
i=1 i Yi. This quantity corresponds (roughly) to the number of vertices

in combs of one color. We compute the expected increment in Yi by first con-
sidering the contribution due to one edge from a vertex in the red comb. This
edge, e say, may subdivide, or split, a B-comb. Then the probability that e hits
a B-comb of length i is iYi

s (arguing about randomness without justification in
this sketch). For each B-comb of length j > i there are two positions giving
a splitting with length i < j, except when j = 2i + 1, but in such a case we
have two equally sized split portions. So, due to e, the expected increase in the
number of combs with length i is

di = − iYi

s
+

k∑

j=i+1

2Yj

s
.

The total increase due to the 2k edges involved in one swap is therefore

E [∆(Yi)] = −δik + kdi,

where δ denotes the Kronecker delta function, and the expected bisection de-
crease is 4 − 2k. Phase k finishes when all pairs of combs of different colors are
incompatible. It turns out that at this point, we may assume that the number
of combs of length k is negligible.

We may write down an associated differential equation (as with the other
method) and solve it numerically (we use a Runge-Kutta method), with initial
conditions yi = 2−i−3, 1 ≤ i ≤ K, z = 1/4 for the bisection width, and k = K
initially. When yk hits 0, we can move to the next phase and make the initial
values of phase k− 1 equal to the final values of phase k. We select the value K
such that the possible gain by treating the longer combs (as calculated above) is
not significant. Taking K = 24 the solution of this system of equations, provides
a bisection with size less than 0.17451n (and treating longer combs cannot reduce
to 0.174507n). So we have

Theorem 3 The bisection width of a random cubic graph on n vertices is a.a.s.
less than 0.17451n.

The same argument can be used to derive a lower bound for the maximum
bisection. In this case we start with a partition obtained from the Hamilto-
nian cycle, but this time putting consecutive vertices in different parts of the
bipartition. This provides an initial bisection of expected size 1.25n. Define an
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equivalent notion of anti-comb, a maximal alternating path so that for every ver-
tex v its third neighbor is in the same side as v. Then by swapping anti-combs
with the same length we get the same gain (now positive) as when swapping
combs. Furthermore the equations for both systems are the same, so we improve
the initial bisection by the same amount, which gives the following.

Theorem 4 The maximum bisection of a random cubic graph on n vertices is
a.a.s. greater than 1.32549n.
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