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The Joy of SET

1 What is SET?

In his monumental compendium, The World of Mathematics [3], James Newman states that

Games are among the most interesting creations of the human mind, and
the analysis of their structure is full of adventure and surprises.

Certainly many a mathematician, from amateurs to professionals of some repute, have
dabbled in the analysis of games. A particular one which has captured my own mathematical
curiosity of recent times is the delightful, though little known, card game called SET1. Some
of the Gazette’s readership may already be well-acquainted with the game, but for the
unenlightened, let us begin to answer the question, “What exactly is SET?”

SET2 is a game played with a special deck of cards, each of which depicts either one,
two or three objects. These objects can be any of three different shapes — oval, squiggle or
diamond — and they are portrayed in one of three different colours — red, green or purple.
Furthermore, the objects come in three different shadings — empty, striped or solid. One
will never find two different shapes, colours or shadings on the same card. Therefore, each
card can be described by the four attributes number, shape, colour and shading; and each
of these attributes can take on one of three values as listed in the table below. Of course,
you have probably already guessed that there are 34 = 81 cards in the standard SET deck,
exactly one for every possible combination of number, shape, colour and shading.

Number Shape Colour Shading
1 oval red empty
2 squiggle green striped
3 diamond purple solid

The main aim of the game is to identify, among a number of cards dealt face up on the
table, three cards which form a SET. What exactly this means is described by. . .

The SET Rule: Three distinct cards form a SET if and only if they are all
different or all the same with respect to number, shape, colour and shading.

For example, the three cards below form a SET because they are all the same with respect
to number, all different with respect to shape, all the same with respect to colour3, and all
different with respect to shading.

1SETr is a registered trademark of SET Enterprises Inc., and SET game play is protected intellectual

property. The images of SET cards have been taken from The Set Game Company Homepage [4] and are
used here with permission.

2I will continue to refer to the game SET in capital letters and reserve the lower case form to denote the
well-known mathematical concept of the same name.

3Given the monochromatic nature of the Gazette, I have written the colours of the cards immediately
below the symbols. Of course, the original SET cards come in vibrant red, green and purple and without

the accompanying text.
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red red red

Another example of a SET is given by the following three cards, since they are all different
with respect to each of number, shape, colour and shading. Such SETs as these, in which
the three cards are all different with respect to all four attributes, are affectionately known
as beasts in some SET-playing circles.

purple red green

However, the three cards shown below do not form a SET because they are neither all
different nor all the same with respect to shading.

green purple red

Generally, SET is a non-competitive game for one or more players and play usually
proceeds as follows.

◦ Twelve cards are dealt face up on the table so that they can be seen by all players.
◦ Players must look for a SET and once found, may remove the three cards involved.

Three more are then dealt in their place to restore the number of cards to twelve.
◦ If no SET appears, then three more cards are dealt face up, until one does appear.

When this SET is removed, no more cards need be dealt, since there will be at least
twelve cards remaining on the table.

◦ If there are no more cards to be dealt, then the game ends once no SET appears in
the remaining cards on the table.

The beauty of SET lies in its simplicity. With only one fundamental rule, children as
young as the age of five can enjoy the game. On the other hand, hardcore SET junkies
like to record their times and I have seen people flash through the deck in under ninety
seconds. From a mathematical viewpoint, the game of SET provokes a myriad of interesting
problems. This article will take us on a whirlwind tour of the mathematics of SET, from
finite geometry to the Fourier transform and beyond.
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Problem: Find all six SETs which appear in the twelve cards pictured below.

red purple red

green red purple

red purple green

purple red purple

2 Naive SET Theory

It was not long after learning the game that I heard rumours from fellow SET addicts of
strange and beautiful mathematics lurking behind the cards — thus, I decided to embark
on my own naive exploration of SET theory. The primary connection between SET and
mathematics is the correspondence between the SET deck and Z4

3, the set of 4-tuples of
integers modulo 3. There are many natural bijections between these two sets, although for
the sake of concreteness, let us fix the correspondence to be the one shown in the table
below.

Z3 Number Shape Colour Shading
0 1 oval red empty
1 2 squiggle green striped
2 3 diamond purple solid

So, for example, the SET card with two ovals, coloured red and shaded solid, may be
represented as the 4-tuple (1, 0, 0, 2) ∈ Z4

3. However, this is more than just a nifty shorthand
for communicating SET cards, since the additive group structure of Z4

3 actually encapsulates
the SET rule. To see this, consider the solutions to the equation a + b + c = 0, where a, b, c
are elements of Z3. It should be reasonably clear that there are nine solutions for (a, b, c)
given by the six permutations of (0, 1, 2) as well as (0, 0, 0), (1, 1, 1) and (2, 2, 2). In other
words, three elements of Z3 sum to zero if and only if they are all different or all the same.
Therefore, a SET consists of three cards whose representatives in Z4

3 sum to zero in all four
components.

The Algebraic SET Rule: Three distinct elements A,B,C of Z4
3 form a SET

if and only if A + B + C = 0.
In light of the fact that we are working modulo 3, the equation A + B + C = 0 can be

written in the equivalent form A − B = B − C. Thus, when three elements of Z4
3 form a
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SET, then they actually lie on a line. Conversely, any three distinct collinear points of Z4
3

will satisfy the equation A−B = B − C, and hence, will form a SET.
The Geometric SET Rule: Three distinct elements A,B,C of Z4

3 form a
SET if and only if they are collinear.

These two mathematical formulations of the game provide us with familiar foundations
for answering problems that arise from playing SET. For example, experienced players will
know that the game usually concludes with 12, 9, or sometimes 6 cards remaining on the
table with no SET among them. However, on one occasion, I was fortunate enough to spot
a SET in the final six cards and, to my surprise, found that the final three cards also formed
a SET. Not only did this leave the table satisfyingly clean, but it also seemed suspiciously
fortuitous — I decided to explore and arrived at the following. . .

Theorem 1 A game of SET cannot end with three cards.

Proof. First note that the 81 elements of Z4
3 sum to 0, since they can be partitioned into 27

SETs of the form (0, a, b, c), (1, a, b, c), (2, a, b, c), each of which sum to 0. Thus, no matter
which 26 SETs have been removed from the deck, the final 3 cards must have a zero sum.
So by the algebraic SET rule, the final three cards will also form a SET. �

On another SET-playing occasion, a friend of mine cryptically exclaimed that he had
proved that a SET lay among the twelve cards, but could not see exactly where it was. His
delightfully non-constructive and purely existential statement intrigued the mathematician
within me so I decided to inquire. It turned out that he had hit upon the fact that 5 cards
which share 2 common attributes must always contain a SET. An equivalent statement is
that in a 2-dimensional version of SET, where there are only two varying attributes and the
cards correspond to elements of Z2

3, the maximum number of cards which do not contain a
SET is 4. This result was quickly confirmed given a few minutes, a pencil and the back of
an envelope. However, it also prompted me to think about d-dimensional SET, where there
are d varying attributes and the cards correspond to elements of Zd

3. And for various values
of d, I wondered whether it was possible to answer the following question.

In d-dimensional SET, what is the largest number of cards which do not
contain a SET?

Combinatorialists interested in finite geometry will recognise the problem as determining
the maximum size of a cap in Zd

3. In general, a cap is a set of points with no 3 collinear and
we will define a d-cap to be a cap in Zd

3. The search for maximal caps is an active area of
mathematical research with many interesting combinatorial techniques and results. We will
learn more about maximal caps in the next section, but in the meantime, I encourage the
reader to try the following problem.

Problem: Prove that a maximal 2-cap contains 4 points.

3 The Search for Maximal Caps

In this section, we will concentrate on determining the size of maximal d-caps and it will
pay to think of Zd

3 geometrically. For example, the points of Z2
3 can be represented as the

squares on a tic-tac-toe board, where lines are allowed to “wrap around” to the other side, à
la Pac Man. So apart from the usual 8 winning tic-tac-toe lines, there are 4 extra lines which
wrap around the board. However, since the enthusiastic reader will already have solved the
maximal cap problem in 2-dimensions, let us turn our attention to the 3-dimensional case.

In a similar fashion, the points of Z3
3 can be represented as the unit cubes in a 3× 3× 3

grid, and again, lines are allowed to “wrap around” to the other side. Note also that the 27
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points can be decomposed into 3 layers, each one being a plane containing 9 points. There
are many ways to do this, one for each class of parallel planes, and three such planes which
partition the points of Z3

3 will subsequently be referred to as a triple plane decomposition.
The determination of the size of a maximal 3-cap involves a clever application of the age old
trick known as double counting. The cleverness lies in finding objects which can be double
counted to give important information, and these objects turn out to be 2-pointed planes.
Given a subset C of Z4

3, define a 2-pointed plane to be a pair (H, {x, y}) consisting of a plane
H in Z3

3 together with a set of two points {x, y} ⊆ C ∩H. With these definitions under our
metaphorical belts, we are ready to see the proof of the following. . .

Theorem 2 A maximal 3-cap contains 9 points.

Proof. Suppose that there exists a 3-cap containing 10 points. In other words, assume that
there exists a subset C of Z3

3 such that |C| = 10 and C contains no three collinear points.
Note that the restriction of a 3-cap to a plane yields a 2-cap, so that every plane intersects
C in at most 4 points. Therefore, given a triple plane decomposition Z3

3 = H1 ∪H2 ∪H3,
the triple (|H1 ∩C|, |H2 ∩C|, |H3 ∩C|) must be (4, 4, 2) or (4, 3, 3), up to permutation. We
will refer to this triple as the type of a triple plane decomposition.

Now let a denote the number of triple plane decompositions of type (4, 4, 2) and let b
denote the number of triple plane decompositions of type (4, 3, 3). Note that each line
through the origin in Z3

3 uniquely determines the triple plane decomposition perpendicular
to it. Therefore, the number of triple plane decompositions is simply equal to the number
of lines through the origin. However, each line contains exactly two non-zero points, so the
number of lines is simply half the number of non-zero points, namely 33−3

2 = 13. Therefore,
we have the simple equation

a + b = 13.

In order to derive another equation satisfied by a and b, let us double count 2-pointed
planes.

◦ Since there are 10 points in C, there are
(
10
2

)
= 45 pairs of points. And it is easy

to verify that through each pair of points in Z3
3 passes exactly 4 planes. Thus, the

number of 2-pointed planes is simply 45× 4 = 180.
◦ On the other hand, for each plane containing k points of C, there will be a contri-

bution of
(
k
2

)
to the count of 2-pointed planes. Thus, for each triple plane decom-

position of type (4, 4, 2), the contribution is
(
4
2

)
+

(
4
2

)
+

(
2
2

)
= 13, while for those

of type (4, 3, 3), the contribution is
(
4
2

)
+

(
3
2

)
+

(
3
2

)
= 12. Therefore, the number of

2-pointed planes can also be expressed as 13a + 12b.
Of course, combining these two facts yields the equation

13a + 12b = 180.

Simultaneously solving these two equations yields the unique solution: a = 24, b = −11.
Of course, the negativity of b is an absurdity, so we have reached the desired contradiction
from which we conclude that no 3-cap exists which contains 10 points. It suffices now to
verify that the following diagram represents a 3-cap with 9 points.
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Although the proof given here is not the simplest, it has the advantage of generalising to
show that a maximal 4-cap contains 20 points. The proof of this statement, however, will
involve triple hyperplane decompositions rather than triple plane decompositions, 2-pointed
hyperplanes rather than 2-pointed planes, as well as 3-pointed hyperplanes, all of which are
defined analogously.

Theorem 3 A maximal 4-cap contains 20 points.

Proof. Once again, let us begin by supposing that there exists a 4-cap containing 21 points.
In other words, assume that there exists a subset C of Z4

3 such that |C| = 21 and C contains
no three collinear points. Since the restriction of a 4-cap to a hyperplane yields a 3-cap,
every hyperplane intersects C in at most 9 points. In particular, every triple hyperplane
decomposition must have one of the following types:

(9, 9, 3), (9, 8, 4), (9, 7, 5), (9, 6, 6), (8, 8, 5), (8, 7, 6), (7, 7, 7).

Let xijk denote the number of triple hyperplane decompositions of type (i, j, k). Using
the argument above, there are 40 triple hyperplane decompositions of Z4

3, so we have the
equation

x993 + x984 + x975 + x966 + x885 + x876 + x777 = 40.

A similar double count of the number of 2-pointed hyperplanes provides us with the
equation

75x993 + 70x984 + 67x975 + 66x966 + 66x885 + 64x876 + 63x777 = 2730.

And an entirely analogous double count of the number of 3-pointed hyperplanes gives us
still another equation

169x993 + 144x984 + 129x975 + 124x966 + 122x885 + 111x876 + 105x777 = 5320.

Alas, we still only have 3 equations in 7 variables, a far cry from the number we require
to actually solve the system. Fortunately, our variables must all be non-negative integers, a
restriction which we can take full advantage of. Taking a clever linear combination of the
three equations which we have derived gives the following.

5x984 + 8x975 + 9x966 + 3x885 + 2x876 = 0
12x993 + 7x984 + 4x975 + 3x966 + 3x885 + x876 = 210.

Due to the non-negativity of the variables, the first equation implies that x984 = x975 =
x966 = x885 = x876 = 0. And combining this with the second equation, we arrive at
12x993 = 210, contradicting the fact that x993 is an integer. From this contradiction, we can
conclude that no 4-cap exists which contains 21 points. It suffices now to verify that the
following diagram represents a 4-cap with 20 points.
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This clever method of counting pointed hyperplanes by triple hyperplane decompositions,
despite serving us well thus far, has now reached the end of its tether. In fact, the problem
of determining the size of a maximal 5-cap eluded mathematicians until as recently as 2002
when Edel, Ferret, Landjev and Storme [2] proved that a maximal 5-cap contains 45 points.
Rather than elementary counting, the basis for their result was the Fourier transform, which
assigns to a given function f : Zd

3 → C, the function f̂ : Zd
3 → C defined by

f̂(z) =
∑
x∈Zd

3

f(x)ωz·x,

where ω = e
2πi
3 . In fact, their proof relied on the following amazing formula.

Theorem 4 Let S be a subset of Zd
3 that contains P points and L lines. Then

P + 6L =
1
3d

∑
x∈Zd

3

[χ̂(x)]3,

where χ̂ is the Fourier transform of the characteristic function4 for S.

The theorem also provides a strong bound for the size of a 6-cap, although it gives
progressively worse bounds for higher values of d. Amazingly enough, the size of a maximal
6-cap is still unknown, and the extent of our knowledge on the size of maximal d-caps is
encapsulated in the following table.

d 1 2 3 4 5 6
size of a maximal d-cap 2 4 9 20 45 112–114

Problem: Show that you cannot have exactly 4 SETs among 7 cards in the original
4-dimensional version of SET.

4For a subset S of Zd
3, define the characteristic function χ : Zd

3 → C by

χ(x) =

�
0 if x /∈ C

1 if x ∈ C
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4 Final Thoughts

Despite being so intricately related to mathematics, the story of SET began in 1974 with
epileptic dogs and a population geneticist by the name of Marsha Jean Falco. At the time,
she was working on the problem of whether German Shepherds who had epilepsy might have
inherited it. This research involved spotting patterns in large amounts of data. Thus, to
make the job easier, Falco decided to represent blocks of information by coloured symbols
drawn on small file cards. In a stroke of brilliance, she realised the potential for this to be
the basis of a game and created the first ever SET deck with an engineering stencil and a
deck of blank cards. For many years, the game of SET lay dormant to the world at large,
only to be played by Falco and a small circle of family and friends. It was only in 1991,
spurred on by her children, that she decided to reveal the game to the general public. Thus,
SET was born.

Little did the creator of SET know that the game would have such deep connections with
finite geometry and that the game would spawn so many mathematical problems. As we
have seen, some of these have been solved with both elegant and complicated mathematics.
However, many still remain unsolved, perhaps to be the mathematical fodder for future
generations of mathematicians. The interested reader may like to try their hand at the
following problem and to consult the article [1] for more SET theory.

It would be nice to know how large, in some sense, maximal caps can be. To this end,
we can measure the size of a cap C ⊆ Zd

3 by its solidity, which is defined to be the
number d

√
|C|. If f(d) is the size of a maximal d-cap, note that f(d) ≥ 2d, since the

points in Zd
3 whose coordinates are all 0 and 1 form a cap. Combined with the trivial

bound f(d) ≤ 3d, we deduce that the solidity of a maximal cap is always in the interval
[2, 3].

(1) (Solved) Prove that limd→∞
d
√

f(d) exists — this number is known as the as-
ymptotic solidity.

(2) (Unsolved) It is known that the asymptotic solidity is greater than 2, but is it
less than 3?

Let us come full circle and close the article with the very same quote with which we
began.

Games are among the most interesting creations of the human mind, and the
analysis of their structure is full of adventure and surprises. Unfortunately
there is never a lack of mathematicians for the job of transforming delectable
ingredients into a dish that tastes like a damp blanket.

My hope is that I have been able to reveal some of the adventure and surprises in the
mathematical analysis of SET without exposing too much of the damp blanket.
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