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Party Problems and Ramsey Theory

1  Problems Pertaining to People at Parties

Suppose that you are at a party and you notice that there are three people, all of whom
know each other — hardly a surprising observation, one must admit. But at another party
the following night, you happen to notice that there are three people, all of whom do not
know each other. Following that, you wonder whether it might always be the case that a
party must include either three mutual friends or three mutual strangers. Of course, this
statement would not apply to a party of one or two people, but perhaps there is a certain
critical mass, so that parties with enough people do possess this property.

How many people do you need at a party to guarantee that there are three
people all of whom know each other or three people all of whom do not know
each other?

Of course, we can pictorially represent our party by replacing each person with a point
in the plane and using a red line segment to join people who are acquainted with each other
and a blue line segment to join people who are not. Thus, we find ourselves within the realm
of graph theory, and our party problem can be rephrased in the following less social, though
more colourful, terminology.

What is the smallest value of N such that if the edges of K are coloured
red or blue, then the resulting graph must contain a red K3 or a blue K37

Here, we have used the notation Ky to represent the complete graph on N vertices —
that is, the graph with NV vertices and an edge between every pair of them. For example,
K7 represents a vertex, K5 represents an edge between two vertices and K3 represents a
triangle. The answer to our problem, can now be stated as follows.

If the edges of Kj are coloured red or blue, then the resulting graph must
contain a red K3 or a blue K3. Furthermore, it is possible to colour the
edges of K5 red or blue so that the resulting graph does not contain a red
K3 or a blue K3.

The proof of this statement is delightfully simple and elegant. Consider any vertex V in
the coloured Kg and the five adjacent edges. By the pigeonhole principle, at least three of
these edges, VA, VB, VC are of the same colour and, without loss of generality, we may
assume that they are red. If our graph is to avoid red triangles, then the edge AB is forced
to be blue. Similarly, the edges BC and C' A are forced to be blue, thereby creating the blue
triangle ABC. So any K whose edges have been coloured red or blue must contain a red
triangle or a blue triangle.

To complete the proof, it suffices to demonstrate a colouring of the edges of K5 which is
devoid of red or blue triangles — an example is pictured below!.

IDue to the monochromatic nature of the hardcopy Gazette, the blue lines are dashed.
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Problem: Prove that if the edges of Kg are coloured red or blue, then the resulting graph
must actually contain two distinct, though not necessarily disjoint, monochromatic copies
of K3.

2 Ramsey’s Theorem and Ramsey Theory

Of course, there is no need for us to restrict our attention to trios of friends or strangers.
More generally, we can ask the following question.

How many people do you need at a party to guarantee that there are m
people all of whom know each other or n people all of whom do not know
each other?

Once again, we can state the problem in graph theoretic terms.

What is the smallest value of N such that if the edges of Ky are coloured
red or blue, then the resulting graph must contain a red K,, or a blue K,?

Such problems are central to the domain of mathematics known as Ramsey theory®. In
keeping with the accepted notation, let us denote the answer to this problem by R(m,n).
Note that in asking for the smallest such value of N, we are presuming that there is indeed a
value of N in the first place. A priori, it is not at all clear that this is the case. For example,
are all parties with a sufficiently large attendance guaranteed to have either a million people
all of whom know each other or a million people all of whom do not know each other? That
this is indeed the case is the conclusion of Ramsey’s theorem.

Ramsey’s theorem:

For every pair of positive integers m and n, the value of R(m,n) is finite. In other words,
there is a positive integer N such that if the edges of Ky are coloured red or blue, then
there exists a red K, or a blue K,,.

Proof. Tt requires only a moment’s thought to conclude that R(2,n) = R(n,2) = n. We will
prove by induction on m + n that

R(m,n) < R(m —1,n) + R(m,n — 1)

2Ramsey theory is named after Frank Plumpton Ramsey (1903-1930), a most remarkable man who made
significant contributions not only to mathematics, but also to economics and philosophy. After learning to
read German in little over a week, he was handed the task of translating the text of Wittgenstein’s Tractatus
Logico Philosophicus while still at the tender age of 19. John Maynard Keynes himself encouraged Ramsey
to try his hand at economics, resulting in him contributing three important papers. In a biographical article
on Ramsey [3], Mellor indicates that “Ramsey’s enduring fame in mathematics...rests on a theorem he
didn’t need, proved in the course of trying to do something we now know can’t be done!” Despite this, the
evidence clearly indicates that Ramsey was a first-rate mathematician. However, as is so often the case in
mathematics, Ramsey’s career shone brightly yet all too briefly. He died at the age of 26 after complications
from an abdominal operation.
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which will provide us not only with a proof that R(m,n) exists, but also with a computable
upper bound for its value.

Consider a complete graph on R(m — 1,n) + R(m,n — 1) vertices and pick any vertex v
from the graph. Let Vi denote the set of vertices which are connected to v by a red edge and
let Vp denote the set of vertices which are connected to v by a blue edge. Then by a simple
application of the pigeonhole principle, either |Vi| > R(m—1,n) or |Vg| > R(m,n—1) and,
without loss of generality, we may assume that the former of these two inequalities is true.

Now by the very definition of R(m — 1,n), either Vg contains a blue K,, or a red K,,_;.
If the former is true, then we are done. And if the latter is true, then the complete graph
formed by the red K,,_1 and the edges connecting it to v will give a red K,,. O

There are various directions in which we can hope to generalize Ramsey’s theorem. Rather
than restricting ourselves to red and blue edges, we might extend our palette to include an
arbitrary, though finite, number of colours. Furthermore, rather than looking for monochro-
matic complete graphs, we might wish to look for other particular graphs of a given colour.
For example, one can ask whether there exists a number N such that if the edges of K are
coloured red, orange, yellow, green, blue, indigo or violet, then there must exist one of the
following graphs:

o a red cycle of 2006 edges;

o an orange path of 11 edges;

o a yellow complete graph on 163 vertices;

o a green graph consisting of 42 edges sharing a common vertex;

o a blue graph consisting of 239 triangles sharing a common vertex;

o an indigo complete graph on 1729 vertices; or

o a violet subgraph whose vertices are in correspondence with all of the words in the
English language and whose edges join two vertices if and only if they represent two
distinct words with at least one letter in common.

To simplify the situation, note that when looking for a red cycle of 2006 edges, it is
entirely sufficient, though far from necessary, to guarantee the existence of a red complete
graph on 2006 vertices. Similarly, when looking for a graph on V vertices of a particular
colour, it suffices to show the existence of a complete graph on V' vertices of that colour.
Therefore, we can restrict our attention to complete graphs. So we are now left with the
problem of whether Ramsey numbers exist when more than two colours are allowed. This
problem is answered by the following extension of Ramsey’s theorem.

Ramsey’s theorem (colourful version):

For every tuple of positive integers (mj,mo,...,mg), there is a positive integer R =
R(my,ma,...,m¢c) such that if the edges of Kr are coloured in one of the “colours”
1,2,...,C, then there exists a complete subgraph on my vertices, all of whose edges have
the colour k, for some value of k.

Proof. The C = 2 case is precisely the statement of Ramsey’s theorem given earlier. We
will now prove that

R(mi,ma,...,mc) < R(R(m1,ma), ms,...,mc),

which shows by induction that the Ramsey numbers exist for any number of colours.
Consider a complete graph on R(R(my,ms), ms,...,m¢) vertices whose edges have been
coloured in one of the colours 1,2, ..., C. Now suppose that the colours 1 and 2 correspond
to red and green, respectively. Then a person who is red-green colour blind would only see
C — 1 colours. By definition, the graph must have a K,,, whose edges are coloured k for
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k=3,4,...,C or a complete graph on R(mj, ms) vertices whose edges are all red-green. If
the former is true, then we are done. And if the latter is true, then someone with perfect
vision will be able to see a K,,, whose edges are red or a K,,, whose edges are green. [J

Problem: Prove that at any party with nine people, there are either three people, all of
whom know each other, or four people, all of whom do not know each other.

3  Calculating the Ramsey Numbers

The two colour Ramsey numbers are of central importance in Ramsey theory and we will
concentrate on them for the remainder of the article. Given that the numbers R(m,n) are
guaranteed to be finite by Ramsey’s theorem, the problem of calculating what the numbers
actually are is entirely natural. As mentioned earlier, it is a trivial matter to prove that
R(2,n) = R(n,2) = n for all n. The next case to consider is R(3,3) = 6, which corresponds
with the first party problem discussed in the article. And the problem posed at the end of the
previous section asks to verify that R(3,4) = R(4,3) = 9. Unfortunately, despite the best
efforts of mathematicians, there is no known formula for the Ramsey numbers in general. In
fact, only seven other Ramsey numbers R(m,n) are known for m < n. The following table
shows these numbers, as well as the known upper and lower bounds for many of the other

Ramsey numbers [4].

m 3 4 5 6 7 8 9 10 11 12 13 14 15

40 46 52 59 66 72
3 6 9 14 18 23 28 36 43 51 59 69 78 88

35 49 56 73 92 97 128 133 141 153
41 61 84 115 149 191 238 291 349 417

43 58 80 101 125 143 159 185 209 235 265

o 49 87 143 216 316 442 848 1461
6 102 113 127 169 179 253 262 317 401
165 298 495 780 1171 2566 5033
7 205 216 233 289 405 416 511
540 1031 1713 2826 4553 6954 10581 15263 22116
8 282 317 817 861
1870 3583 6090 10630 16944 27490 41525 63620
9 565 580
6588 12677 22325 39025 64871 89203
10 798 1265
23556 81200

So why are the Ramsey numbers so difficult to calculate? Well, suppose we decide to
use a brute force approach to calculate the value of R(5,5). As witnessed from the above
table, we have the quite reasonable bounds 43 < R(5,5) < 49. If we actually believed the
answer to be 43, we might consider simply drawing all of the possible two-colourings of the
complete graph on 43 vertices. Then, it would be a simple matter to examine each one to
determine whether or not it contained a monochromatic copy of K5. However, the number
of edges in a graph on 43 vertices is precisely (423) = 903. Therefore, the number of distinct
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ways to colour the edges of the graph red or blue is 2993 ~ 6.76 x 102", So even if it were
possible to analyze 10?° cases per second, the time required would still be of the order of
2 x 1024 years! Of course, it is possible to narrow down the number of cases by many orders
of magnitude, but the computation is still far beyond our current technological capabilities.

To indicate the difficulty in calculating the Ramsey numbers, Paul Erdds, one of the
most prolific mathematicians ever and a Ramsey theory enthusiast, used to tell the following
story. He would claim that if a technologically superior race of aliens landed upon Earth and
demanded the calculation of R(5,5) within a year, then our best chance for survival would
be to gather together all of the mathematicians and computing power in the world to work
on the problem. On the other hand, if they demanded the calculation of R(6,6), then Erdés
claimed that our best chance for survival would be to gather together the world’s military
power in an attempt to destroy the aliens!

Given that the Ramsey numbers are considered to be so difficult to calculate, it seems
reasonable to ask whether we can at least find bounds for them. Of most interest to math-
ematicians is the computation of R(n,n), in which case we have the following bounds.

27 < R(n,n) < 92n—3
The upper bound can be obtained quite easily from the inequality which was proved earlier,
R(m,n) < R(m —1,n) + R(m,n —1).
In conjunction with the initial values R(2,n) = R(n,2) = n, and the well-known recursion

(1) = (i71) + ("), we obtain

m—1

Rim,n) < <m+n—2>.

Now it suffices to observe that

2n —2 2n—3 2n —3 Im—3
R < (278 = (20 4 (D)) <

The lower bound is more difficult to obtain, but its proof will allow us to showcase one
of the mathematical legacies of Paul Erdés — namely, the probabilistic method. It is an
extremely general principle which can be stated as follows.

Suppose that the probability of an element chosen from a particular set
having a certain property is less than 1. Then there must exist an element
of the set with the desired property.

Simple as it seems, the addition of the probabilistic method to the combinatorialist’s
arsenal has yielded many new results as well as beautiful proofs of old results. The following
was included in Proofs from the Book [1], an approximation to The Book, where Erdés
believed that God stored the perfect proofs for mathematical theorems.

Theorem: R(n,n) > 2%

Proof. Since R(2,2) = 2 and R(3,3) = 6, the theorem certainly holds true for n = 2 and
n = 3. We will now prove that for n >4 and N < 2%, there exists a colouring of the edges
of Ky red or blue which does not contain a monochromatic K,. Observe that there are
2(%) colourings in total. If we consider declaring each edge red or blue independently with
probability %, then it is clear that any particular colouring occurs with probability 2-(%),
Now given a set of vertices V', let Vi denote the event that the edges between the vertices

of V are all red. Then the probability of the event Vg is simply 27(”2;‘). Let X denote the
event that there is some complete graph on n vertices which is coloured red.
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Pr(Xg) = Pr(|J V)< D Pi(Vp) = (JZ)Q—(S)
[V|=n [V |=n
_ N(N—1)(N—2)-~-(N—n+1)2_(g)
nn—1)(Mn-2)---1
< N 2= ( N o-(3)

< 2%—(3)—1@-‘1—1 = 21_%

<

So we have shown that for n > 4 and N < 2%, the probability of a red K, is less than %
By the symmetry of the problem, the probability of a blue K, is also less than % Therefore,
the probability of a monochromatic K, is less than 1, so there must exist a colouring which
contains neither a red K,, nor a blue K,,. O

4  Complete Disorder is Impossible

Ramsey theory is concerned with more than simply determining the Ramsey numbers. In
fact, there is a myriad of interesting results which possess the same flavour as the party
problems considered above. The overarching theme behind Ramsey theory is the fact that
within sufficiently large mathematical systems, there must exist subsystems containing a
certain degree of order. This is often succinctly described by the Ramsey theorists’ catch
phrase, “Complete disorder is impossible!” We will conclude the article with a brief look at
three Ramsey-type results.

Ramsey’s Theorem — Infinite Version. The first result is Ramsey’s theorem, as stated by
Ramsey himself in his 1930 paper entitled, On a problem of formal logic. As witnessed by
the title, he did not consider the result to be of great combinatorial importance, and it
appeared only as a lemma towards what he considered a more substantial problem of formal
logic. This presumably was a result of the fact that the foundations of mathematics were
Ramsey’s great passion, combined with the fact that combinatorics was a far less fashionable
subject at that time than it is today. Ramsey’s original result can be considered an infinite
version of the theorem which is now attributed to him.

For every pair of positive integers C' and N, if the subsets of N with NV
elements are coloured in C' colours, then there exists an infinite subset X of
N such that all subsets of X with N elements are of the same colour.

Problem: Prove the infinite version of Ramsey’s theorem and show that the finite version
of Ramsey’s theorem follows from the infinite version.

Van der Waerden’s theorem. In 2004, Ben Green and Terence Tao announced their cele-
brated result that the primes contain arbitrarily long arithmetic progressions. One of the
main ingredients in their proof was Szemerédi’s theorem which states that if we take any
positive fraction of the set of positive integers, a notion which can be made mathemati-
cally precise, then the resulting set must contain arbitrarily long arithmetic progressions.
A precursor to Szemerédi’s theorem is the following result, proved by Van Der Waerden in
1927.
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For every pair of positive integers C and P, there is a positive integer NV
such that if the numbers from 1 up to N are coloured in C colours, then
there exists at least P numbers in arithmetic progression, all of the same
colour.

The Hales-Jewett theorem. The final result we will consider is motivated by the game tic-
tac-toe, in which players take turns to mark the squares of a 3 x 3 grid with the aim of
occupying three squares along a column, row or diagonal. It is a well-known fact that in this
traditional form of tic-tac-toe, both players can force a draw with optimal play. In stark
contrast is the game of three-dimensional tic-tac-toe, played in a similar manner on a 3x3 %3
grid of cubes, where the first player has an easy win by occupying the central position on
the first move. Actually, it is impossible to play out a draw in three-dimensional tic-tac-toe
since any partition of the 27 cubes into two colours will always include a monochromatic
column, row or diagonal. If we consider instead N-in-a-row tic-tac-toe played between C
players, then the Hales-Jewett theorem guarantees similar behaviour.

For every pair of positive integers C' and N, there is a positive integer D such
that if the unit hypercubes in a D-dimensional N x N x --- x N hypercube
are coloured in C colours, then there exists at least one row, column or
diagonal of N squares, all of the same colour.

Problem: Show that Van Der Waerden’s theorem follows from the Hales-Jewett theorem.
Anyone wanting to find out more is strongly encouraged to consult the monograph entitled
Ramsey Theory by Ronald Graham, Bruce Rothschild and Joel Spencer [2].
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