Publication List

The publications listed are those for which I have made significant contributions. For a full list of publications, including all LIGO, PPTA and IPTA publications, follow this link.
  1. Cheung, Lasky and Thrane (2024) Does spacetime have memories? Searching for gravitational-wave memory in the third LIGO-Virgo-KAGRA gravitational-wave transient catalogue. Accepted for publication in Class. Q. Grav. (arXiv:2404.11919)
  2. Sarin, Clarke, Magnall, Lasky, Metzger, Berger, and Sridhar (2024) The origin of the coherent radio flash potentially associated with GRB 201006A. Submitted to Astrophys. J. Lett. (arXiv:2404.08048)
  3. Tong, Guttman, Clarke, Lasky et al. (2024) Transdimensional inference for gravitational-wave astronomy with Bilby. Submitted to Astrophys. J. Supp. (arXiv:2404.04460)
  4. Clarke, Isi, Lasky, Thrane, et al (2024) Striking the right tone: towards a self-consistent framework for measuring black hole ringdowns. Submitted to Phys. Rev. D (arXiv:2402.02819)
  5. Adamcewicz, Galaudage, Lasky and Thrane (2023) Which black hole is spinning? Probing the origin of black-hole spin with gravitational waves. Accepted for publication in Astrophys. J. (arXiv:2311.05182)
  6. Anzuini, Gomez-Banon, Pons, Melatos and Lasky (2023) Axion sourcing in dense stellar matter via CP-violating couplings. Accepted for publication in Phys. Rev. D (arXiv:2311.13776)
  7. Gardner, Sun, Borhanian, Lasky, Thrane, McClelland, and Slagmolen (2023) Multi-messenger astronomy with a Southern-Hemisphere gravitational-wave observatory. Accepted for publication in Phys. Rev. D (arXiv:2308.13103)
  8. Magnall, Price, Lasky and Macpherson (2023) Inhomogeneous cosmology using general relativistic smoothed particle hydrodynamics coupled to numerical relativity. Accepted for publication in Mon. Not. R. Astron. Soc. (arXiv:2307.15194)
  9. Adamcewicz, Lasky and Thrane (2023) Evidence for a correlation between binary black hole mass ratio and black-hole spins. Accepted for publication in Astrophys. J. (arXiv:2307.15278)
  10. Tian et al (2023) MWA rapid follow-up of gravitational wave transients: prospects for detecting prompt radio counterparts. Accepted for publication in PASA
  11. Nathan, Miles, Ashton, Lasky, Thrane, Reardon, Shannon and Cameron (2023) Improving pulsar-timing solutions through dynamics pulse fitting. Accepted for publication in Mon. Not. R. Astron. Soc. (arXiv:2303.02793)
  12. Panther and Lasky (2023) The effect of noise artefacts on gravitational-wave searches for neutron star post-merger remnants. Mon. Not. R. Astron. Soc. 523, 2928 (arXiv:2303.10847)
  13. Clarke, Chastain, Lasky, Thrane (2023) Nuclear physics with gravitational waves from neutron stars disrupted by black holes. Astrophys. J. Lett. 949, L6 (arXiv:2302.09711)
  14. Anzuini, Pons, Gomez-Banon, Lasky, Bianchini, Melatos (2023) Magnetic dynamo caused by axions in neutron stars. Phys. Rev. Lett. 130, 071001 (arXiv:2211.10863)
  15. Baker, Lasky, Thrane, Ashton, Cantos, Lakerink, Leslie, Poole, and Reichart (2023) GWCloud: a searchable repository for the creation and curation of gravitational-wave inference results.. Astrophys. J. Supp. 266, 33 (arXiv:2204.13267)
  16. Powell, Sun, Gereb, Lasky, and Dollmann (2023) Generating transient noise artifacts in gravitational-wave detector data with generative adversarial networks. Class. Q. Grav. 40, 035006 (arXiv:2207.00207)
  17. Sarin, Lasky, Nathan (2023) Missed opportunities: GRB 211211A and the case for continual gravitational-wave coverage with a single observatory.. Mon. Not. R. Astron. Soc. 518, 5483 (arXiv:2210.14938)
  18. Abbott et al. (2022) Search for gravitational-wave transients associated with magnetar bursts in Advanced LIGO and Advanced Virgo data from the third observing run. Accepted for publication in Astrophys. J. (arXiv:2210.10931)
  19. Lasky, Thrane (2022) Background Memories. Sci. China-Phys. Mech. Astron. 65, 119531
  20. Knee, Romero-Shaw, Lasky, McIver, Thrane (2022) A Rosetta Stone for eccentric gravitational waveform models. Astrophys. J. 936, 172 (arXiv:2207.14346)
  21. Romero-Shaw, Lasky, and Thrane (2022) Four eccentric mergers increase the evidence that LIGO--Virgo--KAGRA's binary black holes form dynamically. 940, 171 (arXiv:2206.14695)
  22. Clarke, Romero-Shaw, Lasky, and Thrane (2022) Gravitational-wave inference for eccentric binaries: the argument of periapsis. Mon. Not. R. Astron. Soc. 517, 3778 (arXiv:2206.14006)
  23. Huebner, Huppenkothen, Lasky, Inglis, Ick, and Hogg (2022) Searching for quasi-periodic oscillations in astrophysical transients using Gaussian processes. Astrophys. J. 936, 17 (arXiv:2205.12716)
  24. Kouvatsos, Lasky, Quitzow-James and Sakellariadou (2022) Detectability of the gravitational-wave background produced by magnetar giant flares. Phys. Rev. D 106, 063007 (arXiv:2203.07905)
  25. Romero-Shaw, Thrane, and Lasky (2022) When models fail: an introduction to posterior predictive checks and model misspecification in gravitational-wave astronomy. PASA 39, e025 (arXiv:2202.05479)
  26. Sarin, Lasky, Hernandez Vivanco, Stevenson, Chattopadhyay, Smith, and Thrane (2022) Linking the rates of neutron star binaries and short gamma-ray bursts. Phys. Rev. D 105, 083004 (arXiv:2201.08491)
  27. Sarin and Lasky (2022) Multimessenger astronomy with a kHz-band gravitational-wave observatory. PASA 39, e007 (arXiv:2110.10892)
  28. Huebner, Huppenkothen, Lasky and Inglis (2022) Pitfalls of periodograms: The non-stationarity bias in the analysis of quasi-periodic oscillations. Astrophys. J. Supp. 259, 32 (arXiv:2108.07418)
  29. Lasky (2021) Gravitational Wave Astronomy. Multimessenger Astronomy in Practice, by Filipovic and Tothil
  30. Lasky and Thrane (2021) Did Goryachev et al. detect megahertz gravitational waves?. Phys. Rev. D 104, 103017 (arXiv:2110.13319)
  31. Romero-Shaw, Lasky and Thrane (2021) Signs of eccentricity in two gravitational-wave signals may indicate a sub-population of dynamically assembled binary black holes. Astrophys. J. Lett. 921, L31 (arXiv:2108.01284)
  32. Payne, Sun, Kremer, Lasky, and Thrane (2021) The imprint of superradiance on hierarchical black hole mergers. Astrophys. J. 931, 79 (arXiv:2107.11730)
  33. Zevin, Romero-Shaw, Kremer, Thrane and Lasky (2021) Implications of Eccentric Observations on Binary Black Hole Formation Channels. Astrophys. J. Lett. 921, L43 (arXiv:2106.09042)
  34. Easter, Lasky and Casey (2021) Can we measure the collapse time of a post-merger remnant for a future GW170817-like event?. Submitted to Phys. Rev. D (arXiv:2106.04064)
  35. Sarin, Hamburg, Burns, Ashton, Lasky and Lamb (2021) Low-efficiency long gamma-ray bursts: A case study with AT2020blt. Mon. Not. R. Astron. Soc. 512, 1391 (arXiv:2106.01556)
  36. Sarin, Ashton, Lasky, Ackley, Mong, and Galloway (2021) CDF-S XT1: The off-axis afterglow of a neutron star merger at Z = 2.23. Submitted to Astrophys. J. Lett. (arXiv:2105.10108)
  37. Huebner, Lasky, and Thrane (2021) Memory Remains Undetected: Updates from the Second LIGO/Virgo Gravitational-Wave Transient Catalog. Phys. Rev. D 104, 023004 (arXiv:2105.02879)
  38. Smith et al. (2021) Bayesian inference for gravitational waves from binary neutron star mergers in third-generation observatories. Phys. Rev. Lett. 127, 081102 (arXiv:2103.12274)
  39. Hernandez-Vivanco, Lasky, Thrane, Smith, Chatterjee, Banik, Motta and Thomas (2021) Temperature dependent appearance of exotic matter makes nascent neutron stars spin faster. Submitted to Phys. Rev. D (arXiv:2101.04782)
  40. Calderon Bustillo, Leong, Dietrich, Lasky (2021) Mapping the Universe expansion: Enabling percent-level measurements of the Hubble constant with a single binary neutron-star merger detection. Astrophys. J. Lett. 912, L10 (arXiv:2006.11525)
  41. Calderon Bustillo, Lasky, and Thrane (2021) Black-hole spectroscopy, the no-hair theorem and GW150914: Kerr versus Occam. Phys. Rev. D 103, 024041 (arXiv:2010.01857)
  42. Sarin and Lasky (2021) The evolution of binary neutron star post-merger remnants: a review. General Relativity and Gravitation 53, 59 (arXiv:2012.08172)
  43. Strang, Melatos, Sarin and Lasky (2020) Inferring properties of neutron stars born in gamma-ray bursts with plerion-like X-ray plaeau. Mon. Not. R. Astron. Soc. 507, 2843 (arXiv:2107.13787)
  44. Romero-Shaw, Kremer, Lasky, Thrane, and Samsing (2021) Gravitational Waves as a Probe of Globular Cluster Formation and Evolution. Mon. Not. R. Astron. Soc. 506, 2362 (arXiv:2011.14541)
  45. Ashton, Lasky, Nathan, and Palfreyman (2020) Flickering of the Vela pulsar during its 2016 glitch. Submitted to Nature Astronomy: (arXiv:2011.07927)
  46. Payne, Talbot, Lasky, Thrane and Kissel (2020) Gravitational-wave astronomy with a physical calibration model. Phys. Rev. D 102, 122004 (arXiv:2009.10193)
  47. Romero-Shaw, Lasky, Thrane and Calderon Bustillo (2020) GW190521: orbital eccentricity and signatures of dynamical formation in a binary black hole merger signal. Astrophys. J. Lett. 903, L5 (arXiv:2009.04771)
  48. Halliday, Kelleher, Lasky, et al. (2020) Halliday's Fundamentals of Physics. Wiley, 1st Australia and New Zealand Edition
  49. Sarin, Lasky, and Ashton (2020) Interpreting the x-ray afterglows of gamma-ray bursts with radiative losses and millisecond magnetars. Mon. Not. R. Astron. Soc. 499, 5986 (arXiv:2008.05745)
  50. Hernandez Vivanco, Smith, Thrane and Lasky (2020) A scalable random forest regressor for combining neutron-star equation of state measurements: A case study with GW170817 and GW190425. Mon. Not. R. Astron. Soc. 499, 5972 (arXiv:2008.05627)
  51. Abbott et al. (2020) GW190814: Gravitational waves from the coalescence of a 23 Msun black hole with a 2.6 Msun compact object. Astrophys. J. Lett. 896, L44 (arXiv:2006.12611)
  52. Payne, Banagiri, Lasky and Thrane (2020) Searching for anisotropy in the distribution of binary black hole mergers. Phys. Rev. D 102, 102004 (arXiv:2006.11957)
  53. Ackley et al (2020) Neutron star extreme matter observatory: A kilohertz-band gravitational-wave detector in the global network. PASA 37, e047 (arXiv:2007.03128)
  54. Easter, Ghonge, Lasky, Casey, Clark, Hernandez Vivanco and Chatziioannou (2020) Detection and parameter estimation of binary neutron star merger remnants. Phys. Rev. D 102, 043011 (arXiv:2006.04396)
  55. Romero-Shaw et al. (2020) Bayesian inference for compact binary coalescences with Bilby: Validation and application to the first LIGO–Virgo gravitational-wave transient catalogue. Mon. Not. R. Astron. Soc. 499, 3295 (arXiv:2006.00714)
  56. Sarin, Lasky and Ashton (2020) Gravitational waves or deconfined quarks: what causes the premature collapse of neutron stars born in short gamma-ray bursts?. Phys. Rev. D 101, 063021 (arXiv:2001.06102)
  57. Huebner, Talbot, Lasky and Thrane (2020) Thanks for the memory: measuring gravitational-wave memory in the first LIGO/Virgo gravitational-wave transient catalog. Phys. Rev. D 101, 023011 (arXiv:1911.12496)
  58. Divarkala, Thrane, Lasky and Whiting (2020) Memory effect or cosmic string? Classifying gravitational-wave bursts with Bayesian inference. Phys. Rev. D 102, 023010 (arXiv:1911.07998)
  59. Thrane, Oslowski and Lasky (2020) Ultra-relativistic astrophysics using multi-messenger observations of double neutron stars with LISA and the SKA. Mon. Not. R. Astron. Soc. (arXiv:1910.12330)
  60. Romero-Shaw, Lasky, and Thrane (2019) Searching for Eccentricity: Signatures of Dynamical Formation in the First Gravitational-Wave Transient Catalogue of LIGO and Virgo. Mon. Not. R. Astron. Soc. 490, 5210 (arXiv:1909.05466)
  61. Hernandez Vivanco, Smith, Thrane, Lasky, Talbot, and Raymond (2019) Measuring the neutron star equation of state with gravitational waves: the first forty binary neutron star mergers. Phys. Rev. D 100, 103009 (arXiv:1909.02698)
  62. Banagiri, Coughlin, Clark, Lasky, et al. (2020) Constraining the Gravitational-Wave Afterglow From a Binary Neutron Star Coalescence. Mon. Not. R. Astron. Soc. 491, 4945 (arXiv:1909.01934)
  63. Ashton, Lasky, Graber, and Palfreyman (2019) Rotational evolution of the Vela pulsar during the 2016 glitch. Nature Astronomy: 3, 1143 (arXiv:1907.01124)
  64. Hernandez Vivanco, Smith, Thrane, and Lasky (2019) Accelerated detection of the binary neutron star gravitational-wave background. Phys. Rev. D 100, 043023 (arXiv:1903.05578)
  65. Sun, Melatos, and Lasky (2019) Tracking continuous gravitational waves from a neutron star at once and twice the spin frequency with a hidden Markov model. Phys. Rev. D 99, 123010 (arXiv:1903.03866)
  66. Abbott et al. (2019) Search for gravitational waves from a long-lived remnant of the binary neutron star merger GW170817. Astrophys. J. 875, 160 (arXiv:1810.02581)
  67. Ashton, Huebner, Lasky, Talbot et al. (2019) Bilby: A user-friendly Bayesian inference library for gravitational-wave astronomy. Astrophys. J. Supp. 241, 27 (arXiv:1811.02042)
  68. Martynov et al. (2019) Exploring the sensitivity of gravitational wave detectors to neutron star physics. Phys. Rev. D 99, 102004 (arXiv:1901.03885)
  69. Easter, Lasky, Casey, Rezzolla, and Takami (2019) Computing fast and reliable gravitational waveforms of binary neutron star merger remnants. Phys. Rev. D 100, 043005 (arXiv:1811.11183)
  70. Sarin, Lasky, and Ashton (2019) X-ray afterglows of Short gamma-ray bursts: Magnetar or Fireball?. Astrophys. J. 872, 114 (arXiv:1812.08176)
  71. Talbot, Thrane, Lasky, and Lin (2018) Gravitational-wave memory: waveforms and phenomenology. Phys. Rev. D 98, 064031 (arXiv:1807.00990)
  72. Macpherson, Lasky, and Price (2018) The trouble with Hubble: Local versus global expansion rates in inhomogeneous cosmological simulations with numerical relativity. Astrophys. J. Lett. 865, L4 (arXiv:1807.01714)
  73. Macpherson, Price, and Lasky (2018) Einstein's Universe: Cosmological structure formation in numerical relativity. Phys. Rev. D 99, 063522 (arXiv:1807.01711)
  74. Woan, Pitkin, Haskell, Jones, and Lasky (2018) Evidence for a minimum ellipticity in millisecond pulsars. Astrophys. J. Lett. 863, L40 (arXiv:1806.02822)
  75. Lower, Thrane, Lasky, and Smith (2018) Measuring eccentricity in binary black hole inspirals with gravitational waves. Phys. Rev. D 98, 083028 (arXiv:1806.05350)
  76. Sarin, Lasky, Sammut and Ashton (2018) X-ray guided gravitational-wave search for binary neutron star merger remnants. Phys. Rev. D 98, 043011 (arXiv:1805.01481)
  77. Zhu, Thrane, Oslowski, Levin and Lasky (2018) Inferring the populsation properties of binary neutron stars with gravitational-wave measurements of spin. Phys. Rev. D 98, 043002 (arXiv:1711.09226)
  78. Abbott et al. (LIGO-Virgo Collaboration) (2017) Search for post-merger gravitational waves from the remnant of the binary neutron star merger GW170817. Astrophys. J. Lett. 851, L16 (arXiv:1710.09320)
  79. Abbott et al. (LIGO-Virgo Collaboration) (2017) GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 119, 161101 (arXiv:1710.05832)
  80. Abbott et al. (LIGO-Virgo Collaboration) (2017) Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. Astrophys. J. Lett. 848, L13 (arXiv:1710.05834)
  81. Thrane, Lasky, and Levin (2017) Challenges testing the no-hair theorem with gravitational waves. Phys. Rev. D 96, 102004 (arXiv:1706.05152)
  82. Lasky, Leris, Rowlinson, and Glampedakis (2017) The braking index of millisecond magnetars. Astrophys. J. Lett. 843, L1 (arXiv:1705.10005)
  83. McNeill, Thrane, and Lasky (2017) Detecting Gravitational Wave Memory without Parent Signals. Phys. Rev. Lett. 118, 181103 (arXiv:1702.01759)
  84. Macpherson, Lasky and Price (2017) Inhomogeneous Cosmology with Numerical Relativity. Phys. Rev. D 95, 064028 (arXiv:1611.05447)
  85. Glampedakis and Lasky (2016) The freedom to choose neutron star magnetic field equilibria. Mon. Not. R. Astron. Soc. 463, 2542 (arXiv:1607.05576)
  86. Lasky, Thrane, Levin, Blackman and Chen (2016) Detecting gravitational-wave memory with LIGO: implications of GW150914. Phys. Rev. Lett. 117, 061102 (arXiv:1605.01415)
  87. Sun, Melatos, Lasky, Chung and Darman (2016) Cross-correlation search for continuous gravitational waves from a compact object in SNR 1987A in LIGO Science Run 5. Phys. Rev. D 94, 082004 (arXiv:1610.00059)
  88. Ravi and Lasky (2016; submitted) A neutron star progenitor for FRBs? Insights from polarisation measurements. Mon. Not. R. Astron. Soc. (arXiv:1601.06131)
  89. Lasky et al. (2016) Gravitational-wave cosmology across 29 decades in frequency. Phys. Rev. X 6, 011035 (arXiv:1511.05994)
  90. Lasky and Glampedakis (2016) Observationally constraining gravitational wave emission from short gamma-ray burst remnants. Mon. Not. R. Astron. Soc. 458, 1660 (arXiv:1512.05368)
  91. Rosado, Lasky, Thrane, Zhu, Mandel, and Sesana (2016) The most distant observable massive objects. Phys. Rev. Lett. 116, 101102 (arXiv:1512.04950)
  92. Howell, Rowlinson, Coward, Lasky, et al. (2015) Hunting gravitational waves with multi-messenger counterparts: Australia's role. PASA (Invited review as part of a special issue on Gravitational Wave Astronomy) 32, e046 (arXiv:1511.02959)
  93. Shannon, Ravi, Lentati, Lasky, et al. (2015) Gravitational waves from binary supermassive black holes missing in pulsar observations. Science 349, 6255 (arXiv:1509.07320)
  94. Lasky (2015) Gravitational Waves from Neutron Stars: A Review. PASA (Invited review as part of a special issue on Gravitational Wave Astronomy) 32, 034 (arXiv:1508.06643)
  95. Messenger et al. (2015) Gravitational waves from Sco X-1: A comparison of search methods and prospects for detection with advanced detectors. Phys. Rev. D 92, 023006 (arXiv:1504.05889)
  96. Glampedakis and Lasky (2015) Persistent crust-core spin lag in neutron stars. Mon. Not. R. Astron. Soc. 450, 1638 (arXiv:1501.05473)
  97. Lü, Zhang, Lei, Li and Lasky (2015) The millisecond magnetar central engine in short GRBs. Astrophys. J. 805, 89 (arXiv:1501.02589)
  98. Lasky, Melatos, Ravi and Hobbs (2015) Pulsar timing noise and the minimum observation time to detect gravitational waves with pulsar timing arrays. Mon. Not. R. Astron. Soc. 449, 3293 (arXiv:1503.03298)
  99. Haskell, Priymak, Patruno, Oppenoorth, Melatos and Lasky (2015) Detecting gravitational waves from mountains on neutron stars in the Advanced Detector Era. Mon. Not. R. Astron. Soc. 450, 2393 (arXiv:1501.06039)
  100. Aasi et al. (The LIGO Scientific Collaboration) (2015) A directed search for gravitational waves from Scorpius X-1 with initial LIGO. Phys. Rev. D 91, 062008 (arXiv:1412.0605)
  101. Coward, Branchesi, Howell, Lasky and Böer M. (2014) The detection efficiency of on-axis short gamma-ray burst optical afterglows triggered by aLIGO/Virgo. Mon. Not. R. Astron. Soc. 445, 3575 (arXiv:1409.2600)
  102. Priymak, Melatos, and Lasky (2014) Cyclotron line signatures of thermal and magnetic mountains from accreting neutron stars. Mon. Not. R. Astron. Soc. 445, 2710 (arXiv:1409.3327)
  103. Ravi and Lasky (2014) The birth of black holes: neutron star collapse times, gamma-ray bursts and fast radio bursts. Mon. Not. R. Astron. Soc. 441, 2433 (arXiv:1403.6327)
  104. Lasky, Haskell, Ravi, Howell and Coward (2014) Nuclear equation of state from observations of short gamma-ray burst remnants. Phys. Rev. D 89, 047302 (arXiv:1311.1352)
  105. Lasky and Melatos (2013) Tilted torus magnetic fields in neutron stars and their gravitational wave signatures. Phys. Rev. D 88, 103005 (arXiv:1310.7633)
  106. Mastrano, Lasky and Melatos (2013) Neutron star deformation due to multipolar magnetic fields. Mon. Not. R. Astron. Soc. 434, 1658 (arXiv:1306.4503)
  107. Lasky, Bennett and Melatos (2013) Stochastic gravitational wave background from hydrodynamic turbulence in differentially rotating neutron stars. Phys. Rev. D 87, 063004 (arXiv:1302.6033)
  108. Fluke, Malec, Lasky and Barsdell (2012) Three-dimensional shapelets and an automated classification scheme for dark matter haloes. Mon. Not. R. Astron. Soc. 421, 1499 (arXiv:1112.4532)
  109. Lasky, Zink and Kokkotas (2012) Gravitational Waves and Hydromagnetic Instabilities in Rotating Magnetized Neutron Stars. (arXiv:1203.3590)
  110. Killedar, Lasky, Lewis and Fluke (2012) Gravitational lensing with three-dimensional ray tracing. mnras 420, 155 (arXiv:1110.4894)
  111. Zink, Lasky and Kokkotas (2012) Are gravitational waves from giant magnetar flares observable?. Phys. Rev. D 85, 024030 (arXiv:1107.1689)
  112. Fluke and Lasky (2011) Shape, shear and flexion - II. Quantifying the flexion formalism for extended sources with the ray-bundle method. Mon. Not. R. Astron. Soc. 416, 1616 (arXiv:1101.4407)
  113. Lasky, Zink, Kokkotas and Glampedakis (2011) Hydromagnetic Instabilities in Relativistic Neutron Stars. Astrophys. J. Lett. 735, L20 (arXiv:1105.1895)
  114. Lasky and Doneva (2010) Stability and quasinormal modes of black holes in tensor-vector-scalar theory: Scalar field perturbations. Phys. Rev. D 82, 124068 (arXiv:1011.0747)
  115. Lasky and Bolejko (2010) The effect of pressure gradients on luminosity distance-redshift relations. Class. Q. Grav. 27, 035011 (arXiv:1001.1159)
  116. Lasky (2009) Black holes and neutron stars in the generalized tensor-vector-scalar theory. Phys. Rev. D 80, 081501 (arXiv:0910.0240)
  117. Lasky and Fluke (2009) Shape, shear and flexion: an analytic flexion formalism for realistic mass profiles. Mon. Not. R. Astron. Soc. 396, 2257 (arXiv:0904.1440)
  118. Lasky, Sotani and Giannios (2008) Structure of neutron stars in tensor-vector-scalar theory. Phys. Rev. D 78, 104019 (arXiv:0811.2006)
  119. Bolejko and Lasky (2008) Pressure gradients, shell-crossing singularities and acoustic oscillations - application to inhomogeneous cosmological models. Mon. Not. R. Astron. Soc. 391, L59 (arXiv:0809.0334)
  120. Forbes, Lasky, Graham and Spitler (2008) Uniting old stellar systems: from globular clusters to giant ellipticals. Mon. Not. R. Astron. Soc. 389, 1924 (arXiv:0806.1090)
  121. Lasky and Lun (2007) Gravitational collapse of spherically symmetric plasmas in Einstein-Maxwell spacetimes. Phys. Rev. D 75, 104010 (arXiv:0704.3634)
  122. Lasky, Lun and Burston (2006) Initial value formalism for dust collapse. The ANZIAM Journal 49, 53 (arXiv:gr-qc/0606003)
  123. Lasky and Lun (2007) Spherically symmetric gravitational collapse of general fluids. Phys. Rev. D 75, 024031 (arXiv:gr-qc/0612007)
  124. Lasky and Lun (2006) Generalized Lemaitre-Tolman-Bondi solutions with pressure. Phys. Rev. D 74, 084013 (arXiv:gr-qc/0606055)