
Recognising Patterns in Large Data Sets: A Distributed

Approach

by

Anang Hudaya Muhamad Amin,

BTech.(Hons) Information Technology (UTP)

Master of Network Computing (Monash)

Thesis

Submitted by Anang Hudaya Muhamad Amin

for fulfillment of the Requirements for the Degree of

Doctor of Philosophy (0190)

Clayton School of Information Technology

Monash University

January, 2011

c© Copyright

by

Anang Hudaya Muhamad Amin

2011

For my wife. Thanks for being with me through this journey.

iii

Contents

List of Tables . ix

List of Figures . xii

Abstract . xx

List of Publications . xxiii

Acknowledgments . xxvi

1 Introduction . 1

1.1 Pattern Recognition Concept and Theories 4

1.2 Scalability in Pattern Recognition . 6

1.3 Distributed Pattern Recognition . 8

1.3.1 Top-Down vs. Bottom-Up Approaches 10

1.3.2 Distributed Multi-Feature Recognition 13

1.3.3 Resource-Awareness . 14

1.4 Motivation and Aims . 14

1.5 Hypothesis and Research Objectives . 16

1.6 Research Contributions . 18

1.7 Thesis Outline . 19

2 Pattern Recognition and Distributed Approach 23

2.1 Neural Network/Machine Learning Approach 25

2.1.1 Scalability and Adaptability of Neural Networks 28

2.1.2 Convolutional Neural Network . 33

2.2 Scalability Evaluation for Neural Network Approaches 37

iv

2.2.1 Storage Capacity Analysis . 37

2.2.2 Communication Frequency Evaluation 38

2.3 Key Components for Scalable Pattern Recognition 40

2.3.1 Learning Mechanism . 40

2.3.2 Processing Approach . 41

2.3.3 Training Procedure . 43

2.4 Pattern Distribution Techniques . 43

2.4.1 Subpattern Distribution Technique 45

2.4.2 Set Distribution Technique . 46

2.5 Graph Neuron for Scalable Recognition Scheme 47

2.5.1 Graph-based Pattern Recognition . 47

2.5.2 GN Architecture and Pattern Representation 49

2.5.3 GN Complexity Estimation . 55

2.5.4 Crosstalk Issue in GN . 56

2.6 Hierarchical Graph Neuron (HGN) . 59

2.6.1 Size of HGN Network . 61

2.6.2 HGN Recognition Procedure . 62

2.6.3 HGN Complexity Estimation . 64

2.6.4 HGN Solution to Crosstalk Problem 67

2.6.5 Scalability in HGN Approach . 69

2.7 Distributed Approach for HGN . 72

2.7.1 Distributed Approach Design . 74

2.7.2 Non-Uniform Approach . 76

2.7.3 Uniform Approach . 81

2.8 Conclusions . 86

3 Distributed Hierarchical Graph Neuron 89

3.1 DHGN for Distributed Pattern Recognition 90

3.1.1 GN Associative Memory Concept . 91

3.1.2 System Architecture . 92

3.1.3 Dual-Phase Recognition Procedure 97

3.1.4 Bias Array Design . 105

v

3.1.5 Collaborative-Comparison Learning (CCL) 106

3.2 Dimensionality Reduction in Pattern Pre-Processing 108

3.2.1 Structural Reduction . 108

3.2.2 Content Reduction . 111

3.2.3 Case Study: DHGN Image Recognition based on Binary Signature . 111

3.3 Analysis and Evaluation . 119

3.3.1 Complexity Evaluation . 119

3.3.2 Scalability Analysis . 127

3.4 Pattern Recognition Simulation and Results 137

3.4.1 Binary Character Pattern Recognition 138

3.4.2 Recognition Test on Binary Images 141

3.4.3 Performance Test on Binary Images 142

3.5 Multi-Value DHGN Model . 143

3.5.1 Complexity Estimation . 147

3.5.2 Recognition Accuracy . 152

3.5.3 Summary . 154

3.6 Conclusions . 155

4 Multi-Feature Pattern Recognition: A Distributed Approach 159

4.1 Data Features for Pattern Recognition . 161

4.1.1 Common Approaches to Feature-based Pattern Recognition 162

4.1.2 Pattern Recognition (PR) using Multiple Features 163

4.2 DHGN Multi-Feature Recognition . 164

4.2.1 System Architecture . 164

4.2.2 Recognition Analysis . 165

4.2.3 Complexity Estimation . 166

4.3 Greyscale Image Recognition using Multi-Feature Approach 170

4.3.1 Multi-Feature DHGN for Facial Image Recognition 171

4.3.2 Recognition Accuracy Analysis . 172

4.3.3 Results and Discussion . 174

4.3.4 Concluding Remarks . 180

4.4 Handwritten Object Recognition with Multiple Features 181

vi

4.4.1 The Data Set . 182

4.4.2 Classification Procedures . 182

4.4.3 Results and Discussion . 185

4.4.4 Concluding Remarks . 188

4.5 Conclusions . 189

5 Resource Considerations for Distributed PR 191

5.1 Message-Passing Model for DHGN . 193

5.1.1 Process Actions . 194

5.1.2 System Synchronisation . 197

5.2 Network Granularity Analysis and Evaluation 198

5.2.1 DHGN Configurations for Adaptive Granularity 199

5.2.2 Performance Analysis . 202

5.2.3 Clustered DHGN for Coarse-Grained Networks 207

5.2.4 Fully-Distributed DHGN for Fine-Grained Networks 212

5.2.5 Summary . 219

5.3 DHGN Fault Tolerance Mechanism . 221

5.3.1 Subnet Fault . 222

5.3.2 Node Fault . 224

5.4 Conclusions . 225

6 Distributed PR Applications within Fine-Grained Networks 227

6.1 WSN Event Detection . 229

6.1.1 WSN Deployment Issues for Event Detection 231

6.1.2 Summary . 234

6.2 Integrated DHGN-WSN Scheme . 235

6.2.1 Dimensionality Reduction in Sensory Data 237

6.2.2 DHGN Event Classification . 238

6.2.3 Performance Metrics: Memory Utilisation 240

6.3 Case Study: Forest Fire Detection using Integrated DHGN-WSN 241

6.3.1 Existing Approaches . 241

6.3.2 Dimensionality Reduction on FFMC Values 242

6.3.3 Methodology . 243

vii

6.3.4 Classification/Recognition Results 244

6.3.5 Spatio-Temporal Analysis of Event Data 246

6.3.6 Summary . 247

6.4 Conclusions . 249

7 Conclusions . 251

7.1 Summary . 251

7.2 Research Contributions . 253

7.3 Future Research . 257

7.3.1 Algorithm-Specific Research . 257

7.3.2 Application-Specific Research . 258

References . 261

Appendix A Extended Analysis and Results 279

A.1 Greyscale Image Recognition . 279

A.1.1 The Dataset . 279

A.1.2 Extended Results . 279

A.2 Negative Image Detection using DHGN . 282

A.2.1 Subpattern Size Reduction . 282

A.2.2 Negative Image Recognition . 284

A.2.3 Recognition Tests and Results . 284

A.2.4 Discussions . 286

Appendix B Algorithms and Pseudocodes 297

B.1 Single-Value (Original) DHGN . 297

B.2 Multi-Value DHGN . 300

viii

List of Tables

2.1 Store and recall responses of a GN Array. 53

2.2 Bias array entries for all active GN in HGN composition when pattern uvwxz

is introduced. 68

2.3 Bias array entries for all active GN in HGN composition when pattern zvwxy

is introduced. 68

2.4 Bias array entries for all active GN in HGN composition when pattern uvwxy

is introduced. 69

2.5 Character representations of 35-bit patterns using a horizontal scanning

approach. 77

3.1 Recalled indices retrieved from all DHGN subnets after each pattern input. 104

3.2 Colour composition values correspond to each bin bj 113

3.3 Detailed binary signatures for image in Figure 3.10. 114

3.4 Detailed binary signatures of block image in Figure 3.12. 115

3.5 Big-O notations for Hopfield network and DHGN implementation in net-

work generation stage. 120

3.6 Big-O notations for Hopfield network in recognition stage. 121

3.7 Big-O notation for DHGN implementation in recognition stage. 122

3.8 DHGN computational complexity terms. 128

3.9 Total possible bias entries for each layer within a HGN network for 55-bits

binary patterns. 134

3.10 Comparison between the total possible maximum bias array size for HGN

and DHGN implementations for binary pattern recognition with different

pattern sizes. 135

ix

3.11 Comparison between HGN and DHGN implementations with regards to the

number of messages communicated per pattern recognition. 136

3.12 Average recognition time for each subnet in DHGN network for a given

16kb binary image. 143

3.13 Representations for the amount for each different types of communication

performed in MV-DHGN message-passing model. 145

3.14 MV-DHGN bias array estimation terms. 153

3.15 Dataset collection comprising of random binary subpatterns. 153

4.1 Example of data obtained from SI modules, in the form of error values for

each feature. 168

4.2 BPNN execution parameters. 177

4.3 Discretisation on feature data values using variable-binning methods. 183

4.4 Sample of Zernike moment’s feature patterns obtained using discretisation. 184

4.5 Multi-feature DHGN architecture parameter details. 184

4.6 Recognition accuracy parameters and their respective representations. . . . 185

4.7 Results of the classification decision on 4 different features of numeral char-

acter objects. 186

4.8 Comparative analysis on error values between DHGN and other classifiers

for similar data set with respective features. 187

5.1 Representations for different process actions in DHGNmessage-passing model.195

5.2 Comparison between fine-grained and coarse-grained networks. 199

5.3 DHGN subnet associative array structure after subpatterns 00001 and 11111

have been memorised. 202

5.4 Threshold classes with respective value range used in the tests. 216

5.5 Comparative analysis on recognition accuracy parameters between DHGN

and other classifiers for event recognition using sensory data obtained from

three wireless sensors (Smart-It 1, Smart-It 2, and Smart-It 5). 218

6.1 Berkeley Mica Mote sensor node specifications. 231

6.2 Example of a simple temperature readings with respective binary signature. 238

6.3 Ignition potential versus FFMC value. 242

6.4 Modified FFMC classification for DHGN event detection scheme. 242

x

6.5 Sensory data with allocated binary signature bits. 244

6.6 Temperature threshold ranges with respective binary signatures. 245

6.7 Training data set in the form of specific threshold ranges used in classifi-

cation test. Binary digits in brackets represent signature for the respective

data range. 245

6.8 Comparison on classification accuracy between DHGN and Kohonen SOM

classifiers for forest fire detection. Different numbers of training data were

used for each SOM implementation. 245

A.1 Results of image recognition test using DHGN recognition scheme with 9-

bits input subpatterns. 285

A.2 Results of image recognition test using DHGN recognition scheme with 7-

bits input subpatterns. There is an improvement on the accuracy of this

DHGN scheme. 285

A.3 Results of image recognition test using a recognition scheme with 5-bits

input subpatterns. DHGN is able to recall all the characters using minimum

voting scheme on both dataset II and III. 286

xi

List of Figures

1.1 Conceptual representation of conventional pattern recognition scheme. . . . 5

1.2 Distributed pattern recognition with process farming approach. 11

1.3 Distributed pattern recognition with process pipelining approach. 12

2.1 Generic neural network architecture for pattern recognition with two layers

of hidden neurons. 25

2.2 The general topology of a Hopfield Network. 30

2.3 General topology of Kohonen network. 32

2.4 SVM classification using optimal hyperplane for separable classes. The SVs

lies on the dotted lines. 34

2.5 Estimated number of signals/messages generated, C by each neuron within

a single layer in common neural network schemes involving different number

of iterations. 39

2.6 Comparison of processing speed-up estimation between recognition pro-

cesses on different parallel fractions (P) with an increase in the number

of parallel processors used. 42

2.7 A comparison between subpattern and pattern subset distribution techniques. 44

2.8 A labelled graph with a vertex set V = {1, 2, 3, 4, 5, 6, 7} and edge set

E = {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {6, 7}, {2, 6}, {5, 7}, {1, 7}}. 48

2.9 A two-dimensional GN network for binary pattern with 5-bit size. 49

2.10 GN network activation from input pattern “ABBAB”. 50

2.11 GN recognition process with bias array illustration for different input patterns. 52

2.12 Maximum bias array analysis for GN implementation on increasing different

number of pattern elements and pattern size. 57

2.13 Crosstalk phenomenon illustration on input patterns in GN network. 58

xii

2.14 Crosstalk phenomenon in GN pattern recognition. 58

2.15 Hierarchical Graph Neuron (HGN) with binary pattern of size 7 bits. 59

2.16 HGN composition of 2- and 3-dimension for pattern size 49 and 147. 60

2.17 Analysis on the effects of increasing pattern size over total maximum bias

array size within HGN for 1- and 2-dimensional compositions. 62

2.18 HGN composition for crosstalk example (Section 2.3.4). 67

2.19 Growth rate of GNs in HGN composition with increasing number of different

pattern elements and pattern size. 70

2.20 HGN decomposition into a number hosts within a physical network. 71

2.21 HGN Decomposition into distributed HGN sub-networks. The HGN net-

work is decomposed into three HGN subnets. 73

2.22 Comparison between HGN and distributed HGN for increasing size of pat-

terns. 7-bit pattern segment is used for each HGN subnet in distributed

HGN scheme. 74

2.23 Test character representations in 7-by-5 1-bit format. 75

2.24 Character bitmap image representations. 75

2.25 Non-uniform distributed HGN approach with 7-21-7 compositions for 35-

element patterns with two possible values. 76

2.26 The HGN subnets successfully store the bitmap pattern for character ‘I’ at

index value of ‘2’ after having stored the bit map pattern for character ‘A’

at index value of ‘1’. 78

2.27 Results for introducing 1-bit distortion pattern of character ‘A’. The first

HGN subnet shows that a new subpattern has been found (with assigned

index 0) while other compositions correctly recall this as the pattern asso-

ciated with index 1 (bitmap pattern of ‘A’). 78

2.28 Character set used in distributed HGN simulation on pattern recognition. . 79

2.29 Comparison on recall accuracy between non-uniform distributed HGN and

HGN pattern recognition schemes on different distortion levels applied to

character set A, I, J, S, X, and Z. 80

2.30 A one-bit distortion occurring within the overall input pattern ’A’ stays

encapsulated within the left composition. 81

2.31 Uniform distributed model composition for analysing 35-bit binary patterns. 82

xiii

2.32 Comparison on recall accuracy between uniform distributed HGN and HGN

pattern recognition schemes on different distortion levels applied to charac-

ter set A, I, J, S, X, and Z. 83

2.33 Encapsulation effect within uniform model when processing a pattern of

character ‘A’ with 2-bit distortion. The effects of the distortions are lo-

calised within the two compositions on the left and do not influence the

findings of the remaining compositions. 84

2.34 Comparison on recall accuracy between uniform and non-uniform distributed

HGN pattern recognition schemes on different distortion levels applied to

character set A, I, J, S, X, and Z. 85

2.35 The effects of a 1-bit distortion in the pattern get localised within the

uniform distributed compositions (lower) whereas the effects of the distorted

pattern are propagated along the right side of the entire HGN composition,

leading to a false conclusion. 86

3.1 DHGN framework for distributed pattern recognition. 93

3.2 Analogical representation of DHGN distributed pattern recognition scheme. 98

3.3 DHGN pattern recognition process workflow. This diagram represents

DHGN network with 3-layer subnets. 100

3.4 Samples of binary character images. 103

3.5 GN node abstract representation showing its storage framework. 106

3.6 Collaborative-comparison learning approach for one-dimensional pattern

“ABCDE”. Each activated graph neuron (GN) stores the signals received

by its adjacent neurons. 107

3.7 Structural reduction on binary character images into one-dimensional bit-

string representation. 109

3.8 Character patterns with structural and random distortions. 110

3.9 Results of DHGN pattern recognition on structural and random distorted

character patterns. 110

3.10 Block image with four different colours. 113

3.11 DHGN implementation for colour recognition using binary signature. 114

3.12 Block image is divided into grids with equivalent sizes. 115

xiv

3.13 Different levels of noise and rotational distortion for greyscale image of Lena

with respective colour histograms, used in the image recognition test. 116

3.14 Total recall and error rates for DHGN greyscale image recognition on 40

images using colour feature analysis. 117

3.15 Transformation of global colour histogram of image Baboon from original

image to 3-quantisation leve image. 118

3.16 Comparison between SVM and DHGN total recall rates for greyscale image

recognition. 119

3.17 Big-O notation comparisons for processes within Hopfield network recogni-

tion stage. 122

3.18 Complexity measurement of SOM’s weight initialisation process. 123

3.19 Complexity measurement of SOM’s BMU calculation process. 123

3.20 Complexity measurement of DHGN’s network generation process. 124

3.21 Complexity measurement of of DHGN’s classification process. 125

3.22 The charts showing the total maximum possible bias entries for each layer

and within individual nodes for 55-bit binary patterns using the HGN ap-

proach. 135

3.23 Comparison between the total cumulative bias entries in DHGN and HGN

implementations. The subnet for DHGN is for handling subpattern with

size 5 in this comparison. 136

3.24 A comparison of communication costs, for each of the GN node, within

HGN and DHGN. 137

3.25 Original binary character patterns used in the recognition tests. 138

3.26 Bit representation for binary character patterns used in the recognition test. 138

3.27 Comparison among different character representation for DHGN pattern

recognition. 139

3.28 Eight different levels of random distortion applied to binary character pat-

terns. 140

3.29 Results for binary character pattern recognition with DHGN. 141

3.30 Comparison between One- and Two-Level DHGN pattern recognition on

binary characters. 142

3.31 Heterogeneous binary images used in the image recognition test. 143

xv

3.32 Four different levels of Gaussian noise added to image Lena. 144

3.33 Results of the image recognition test with ten binary images stored. 145

3.34 Results of the image recognition test with twenty binary images stored. . . 146

3.35 Total recognition time for each DHGN subnet in binary pattern recognition

with different number of subpatterns derived from 16KB binary images. . . 147

3.36 Multi-Value DHGN for binary pattern recognition on 5-bit patterns. 148

3.37 Comparison between DHGN (with binary values) and MV-DHGN distributed

pattern recognition models on cost of communications. 149

3.38 DHGN compositions with DHGN and MV-DHGN subnets. 150

3.39 Processing capacity estimation for both DHGN and MV-DHGN implemen-

tations. 151

3.40 Comparative processing capacity estimation for DHGN and MV-DHGN on

the impact of increasing number of different pattern elements. 152

3.41 Estimated cumulative bias array at all levels within a subnet for MV-DHGN

and DHGN implementations on binary 55-bits subpatterns. 154

3.42 Recognition test results obtained from the simulation using binary character

patterns A, I, J, S, X, and Z. 155

3.43 Percentage of majority votes for each character for different sets of distortion

rates. 156

3.44 Recognition time per subpattern for different subpattern size and number

of random subpatterns. 157

4.1 Data feature representation for a set of images. 162

4.2 DHGN multi-feature recognition scheme that is made up of a collection of

DHGN networks for analysing patterns using multiple sets of features. . . . 165

4.3 Estimated execution time for minimum voting function within coordinator

node for 10000 pattern classes with increasing number of features. 169

4.4 Edge map generation using Sobel’s edge detection technique when applied

to an original greyscale facial image. 172

4.5 Fifty different individuals in the face image dataset obtained from the Face

Recognition Data. 173

xvi

4.6 Error values obtained for 50 facial image classes from original DHGN im-

plementation using only colour feature on 1000 test images. 175

4.7 Analysis on error values obtained from recognition simulation on greyscale

value feature using DHGN and BPNN. 176

4.8 Comparison on error values between greyscale value and edge feature on 50

facial images obtained using DHGN multi-feature scheme. 178

4.9 Analysis on error values obtained from recognition simulation on greyscale

and edge features using Multi-Feature DHGN and BPNN. 179

4.10 Total execution time for each subnet in DHGN network for edge recognition

process. 180

4.11 Store/recall time for each subpattern within each DHGN subnet for edge

recognition process. 181

5.1 DHGN process actions within a message-passing model for binary pattern

recognition on 5-bit patterns. 196

5.2 State chart for DHGN implementation in synchronous and asynchronous

communications. 198

5.3 Fully-distributed DHGN configuration for fine-grained network. 200

5.4 Clustered DHGN Configuration for coarse-grained network where each DHGN

node is capable of performing the entire subpattern recognition processes. . 201

5.5 Effects of increasing binary pattern length on the total execution time for

clustered DHGN implementation on HPC machines. 203

5.6 Average recall time for each subpattern in clustered DHGN implementation

on HPC machines. 204

5.7 Recall time for a single binary subpattern in DHGN fully-distributed con-

figuration implementation over different subpattern sizes and quantities. . . 205

5.8 Average store/recall time for DHGN implementation on binary subpattern

with different length and quantities. 206

5.9 Effects on the average store/recall time for DHGN implementation with

increasing binary subpattern length. 207

5.10 Proposed commodity grid-based distributed pattern recognition framework. 209

5.11 DPR-Commodity Grid workflow. 210

xvii

5.12 Framework for commodity-grid based pattern recognition. 211

5.13 The Karajan grid engine architecture. 212

5.14 DHGN distributed event detection framework. 214

5.15 Process workflow for the proposed event detection scheme using fully-distributed

DHGN algorithm . 215

5.16 DHGN event detection results for test using 1690 sensor datasets (x-axis).

Note that Smart-It 3 and Smart-It 4 produce non-events since noise and

light exposure readings are well below the threshold values (T-Light and

T-Noise). 217

5.17 Recognition time for each sensor data in 1690 sensor datasets (x-axis) for

all Smart-It nodes using DHGN distributed pattern recognition scheme. . . 220

5.18 Subpattern-division method for task redelegation in DHGN fault manage-

ment scheme. 223

5.19 Size and subpattern length of subnet using subpattern-division method on

DHGN network with increasing subnet faults. 224

6.1 A generic wireless sensor node architecture. 230

6.2 Sensor nodes placement within a Cartesian grid. Each node is allocated to

a specific grid area. 236

6.3 A process workflow for DHGN distributed event detection within WSN. . . 239

6.4 Maximummemory consumption for each DHGN subnet for different pattern

sizes. DHGN uses minimum memory space with small pattern size. 241

6.5 Analysis on learning iteration between Kohonen SOM and DHGN for dif-

ferent number of classes used in training. 246

6.6 Analysis of event data triggered by the sensor nodes and received by the

base station. 247

6.7 Process workflow for the proposed spatio-temporal event detection scheme

using DHGN. 248

A.1 40 heterogeneous greyscale images used in DHGN image recognition test.

These images belongs to 5 different classes, namely Babboon, Lena, Gold-

hill, Peppers, and Camera. 280

xviii

A.2 Image histograms for 40 greyscale images used in DHGN image recognition

test. Each image comprises 256-greyscale levels. 281

A.3 Error values obtained for each quantisation level from recognition test on 5

classes of greyscale images with noise distortion and rotation. 288

A.4 Recall values obtained for each quantisation level from recognition test on

5 classes of greyscale images with noise distortion and rotation. 289

A.5 Binary character image ’E’ with its negative. 289

A.6 Recognition results using DHGN image recognition scheme. The similarities

represent the minimum voting obtained from all subnets. The grey areas

within the test patterns show the pixel value of test pattern that is similar

to stored pattern. 290

A.7 Extended recognition results showing the effect of input subpattern size to

the minimum voting scheme. 291

A.8 Datasets used in DHGN image recognition tests. 292

A.9 Character-to-maximum vote ratio for characters A, E, F, L, O, and Q in

Dataset I retrieved using DHGN-9 recognition scheme. Note that the star

represent column for respective test character. 293

A.10 Character-to-maximum vote ratio for characters A, E, F, L, O, and Q in

Dataset III retrieved using different DHGN input subpattern size. Note

that the star represents column for respective test character. 294

A.11 Comparison between percentage of recall and number of subnets against the

input subpattern size in DHGN pattern recognition with minimum voting

scheme. 295

B.1 Context diagram showing important functions within DHGN implmentation.297

xix

Abstract

Advancements in computer architecture, high speed networks, and sensor/data capture

technologies have the potential to generate vast amounts of information and bring in new

forms of data processing. Unlike the early computations that worked with small chunks of

data, contemporary computing infrastructure is able to generate and store large - petabytes

- of data for day-to-day operations. These data may arise from high-dimensional images

used in medical diagnosis to millions of multi-sensor data collected for the detection of

natural events, these large-scale and complex data are increasingly becoming a common

phenomenon. This poses a question of whether our ability to recognise and process these

data, matches our ability to generate them. This question will be addressed, by looking at

the capability of existing recognition schemes to scale up with this outgrowth of data. A

different perspective is needed tomeet the challenges posed by the so called data deluge.

So this thesis take a view which is somewhat outside the conventional approaches, such

as statistical computations and deterministic learning schemes, this research considers

the bringing together strengths of high performance and parallel computing to artificial

intelligence and machine learning and thus proposes a distributed processing approach for

scalable pattern recognition.

The research has identified two important issues related to scalability in pattern recog-

nition. These are complexity of learning algorithm and dependency on single processing

(CPU-centric) scheme. Scalability in regards to pattern recognition, can be defined as

the growth in the capability of pattern recognition algorithms to process large-scale data

sets rapidly and with an acceptable level of accuracy. To scale up the recognition process,

a pattern recognition system should acquire simple learning mechanisms and the ability

to parallelise and distribute its processes for analysis of increasingly large and complex

patterns.

xx

This thesis describes a new form of pattern recognition by enabling recognition pro-

cedure to be synthesised into a large number of loosely-coupled processes, using a fast

single-cycle learning associative memory algorithm. This algorithm implements a divide-

and-distribute approach on patterns, hence reducing the processing load capacity per

compute node. By using this algorithm, patterns arising from diverse sources e.g. high

resolution images and sensor readings may be distributed across parallel computational

networks for recognition purposes using a generic framework. Furthermore, the approach

enables the recognition process to be scaled up for increasing size and dimension of pat-

terns, given sufficient processing capacity available in hand. Apart from this, a single-cycle

learning mechanism being applied in this scheme allows recognition to be performed in

a fast and responsive manner, without affecting the level of accuracy of the recogniser.

The learning mechanism enables memorisation of a pattern within a single pass, therefore,

adding more patterns to the scheme does not affect its performance and accuracy. A se-

ries of tests have been performed on recognition accuracy and computational complexity

using different types of patterns ranging from facial images to sensor readings. This was

done to study the accuracy and scalability of the distributed pattern recognition scheme.

The results of these analyses have indicated that the proposed scheme is highly scalable,

enables fast/online learning, and is able to achieve accuracy that is comparable to well

known machine learning techniques.

After addressing the scalability and performance aspects, this thesis deals with pattern

complexity by including pattern recognition applications with multiple features. With

the recognition process implemented in a distributed manner, the capacity for allowing

more features to be added is possible. The proposed multi-feature approach provides

an effective scheme that is capable to accommodate multiple pattern features within the

analysis process. This is essential in data mining applications that involve complex data,

such as biomedical images containing numerous features. The distributed multi-feature

approach using single-cycle learning algorithm demonstrates high recall accuracy in the

recognition simulations involving complex images.

Finally, this thesis investigates the scheme’s adaptability to different levels of network

granularity and discovers important factors for the scalability of the pattern recognition

scheme. This allows the recognition scheme to be deployed in different network conditions,

ranging from coarse-grained networks such as computational grids, to fine-grained systems,

xxi

including wireless sensor networks (WSNs). By acquiring resource-awareness, the proposed

distributed pattern recogniser can be deployed in different kinds of applications on differ-

ent network platforms, creating a generic scheme for pattern recognition. Further analysis

on adaptive network granularity feature of distributed single-cycle learning pattern recog-

nition scheme was conducted as a case study to examine the effectiveness and efficiency of

the proposed approach for distributed event detection within fine-grained WSN networks.

The outcomes of the study indicate that the distributed pattern recognition approach is

well-suited for performing event detection using the divide-and-distribute approach with

the in-network parallel processing mechanism within a resource-constrained environment.

Furthermore, the ability to perform recognition using a simple learning mechanism, enables

each sensor node to perform complex applications such as event detection. As a result, this

research may give a new insight for applications involving large-scale event detection in-

cluding forest-fire detection and structural health monitoring (SHM) for mega-structures.

xxii

List of Publications

Publications arising from this thesis include:

Book Chapters

• Khan, A.I. and Muhamad Amin, A.H. and Raja Mahmood, R.A. (2010),

An On-line Scheme for Threat Detection Within Mobile Ad Hoc Networks. InMobile

Intelligence: Mobile Computing and Computational Intelligence. L.T. Yang, et al.,

Eds. 2010, John Wiley & Sons.

• Khan, A.I. and Muhamad Amin, A.H. (2009), Integrating Sensory Data

within a Structural Analysis Grid. In Parallel, Distributed and Grid Computing for

Engineering. B.H.V. Topping and P. Iványi, Eds. 2009, Saxe-Coburg Publications.

• Khan, A.I. and Muhamad Amin, A.H. and Raja Mahmood, R.A. (In

Print), Lightweight Event Detection Scheme using Distributed Hierarchical Graph

Neuron in Wireless Sensor Networks. in Wireless Sensor Network. In-Tech Publica-

tions.

Journals

• Raja Mahmood, R.A. and Muhamad Amin, A.H. and Khan, A.I. (2008),

A Lightweight, Fast and Efficient Distributed Hierarchical Graph Neuron-based Pat-

tern Classifier. In International Journal of Intelligent Engineering and Systems. vol.

1, no. 4, pp. 9-17, December 2008.

xxiii

Conference Proceedings

• Muhamad Amin, A.H. and Khan, A.I. (In Print), A Divide-and-Distribute

Approach to Single-Cycle Learning HGN Network for Pattern Recognition. in

The 11th International Conference on Control, Automation, Robotics and Vision,

ICARCV 2010. 7 December 2010 to 11 December 2010, Singapore.

• Muhamad Amin, A.H. and Khan, A.I and Raja Mahmood, R.A. (2009),

A distributed event detection scheme for wireless sensor networks. in Proceedings of

the 7th International Conference on Advances in Mobile Computing and Multimedia

(MoMM 2009). 14 December 2009 to 16 December 2009, ACM Press, New York NY

USA, pp. 295-299.

• Muhamad Amin, A.H. and Khan, A.I. (2009), Collaborative-comparison

learning for complex event detection using Distributed Hierarchical Graph Neuron

(DHGN) approach in Wireless Sensor Network. in Proceedings of the 22nd Aus-

tralasian Joint Conference AI 2009: Advances in Artificial Intelligence. 1 December

2009 to 4 December 2009, Springer-Verlag, Berlin Germany, pp. 111-120.

• Muhamad Amin, A.H. and Khan, A.I. (2008), Parallel Pattern Recognition

Using a Single-Cycle Learning Approach within Wireless Sensor Networks. in Paral-

lel and Distributed Computing, Applications and Technologies, 2008. PDCAT 2008.

Ninth International Conference on. pp.305-308, 1-4 Dec. 2008.

• Muhamad Amin, A.H. and Khan, A.I. (2008), Commodity-Grid Based Dis-

tributed Pattern Recognition Framework. in Proceedings of the Sixth Australasian

Workshop on Grid Computing and E-Research - Volume 82. (Wollongong, NSW,

Australia, January 01 - 01, 2008). W. Kelly and P. Roe, Eds. Conferences in

Research and Practice in Information Technology Series, vol. 333. Australian Com-

puter Society, Darlinghurst, Australia, 27-34.

• Khan, A.I. and Muhamad Amin, A.H. (2007),One Shot Associative Memory

Method for Distorted Pattern Recognition. in AI 2007: Advances in Artificial In-

telligence, 20th Australian Joint Conference on Artificial Intelligence, Gold Coast,

Australia. December 2-6, 2007, Proceedings, vol. 4830, M. A. Orgun and J. Thorn-

ton, Eds.: Springer, 2007, pp. 705-709.

xxiv

Recognising Patterns in Large Data Sets: A Distributed

Approach

Declaration

I declare that this thesis is my own work and has not been submitted in any form for
another degree or diploma at any university or other institute of tertiary education. Infor-
mation derived from the published and unpublished work of others has been acknowledged
in the text and a list of references is given.

Anang Hudaya Muhamad Amin
January 31, 2011

xxv

Acknowledgments

First and foremost, my humble thanks to God, who is the most Beneficent and the most

Merciful for the endless help for me to complete this thesis.

PhD. is a journey, and along with it there are people who have been continuously

giving me support, advice and help to complete this journey. I would like to thank Dr.

Asad I. Khan and Prof. Bala Srinivasan for their relentless help and advice in completing

my study. I would like to express my gratitude towards them for their encouragement and

assistance in completing my thesis.

Special thanks and deep appreciation to Dr. Asad I. Khan, for all the advice and

support throughout the duration of my study. You have been an inspiration and guidance

to me, through all the easy and difficult times. Your share of expertise and experience are

highly valuable and acknowledged.

My deep gratitude to my family for being there with me throughout this journey. To

Mak, Abang Hasuna, Kak Shah, Kak Jue, Abang Fazlur, Kak Andong, Abang Nazeri and

all the kids, you guys have been a good company. My neverending thanks and love should

be conveyed to Shahrul Badariah, my sayang, for her continuous love and support and

always there for me through easy and hard times.

Finally, I would like to thank everyone who helped to make this possible. My friends

and colleagues. It has been an incredible journey of self-discovery.

To Arwah Abah & Arwah Papa. May you two be given a place in Jannah. Thanks for

everything. Al-Fatihah.

Anang Hudaya Muhamad Amin

Monash University

January 2011

xxvi

Chapter 1

Introduction

The recent development of computing technology has brought forward the ability of gen-

erating huge volumes of highly-complex data. This is consistent with Moore’s Law of

exponential increase in computing power and solid-state memory (Moore, 2000), in which

it stated that “[T]he complexity for minimum component costs has increased at a rate of

roughly a factor of two per year... Certainly over the short term this rate can be expected

to continue, if not to increase”[pp. 57]. Even though this was initially referred to the

transistor counts within a processor, the effect of this law seems to be applicable in almost

all area of computing, including data generation and analysis. In essence, our existing

capability to generate data seems to outstrip our capability to analyse it.

The outgrowth of data, commonly known as data deluge, has significant implications

about the existing developments of computing applications (Hey and Trefethen, 2003).

According to Anderson (2008), the chief editor of Wired magazine,

“[S]ixty years ago, digital computers made information readable. Twenty years

ago, the Internet made it reachable. Ten years ago, the first search engine

crawlers made it a single database. Now Google and like-minded companies

are sifting through the most measured age in history, treating this massive

corpus as a laboratory of the human condition”.

In this research, two key contribution factors for this large-scale data generation have

been identified. They are data storage technologies and the sophisticated approaches in

data capture and sensors.

1

2 CHAPTER 1. INTRODUCTION

The development of data storage technology provides the ability to store large vol-

umes of data. This increases the possibility of large-scale data generation. For instance,

the development of aggregated storage framework introduced by Vazhkudai, Ma, Freeh,

Strickland, Tammineedi and Scott (2005) has shown an initiative to enable the storage

of large volume of data using an existing distributed computing architecture. In addi-

tion, Beck, Dongarra and Plank (2005) have proposed the grid solution using Internet

Backplane Protocol (IBP) for large volume resource data storage.

The development of powerful data-capture instruments and sensors has also led a

massive production of large-scale and highly-complex data. This is usually the case in

scientific applications such as biomedical image recognition and satellite imaging tech-

nology. As mentioned in the work of Fox, Aktas, Aydin, Donnellan, Gadgil, Granat,

Pallickara, Parker, Pierce, Oh, Rundle, Sayar and Scharber (2005), the development of so-

phisticated data-capture instruments and sensors, such as the Large Hadron Collider and

Interferometric Synthetic Aperture Radar (InSAR) in high energy physics, has led to the

generation of large-volume and multi-dimensional data in that field. In addition, Lewis,

Hall, Hufton, Evans, Menk, Arfelli, Rigon, Tromba, Dance, Ellis, Evans, Jacobs, Pinder

and Rogers (2003) have demonstrated the medical image creation using X-ray techniques

that produce high-resolution and high-dimensional images.

These state-of-the-art data capture and storage technology are the key factors that have

driven existing computing technology towards generation of highly-complex and large-scale

data. However, it is impractical for data analysts to manually analyse and explore this

data without the assistance of highly-sophisticated computational tools. The capabilities

of existing applications for data mining and analysis so far have not achieved their fullest

potential. This is mainly due to the algorithmic complexity of existing data mining ap-

plications. For instance, a complexity of a decision tree classification tool can range from

O(n logn) to O(n2) or worse, depending on the type of pruning applied (Kamath and

Musick, 2000). These kinds of algorithms are computationally expensive and infeasible

for large data sets.

With the advent of distributed computing, distributed data storage and processing ca-

pabilities have also contributed to the development of cloud computing as a new paradigm.

Cloud computing can be defined as a pay-per-use paradigm for providing services over the

3

Internet in a scalable manner. This new trend of computing can potentially make it pos-

sible to achieve capability of conducting such large-scale data processing. This kind of

processing is prevalent, as organisations are moving towards cloud computing for their

day-to-day operations. Nevertheless, existing data management and processing schemes

are incapable of providing an efficient mechanism for deployment within cloud. Some of

the concerns include inadequate capability to parallelise data workload, security concerns

as a result of storing data at an untrusted host, and weak data replication functionality,

as described by Abadi (2009).

In order to obtain useful information from data, it is important for applications to

extract features or patterns. This pattern extraction from data is commonly known as

data mining. It involves the process of uncovering patterns, associations, anomalies, and

significant structures and events in data. One of the key areas in data mining is pattern

recognition.

Pattern recognition is a common analysis tool for a wide range of applications including

business decision-making, medical diagnosis, and scientific exploration. It provides an

avenue for valuable information to be retrieved from raw data obtained through simulation,

experimentation, or diagnosis. With the extent of existing data collection technologies,

gap between data collection and data analysis capabilities is widening rapidly.

This thesis describes fundamental research on scalability for pattern recognition. Scal-

ability in the context of pattern recognition can be defined as the ability to either handle

growing amounts of patterns in a graceful manner or to be readily enlarged. This defi-

nition has been derived from the common definition of scalability as described by Bondi

(2000). The scalability issues of the existing pattern recognition schemes for large-scale

data deployment will be addressed. A number of different approaches will be extensively

reviewed and a solution for the scalability problem will be proposed. The main contribu-

tion of this thesis lies in the knowledge, design, and implementation of scalable approach

for pattern recognition involving complex and large-scale patterns.

The rest of the chapter will introduce a brief background literature as well as the

motivation, aims, and hypothesis of this thesis. In addition, this chapter will also describe

objectives and contributions of this research. The composition of this chapter is as follows:

Section 1.1 provides a brief introduction on pattern recognition concept and theories.

Section 1.2 presents a discussion on scalability consideration in pattern recognition. In

4 CHAPTER 1. INTRODUCTION

this section, issues related to scalability of existing pattern recognition schemes will be

examined. In Section 1.3, distributed approach for pattern recognition as a solution for

scalability problem in pattern recognition will be observed. The motivation and aims of

this research will be presented in Section 1.4. Section 1.5. provides a description on the

hypothesis and objectives of this research, while Section 1.6. lists all contributions made

from this research. Finally, Section 1.7 gives an outline of the thesis.

1.1 Pattern Recognition Concept and Theories

Pattern is a quantitative or structural description of an object or some other entity of

interest (Bow, 2002). The study of pattern recognition can be traced back as early as the

1950s, when digital computers were just starting to be used for information processing.

Pattern recognition as being defined by Schalkoff (1991), is the science that concerns the

description or classification of measurements. In other words, pattern recognition is the

study of theories, methods, and techniques for description and classification of measure-

ments. In the context of this thesis, pattern recognition could be defined as a system

involving description and classification of measurements. The measurements could be of

different types, including images, sensory readings, and data obtained from experimenta-

tion. Pattern recognition may also be categorised into three categories: information re-

duction, information mapping, and information labelling. Information reduction involves

the reduction of information from huge sets of data into clusters or groups of information,

while information mapping and information labelling involve categorisation of data based

on specific labels or criteria. The data categorisation could be achieved through two dif-

ferent approaches as being described by Jain, Duin and Mao (2000). These approaches

are supervised and unsupervised classification/recognition. In supervised classification,

the pattern recognition involves classification of pattern into predefined classes, whereas

in unsupervised classification, the pattern is assigned to a hitherto unknown class.

Pattern recognition task may be defined as a composition of three major components:

data acquisition, data pre-processing, and decision classification as shown in Figure 1.1.

Data acquisition phase involves the process of gathering data from surroundings or from

an experiment that is being conducted. For instance, an analog signal retrieved from a

transceiver which is being transformed into its digital format via a transducer for computer

1.1. PATTERN RECOGNITION CONCEPT AND THEORIES 5

processing. The output of this stage is a set of measured data as shown in the figure as

xphy. These data will then be used as an input to the data pre-processing stage.

Data pre-processing is a stage for data refinement and extraction for specific usage

within the pattern recognition application. Some examples of pre-processing in pattern

recognition include applications of mathematical operators such as morphological and

Laplacian operators for image enhancement. Data pre-processing also includes feature

extraction process. This process is important as to reduce the amount of data obtained

from the data acquisition stage. The extracted data must be manageable and sufficient to

represent discriminatory information for identification (Bow, 2002). Feature extraction is

also an essential mechanism to identify inherent characteristics or features found within

data object that has been acquired. For instance, edge detection technique is used to

extract information on the edges of object within a particular image. Algorithms such as

Sobel (Kimmel, Shaked, Elad and Sobel, 2005) and Canny (Canny, 1986) edge detectors

have been commonly used to extract edge features. The output of this pre-processing

stage is a set of refined data or features, xfeat as shown in Figure 1.1 for classification

purposes.

The decision classification stage is crucial in pattern recognition, as it determines the

reliability of the pattern recognition system itself. Reliability of any pattern recognition

schemes could be analysed through its accuracy in generating correct classification. This

accuracy could be measured through different criteria, including classification error, ac-

ceptance error, mean square error, and receiver operating characteristic (ROC) curve.

Classification stage also focuses on the process of labelling and determining pattern’s fea-

ture into specific groups or classes. In supervised classification, the labels or classes have

been predefined by the user. On the other hand, unsupervised classification builds up the

labels or classes from different groups of patterns introduced into the system.

Figure 1.1: Conceptual representation of conventional pattern recognition scheme.

Pattern recognition is an important tool in evaluating and analysing large-scale data

that have been produced in a wide area of applications. Nevertheless, current approaches

incur excessive computational complexity to adapt to these large and highly-complex data

6 CHAPTER 1. INTRODUCTION

sets. There are a number of barriers that need to be addressed when dealing with these

data sets, in regards to the pattern recognition implementation. These include:

i. Size of data: With increasing size of data, existing pattern recognition schemes must

be able to manage data in an efficient manner with specific concerns on storage and

transport. The methods in which data should be stored and communicated within

a recognition process must take into account the size of data sets used.

ii. Dimensions of data: The sophisticated approaches in data capture technology have

enabled the extraction of highly-dimensional data from the environment. In this

context, pattern recognition applications must be able to cater for different dimen-

sionalities of data in their implementations.

iii. Algorithmic complexity: Existing pattern recognition schemes are powerful and have

the ability provide highly-accurate solutions. Nevertheless, they incur high algorith-

mic complexity in their implementations. This phenomenon is mainly due to their

iterative nature, as well as complex mathematical foundations. Some algorithms

are exponential and infeasible for large-scale data. Furthermore, due to their expen-

sive computations, existing pattern recognition schemes also can be computationally

time-consuming, especially when dealing with data with large size and dimension.

These barriers are the common factors in determining the scalability of a particular

pattern recognition approach. Each approach must be able to address increasing size and

dimensionality of data, while minimising its complexity. In this regards, there is a need to

evaluate some of the possible approaches towards adding scalability to pattern recognition

schemes.

1.2 Scalability in Pattern Recognition

Scalability is an important factor in today’s pattern recognition approaches. Existing

outgrowth of data in daily’s usage shows that there is a need to maintain the growth of the

capability of existing algorithms to serve these large-scale data. For example, according

to Anderson (2008), for every 72 minutes, there is one petabyte of data processed by

Google’s server. This value will definitely keep on increasing as the storage and processing

mechanisms advances rapidly. The question of scalability as described by Pal and Mitra

1.2. SCALABILITY IN PATTERN RECOGNITION 7

(2004), whether the pattern recognition algorithm can process large data sets efficiently,

while building from them the best possible models.

There are several techniques to scale up pattern recognition algorithms for large-scale

data sets. These techniques could be divided into a number of approaches:

i. Data Approach: This kind of technique modifies the data, prior to the recognition

process. Some of the techniques include data reduction (Chow and Huang, 2008),

dimensionality reduction (Rueda and Herrera, 2008), and data partitioning (Kbir,

Maalmi, Benslimane and Benkirane, 2000). The aim of this approach is to minimise

the size and dimension of data for efficient recognition. However, this approach may

undermine the importance of data integrity in its approach through representation

of large data domain using small data set.

ii. Learning Approach: Pattern recognition algorithms mainly require a learning mech-

anism in its procedure. This mechanism may be computationally expensive. Hence,

reducing the complexity of the learning mechanism is an objective of scalability.

Examples of improving scalability using learning approach include active learning

(Cheng and Wang, 2007) and incremental learning (Schlimmer and Granger, 1986).

A significant limitation of this approach is that it may affect the accuracy of the

algorithm in order to achieve fast and simple learning capabilities.

iii. Distributed Computing Approach: The advancement in networking technologies have

enabled large-scale computations to be performed within the body of a network it-

self. Rapid development in high performance computing and grid technology allows

collaboration of resources to work for a specific application. In this context, exist-

ing pattern recognition algorithms may be implemented on distributed computing

platform through the use of parallel processing. Some of the examples of scalable

pattern recognition schemes using this approach include the works carried out by

(Li, Tang, Xia and Wang, 2005; Khan, 2002).

Distributed computing approach for scaling existing pattern recognition algorithms is

seen to be a potential optimum solution. However, some of the existing algorithms are

highly-complex and difficult to parallelise. Developments of neural network algorithms for

pattern recognition have shown an interesting insight on the implementation of pattern

8 CHAPTER 1. INTRODUCTION

recognition in distributed computing. Neural networks in its nature are formed through

the collaboration of computational nodes known as neuron. Nevertheless, the integration

between these two components is still in infancy, due to the tightly-coupled nature of ex-

isting neural network schemes. Furthermore, neural networks have been developed since

1950s with the early introduction of perceptron by Rosenblatt (1957). It has been initially

conceived for single-processing (CPU-centric) architecture, with high dependency on it-

erative techniques. Therefore, more initiatives need to be carried out in order to attain

the effectiveness and efficiency of neural network algorithms for pattern recognition using

distributed computing approach.

Distributed computing may provide a seemingly unlimited scalability towards large-

scale processing, given such a rapid advancement in existing distributed processing tech-

nology. Implementations of distributed pattern recognition scheme are possible. with the

use of a simple, computationally inexpensive, and embarrassingly parallel pattern recogni-

tion algorithm on distributed computing. Nevertheless, there are some limitations towards

this approach that need to be addressed. These include storage capacity consideration for

different kinds of network, high internode communications, and network/node failure.

1.3 Distributed Pattern Recognition

One of the proposed solutions for the implementation of large-scale pattern recognition

is distributed pattern recognition (Morrill, 1998). Distributed pattern recognition can be

defined as an extension of existing pattern recognition approaches in which the recognition

process is delegated across a distributed system. There are basically two main components

involved in distributed pattern recognition: distributed pattern recognition algorithms,

and the distributed architecture for pattern recognition.

Most of the initiatives on distributed pattern recognition have been focusing on provid-

ing distributed architecture for pattern recognition (Hsiao, Sung and Fan, 2002; Guoqing,

Songcan and Jun, 1992; Nagy, 2005; Al-Hertani and Ilow, 2005; Choi and Oh, 2006). Con-

sequently, this creates such a high dependency on hardware implementation. Hence, the

issue of scalability in this context has yet to be solved. This is mainly due to inflexibility

1.3. DISTRIBUTED PATTERN RECOGNITION 9

of the existing distributed pattern recognition to be implemented across different archi-

tectural platforms and network environments, providing high capability for large-scale

recognition deployments.

Development of distributed pattern recognition schemes that are based solely on al-

gorithmic approach, independent of any hardware implementation, has yet to be fully

realised. Although there are some existing research on the implementation of distributed

approach for existing pattern recognition schemes (Talukder, Sheikh and Chandramouli,

2004; Khan and Mihailescu, 2004; Turkoglu and Arslan, 2001; Garai and Chaudhuri, 2007),

these studies merely focusing on manipulating the methods in which this particular algo-

rithm performed its recognition function (from sequential to parallel mechanism). Fur-

thermore, existing distributed approaches have yet to be able to reduce the computational

complexity of their respective algorithms, to be deployed in a distributed environment. In

addition, these studies plainly lack consideration of the communication costs incurred due

to highly-iterative features of existing pattern recognition schemes.

A new form of distributed pattern recognition scheme is needed, that has the flexi-

bility to be deployed in various network environments, while being able to maintain low

computational cost in its function. This scheme must be developed from an algorith-

mic perspective, capable of providing highly-accurate recognition function and scalable

towards increasing size, amount, and complexity of data.

The deployment of pattern recognition applications for large-scale data sets is an open

issue that needs to be addressed. Several approaches have been proposed, including the

techniques such as data reduction (Chow and Huang, 2008), active learning (Cheng and

Wang, 2007) and distributed approach (Li et al., 2005; Khan, 2002) in pattern recognition.

Nevertheless, a common denominator for this is the algorithmic complexity of existing

pattern recognition schemes. The distributed approach for pattern recognition offers a

significant advantage for large-scale data analysis because it has the ability to provide

extensive support for resource availability for increasing size, complexity, and amount of

data. The ultimate goal for any distributed pattern recognition is to be able to perform a

large-scale analysis to extract useful information from a huge collection of data.

Distributed pattern recognition remains a relatively unexplored area since pattern

recognition has been considered highly problem specific, hence bearing little prospect as a

generic commodity application. This is mainly due to the problem of complexity in existing

10 CHAPTER 1. INTRODUCTION

pattern recognition algorithms, and these problems limit their distribution factor. Several

initiatives have been made to parallelise and distribute a pattern recognition algorithm

to work on a distributed system. However, this kind of implementation faces a significant

hurdle in the process of parallelisation.

The following subsections will further described some of the characteristics and appli-

cations of distributed pattern recognition, together with its related approaches.

1.3.1 Top-Down vs. Bottom-Up Approaches

Existing distributed pattern recognition schemes have been designed and deployed using

a top-down approach, in which relatively CPU-centric (or sequential-based) algorithms

were modified and enhanced to perform in a distributed manner. Furthermore, existing

schemes tend to apply distribution mechanism partially, i.e. in the context of training

and validation. Some of these examples include feed-forward neural networks and self-

organising maps. Different kinds of distribution approaches have also been considered,

which are described below (Foo, Saratchandran and Sundararajan, 1995):

i. Process Farming: In this approach, recognition process is distributed across a num-

ber of parallel processors. Each processor carries out a training process using a copy

of the algorithm being deployed, as shown in Figure 1.2. In this configuration, each

processing network consists of a master node and several worker nodes. Each worker

nodes performs training or recognition process independently of each other. How-

ever, for each cycle, updates (in terms of bias weight and errors) must be sent to the

master node for evaluation/adjustment purposes. This process will be iteratively

performed until the optimum bias weight and error value have been achieved by the

network. The training dataset used in this approach is divided into a number of

training subsets for each processor used. Therefore, each processor would perform

this training procedure on a subset of the overall data.

ii. Pipelining: Recognition procedure involving pipelining approach follows an incre-

mental method, in which the training process is conducted subsequently, following

a pipeline procedure as shown in Figure 1.3. In this context, each processor also

contains a copy of the algorithm and perform a recognition process on a particular

training subset. However, the weight and error changes are modified and evaluated,

1.3. DISTRIBUTED PATTERN RECOGNITION 11

Figure 1.2: Distributed pattern recognition with process farming approach.

each time these values are passed from one processor to another, and being added

into each weight and error calculations involved.

The top-down approach towards distributed pattern recognition has several limitations

including:

i. Recall disintegrity : Distribution of training dataset into a number of subsets would

create a disintegrity in the training process itself, due to vertical splitting of data.

This will influence the actual recall process, due to significant difference between

the weight changes produced by the algorithm on highly-cohesive training set, i.e.

training data that hardly classified due to dissimilar feature values; and loosely-

cohesive data, i.e. data that is easily classified and clustered.

ii. Highly-Congestive Network : Algorithms such as feed-forward neural network and

Hopfield network are highly-iterative (in terms of training cycles to obtain opti-

mum output) in nature. Large number of iterations in training/recognition process

would lead to massive communication exchanges within any distributed environment.

Therefore, it would create a highly-congested network.

12 CHAPTER 1. INTRODUCTION

Figure 1.3: Distributed pattern recognition with process pipelining approach.

iii. Unchanged Level of Complexity : The approach used in existing distributed pattern

recognition schemes mainly apply actual pattern recognition process at a smaller

scale, i.e. using similar algorithm with smaller training space. Hence, the complexity

of the algorithm remains. The difference lies in the fact that executing recognition

process at a smaller scale may improve the algorithm’s performance time through the

reduction of the amount of training data used. However, this is not always the case

as the processing time also depends on the number of learning cycles implemented for

each recognition process. While the complexity of the algorithm remains unchanged,

it is hard to estimate its resource requirements, and thus it may not be applicable

for resource-constrained networks such as wireless sensor networks (WSNs).

Of all other known distributed pattern recognition schemes, Graph Neuron (GN)

(Khan, 2002) is shown to be effective in a distributed manner using a bottom-up ap-

proach. GN implements distributed associative memory concept, in which the processing

element (or neuron) may be distributed across a computational network. The bottom-up

approach in the GN distributed scheme simply means that the algorithm itself is readily

capable of performing pattern recognition in a distributed environment through its in-

network processing capability. In this context, each neuron within a GN infrastructure

could be matched to a single physical processor within a network. In addition, GN adopts

a single-cycle learning approach, in which for each pattern introduced into the network,

its recognition procedure only performs learning mechanism within a single pass. GN

1.3. DISTRIBUTED PATTERN RECOGNITION 13

performs its recognition procedure using a scalable graph-matching approach, and hence

does not require weight and error adjustments as in other neural network algorithms.

1.3.2 Distributed Multi-Feature Recognition

Conventional pattern recognition schemes as shown in Figure 1.1 commonly involve anal-

ysis of a single feature with a number of parameters that are linked together to form

a pattern vector. This technique requires a careful selection of feature that best repre-

sents the whole pattern population. The use of multiple features in recognising patterns

would perhaps enhance the accuracy of the recognition approach. Efforts in implementing

pattern recognition using multiple features have been introduced through a number of

studies including (Favata and Srikantan, 2002; Cao, Ahmadi and Shridhar, 1995; Zhao,

Huang and Sun, 2004). Existing pattern recognition schemes involving multiple features

mainly adopt the highly-complex algorithms such as radial-basis function neural network

(RBFNN) and back-propagation neural network (BPNN).

Existing techniques primarily rely on separate mechanism for each feature recognition

to be conducted. The research conducted by (Zhao et al., 2004) have shown the use of

neural networks committee machine that forms a collection of decisions obtained by a

group of neural network algorithms that perform face recognition on different features.

Cao et al. (1995) on the other hand, performs a feature-combination approach in their

handwrittern recognition scheme. The multiple features approach has shown to produce

high recall efficiency. However, this comes together with complex and iterative nature of

the algorithms being used. As a result, the performance of the schemes may be affected,

due to delays in the recognition process.

Deployment of multi-feature recognition using distributed approach has yet to be fully-

realised, due to expensive computational costs of existing pattern recognition algorithms.

This study envision a distributed recognition scheme that is capable of providing real-time

recognition using multiple features with high accuracy. This distributed multi-feature

recognition together with the availability of high-performance networks may be highly-

beneficial for applications involving real-time feedback such as face identification for secu-

rity purposes.

14 CHAPTER 1. INTRODUCTION

1.3.3 Resource-Awareness

Current approaches towards implementing pattern recognition algorithms in distributed

environment have purposely targeted towards improving the performance time, as well as

to provide scalability for increasing amount and dimension of data. Nevertheless, these

approaches are overburdened by their highly-complex computations, and require signifi-

cant quantity of resources to perform in a distributed manner. For example, for a single

processor to perform a recognition process using a Hopfield network with n neurons, its

computational complexity is equivalent to O(n logn). Hence, it is important for the net-

work to acquire sufficient computational resources for the algorithm to perform at its

best condition. However, this is not always the case in different kinds of computational

networks available in the current technological climate.

The important aspect that is still lacking in the existing distributed pattern recogni-

tion schemes is resource-awareness. It is essential for any distributed scheme to consider

its computational and storage incurrences, due to different levels of granularity of net-

works. With the extent of application development ranging from complex data mining

process to event detection, the use of distributed systems have been widely applied in

day-to-day operations ranging from high performance computing networks to lightweight

and resource-constrained WSN networks. In this vein, a dynamic and robust distributed

pattern recognition scheme should be able to perform under different network granularity

hence, providing an expandable coverage for different kinds of applications.

Existing distributed schemes have shown to work well on resource-abundant networks

such as the grid and high performance networks. However, when dealing with scarce re-

sources, these schemes might fail due to either insufficient power, computational resources,

or storage capacity. It is the intention of this research to take up a further investigation of

the capability of a distributed pattern recognition scheme, for deployment within different

levels of network granularity.

1.4 Motivation and Aims

As previously mentioned, the distributed approach has been identified as a potential solu-

tion for scalability issue within existing pattern recognition schemes. Nevertheless, some

1.4. MOTIVATION AND AIMS 15

limitations have also been identified. These include improper implementations of tightly-

coupled recognition algorithm using a top-down approach.

The main motivation for the research work of this thesis lies in the need for a bottom-

up approach for the distributed pattern recognition scheme with resource-awareness and

ability to perform multi-feature recognition, instead of redeveloping existing top-down ap-

proaches in applying a CPU-centric pattern recognition algorithm in a distributed manner.

It is essential to observe algorithmic development from different perspectives. This research

will address this issue by looking from the point of distributed processing, in which, all the

processing elements within a network may form a pattern recognition procedure using a

fully-distributed algorithm. This is somewhat different from the traditional point of view,

in which the development of distributed approach has been observed from the algorithmic

viewpoint.

As described earlier, Graph Neuron (GN) as a pattern recognition scheme has shown

its higher ability to perform in a distributed manner, with its single-cycle learning and

in-network processing capabilities. However, GN has so far only being implemented on

WSN infrastructure for energy-efficient event detection (Baqer, Khan and Baig, 2005) and

intrusion dectection (Baig, Baqer and Khan, 2006). An extension of GN algorithm known

as Hierarchical Graph Neuron (HGN) has been introduced by Nasution and Khan (2008)

which offers high scalability and accuracy for distorted pattern recognition. Furthermore,

HGN eliminates a limitation of GN by accommodating overall view of patterns in its recog-

nition procedure. In this work, further analysis on the capabilities of HGN for distributed

pattern recognition scheme will be conducted.

The aim of this thesis is to design fully-distributed and scalable pattern recognition

schemes for large-scale data analysis and evaluation. Different approaches for pattern

recognition are compared, and their capabilities for deployment within a computational

network is observed, and a conclusion that the most appropriate approach is to use a

lightweight and loosely-coupled recognition algorithm with in-network processing capabil-

ity and single-cycle learning mechanism is made. An intention of this research is to demon-

strate that a simple recognition mechanism using a pattern-matching concept would scale

up for large and highly-complex data sets, given a sufficient amount of network resources

16 CHAPTER 1. INTRODUCTION

are available. The distributed model developed for pattern recognition using the bottom-

up approach should be able to produce an acceptable level of accuracy, while preserving

its scalability for increasing size, amount, and complexity of data.

In addition, this thesis will also investigate a distributed pattern recognition deploy-

ment for different computational networks, based upon their granularity, ranging from

coarse- to fine-grained networks. The effectiveness and efficiency of the proposed model in

different network conditions will be evaluated. This study is essential in order to provide

a dynamic utilisation of the proposed model for different network configurations. Fur-

thermore, existing pattern recognition applications have been widely deployed in different

areas ranging from image recognition to event detection. Hence, the ability for distributed

pattern recognition to suit the available network resources is distinctively important.

1.5 Hypothesis and Research Objectives

Based upon the research motivation and aims described in previous section, the main hy-

pothesis of this research is that a distributed pattern recognition scheme with single-cycle

learning and the bottom-up approach, will remain scalable for any given size or dimensions

of data, given that sufficient computational resources are available. Furthermore, this re-

search will also be looking into resource-awareness and multi-feature aspects of distributed

pattern recognition scheme. In order to achieve the aims of this research and prove its

hypothesis, a number of objectives have been formulated as follows:

i. To conduct a review on current distributed pattern recognition schemes. A number of

initiatives have been carried out in performing pattern recognition using a distributed

manner. Issues related to the top-down approach that has been implemented in

existing distributed schemes will be investigated. The ultimate goal for this objective

is to build up a foundation of knowledge on distributed pattern recognition and the

proposed solution towards existing problems its currently facing.

ii. To conduct an evaluation of a particular recognition scheme with the bottom-up

approach. This will improve the understanding of its processes, together with its

capabilities and limitations. An investigation will also be conducted on the capa-

bility of this algorithm to perform recognition procedure in distributed approach.

This aims to derive a proposal on distributed pattern recognition scheme that is

1.5. HYPOTHESIS AND RESEARCH OBJECTIVES 17

deployable in distributed environment. In achieving this, a plan has been made

to discover a number of important aspects of the proposed distributed approach,

including its computational complexity, learning mechanism, data representation,

and distribution mechanism. An additional intention is to benchmark the proposed

scheme with other established neural network algorithms including Hopfield network,

Kohonen SOM, and instantaneously-trained neural networks (ITNNs), in regards to

their computational complexity.

iii. To investigate the scalability of distributed pattern recognition approach. An impor-

tant aspect in any distributed pattern recognition scheme is the ability to scale up

for any given amount and dimension of data. The scalability factor of the proposed

approach will be investigated, which will also provide an analysis of its complexity.

This is to prove that the complexity of this current approach remains constant, or

growing linearly with an increase in the amount and complexity of data. Two im-

portant parameters for scalability will be used in the analysis involving recognition

time and recall accuracy of the proposed scheme.

iv. To investigate capability and effectiveness of the proposed distributed approach for

implementation with multiple features. In this objective, A proposal of multi-feature

recognition using a distributed pattern recognition approach will be reviewed. Exist-

ing multi-feature recognition approaches heavily rely on separate complex algorith-

mical mechanism for each feature. A distributed approach using a singular mech-

anism has yet to be explored. An outcome of this objective would be a proposed

multi-feature distributed recognition scheme that capable of analysing complex pat-

terns. This research will also look at feature distribution and recall accuracy of the

proposed scheme.

v. To evaluate storage and processing efficiency for the proposed distributed approach

for pattern recognition within a resource-constrained environment. An analysis of

resource-awareness factor for our proposed algorithm will be carried out. A proof

of compatibility of our proposed approach for deployment within different levels

of network granularity will be demonstrated. In achieving this objective, further

investigation will also be made into its storage cost, in terms of its estimated data

representation size. In addition, the computational cost requirement, i.e. the amount

18 CHAPTER 1. INTRODUCTION

of processing nodes required for a given recognition task involving patterns with

different sizes and dimensions will also be analysed. This thesis therefore plans to

evaluate the best data representation for effective pattern storage and processing.

1.6 Research Contributions

The contributions of this thesis can be summarised as follows:

i. A divide-and-distribute approach on patterns for recognition purposes will be pro-

posed. Pattern distribution approach in this work is different from existing tech-

nique. A distribution technique known as horizontal splitting will be used. This

technique involves a distribution of pattern into subpatterns, rather than the com-

monly used vertical splitting technique in which distribution of pattern data is made

iinto smaller pattern subset. This research extends the works on existing single-cycle

learning recognition algorithm implementation using this approach, and will addi-

tionally observe its capability to reduce recognition error through the effect known

as error encapsulation.

ii. A distributed pattern recognition scheme will be proposed, which will implements a

bottom-up algorithmic distribution approach. The scheme is distributed single-cycle

learning pattern recognition algorithm with parallel in-network processing capability,

which offers high scalability and recognition accuracy for distorted pattern recogni-

tion with low computational complexity.

iii. A collaborative-comparison learning (CCL) technique will be proposed for fast and

resource-effective recognition procedure for distributed pattern recognition imple-

mentation. CCL adopts a scalable graph-matching technique with single-cycle recog-

nition procedure. The capability of CCL to learn patterns with low storage require-

ment and complexity will be demonstrated.

iv. An extension towards data representation for distributed pattern recognition algo-

rithm is introduced, which implements binary signature scheme for data represen-

tation and dimensionality reduction. This scheme enables data to be represented in

a simple binary format with high representation factor. Moreover, it helps reducing

1.7. THESIS OUTLINE 19

the complexity requirement for data analysis for the proposed distributed pattern

recognition scheme.

v. A new distributed multi-feature recognition scheme will be introduced. This scheme

performs recognition of features in distributed manner with low computational com-

plexity and high classification accuracy. This research will perform a simulation on

this scheme for face recognition using a number of different features. The results in-

dicated high accuracy for increasing number of features used in our proposed scheme,

while maintaining relatively-low algorithmic complexity.

vi. Two computational configurations namely fine-grained and coarse-grained distributed

pattern recognition schemes will be presented for different levels of network granular-

ity. Fine-grained scheme is used for recognition involving large number of processing

nodes with low computational capability such as in WSN network, while coarse-

grained scheme may be implemented in resourceful networks such as computational

grid. Both configurations perform similar recognition techniques, and achieve high

recognition accuracy for distorted pattern recognition.

1.7 Thesis Outline

The rest of the thesis is organised as follows. In Chapter 2, a review of different approaches

to pattern recognition will be conducted, and a detailed evaluation of the scalability of

these approaches will be presented. In addition, different distribution techniques that

are applicable for scaling up these recognition algorithms will be identified. This chapter

also specifically provides a review of Graph Neuron (GN) and Hierarchical Graph Neu-

ron (HGN) algorithms that implement effective parallel pattern matching techniques for

distorted patterns. In addition, a detailed elaboration on the concepts , features, and

limitations of these algorithms will be provided. The main intention of Chapter 2 is to

focus attention on the proposed distributed approach for pattern recognition algorithm.

This chapter also demonstrates different possible forms of distribution for the algorithm

deployment within a distributed network.

In Chapter 3, a novel distributed approach for pattern recognition scheme will be pre-

sented. This chapter extensively describes the features of the scheme proposed in this

20 CHAPTER 1. INTRODUCTION

thesis. The description includes its overall architecture, learning mechanism, and evalua-

tion of the possible implementation platforms. In addition, a discussion on pre-processing

requirements will also be presented. Both collaborative-comparison learning (CCL) tech-

nique and binary signature scheme implemented in this thesis will be discussed. This

chapter will also demonstrate a significant enhancement on collective decision technique

for distributed approach using the proposed majority/minority voting approach. Both

complexity and scalability analyses on the distributed scheme are performed, in compar-

ison with other pattern recognition algorithms. A series of experimental analyses on the

pattern recognition capability of the proposed distributed scheme will also be described.

In Chapter 4, a discussion on a distributed pattern recognition scheme involving

multiple-feature patterns will be conducted. In this chapter, the capabilities of DHGN

scheme for analysing complex patterns such as facial images using a distributed multi-

feature recognition approach will be demonstrated. This research performs a simulation

of this approach in a face recognition application and handwritten numeral character ob-

jects. Several enhancements of the proposed scheme are also presented.

The deployment of distributed pattern recognition so far has yet to consider the con-

straints on computational resources. In Chapter 5, the results of an investigation into

the scheme proposed in this thesis to determine the performance capabilities within both

highly-resourceful computational networks and resource-constrained environment such as

a wireless sensor network (WSN) will be presented. A discussion on the message-passing

model of the proposed scheme will be presented, and a number of possible implementa-

tions and configurations of pattern recognition in different network environments will be

proposed. In addition, this chapter also details the communication cost analysis of the

proposed scheme for efficient pattern recognition implementation on a decentralised and

fully-distributed networks.

As continuation of the discussion related to resource-awareness of the proposed DHGN

distributed pattern recognition scheme, Chapter 6 looks specifically into the applications of

DHGN within a resource-constrained WSN network. Capabilities of DHGN in performing

distributed recognition will be put into critical applications such as event detection within

fine-grained WSN environment. A case study on DHGN for forest fire detection within

WSN network will also be presented.

1.7. THESIS OUTLINE 21

Finally, Chapter 7 summarises all the contributions made through the thesis, and

elaborates some potential ideas for possible future research.

22 CHAPTER 1. INTRODUCTION

Chapter 2

Pattern Recognition and

Distributed Approach

Distributed computing approach offers seemingly unlimited scalability towards pattern

growth with the rapid advent of network computing technology that enables processing

to be performed within a body of a network, rather than concentrating on exhaustive

single-CPU utilisation. Nevertheless, existing approaches are still lagging behind, due to

tightly-coupled recognition algorithms being implemented, as well as iterative processing

means to achieve significantly accurate results.

The neural network approach offers a promising tool for large-scale pattern recogni-

tion. This is mainly being reflected by its ability to perform parallel computations using

interconnected neurons. However, there are also several issues related to its implementa-

tion. These include convergence problems, complex iterative learning procedures, and low

scalability with regards to the training data required for optimum recognition.

The aim of this chapter is to undertake a review of current approaches in pattern

recognition for large-scale data. An analysis on the scalability issue within existing schemes

will also be considered. This chapter intends to establish the need for scalable pattern

recognition model to enable large-scale data analysis to be performed. In addition, this

chapter will also provide a foundation for the proposed distributed approach in scalable

pattern recognition.

The objectives of this chapter are:

23

24 CHAPTER 2. PATTERN RECOGNITION AND DISTRIBUTED APPROACH

i. To analyse the scalability of existing pattern recognition approaches using neural

network algorithms.

ii. To provide a discussion on key components of a scalable pattern recognition scheme.

iii. To conduct a review of learning mechanisms for pattern recognition using neural

network algorithms.

iv. To provide a justification on the adoption of distributed approach as a mean to

enhance scalability of pattern recognition algorithms.

v. To propose a distributed approach for deployment within a single-cycle learning

algorithm for large-scale data recognition and analysis.

This chapter has been structured as follows. Section 2.1 presents a discussion on the

scalability of existing neural network/machine learning approaches for pattern recogni-

tion. Section 2.2 will then present further detailed descriptions on the evaluations that

have been carried out, in regards to the scalability factor of existing neural network ap-

proaches. Section 2.3 describes some of the key components for scalable pattern recogni-

tion. Consequently, Section 2.4 discusses different pattern distribution techniques that can

be employed in any distributed pattern recognition systems. Section 2.5 initiates the main

focus of this thesis, through a discussion on GN algorithm for scalable pattern recognition,

followed by further exploration of the knowledge of this algorithm for distributed pattern

recognition implementation. Based on the reviews conducted, Graph Neuron (GN) algo-

rithm exhibits single-cycle learning and in-network processing capabilities, and has been

implemented in a number of pattern recognition applications in wireless sensor networks

(Baqer et al., 2005; Baig et al., 2006). This research intends to further explore this al-

gorithm for the possibility of deployment in the proposed scalable distributed pattern

recognition scheme. Section 2.6 extends the analysis on GN-based algorithm known as

Hierarchical Graph Neuron (HGN). HGN is an associative memory algorithm that im-

plements GN-based recognition in a hierarchical mode, to obtain an overall view of the

pattern’s structure. A review on HGN and its capability and limitation to provide scalable

scheme for pattern recognition will also be included. In Section 2.7, the discussion on HGN

is extended by looking at possible distribution mechanisms for HGN implementation, as to

increase its scalability for large-scale pattern recognition. Furthermore, this section leads

2.1. NEURAL NETWORK/MACHINE LEARNING APPROACH 25

to this doctoral research on distributed pattern recognition. Finally, Section 2.8 concludes

the chapter.

2.1 Neural Network/Machine Learning Approach

The neural network approach was defined in the 1950s with the introduction of the

Perceptron approach by Rosenblatt (1957). The concept of a artificial neural network

(ANN)(Hecht-Nielsen, 1989; Hopfield and Tank, 1985; Kohonen, 2000) is fundamental

to neural computing, which emerged from the knowledge and understanding of how

biological neural systems work with regard to information storage and manipulation

(Schalkoff, 1991). Neural networks can be considered as massive parallel computing sys-

tems consisting of a large number of small processors known as neurons that interconnect

with each other (Jain et al., 2000). One of the benefits of ANN-based pattern recognition

is that it allows the system to learn and adapt to the nature of data. By having this

adaptive feature, the recognition schemes are able to be used in wide range of applica-

tions. Hence, it is capable of offering a more scalable approach for large-scale recognition.

Figure 2.1 shows a generic example of neural network structure for pattern recognition.

Figure 2.1: Generic neural network architecture for pattern recognition with two layers of
hidden neurons.

26 CHAPTER 2. PATTERN RECOGNITION AND DISTRIBUTED APPROACH

The pattern recognition applications using neural network approach rely heavily on

the learning algorithm being adopted. It is essential as to determine the efficiency and

accuracy of pattern store and recall operations. Learning algorithms allow neural networks

to learn complex non-linear input-output relationships, use sequential training procedures,

and adapt themselves to the data (Jain et al., 2000). Prominent approaches in learning

algorithms include Hebbian learning (Hebb, 1988) and incremental learning (Schlimmer

and Granger, 1986). Further discussions on these learning mechanisms will be presented

in Section 2.3.1.

Apart from neural networks, machine learning is also a widely-used approach for pat-

tern recognition. Machine learning as defined by Nilsson (1996) refers to changes in the

systems that perform tasks associated with artificial intelligence (AI). Machine learning

is also considered a deterministic approach for pattern recognition. It is also commonly

used in conjunction with other neural network schemes. For instance, Kernel-based Asso-

ciative Memory (KAM) (Nowicki and Dekhtyarenko, 2004) implements kernel machine as

the learning tool for its pattern recognition process. Other machine learning algorithms

including support vector machines (SVMs) (Cortes and Vapnik, 1995) are also being used

as a pattern recogniser.

Implementations of machine learning approaches for pattern recognition require a priori

knowledge on the types of functions or kernel machines to be used for a specific recognition

domain. For instance, linear SVM has the ability to perform classification on binary

problems, and is not suitable for multi-class domains. In addition, the machine learning

approach also commonly requires extensive and iterative learning procedures to obtain the

best parameter estimation for the machine to works on a specific set of data. These two

issues in machine learning approach affect its feasibility in providing scalable and generic

pattern recognition scheme.

Neural network (and machine learning) approaches offers low levels of both scalability

and adaptability, based upon the reviews of existing algorithms and techniques applied.

This evaluation is based upon the following criterias of neural network approaches:

i. Some neural network/machine learning approaches can be conducted within a par-

allel environment. E.g. Hopfield network and Feed-Forward neural network. This

parallelisation capability enables recognition to be conducted on large-scale data.

2.1. NEURAL NETWORK/MACHINE LEARNING APPROACH 27

However, the complexity of these algorithms hinder its capability to perform pat-

tern recognition in a purely-parallel manner

ii. Enhancement in unsupervised machine learning schemes such as K-mean clustering

algorithm provides an opportunity for heterogeneous patterns and data to be used in

recognition processes. Nevertheless, these algorithms require strenous training and

complex recognition procedure.

iii. Limited storage capacity - E.g. an estimate of 0.138N random patterns, where N

represents the number of units in the network, which could be stored by Hopfield

network for optimum recognition (Sulehria and Zhang, 2008).

iv. Some neural networks have a capability to learn from the data used in the recognition

process. However, the learning process require large number of similar data for

memorisation.

In addition to these factors, neural network/machine learning approaches also suffer

from a number of issues, including:

i. Iterative procedure in weight adjustment for many neural network schemes such as

feed-forward network during data training imposes significant delay in processing.

ii. Over-fitting problem - Small training set is not capable of representing large-scale

actual data.

iii. Recognition function within neural networks or machine learning works only for a

specific problem within the recognition domain. Network retraining is required for

different sets of problems.

The reviews obtained from the literature have shown that neural network/machine

learning approach outweighs other approaches with regards to the scalability and adapt-

ability issues. Nevertheless, a syntactical approach, for instance, is also considered to be

adaptive towards wide range of problems, owing to its grammatical inference technique.

On the other hand, the machine learning or neural networks could be considered as the

best candidates for scalable and adaptive pattern recognition scheme, due to its capabil-

ity to use different kinds of functions and representations. Furthermore, some of these

approaches have a capability to perform in parallel environment, where recognition loads

28 CHAPTER 2. PATTERN RECOGNITION AND DISTRIBUTED APPROACH

are able to be distributed across computational nodes. Nevertheless, they require exten-

sive and complex computations in deriving the best solution for recognition process. The

following subsection describes some of the examples of neural network/machine learning

algorithms that have been applied in pattern recognition domain.

2.1.1 Scalability and Adaptability of Neural Networks

This subsection outlines the major approaches for pattern recognition applications using

neural networks or machine learning techniques. An attempt is made to describe several

machine learning and neural networks algorithms that are commonly used in pattern

recognition. The discussions within this section encircled towards understanding both

approaches and exploring issues related to their implementations. The focus aims to

explain the scalability and adaptability factors within both machine learning and neural

network approaches. To achieve this, several examples of pattern recognition algorithms

will be reviewed.

An examination of the literature revealed that neural network and machine learn-

ing approaches offer a highly-reliable deterministic pattern recognition scheme (Vivanco,

Demko and Pizzi, 2005). Furthermore, these approaches provide a medium for the system

to learn from existing data or patterns and adapt to their conditions. However, their rel-

ative computational complexity has been considered as a major bottleneck for large-scale

implementation. This is due to the fact that most common algorithms in machine learning

(including neural networks) apply extensive and highly iterative training procedures. The

discussion outlined in this section will cover the underlying principles of both approaches.

In this subsection, scalability and adaptability aspects of each of the approaches will

also be reviewed. This review will firstly discuss some of the algorithms related to neural

network and machine learning approaches, followed by the provision of several examples of

neural network implementations for pattern recognition, including some examples of a form

of neural network approach known as associative memory (AM). In addition, scalability

and adaptability factors of each algorithm will be examined, including the analysis of some

machine learning algorithms for recognition purposes.

2.1. NEURAL NETWORK/MACHINE LEARNING APPROACH 29

Feed-forward Neural Network

Feed-forward network design acts as a basis for more complex neural networks such as

Hopfield Network and Kohonen Self-Organising Network. It offers a convenient approach

for making auto-associations between an input layer and an output layer in computational

problem solving such as in pattern recognition (Nadal, 1989). However, there are some

constraints related to its implementation in the classification process. These include its

sensitivity towards the training parameters, training speed, nonlinear classification func-

tion, overtraining sensitivity, and regularisation requirement (Jain et al., 2000). According

to Kalos (2005), the feed-forward neural networks are highly specialised, thus making it

difficult to be accepted in the mainstream applications. Furthermore, he stated two prob-

lems relating to the implementations of these neural networks. These include a difficulty in

interpreting the results and trial-and-error nature of the process required to design its ar-

chitecture. The difficulty in predicting the results lies in the fact that the results obtained

from the network must be cross-validated, in order to select the best results. Moreover,

the difficulty in designing the network architecture is due to the instability of the number

of hidden layers required for a given dataset. In relation to these problems, the weight

adjustments mechanism between input-output neurons also influenced the complexity of

the algorithm.

Scalability and adaptability are among the major issues in feed-forward network. Due

to its computationally intensive operations, feed-forward network requires extensive train-

ing procedure as to obtain optimum recognition accuracy for a given data set. Never-

theless, its architecture provides a possibility for parallel implementation, to improve its

scalability for large-scale processing. Feed-forward network is an acyclic network in which

the nodes are only connected with nodes in subsequent or previous layer. There are a

number of initiatives that have been carried out to parallelise this neural network. These

include the works by Kumar, Shekhar and Amin (1994) and Foo et al. (1995). Their work

has been focusing on parallelising the backpropagation learning for feed-forward network.

Parallelism for feed-forward neural network could be achieved. Nevertheless, it incurs

additional requirements, including specific machine architecture such as hypercubes and

transputter array. In addition, serial feed-forward network has shown better benchmark

performance than parallel scheme for small training data as described by Kumar et al.

(1994).

30 CHAPTER 2. PATTERN RECOGNITION AND DISTRIBUTED APPROACH

With a requirement for specific machine architecture, complex computation and other

limitations being described previously, feed-forward network is not a suitable candidate

for a scalable pattern recognition scheme. However, its ability to parallelise its structure

is considered to be an opportunity that could be taken into consideration.

Hopfield Network

The Hopfield network is a supervised recurrent neural network approach based on the work

of Hopfield and Tank (1985). The Hopfield network provides an alternative approach for

solving complex computational problems such as combinatorial optimisation. The Hopfield

network has also been proven to provide a better solution to the Travelling Salesman

Problems (TSP) and pattern recognition. Figure 2.2 illustrates the general topology of a

Hopfield network which has been adapted from van der Smagt (1990).

Figure 2.2: The general topology of a Hopfield Network.

According to Kim, Yoon, Kim, Park, Ntuen and Sohn (1992), Hopfield networks can

be categorised into two types: Discrete Hopfield Network (DHN) and Continuous Hop-

field Network (CHN). DHN is a stochastic model and it offers simple implementation and

fast processing. However, DHN produces the results in approximation, since it uses binary

values for the states of neurons. Therefore, DHN would not be able to provide a precise so-

lution in a pattern recognition application. On the other hand, CHN offers a near-optimal

solution using a differential equation approach. This is actually a burden for CHN since it

requires longer time for its simulation. Hence, CHN is not suitable for pattern recognition

application which requires fast recognition, such as in biometric pattern recognition.

The Hopfield network suffers from several problems, including convergence problems

that lead to less than optimal solutions being provided (Li et al., 2005). In addition,

2.1. NEURAL NETWORK/MACHINE LEARNING APPROACH 31

Hopfield networks have a scalability issue with regard to the storage of biased patterns

(Löwe, 1999). Sulehria and Zhang (2008) stated that the size of Hopfield network mem-

ory is a round 0.138N , where N represents the number of neurons within the network.

This limitation is mainly due to the phenomenon known as spurious local minima. On

the other hand, the Hopfield network has been adopted for solving optimisation prob-

lems due to some of its advantages, including massive parallelism, convenient hardware

implementation, and the neural network architecture (Li et al., 2005).

Due to its storage limitation and convergence problem, Hopfield neural network is not

suitable for pattern recognition involving large-scale data sets. Regardless of its capability

to perform recognition processes in parallel, its finite memory capacity hinders its capa-

bility to perform large-scale recognition, as been demonstrated by the research work of

Wilson (2009).

Kohonen Self-Organising Network

Introduced by Teuvo Kohonen, Kohonen map (Kohonen, 2000) (or Kohonen network)

is an unsupervised neural network algorithm that can be used for patterns clustering

and classification. Kohonen derived the network from the competitive learning algorithm

(Rumelhart and Zipser, 1988), which consists of an N-unit input layer and an M-unit

output layer, in which M equals to the number of cluster groups required. Kohonen

represents the network in terms of ordered maps, as in the brain. Kohonen network forms

the existing approach known as Self-Organizing Maps (SOMs). SOM is an algorithm for

mapping high-dimensional data space to lower-dimensional data space. SOM takes benefit

of dimension reduction in classification process. The uniqueness of SOM is such that the

neurons are well-represented in the form of geometrical dimension (Giorgetti, Gupta and

Manes, 2007). Figure 2.3 shows the general topology of Kohonen network. Note that each

node is connected to the inputs.

Kohonen network has been implemented in wide area of applications. These include

geoinformatics (Zaremba, St-Laurent, Niemann and Richardson, 2000), bioinformatics

(Wang, Zheng and Azuaje, 2007), finance (Blazejewski and Coggins, 2004), informa-

tion retrieval (Lin, Soergel and Marchionini, 1991), and wireless technology (Giorgetti

et al., 2007). Some recent developments of Kohonen network in the classification ap-

proach can be seen through the work of Berglund and Sitte (2006) in parameterless SOM,

32 CHAPTER 2. PATTERN RECOGNITION AND DISTRIBUTED APPROACH

Figure 2.3: General topology of Kohonen network.

Cheung and Law (2007) in Rival-Model Penalised SOM, and Wu and Chow (2007) in

Self-organising and self-evolving neurons.

Self organizing map (SOM) is a popular tool for clustering and visualisation of high-

dimensional data. However, the processes involved require numerous iterations on each

neuron, and thus incurred additional computational costs to be burdened. Its computa-

tional complexity increases significantly as with an increase in the dimension of data. In

solving this issue, existing dimension reduction techniques have commonly been adopted.

However, this adds to its processing time. Apart from the curse of dimensionality issue,

learning rate determination is also considered as an issue, since the initial value of learning

rate is essential in determining the efficiency of the map (Cheung and Law, 2007). These

two problems related to Kohonen SOM implementation limit its capability to provide a

scalable approach for pattern recognition. Nevertheless, it can be considered as an adap-

tive scheme, due to its availability to represent different types of data using a single form

of representation.

Radial Basis Functions (RBF) Neural Network

RBF Neural Network (RBFNN) implements radial basis functions such as Gaussian func-

tion in its activation function. RBFNN is conceptually similar to K-nearest neighbour

2.1. NEURAL NETWORK/MACHINE LEARNING APPROACH 33

(k-NN) model. Its underlying principle in recognition process is such that the class pre-

diction for a given pattern is based upon the patterns having closely-related features to

it. RBFNN network formation is almost similar to feed-forward neural network. RBFNN

has been adopted in several multi-class classification applications including the works of

Yang and Paindavoine (2003) in real-time face tracking and identity verification, and Ng,

Dorado, Yeung, Pedrycz and Izquierdo (2007) in multi-class image classification based on

MPEG-7 descriptors.

In regards to the scalability and adaptability issues, it is impractical for RBFNN to be

deployed for large-scale recognition. This is due to the fact that there are several problems

concerning its implementation. These include its generalisation problem. In this context,

it is difficult to train the network with limited amount of training data for such a large-scale

actual data. In addition, usual training approaches for RBFNN involve methods to find

cluster centres in the feature space to be used in RBF function. One common approach

involves the use of K-means clustering. This approach is computationally expensive and

extensively iterative. The difficulty also arises in determining the best cluster centres for

a given input space.

2.1.2 Convolutional Neural Network

Convolutional neural network (CNN) has been originally introduced by LeCun and Ben-

gio (1995). It has been applied in a number of pattern recognition applications, including

handwritten character recognition (Lecun, Bottou, Bengio and Haffner, 1998), visual doc-

uments (Simard, Steinkraus and Platt, 2003) and face recognition (Lawrence, Giles and

Tsoi, 1996). It is based upon the multi-layer property of neural networks. According to

Bouvrie (2006), This particular kind of neural network assumes to learn filters, in a data-

driven fashion as a means to extract features describing the inputs. Convolutional Neural

Networks are designed to recognize visual patterns directly from pixel images with mini-

mal pre-processing. It performs gradient-based learning for pattern memorisation. CNN

offers fast recognition procedure. However, according to Nebauer (1998), CNN requires

large number of training set to achieve generalisation.

34 CHAPTER 2. PATTERN RECOGNITION AND DISTRIBUTED APPROACH

Support Vector Machine (SVM)

In recent years, support vector machines (SVMs) have been considered as an attractive

alternative to multilayer feed-forward neural networks for data classification and regression

(Casali, Costantini, Perfetti and Ricci, 2006). SVM has been found to be very robust in

many applications, including optical character recognition (OCR), text categorisation, and

face detection in images. SVM can be categorised as a type of kernel methods (Tsang,

Kwok and Zurada, 2006). In classification technique, SVM implements optimal separating

hyperplane for classification. SVM finds the best separating (maximal margin) hyperplane

between the two (binary) classes of training samples in the feature space. Figure 2.4,

adapted from Casali et al (2006), illustrates the use of hyperplane in SVM classification.

Figure 2.4: SVM classification using optimal hyperplane for separable classes. The SVs
lies on the dotted lines.

SVM has been originally used for binary problems (Mavroforakis and Theodoridis,

2006). Some of the advantages of SVM in solving binary problems include the fact that

SVM offers unique solution. In addition SVM provides good generalisation properties of

solution. It also composed of sound theoretical foundation, based on learning theory and

optimization theory.

Some of the limitations of SVM have been mentioned in other research (Huang, Mao,

Siew and Huang, 2005; Dong, Krzyzak and Suen, 2005). These include the slow test

phase as compared to other learning methods. In addition, the computational costs in

2.1. NEURAL NETWORK/MACHINE LEARNING APPROACH 35

SVM could become very expensive, given the number of support vectors (SVs) becomes

large. On the scalability issue, the training kernel matrix used in SVM grows quadratically

with the size of the data set. Therefore, with an increase in data set, the training kernel

matrix will also be increased significantly. This scalability issue has also been mentioned

in (Nguyen and Ho, 2006; Fei and Liu, 2006). The initiatives to multi-class classification

using SVM has also been implemented widely (Mavroforakis and Theodoridis, 2006; Fei

and Liu, 2006).

Morphological Associative Memory (MAM)

Morphological Associative Memory (MAM) is a neural network algorithm which derived

from the theory of image algebra (Ritter and Sussner, 1996). MAM is a type of arti-

ficial neural networks that follows the similar operations as existing neural network ap-

proaches. The main difference is in the determination of activation value of each neuron.

In MAM, the multiplication and addition operations in neural network are replaced by

the maximum-minimum and addition operations (Ritter, Sussner and Diaz-de Leon, 1998).

This provides non-linearity towards the determination of activation value for each of the

neurons, and hence, offers possibility for it to be used in non-linear applications.

MAM has been applied in a number of pattern recognition applications. These include

works by Sussner and Valle (2006), Akyama and Kikuti (2001), and Hattori, Fukui and

Ito (2002). MAM implementation in pattern recognition offers several advantages, as

compared to other neural network approaches. MAM offers a one-shot pattern convergence

and recall. Therefore, it provides fast recognition time. In addition, MAM provides perfect

recall condition, even with an increase in the number of patterns stored. It also gives

perfect recalls for noisy and distorted patterns.

The problems involved with MAM implementation in pattern recognition include the

incapability to handle erosive noise with maximum operation and incapability to handle

dilative noise with minimum operation. This leads to the problem of handling patterns

having both erosive and dilative noises. To solve this problem, MAM uses kernel patterns

(Ritter et al., 1998) that comprise unique patterns that reflect the individual patterns

being stored. The use of kernel patterns does solve the dilative and erosive noises issue.

However, the problem lies in deciding the kernel pattern to be used. This indirectly hinders

36 CHAPTER 2. PATTERN RECOGNITION AND DISTRIBUTED APPROACH

the scalability of MAM in pattern recognition applications.Furthermore, MAM’s accuracy

in pattern recognition is highly affected by its memory size (Sussner and Valle, 2006).

Hamming Associative Memory

Hamming associative memory (Hassoun and Watta, 1996) is a neural network algorithm

with simple content-addressable memory approach. Its implementation involves the use

of Hamming distance function to find the nearest pattern matches within a pattern recog-

nition process. Hamming associative memory has a high error correction capability, how-

ever, problems lie within its slow retrieval speed and impractical hardware implementation

(Ikeda, Watta, Artiklar and Hassoun, 2001).

The design of Hamming associative memory involves a series of procedures to obtain the

nearest input-output matches. The following procedures describe the Hamming associative

memory implementation in pattern retrieval:

i. Given an input memory key p ∈ {0, 1}N , stored pattern vector {p1, p2, ..., pm} and

test pattern pt, find a Hamming distance d(pi, pt), where i = {1,m}.

ii. Compute Hamming distances dk = d(pi, pk), where k = {1,m}.

iii. Find the minimum distance dmin = min(d1, d2, ..., dm).

iv. Output the fundamental memory pt = pk, where dk = d(min).

Hamming associative memory has also been used for high-performance associative

memory approach in the works of Ikeda et al. (2001) and Mu, Watta and Hassoun (2007)

in decoupled Hamming memory.

The reviews of existing approaches in neural network/machine learning for pattern

recognition have indicated issues related with scalability of the existing schemes. These

include requirements for large-training data sets, complex learning functions, and limited

memory capacity for accurate recognition. Machine learning approaches in specific, is

hardly scalable due to its complex function or kernel, and its architecture that follows

single-processing approach (also known as CPU-centric approach). Unlike neural network

approaches that have a capability for decentralised/distributed processing (through col-

laboration of neurons). Nevertheless, existing neural network implementations are still

unable to gain this capability, due to their complexity and highly iterative procedures.

2.2. SCALABILITY EVALUATION FOR NEURAL NETWORK APPROACHES 37

The following section provides a description of a scalability evaluation for some of neural

network approaches as described in this section.

2.2 Scalability Evaluation for Neural Network Approaches

Scalability in general, could be achieved using a distributed approach. Therefore, the

scalability factors for the pattern recognition schemes could also be derived from the scal-

ability requirements for any distributed systems. In this analysis, there are two important

factors that have been determined. These are storage capacity and communication fre-

quency for neural network implementation. These two factors have been proposed based

on the scalability requirements for distributed systems as been explained by Srinivas and

Janakiram (2005). The following subsections will further discussed these two factors in

relation to the neural network approaches that have been described in the previous section.

2.2.1 Storage Capacity Analysis

The baseline evaluation for storage capacity is based on the effect of an increase in the

number of patterns stored within a given network. In achieving this, the memory capacity

of each processing node for pattern storage is analysed. The importance of this memory

capacity in recognition approach lies in its ability to provide scalable storage medium for

large-scale patterns. The analysis will consider the effect of the pattern quantity against

the size of the memory required per node, within a given neural network.

Existing neural networks rely largely on the weight calculations in their recognition

processes. In this context, each processing node would have a collection of weight-input

values stored within its memory. In a simplest form, for a given P different pattern, the

size of the memory M could be determined using the following equation 2.1:

M =

p
∑

n=1

wnin (2.1)

Where w represents the correlated weight and i represents the input value for each

stored pattern n of P . This kind of memory consumption effect occurred in different

neural network schemes, including feed-forward neural network, Hopfield network, Radial

Basis Function Neural Network (RBFNN), Morphological Associative Memory (MAM),

and Hamming Associative Memory. In the case of Hopfield network, its accuracy will

38 CHAPTER 2. PATTERN RECOGNITION AND DISTRIBUTED APPROACH

significantly deteriorate if the number of patterns stored is greater than 0.138N , where N

represents the number of nodes used.

Kohonen SOM’s memory representation is different from the other neural networks

being discussed. For each node in the SOM lattice, pattern is represented using vector-

weight representation. In this context, each node will store a set of weights for a particular

pattern vector. Thus, for a pattern vector with dimensions d, hence there will also be

equivalent number of w weight values, where w = d.

2.2.2 Communication Frequency Evaluation

Communication frequency in neural network implementation is specifically related to the

number of communications (in the form of messages or signals) that is projected by a

single node (or neuron) towards other nodes within a given network. In this chapter, a

preliminary analysis is carried out to determine the frequency of messages or signals ex-

change within a network using different neural network approaches. High communication

frequency would leads to network congestion in actual implementation, and thus limiting

the scalability of the recognition implementation. Therefore, for a scalable network, it is

important that the communication frequency is kept to minimum.

Communications between nodes in existing neural networks such as feed-forward, Hop-

field, and RBF neural networks are highly-iterative in nature. This is due to their common

weight adjustment/ feedback methods in generating an optimum result during recognition

processes for a single pattern/ pattern vector. In addition, each node’s communication fre-

quency relies on the number of nodes per layer within multi-layer networks. Given a multi-

layer network with n nodes per layer, for each pattern, the number of messages/signals

communicated C, by each node could be derived using the following equation 2.2:

C = nw (2.2)

Where w is the number of iterations for weight adjustment. In this perspective, an

increase in the size of the network and the weight adjustment iteration would leads to high

number of signals being projected. Therefore, this would leads to inefficiency in providing

a scalable scheme for recognition purposes. Figure 2.5 illustrates this phenomenon.

2.2. SCALABILITY EVALUATION FOR NEURAL NETWORK APPROACHES 39

Figure 2.5: Estimated number of signals/messages generated, C by each neuron within a
single layer in common neural network schemes involving different number of iterations.

Some of the associative memory (AM) schemes for pattern recognition, including mor-

phological and Hamming associative memories offers one-shot learning procedure. This

kind of procedure reduces a need for iterative process in deriving optimum recognition

results. Furthermore, this kind of neural network performs lattice-based operations in

which communications between each node is kept to minimum, while operations are being

done in singular manner, i.e. no collaboration between nodes involved. This effect is also

experienced within a Kohonen SOM network.

Existing neural network schemes mostly fail to scale up due to their complex nature

and iterative learning procedures. Furthermore, the training-validation-test mechanism

introduced produces significant delays in execution. It also creates strong dependency

between training and test data. Hence, there is a need to consider an algorithm that

limits its complexity and training-test data dependency.

Graph Neuron (GN) is a graph-based associative memory algorithm (Khan and Mi-

hailescu, 2004). GN is highly scalable and implements single-cycle learning for pattern

recognition (Khan, Isreb and Spindler, 2004; Nasution, Khan and Kendall, 2005). Further-

more, GN adopts an in-network processing approach in which the computational processes

occur within the body of the network itself. GN has been proposed for several pattern

recognition implementations (Nasution et al., 2005; Baqer et al., 2005; Baig et al., 2006).

40 CHAPTER 2. PATTERN RECOGNITION AND DISTRIBUTED APPROACH

This research will further investigate this algorithm and uncover its potential towards a

scalable approach for pattern recognition. In this chapter, this algorithm and its deriva-

tives will be explored in detail. In addition, the capability of GN-based algorithm for

distributed pattern recognition will also be discussed.

2.3 Key Components for Scalable Pattern Recognition

From the reviews of the algorithms in Section 2.2 and analysis that has been carried

out in Section 2.3, several key components for a scalable pattern recognition scheme are

proposed. These include simple learning mechanism, distributed processing approach, and

single-cycle training procedure. These three components affect the scalability of pattern

recognition algorithm. For instance, single-processing or CPU-centric approach limits the

capability of the algorithm to process large number of patterns in minimum time allocation.

The following subsections explore these three key factors for scalable pattern recognition

scheme.

2.3.1 Learning Mechanism

In pattern recognition, learning approaches play an important role in determining the

efficiency and accuracy of pattern store and recall operations. Prominent approaches

include Hebbian learning (Hebb, 1988), incremental learning (Schlimmer and Granger,

1986), and one-shot learning. Hebbian learning is a classical learning technique, based

on the synaptic plasticity concept, where in output of a neuron has a significant impact

to other neurons’ inputs. Hebbian learning is a well-known technique for spatiotemporal

pattern recognition within auto-associative neural networks. However, Hebbian learning

can lead to saturation and “catastrophic forgetting”, which makes this learning technique

less scalable. Most of the existing neural network algorithms implement Hebbian learning,

including Hopfield, and feed-forward neural networks. A simple form of Hebbian learning

follows the rule:

wab = xaxb (2.3)

Where wab represents the weight connecting neuron b to a. xa and xb represent both

the input of neuron a and postsynaptic response of neuron b.

2.3. KEY COMPONENTS FOR SCALABLE PATTERN RECOGNITION 41

Incremental learning on the other hand, has been developed to solve the scalability

issue in pattern recognition (Song, Liu, Zhang and Yang, 2008). It simplifies the problem

of large training sets, specifically in machine learning algorithms such as Support Vector

Machine (SVM). In incremental learning, training data is divided into several subsets.

Each data subset undergoes training phase at any one particular time. The results from

each of these training sessions are subsequently combined to form the actual results. This

approach increases the scalability of the algorithm, when large numbers of training patterns

are being used. However, it still imposes problems when dealing with large-scale patterns.

Higher computational resources are required to process larger patterns. Furthermore this

approach tends to be tightly-coupled and requires costly kernel function computations

(Schlimmer and Granger, 1986).

One-shot learning is a type of learning that has been developed to offer a capability

for a system to learn information with initial minimum amount of data required. Exist-

ing implementations of this learning mechanism have been introduced using probabilistic

approach such as Bayesian classifier (Fei-Fei, Fergus and Perona, 2006; Miller, Matsakis

and Viola, 2000). Categories of object could be learned from a small dataset. The one-

shot learning will then learn from the information obtained from these categories. This

one-shot learning approach is somehow emulating incremental learning, in the sense that

learning process continues with introduction of new patterns. Graph Neuron (GN) (Khan

and Mihailescu, 2004) also implements one-shot learning with a conceptually different

perspective. GN implements its learning algorithm through neuron-adjacency comparison

approach.

2.3.2 Processing Approach

In the previous section, several distribution approaches in pattern recognition have been

discussed. Distribution of input space within pattern recognition algorithm enables im-

provement of processing speed. Current trends in recognition approach indicate a move

towards parallel processing, in which recognition processes are carried out in parallel for

different datasets.

Existing neural network recognition schemes including Hopfield network (Hopfield and

Tank, 1985), Back-propagation neural network (BPNN) (Wythoff, 1993), convolutional

neural network (LeCun and Bengio, 1995), and fuzzy neural network (Kasabov, 1996)

42 CHAPTER 2. PATTERN RECOGNITION AND DISTRIBUTED APPROACH

are iterative in nature and therefore time and resource intensive. These factors limit the

capability of the existing recognition scheme to scale up with an increase in the quan-

tity and size of the patterns stored. Furthermore, existing neural network schemes are

tightly-coupled and have been purely developed for single-processor environment. It has

been proven through numerous analyses that parallel processing offers higher speed-up

in execution of processes. This follows the Amdahl’s law, in which stated that parallel

processing could achieve maximum speed, given higher fraction of tasks that could be

parallelized. Figure 2.6 shows the estimated increase in speed of processes with different

parallel portions. Note that as the parallel fraction of the tasks increases, it will also

increase the speed of the processes.

Figure 2.6: Comparison of processing speed-up estimation between recognition processes
on different parallel fractions (P) with an increase in the number of parallel processors
used.

The performance of parallel and distributed processing outplays the single-processing

approach in the sense that it provides a fast processing mechanism. Nevertheless, in

pattern recognition, to obtain an embarrassingly-parallel approach is hard to achieve, due

to the nature of the recognition algorithms being deployed.

2.4. PATTERN DISTRIBUTION TECHNIQUES 43

2.3.3 Training Procedure

Training in recognition context, is a process of building up the algorithm for actual recog-

nition process. It allows the algorithm to learn from a sample dataset, before the actual

recognition takes place. Training can be achieved from small or large training datasets,

depending on the requirements of the recognition algorithm. In addition, training could

be performed in a multi-cycle or single-cycle manner.

Existing deterministic pattern recognition algorithms usually require large training

datasets for generalisation purposes. In this view, the training dataset should have all the

characteristics of the actual data. However, this is not usually the case. Furthermore,

current approaches involve multi-cycle training, due to the nature of learning mechanism

being discussed earlier.

Single-cycle training in learning has been introduced by Khan [65] in Graph Neuron

(GN) implementation. The learning involves recognising adjacency values between neu-

rons, rather than revising weight values between nodes as in the Hebbian and Incremental

learning approaches. The training in GN is conducted within a single-cycle, allowing faster

recognition process.

2.4 Pattern Distribution Techniques

Implementations of existing neural network/machine learning approaches for pattern recog-

nition have shown some limitations, as discussed in Section 2.1. These include generali-

sation problem and complex learning mechanism as demonstrated in RBFNN implemen-

tation, extensive iterations and slow processing speed such as in SOM and Hamming

associative memory, tightly-coupled functions in MAM, and computationally intensive

procedures in almost all the algorithms that have been discussed earlier. These limita-

tions unavoidably affect the scalability of those approaches for real-time and large-scale

recognition deployments. Furthermore, existing approaches have been developed with

purely CPU-centric consideration, i.e. with the concept of single processing mechanism in

mind. According to Ikeda et al. (2001), it is difficult for current neural network approaches

to implement actual associative memory principle, in which simple low-cost devices could

be equipped with these algorithms for pattern recognition purposes.

44 CHAPTER 2. PATTERN RECOGNITION AND DISTRIBUTED APPROACH

In solving the scalability issue within pattern recognition applications, we intend to

shift the recognition paradigm from being a sequential-based CPU-centric towards a par-

allel in-network approach. In-network processing paradigm concentrates on the delegation

and distribution of processes over the body of a network, rather than utilising single-

processing device or node. An important aspect in distributed approach for pattern

recognition is the ability for the system to distribute data across a number of proces-

sors or nodes in the network. In this perspective, it is essential that pattern distribution

technique be applied. In this thesis, two different pattern distribution techniques are

described:

i. Subpattern distribution - Each pattern is partitioned into subpatterns for recognition

over the entire network. Each node within the network receives a chunk of subpattern

for processing.

ii. Set distribution - Distribution of pattern set that contains a number of patterns for

recognition. Each pattern set will be executed by a specific processing node within

the network.

Figure 2.7 shows a comparison between both techniques. These techniques will also

be discussed in the following subsections.

Figure 2.7: A comparison between subpattern and pattern subset distribution techniques.

2.4. PATTERN DISTRIBUTION TECHNIQUES 45

2.4.1 Subpattern Distribution Technique

Subpattern distribution technique in distributed pattern recognition approach involves

the process of dividing pattern into small-scale subpatterns. These subpatterns in return

will be distributed across several processing nodes for recognition process. Examples

of such implementation include the work of Garai and Chaudhuri (2007) in Distributed

Hierarchical Genetic Algorithm (DHGA) for efficient optimisation and pattern matching.

In this work, the entire search space is divided into subspaces and the search process

is conducted at this level, allowing parallel genetic algorithm implementation on each

subspace.

Ikeda et al. (2001) also have proposed a distributed approach for Hamming associative

memory through its decoupled Hamming AM approach. Their work involves the process

of partitioning input vector into a number of modules known as windows. Each window

will be used in Hamming memory operation. The results of recognition obtained from each

Hamming memory will be sent to a decision network for final output from the system. The

decoupled Hamming AM approach was later being extended by Mu et al. (2007). This

involved an introduction of voting mechanism for decision-making process.

Apart from division of input space into subspace, pattern distribution technique also

includes a recognition process based on atomic pattern component that make up the entire

pattern representation. For instance, Khan and Mihailescu (2004) have proposed parallel

pattern recognition within wireless sensor network (WSN) environment using a Graph

Neuron (GN) approach. In this work, each sensory data obtained from sensor node is

considered as a component of the entire pattern represented by the network. Further

works on this recognition approach has also been conducted by Baig et al. (2006).

Subpattern distribution technique allows recognition process to be performed in min-

imally, i.e. low complexity with regards to the size of the subpattern. Nevertheless, this

technique is impossible to deploy in all deterministic approaches being discussed. Some

algorithms are highly-cohesive in the sense that the whole input space must be included

in its computations in order to obtain an optimum result.

46 CHAPTER 2. PATTERN RECOGNITION AND DISTRIBUTED APPROACH

2.4.2 Set Distribution Technique

Set distribution is a common approach in distributed pattern recognition. It involves

the distribution of separate input datasets to each of the processing entities within the

network.

Distribution of patterns is also being conducted at pre-processing stage within the

classification/recognition process. For instance, Kokiopoulou and Frossard (2006) have

proposed a distributed support vector machine (SVM) approach for classification of images

within a sensor network. Their work involves the extraction of input signal into different

feature subspaces. These feature subspaces will then be pre-processed and sent into final

module that conducts actual classification process. This approach alleviates the need for

large training datasets for SVM.

Some set distribution techniques also apply distribution of patterns to processing en-

tities within a network. For instance, Lobo, Bandeira and Moura-Pires (1998) propose

the use of distributed SOM for ship recognition process through acoustic signatures. This

kind of technique requires global collection of results from each processing entity and fur-

ther intensive post-processing mechanism. Similarly, Guoqing et al. (1992) also introduce

multilayer distributed pattern recognition scheme using sparse RAM nets.

Set distribution technique does not minimise the computational complexity of the

recognition algorithm. However, it reduces the execution time and allows parallel pro-

cessing on patterns to be implemented. This technique is suitable for recognition schemes

involving large number of patterns to be analysed. However, it does not fit well into sys-

tem that caters for high-dimensional and large-scale data, such as high-intensity magnetic

images including Magnetic Resonance Imaging (MRI) images.

Existing distributed pattern recognition approaches tend to employ the set distribu-

tion technique in their implementations. The main reason for this is that it alleviates

the need for large number of training datasets, and consequently leads to fast learning

speed. Nevertheless, complexity issue related to these approaches remain unsolved. Ex-

amples of distributed pattern recognition schemes using these approaches include (Kumar

et al., 1994; Kokiopoulou and Frossard, 2006; Yang, Jafari, Kuryloski, Iyengar, Sastry and

Bajcsy, 2007)

2.5. GRAPH NEURON FOR SCALABLE RECOGNITION SCHEME 47

2.5 Graph Neuron for Scalable Recognition Scheme

Graph Neuron (GN) is a pattern recognition algorithm that implements a simple associa-

tive memory (AM) architecture, which provides a capability to recall patterns using similar

or incomplete patterns. Associative memory architecture differs from conventional mem-

ory architecture in the sense that the store and recall operations on memory contents are

based on the association with input value, rather than based on the address of the mem-

ory content. Hence, associative memory based pattern recognition algorithms are able to

offer high recognition accuracy as compared to other algorithms which implement recog-

nition using conventional memory architecture. Besides GN, other associative memory

algorithms include Hopfield network, Kernel Associative Memory (KAM), Morphological

Associative Memory (MAM) and Hamming Associative Memory.

In addition to its associative memory architecture, GN also follows some characteristics

of graph-based pattern recognition algorithms as demonstrated in (Wilson, Hancock and

Luo, 2005; Auwatanamongkol, 2007; Albiol, Monzo, Martin, Sastre and Albiol, 2008; Cae-

tano, McAuley, Cheng, Le and Smola, 2009). However, GN implements in-network pro-

cessing that solves the scalability issue (computationally prohibitive against an increase

in the size and database of patterns) in other graph-based pattern recognition algorithms

as described in (Garey and Johnson, 1990). According to Nasution (2007), the ability of

GN to conduct its processes within a body of network offers a two-fold advantage. A) It

eliminates the computational problems relating to large patterns and pattern databases.

B) Its implementation is ideal for resource-constrained environment, such as in the event

detection application within wireless sensor networks (WSNs).

In the following subsection, an overview of graph-based algorithms for pattern recog-

nition, in which some of their characteristics were inherited by GN, will be presented.

2.5.1 Graph-based Pattern Recognition

A graph is composed of a set of vertices and edges. Hence, Graph G could be represented

in the form of G = (V,E), where V is the set of vertices (also commonly known as nodes

or points) and E represents the edges (also known as lines or arcs), where E ⊂ V × V .

An edge e ∈ E is said to connect two vertices x, y ∈ V in the form of e = (x, y). Graph

vertices and edges can contain one or more pieces of information. If only a single piece of

48 CHAPTER 2. PATTERN RECOGNITION AND DISTRIBUTED APPROACH

information is available, the graph is known as a labelled graph, whereas for graph with

more information on either vertices or edges, it is called an attributed graph. Figure 2.8

shows an example of labelled graphs.

Figure 2.8: A labelled graph with a vertex set V = {1, 2, 3, 4, 5, 6, 7} and edge set E =
{{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {6, 7}, {2, 6}, {5, 7}, {1, 7}}.

In graph-based pattern recognition, each pattern could be represented as a graph,

as shown in Figure 2.8. Given two patterns Pstore and Pinput for modelled (or stored)

pattern and input pattern respectively, each of these patterns could be represented by

graphs Gstore and Ginput. Pattern recognition involving graph representation follows the

graph matching problem as described in (Bengoetxea, 2003): Given Gstore = (Vs, Es)

and Ginput = (Vi, Ei), with |Vs| = |Vi|, there is a need to find a one-to-one mapping

f : Vi → Vs, such that (x, y) ∈ Ei ⇐⇒ (f(x), f(y)) ∈ Es. This mapping function is

known as isomorphism and Ginput is said to be isomorphic to Gstore, and this kind of

problems is known as exact graph matching. On the other hand, inexact graph matching

follows the requirement in which isomorphism may not be occurring between two or more

graphs, due to different number of vertices or edges, or having different sets of attributes.

In computer vision field, graphs could be used to represent images for recognition

purposes. In graph-based image recognition, regions of image could be represented by

vertices while edges are used to signify relationships between these regions. An important

issue related to graph-based pattern recognition is such that an increase in either the size

or quantity of the pattern stored will significantly affect the complexity of the algorithm.

2.5. GRAPH NEURON FOR SCALABLE RECOGNITION SCHEME 49

According to Caetano et al. (2009), the number of possible matches between two graphs

grows factorially with their size. Hence, scalability is an important issue to be solved.

Graph Neuron eliminates the scalability issue experienced by other graph-based pattern

recognition algorithms through its in-network processing capability. GN scales up appro-

priately with an increase in both pattern size and database. This is achieved through

distribution of recognition processes into a set of processing nodes that perform these

processes in parallel. GN also capable of performing exact pattern matching as well as

inexact pattern matching with different sets of attributes.

2.5.2 GN Architecture and Pattern Representation

GN network is built on the composition of interconnected processing nodes known as

Graph Neuron (GN) that follows the size and dimension of given pattern. In its simplest

form, GN network forms a two-dimensional array of GNs. Each GN is labelled with their

own value and position (in terms of column and row positions). Figure 2.9 shows GN

networks with 2-dimensional array formation. GN network receives an input, an able to

store or process the input, following the instruction received. The emphasis of GN is

such that it would be able to carry out parallel in-network processing as compared to

the other recognition algorithms that mainly implementing CPU-sequential processing in

their approaches. This allows the GN to perform fast recognition regardless of the size of

input patterns. Furthermore, with this approach, the GN provides high storage capacity

by disseminating patterns into pattern elements and distributes them across the network.

According to Nasution (2007), GN algorithm is developed based on the hypothesis that a

better associative memory resource can be created by changing the emphasis from high-

speed sequential CPU processing to parallel network centric processing.

Figure 2.9: A two-dimensional GN network for binary pattern with 5-bit size.

50 CHAPTER 2. PATTERN RECOGNITION AND DISTRIBUTED APPROACH

GN pattern representation simply follows the representation of patterns in other graph-

matching based algorithms as described in the previous subsection. Each GN in the net-

work holds a (value, position) pair information of elements that constitutes the pattern. In

correspondence towards graph-based structure, each GN acts as a vertex that holds pat-

tern element information (in the form of value or identification (ID)) while the adjacency

communication between two or more GNs is represented by the edge of a graph. Message

communications in GN network are restricted only to the adjacent nodes (of the array),

hence there is no increase in the communication overheads with corresponding increases

in the number of nodes in the network as described in Khan et al. (2004). Figure 2.10

shows a 2-dimensional GN graph-based structure for a given input pattern. Note that

only GN neurons with matched pattern element and position that will be activated and

performed communication with its adjacent neurons. This self-organisation creates links

between neurons and eventually built up pattern information within the network.

Figure 2.10: GN network activation from input pattern “ABBAB”.

Each GN within the same row holds similar ID or value, while differ in terms of their

position (column position) within the network as shown in Figure 2.10. The purpose of

having such value assignment is to uniquely mark the position of GN with its column

number in the network. Nevertheless, this kind of arrangement is just one of the possible

structural GN arrangements within the network. Further discussion on GN arrangement

will be discussed in later chapter. Each GN within the network must be able to obtain

the information on the size of the network, in order to determine other GNs’ positions.

This is important, in order to identify its adjacent GNs for recognition processes.

An input pattern in GN network could be defined as a signal spike, or stimulus resulted

from either user activation or information derived from executable program or sensory de-

vices. In addition, it may also represent bit elements of an image (Khan, Muhamad Amin

2.5. GRAPH NEURON FOR SCALABLE RECOGNITION SCHEME 51

and Raja Mahmood, 2010b) or a stimulus/signal spike produced within a network intru-

sion detection application (Baig et al., 2006). Each GN is capable of identifying value

that corresponds to its ID from the pattern that has been introduced. For instance, in

Figure 2.10, GN that holds the value ’B’ will only respond to the pattern signal with

element ’B’ on the same position. In this context, GN network must be able to obtain

prior knowledge of the pattern, in order to generate the network that matches the criteria

of the patterns that will be used. This kind of network is considered to be a supervised

GN network.

GN recognition process involves the memorisation of adjacency information obtained

from the edges of the graph. Adjacency information for each GN is represented using

the (left, right) formation. Each activated GN therefore records the information retrieved

from its adjacent left or right nodes. In the GN terminology, this adjacency information

is known as bias entry where each GN maintains an array of such entries. The entries for

the entire stored pattern are collectively stored in the bias arrays. Each GN would hold

a single bias array containing all the bias entries obtained in the recognition processes.

In this context, GN offers low storage complexity in recognition process since each GN is

only required to store a single array. Furthermore, each GN’s bias array only stores the

unique adjacency information derived from the input patterns.

In graph-matching representation, pattern recognition involving GN network imple-

ments graph comparison approach by treating each pattern as a graph with each element

within a pattern as a vertex and the position between elements as an edge. Consider the

following example: Given two patterns Pin and Pst, pattern Pin is said to match pattern

Pst where the following conditions are met:

i. Number of vertices, Vin is equivalent to the number of vertices Vst, i.e. |Vin| = |Vst|.

ii. Number of edges, Ein is equivalent to the number of edges Est, i.e. |Ein| = |Est|.

iii. Bias entry, b ∈ Bin for each vertex v ∈ Vin is a subset of bias array Bst for each

vertex v ∈ Vst, i.e. b ∈ Bst.

The pattern recognition process initially takes place in the following phases:

Pattern Input phase: An input pattern, comprising p(value, position) pairs, is

sequentially broadcast through the network. Each node based on its pre-defined position

52 CHAPTER 2. PATTERN RECOGNITION AND DISTRIBUTED APPROACH

and value setting responds to the relevant input pair; disregarding the remainder of the

pattern. From Figure 2.11, GN (X,1) with a pre-defined value = ’X’ and position = 1,

will respond to the first letter of pattern P1, i.e. ”X”YXX, input as pair p1(X,1). It will

ignore the rest of the message. Similarly GN(Y,2) will respond to the second pair p2(Y,2),

GN(X,3) will respond to p3(X,3), and GN(X,4) will respond to p4(X,4). All other GNs

will remain inactive during this pattern input phase.

Figure 2.11: GN recognition process with bias array illustration for different input pat-
terns.

Synchronisation phase: A broadcast signal is sent out marking the end of the

incoming pattern to all the GNs.

Bias array update: During this phase, each activated GN contacts all the adjacent

nodes to find out the ones which responded to the input. It can be seen from Figure 3.4.

that for the input pattern P1 (XYXX), GN(X,1) will update its local bias array with the

entry [GN(Y,2)]. Similarly, GN(Y,2) will update its bias array with the entry [GN(X,1),

GN(X,3)], GN(X,3) will add [GN(Y,2), GN(X,4)] to its bias array, and GN(X,4) will

add [GN(X,3)]. Thus each bias array entry records the adjacent nodes being activated

within a particular pattern input phase. Thus a row of the bias array represents a part

of the stored pattern. A new pair is defined, by a GN, as the one which has a different

set of adjacent GNs to all existing rows of its bias array. A new pattern is found when

at least one GN, within the list of activated GNs, cannot find a matching entry in its

bias array. The new patterns are stored, and previously encountered patterns are recalled

2.5. GRAPH NEURON FOR SCALABLE RECOGNITION SCHEME 53

in this stage. Table 2.1 shows the process where pattern “XXYX” is stored and then

recalled. Note that when the pattern is being stored for the first time, the output from

the GN network would be in the form of a null entry; represented by the‘#’ pattern in

the table. A null response indicates that no match has been found and that the segments

of the pattern have been stored by the GN.

Input Pattern Output

First Input XXYX #### (Store)

Second Input XXYX XXYX (Recall)

Table 2.1: Store and recall responses of a GN Array.

Stages 1 and 2 of the GN learning phase take place in a completely parallel and

decentralised manner. It may be seen from Figure 2.11 that the maximum bias array size

of two occurs in GN(Y,2) after the array has stored four patterns. The scalability tests,

with up to 16,384 nodes, have shown that the computational complexity only increases

nominally with the increases in the size of the network (Baqer et al., 2005).

In supervised GN approach, the size of the network relies on the size of the patterns

and its number of unique value of elements for recognition or classification purposes. Given

patterns P = a, an analysis involving one-dimensional GN network will require number of

GN neuron, N(a) as follows.

N (a) = sa × ea (2.4)

Where sa represents the size, and ea as the number of unique elements of pattern a.

Eventually, with an increase in the dimension of patterns, there will also be an increase

in the number of GN neurons within the GN network. Hence, given a dimension of pattern

a as da, the number of GN neuron could be determined as follows.

N (a) = sa × ea × da (2.5)

The GN algorithm has initially been introduced by Khan (2002). Since then, GN has

been used in a number of applications involving pattern recognition and classification.

With lightweight and distributed features, GN has been applied in resource-constrained

networks such as in the wireless sensor networks (WSNs). Khan and Mihailescu (2004)

have proposed a GN implementation for pattern recognition within WSN network. By

54 CHAPTER 2. PATTERN RECOGNITION AND DISTRIBUTED APPROACH

simulating sensory reaction on artificial nervous system using WSN, GN has been shown

to be capable of differentiating internal stress patterns within the network and patterns

resulting from external loading conditions in a structural health monitoring (SHM) appli-

cation. In addition, GN requires low data storage capacity and is therefore mostly suitable

for WSN deployment. In another work, Baig et al. (2006) has proposed the use of GN

pattern recognition algorithm for distributed denial of service (DDoS) attack detection

within WSN network. GN algorithm has been able to detect DDoS attack patterns in

WSN using analysis on internal traffic flow of the network. This implementation of GN

has been tested on three different network topologies, and the results have shown that it

produces high recognition accuracies for all topologies.

GN algorithm has also been proven to offer an energy-efficient mechanism for pattern

recognition. This follows the work that has been carried out by Baqer and Khan (2007)

on energy-efficient pattern recognition approach for WSN. In this work, the use of GN

for event detection has been demonstrated. GN has shown to offer an energy-efficient

mechanism for event detection within WSN by conducting the detection and analysis in

situ, i.e. at the sensor node level. This is in contrary to existing approaches in which the

analysis on the occurrences of event is conducted at the base station.

Apart from WSN deployment, GN has also been proposed for pattern recognition

application within large-scale networks such as the Internet and peer-to-peer (P2P) net-

works. Nasution et al. (2005) have proposed a GN implementation as plan recogniser in

the Trusted Transient Simple Network (TTSN) security control system architecture.

The ability of Graph Neuron (GN) algorithm to provide a fast, efficient and scalable

solution for pattern recognition have made it capable to be deployed in a number of dif-

ferent network environment, ranging from resource-constrained networks such as WSN, to

large-scale networks such as the Internet and peer-to-peer (P2P) networks. Nevertheless,

GN implementation also has its own limitations, including high requirement for number

of neurons in large-scale and multi-dimensional patterns, as well as inaccuracy from a

phenomenon known as intersection or crosstalk problem. The first limitation is less sig-

nificant, given that the structure of GN network could be abstracted in the form of either

memory structure or actual processing nodes working together to form as a GN network.

An important limitation of GN is the intersection problem. This problem is a result of

GN’s inability to obtain full information on the pattern. Rather, GN builds up pattern

2.5. GRAPH NEURON FOR SCALABLE RECOGNITION SCHEME 55

information through links between adjacent neurons. In the following section, detailed

discussions on this crosstalk issue in GN implementation will be presented.

2.5.3 GN Complexity Estimation

The following is the estimation of GN computational complexity in its recognition pro-

cedure. A Big-O analysis on GN procedure was performed, specifically on the bias array

update phase. The justification for this selection is such that the core recognition function

in GN is the bias array update within each GN neuron. In conducting this analysis, The

bias array update procedure for each neuron is observed in the form of pseudocode as

follows:

Algorithm 1 Bias Array Update Procedure for GN

1: {input.l: index from left-side GN, leftGN}
2: {input.r: index from right-side GN, rightGN}
3: {bl,r: bias entry; barray: bias array; inputl,r: combined index left and right}
4: input.l← leftGN
5: input.r ← rightGN
6: for all bl,r ∈ barray do
7: if inputl,r ≡ bl,r then
8: return b
9: exit FOR

10: else
11: if bl,r is last entry then
12: bl,r + 1 = inputl,r
13: else
14: continue
15: end if
16: end if
17: end for

Consider the bias array update as a function f(B) = Tf(B)(N) in the previous pseu-

docode, it is clearly demonstrated that for each input pattern, the function implements a

linear search mechanism, hence it’s complexity could be derived as O(N). Hence, we can

deduce that Tf(B)(N) = O(N). From this observation, it is evident that GN offers low

complexity in its recognition process, by implementing a simple linear search technique

for identifying recall or new patterns introduced into the network.

Another complexity estimation that has been carried out for GN implementation is

storage capacity analysis. This analysis involves estimating the maximum size of bias array

for each input pattern stored within the GN network. For 2-dimensional GN structure, the

maximum number of bias entries is determined by the number of possible combinations

56 CHAPTER 2. PATTERN RECOGNITION AND DISTRIBUTED APPROACH

of entries (left, right), obtained from adjacent GNs. Hence, these possible combinations

directly related to the number of rows (different number of pattern elements) within the

composition. In addition, the maximum bias array size for each GN is also influenced by

its position. Therefore, given number of rows nr, there are two possible approaches to

determine the maximum bias array size, Bmax of GN:

i. If GN is at the edge, Bmax,e = nr.

ii. For non-edge GN, its maximum bias array size is, Bmax,ne = nr
2.

To determine the sum of maximum bias array capacity for all GNs within the network,

ntotal for patterns with size S = a, the following equation could be used:

ntotal = nr (Bmax,ne × (a− 2) + 2Bmax,e)

ntotal = nr

(

nr
2 (a− 2) + 2nr

)

ntotal = nr
2 (nr (a− 2) + 2)

(2.6)

The total maximum bias array capacity of one-dimensional GN network is highly

affected by the number of different elements in input patterns. However, an increase in the

size of pattern moderately influenced its growth. In this context, large-scale patterns with

minimum variation of elements will give lower impact on bias array capacity as compared

to large-scale patterns with high variation of elements. Figure 2.12 shows the impact of

both number of different pattern elements and pattern size towards the growth of total

bias array size for GN networks.

It is best to note that the total maximum bias array size grows linearly with an increase

in pattern size. Hence in this perspective, GN is proven to offer scalability for large-scale

patterns. An increase in the dimension of the patterns would also affect the total size of

bias array within the GN composition. This is due to an increase in the number of possible

combination entries. For instance, in a 3-dimensional GN network, the bias entry of each

GN could be in the form of (left, right, top, bottom), which is equivalent to number of

rows nr
4.

2.5.4 Crosstalk Issue in GN

GN pattern recognition approach involves the process of obtaining subpattern information

between two or more adjacent neurons. For instance, given a pattern “abcdef”, GN network

2.5. GRAPH NEURON FOR SCALABLE RECOGNITION SCHEME 57

Figure 2.12: Maximum bias array analysis for GN implementation on increasing different
number of pattern elements and pattern size.

will memorise this pattern in the form of subpatterns “ab”, “abc”, “bcd”, “cde”, “def”,

and ”ef”. Note that the number of subpattern compositions is equivalent to the number

of active neurons.

GN’s limited perspective on overall pattern information would affect a significant inac-

curacy in its recognition scheme. As the size of the pattern increases, it is more difficult for

a GN network to obtain an overview of the pattern’s composition. This produces incom-

plete results, where different patterns having similar subpattern structure leads to false

recall. Let us suppose that there is a GN network which can allocate 6 possible element

values, e.g. u, v, w, x, y, and z, for a 5-element pattern. A pattern uvwxz, followed by

zvwxy is introduced. These two patterns would be stored by the GN array. Next, we intro-

duce the pattern uvwxy, this will produce a recall. Clearly the recall is false since the last

pattern does not match the previously stored patterns. The reason for this false recall is

that a GN node only knows of its own value and its adjacent GN values. Hence, the input

patterns in this case will be stored as segments uv, uvw, vwx, wxy, xy. The latest input

pattern, though different from the two previous patterns, contain all the segments of the

previously stored patterns. Figure 2.13 simplifies this example in graphical representation.

The example is extended by looking into the bias array analysis within the GN network

for the example given previously. Figure 2.14 shows an illustration of bias array analysis on

58 CHAPTER 2. PATTERN RECOGNITION AND DISTRIBUTED APPROACH

Figure 2.13: Crosstalk phenomenon illustration on input patterns in GN network.

the GN network for the crosstalk example. Note that the recall made for pattern uvwxy

is perceived to be true by all the activated GNs, since all the subpatterns are found.

However, the actual recall is inaccurate, since the test pattern as a whole does not match

the stored patterns. This phenomenon is known as intersection or crosstalk problem.

Figure 2.14: Crosstalk phenomenon in GN pattern recognition.

In this figure, the bias arrays for both patterns uvwxz and zvwxy are stored (red and

black respectively). With the introduction of pattern uvwxy, all the bias entries of these

two patterns are recalled, hence creating a false recall.

2.6. HIERARCHICAL GRAPH NEURON (HGN) 59

In order to solve the crosstalk problem in GN pattern recognition algorithm, Nasution

and Khan (2008) has proposed a hierarchical structure for GN, known as Hierarchical

Graph Neuron (HGN). The underlying principle of HGN implementation is such that the

capability of “perceiving neighbours” in each GN within the network must be expanded.

This is achieved by having higher layers of GN neurons that oversee the entire pattern

information. Hence, it will provide a bird’s eye view of the overall pattern. Figure 2.15

shows the hierarchical layout of HGN for binary pattern with size of 7 bits.

Figure 2.15: Hierarchical Graph Neuron (HGN) with binary pattern of size 7 bits.

Figure 2.15 demonstrates that HGN is composed of layers of GN networks arranged in

a pyramid-like composition. This composition layout offers significant advantage for GN

implementation, in the sense that it has a capability to contain all information related to

the structure of the patterns stored in this network. Further discussion on HGN pattern

recognition algorithm will be presented in the next section.

2.6 Hierarchical Graph Neuron (HGN)

The limitation of Graph Neuron (GN) on the crosstalk issue has brought forward the

development of Hierarchical Graph Neuron (HGN). HGN extends the functionalities of

GN algorithm for pattern recognition by providing a bird’s eye view of the overall pattern

structure. It thus, eliminates the possibility of false recalls in the recognition process.

HGN network, as shown in Figure 2.15 is only used in pattern recognition applications

involving one-dimensional patterns. However, HGN does not limit the dimensionality of

patterns. HGN composition can also be expanded to two, three, or even multi-dimensional

60 CHAPTER 2. PATTERN RECOGNITION AND DISTRIBUTED APPROACH

hierarchies, for applications involving complex patterns. Figure 2.16 shows examples of

HGN composition for two-dimensional pattern of size 49 (7 × 7) and three-dimensional

pattern of size 147 (7× 7× 3). For simplicity, a number of pattern elements in this figure

have been omitted.

Figure 2.16: HGN composition of 2- and 3-dimension for pattern size 49 and 147.

With an increase in the dimension of HGN network, an interesting side effect has been

discovered. According to Nasution (2007), by increasing the dimension of hierarchical

composition in HGN, the number of GN within the hierarchy will be significantly reduced.

Hence, this improves the efficiency of the network for recognition involving large-scale

patterns. For example, given one-dimensional patterns of size 147, the total number of

GN required is: 147 + 145 + 143 + . . .+ 3 + 1 = 5476. A two-dimensional (21× 7 = 147)

GN composition requires: 21×7+21×5+21×3+21+19+ . . .+3+1 = 436 GN. In this

example, a 92% reduction in the number of GN within the composition has been made.

In this context, having higher dimensional structure would leads to significant reduction

in the size of the network.

As discussed in the previous section, pattern representation in GN network applies the

graph-based format with (value, position) structure. HGN implementation also follows

similar approach. In addition to this, HGN also has a requirement for the size of pat-

terns. Patterns used in HGN recognition scheme must be in odd-size length format. This

requirement is to cater for hierarchical structure of HGN network with the top neuron

overseeing the overall pattern structure. In meeting this requirement, any pattern with

2.6. HIERARCHICAL GRAPH NEURON (HGN) 61

even-size length should add a ’dummy’ value at the end of the pattern, as to form an

odd-size pattern length.

2.6.1 Size of HGN Network

The HGN network is built up from a composition of GNs in a hierarchical structure. It

is important to determine the size of the network, as it helps in constructing efficient

composition within the network, based upon the availability and capacity of processing

nodes within a physical network. In addition, as mentioned earlier, the patterns used in

HGN recognition scheme should be in the form of odd-size patterns. Hence, the base layer

of HGN network must also fulfil this requirement. To analyse the number of GNs required

for a HGN network to conduct recognition on patterns of size, we use and extend the

calculation methods described in (Nasution, 2007).

In HGN pattern recognition involving one-dimensional patterns of size S = x with v

different number of pattern element, the number of GN required, N(x) could be derived

from the following equation:

N (x) = vx+ v (x− 2) + v (x− 4) + . . .+ v = v

(x−1

2)
∑

i=0

(x− 2i) = v

(

x+ 1

2

)2

(2.7)

For two-dimensional patterns with size dimension S = x × y, the number of GN

required, N(x, y) is as the following:

N (x, y) = xy + (x− 2) y + (x− 4) y + . . .+ y + (y − 2) + (y − 4) + · · ·+ 3 + 1

N (x, y) =

(

∑(x−1

2)
i=0 (x− 2i)

)

y − y +
∑(y−1

2)
i=0 (y − 2i)

N (x, y) =
(

(

x+1
2

)2
− 1
)

y +
(

y+1
2

)2

(2.8)

Nevertheless, equation 2.8 does not take into account the number of different pattern

element v. Therefore, we add up this value into this equation:

62 CHAPTER 2. PATTERN RECOGNITION AND DISTRIBUTED APPROACH

N (x, y) = v

(

((

x+ 1

2

)2

− 1

)

y +

(

y + 1

2

)2
)

(2.9)

To illustrate the effect of having higher-dimensional composition of patterns towards

the number of GN required, equations 2.7 and 2.9 are plotted as a comparison between

one-dimensional and two-dimensional composition for a series of binary pattern sizes.

Patterns with quadratic-value sizes, i.e. x = y for two-dimensional composition are used.

Figure 2.17 shows the comparison.

Figure 2.17: Analysis on the effects of increasing pattern size over total maximum bias
array size within HGN for 1- and 2-dimensional compositions.

The graph shows significant reduction in the number of GN within a two-dimensional

composition against one-dimensional structure. However, this reduction does not always

guarantee that the complexity of HGN algorithm with higher-dimensional structure re-

main equivalent to one-dimensional composition. Further discussion on this aspect will be

presented in Section 2.6.5

2.6.2 HGN Recognition Procedure

HGN pattern recognition procedure involves a number of stages that include recognition

at every layer within the hierarchical structure. The communication paths within the

2.6. HIERARCHICAL GRAPH NEURON (HGN) 63

HGN layers are similar to the Simple GN. The HGN communications propagate from the

base layer GNs to the top GN, and consequently, from the top GN to the base layer GNs.

The HGN communications occur in the following procedure. Each GN at the base layer

receives an input pattern from an external entity, which we refer to as the Stimulator and

Interpreter (SI) module after Nasution and Khan (2008). Each GN that receives an input

is called an active GN. Active GN at the base layer would send its p(column, row) pair to

all the adjacent GNs, acknowledging that it has been activated. The p(column, row) pairs

make up the GN’s bias array entry for the current input pattern for all GNs at the base

layer. In the end, each neuron would have received two pairs from its adjacent neurons,

with the exception of the neurons on the edges, which will receive a single pair. Each

active GN must then calculate its bias index. If the incoming pair combination is found in

its bias array, then the index of the entry would be noted. Otherwise a new index would

be generated to store and reference the pattern. Each active GN would then send its index

value to its corresponding higher layer GN within the same column, except for the GNs

on the edges. This process continues until the top most layer has been reached. The top

layer GNs decide whether the input is to be treated as a new pattern and stored or it is

a previously known pattern which needs to be recalled. A new index value is propagated

downwards for a stored pattern and an existing index value is propagated downwards for

a recalled pattern.

In relation to the HGN recognition procedure, GN’s bias array structure within the hi-

erarchical composition also follows the bias array formation in GN network. Nevertheless,

a modification has been made to cater the functionality of higher layer GNs to conduct

recognition based upon the results of adjacency comparison made at lower layer GNs. The

followings are bias entry conditions for GNs within any HGN network:

i. For GNs at the base layer, their bias entry takes the form of {left,right}, where

left and right represent the row number of left-adjacent and right-adjacent neuron

respectively.

ii. For GNs at the middle layer, their bias entry takes the form of {left-index,lower-

index,right-index}, where left-, lower-, and right- indices represent indices obtained

from its left, lower (within the same column), and right GNs respectively.

64 CHAPTER 2. PATTERN RECOGNITION AND DISTRIBUTED APPROACH

iii. The bias entry structure of top layer GNs is in the form of {lower-index}, which is

the index obtained from its lower layer GN (within the same column).

2.6.3 HGN Complexity Estimation

The following discussion focuses on the complexity analysis of HGN pattern recognition

scheme. This chapter focuses on the bias array capacity analysis and Big-O estimation

of HGN network. Similar analysis has been carried out on GN network as discussed in

Section 2.5.3.

For Big-O estimation, HGN strictly follows GN recognition procedure, using adjacency

comparison approach. The difference between HGN and GN implementations is on their

execution process. HGN applies multiple-stage execution (based on hierarchical structure)

while GN implements single-stage execution. Hence the complexity of HGN, in terms of

Big-O estimation is still O(N).

In regards to storage capacity analysis, this research considers the bias array capacity

of each GN within the HGN composition. Detailed analysis of HGN storage capacity

has been discussed in (Nasution and Khan, 2008). There is no intention to repeat the

explanation in this thesis. However, a summary of the complexity estimation will be

presented.

In this analysis, the size of the bias array is observed as different patterns are being

stored. The number of possible pattern combinations increases exponentially with an

increase in the pattern size. The impact of the pattern size on the bias array storage is an

important factor in bias array complexity analysis. In this regard the analysis is conducted

by segregating the bias arrays according to the layers within a particular HGN network.

The following equations show the bias array size estimation for binary patterns. This bias

array size is determined using the number of bias entries recorded for each GN.

At the base layer (0):

The size of bias array for base layer GN in HGN composition strictly follows the esti-

mation that has been carried out for GN algorithm, as described in Section 2.5.3. The

maximum size of GN’s bias array could be derived from possible number of adjacency

information combinations (from preceding and succeeding GNs. In this perspective, we

consider the number of rows (number of different pattern elements) nr, for each pattern set

2.6. HIERARCHICAL GRAPH NEURON (HGN) 65

used. Therefore, each non-edge GN neuron in HGN for one-dimensional patterns would

accommodate maximum bias array size, bne,0 as the following:

bne,0 = nr
2 (2.10)

On the other hand, each GN at the edge of the layer only receives adjacency information

either from its preceding or succeeding GN. Hence, its maximum bias array size, be,0 could

be determined as:

be,0 = nr (2.11)

This is equivalent to the number of different pattern elements. Consequently, the total

size of bias array of GNs at the base layer, btotal,0 for patterns with size S = a could be

derived using a similar approach as described in Section 2.5.3:

btotal,0 = nr (bne,0 × (a− 2) + 2be,0)

btotal,0 = nr

(

nr
2 × (a− 2) + 2nr

)

btotal,0 = nr
2 (nr × (a− 2) + 2)

(2.12)

At layer i :

GNs at middle layer receive indices from lower/base layer GNs and perform recognition

procedure using these values. Hence, the maximum bias array size of GNs at lower/base

layer affects the calculation of bias array estimation for these middle layer GNs. For

non-edge GN in a middle layer i, the maximum size of its bias array could be derived as

follows:

bne,i = nr
2 × bne,i−1

bne,i = nr
2 × nr

2i

bne,i = nr
2i+2

(2.13)

Similarly, for GNs at the edge:

be,i = nr × be,i−1

be,i = nr × nr
2i

be,i = nr
2i+1

(2.14)

66 CHAPTER 2. PATTERN RECOGNITION AND DISTRIBUTED APPROACH

The total size of maximum bias array for all GNs in each middle layer i, could be

determined from the following equation:

btotal,i = nr (bne,i (a− (2i+ 2)) + 2be,i)

btotal,i = nr

(

nr
2i+2 (a− (2i+ 2)) + 2nr

(2i+1)
)

btotal,i = nr
2i+3

(

nr (a− (2i+ 2)) + 2nr
(2i+2)

)

(2.15)

GNs at the top layer:

At the top layer, the maximum size of the bias array could be derived from the previous

level non-edge GN’s maximum bias array size. Hence, the maximum size of the bias array

of neuron and the sum of all possible bias arrays at the top level is:

btop = nr × bne,top−1

btop = nr × nr
a−1

btop = nr
a

(2.16)

Given all the equations 2.12, 2.15, and 2.16, the sum of all bias arrays, bHGN can

now be constructed for all GNs in each HGN composition.

bHGN = btotal,0 +
∑(a+1

2)−2

i=1 btotal,i + btotal,top

bHGN = nr
2 (nr (a− 2) + 2) +

(

∑(a+1

2)−2

i=1 nr
(2i+3) (a− (2i+ 2) + 2) + 2nr

(2i+2)

)

+ nr
a

(2.17)

With regards to this bias array capacity estimation, maximum bias array size for

complexity analysis of HGN has been considered. The results have shown that the size of

bias array would be significantly affected, as the size of the network and the pattern size

increased. However, this does not take into consideration where patterns being stored are

having similar subpattern features or close resemblance to one another (i.e. not totally

unique). In this context, uniform distribution could be used to estimate the average

bias array size for a given pattern set being stored in the network. Hence, it can be

assumed that the average size of bias array could be determined from the number of

stored patterns divided by the maximum number of unique patterns (from combinations

of different pattern elements for a given pattern size), i.e.
np

nr
a , where np represents the

number of patterns stored in HGN composition.

2.6. HIERARCHICAL GRAPH NEURON (HGN) 67

2.6.4 HGN Solution to Crosstalk Problem

As already discussed in Section 2.5.4, the main problem with Graph Neuron implemen-

tation is on the intersection or crosstalk issue, due to its inability to oversee the entire

pattern structure. This limitation has been overcome by HGN with its hierarchical net-

work layout as shown in Figure 2.15. In this subsection, further analysis on this solution

will be presented. The crosstalk example in Section 2.5.4 will be used for this explanation.

A one-dimensional HGN network for pattern size of 5 as shown in Figure 2.18 will

be considered. The number of GN neurons required for this composition with 6 different

pattern elements will be equivalent to 6× ((5 + 1)÷ 2)2 = 54.

Figure 2.18: HGN composition for crosstalk example (Section 2.3.4).

When the pattern uvwxz firstly introduced into the HGN network, each GN with

matched (value, position) of elements within the pattern will be activated. Hence, GN

U1, V2, W3, X4, and Z5 will be activated. Once the activation has been initiated, each

active GN at the base layer will perform recognition process by exchanging its value with

the adjacent GNs. This activity will result in the formation of bias array structure as

shown in Table 2.2. All active GNs (with exception to GNs at the edges (U1 and Z5))

will send their bias index to corresponding higher layer GNs (in this case, V2 → 1V1,

W3 → 1W2, and X4 → 1X3). Once these layer-1 GNs receive the index, then it will

68 CHAPTER 2. PATTERN RECOGNITION AND DISTRIBUTED APPROACH

be activated. The recognition process at this level involves comparing indices from lower

layer GNs obtained by adjacent GNs. Hence, the bias array contents of each GN at layer-1

are also shown in Table 2.2. This process follows by GN 1W3 sends its latest index to

top layer GN, TW. At this stage, GN TW will check its bias array of any appearance

of index retrieved from 1W2. If any, it will recall the index and propagate it back to all

GNs within the network. Otherwise, new index will be generated and propagated to the

network. Table 2.3 and 2.4 show the continuation of this process, in terms of bias arrays

of all the GNs in the network, after patterns zvwxy and uvwxy has been introduced.

Layer Active GN Bias Array Entries

Base

U1 1(#, V2)
V2 1(U1, W3)
W3 1(V2, X4)
X4 1(W3, Z5)
Z5 1(X4, #)

Middle
1V1 1(#, 1, 1)
1W2 1(1, 1, 1)
1X3 1(1, 1, #)

Top TW 1

Table 2.2: Bias array entries for all active GN in HGN composition when pattern uvwxz
is introduced.

Layer Active GN Bias Array Entries

Base

Z1 1(#, V2)

V2
1(U1, W3)
2(Z1, W3)

W3 1(V2, X4)

X4
1(W3, Z5)
2(W3, Y5)

Y5 1(X4, #)

Middle
1V1

1(#, 1, 1)
2(#, 2, 1)

1W2
1(1, 1, 1)
2(2, 1, 2)

1X3
1(1, 1, #)
2(1, 2, #)

Top
TW

1
2

Table 2.3: Bias array entries for all active GN in HGN composition when pattern zvwxy
is introduced.

2.6. HIERARCHICAL GRAPH NEURON (HGN) 69

Layer Active GN Bias Array Entries

Base

U1 1(#, V2)

V2
1(U1, W3)
2(Z1, W3)

W3 1(V2, X4)

X4
1(W3, Z5)
2(W3, Y5)

Y5 1(X4, #)

Middle
1V1

1(#, 1, 1)
2(#, 2, 1)

1W2
1(1, 1, 1)
2(2, 1, 2)
3(1, 1, 2)

1X3
1(1, 1, #)
2(1, 2, #)

Top TW
1
2
3

Table 2.4: Bias array entries for all active GN in HGN composition when pattern uvwxy
is introduced.

With HGN implementation, pattern uvwxy has found to be a different pattern from

patterns uvwxz and zvwxy. Hence, crosstalk issue has been solved by this hierarchical

scheme. Nevertheless, with the advent of HGN pattern recognition scheme, an issue arising

is the scalability of HGN for large and complex patterns. This issue will be discussed in

the next subsection.

2.6.5 Scalability in HGN Approach

HGN pattern recognition scheme has the capability to perform highly-accurate analysis on

patterns using in-network processing approach. This enabled collaboration of processing

nodes for recognition involving large-scale patterns, instead of relying on other single-

processing (or CPU-centric) recognition schemes. Nevertheless, an increase in the size of

patterns leads to an overgrown network. As shown in Sections 2.6.1 and 2.6.3, as pattern

size grows, it will significantly affect the number of GN required as well as the capacity of

each GN’s bias array.

The number of neurons generated in HGN implementation, increases quadratically with

an increase in the size of the pattern. Figure 2.19 shows the graph representing a number of

neurons in one-dimensional HGN recognition scheme for patterns with increasing number

of different elements and pattern size.

70 CHAPTER 2. PATTERN RECOGNITION AND DISTRIBUTED APPROACH

Figure 2.19: Growth rate of GNs in HGN composition with increasing number of different
pattern elements and pattern size.

Distributed GN

In order to solve this overgrowing size of network, Nasution (2007) proposed a distributed

approach for HGN implementation by distributing a complex HGN composition within

a number of high performance computers. In this context, a HGN network could be

decomposed into a number of sub-compositions, according to the number of hosts available

within the physical network. Figure 2.20 shows a distribution of one-dimensional HGN

composition for pattern size 13, into 4 different hosts. Each GN in the composition is

treated as a memory block within a host that is communicated through an allocated

terminal known as port. Port in a computer system is used to establish communication

channel between processes.

Each GN in this network model is supplied with additional parameter known as port

number. This port number identifies each GN and is used in inter-GN communication. The

communication between hosts is achieved using physical communication such as Ethernet

(using IP address). There are some limitations with this approach. These include:

2.6. HIERARCHICAL GRAPH NEURON (HGN) 71

Figure 2.20: HGN decomposition into a number hosts within a physical network.

i. Additional parameter and indices required. Each GN within the composition needs

to acquire a unique port number, column index, row index, and ID. Layer index is

also required to indicate the GN’s level within the hierarchy. The effect of these

additional indices and parameter leads to an increase in the complexity of processes

involved in HGN recognition scheme. These values must be pre-assigned before ac-

tual recognition process being performed. Nevertheless, the change in its complexity

is still minimal.

ii. The port number assigned to each GN must be pre-determined beforehand. In

addition, each GN must be able to calculate its adjacent GN’s port number before

any communication could take place. This pre-arrangement requires all GNs to evoke

additional pre-processing step in order to identify and calculate the destination ports

of its both preceding and succeeding GNs.

iii. All the hosts involved must stay ‘alive’ for the duration of recognition process. This

effect will create high-interdependency between hosts and it will be prone to a total

72 CHAPTER 2. PATTERN RECOGNITION AND DISTRIBUTED APPROACH

failure due to a failure of any single host. In addition, the costs of communication

between hosts will increase due to massive and rapid message passing between GNs

with different port numbers.

With these limitations in mind, a different arrangement of HGN composition is pro-

posed, that could be distributed across physical network with low-interdependency among

hosts and low requirement for the number of GN within its structure. Moreover, changes

to the complexity level of HGN will be minimised, thereby retaining its overall structure.

2.7 Distributed Approach for HGN

This section describes an overview of the proposed distributed HGN scheme. A major

portion of this section has been published as a case study in the book chapter by Khan et al.

(2010b). HGN with distributed approach implements divide-and-distribute techniques by

dividing pattern into subpatterns, and delegating these subpatterns to each available host

that carries out recognition procedure using HGN sub-composition.

Distributed HGN essentially extends the original HGN infrastructure wherein its com-

position is decomposed into several sub-compositions. However, this is different from

the previous approach, in which the whole HGN structure is decomposed and delegated

to available hosts. Distributed HGN decomposes HGN network by creating smaller sub-

networks, each acting as an actual HGN network that performs recognition on subpatterns.

Instead of using the whole patterns as inputs, each pattern is segmented into smaller parts

and each of the pattern segments acts as an input to the respective HGN sub-network com-

position. Figure 2.21 shows the logical illustration of the HGN decomposition into each

HGN sub-compositions.

Each of the HGN subnet has the ability to process pattern segments independently from

one another. Hence the compositions may be independently mapped onto the available

nodes in the network without losing the HGN accuracy. Figure 2.22 shows a comparison

between number of GNs required for original HGN formation and our proposed distributed

HGN approach. The comparison is based on binary pattern segments with bit-size 7,

corresponding to an overall pattern of 7-bit increments for the HGN. The distributed

HGN scheme would require less than 1500 nodes for processing a 245-bit binary pattern.

2.7. DISTRIBUTED APPROACH FOR HGN 73

Figure 2.21: HGN Decomposition into distributed HGN sub-networks. The HGN network
is decomposed into three HGN subnets.

On the other hand, original HGN structure would require about 30000 nodes for similar

recognition process.

An important consideration in proposing this approach is that the distribution of large

HGN network into smaller HGN subnets allows each subnet to be assigned to a specific

host within a physical network. Having a smaller composition on each host will provide a

two-fold advantage:

i. Smaller capacity of memory space to be allocated for each HGN subnet, due to small

HGN structure.

ii. Reducing communication costs for inter-GN communications, while only maintaining

inter-HGN communications.

Within each host, HGN subnet is structured as an executable code and each GN is

represented as an associative data structure in a block of memory space for storing and

recalling patterns. The communications between GNs could be achieved either using

a sequential or parallel processing approach, via message passing infrastructure such as

Message Passing Interface (MPI). Each GN could also be represented as a processing

unit in a multi-core processor machine. Different configurations of this distributed HGN

scheme will be discussed extensively in later chapters.

74 CHAPTER 2. PATTERN RECOGNITION AND DISTRIBUTED APPROACH

Figure 2.22: Comparison between HGN and distributed HGN for increasing size of pat-
terns. 7-bit pattern segment is used for each HGN subnet in distributed HGN scheme.

In order to obtain an overall view of patterns, the distributed HGN scheme allows

communications between HGN subnets that reside over different hosts. The communica-

tions involve message exchanges containing indices obtained from each of HGN subnets

for every subpattern analysed by the network. Cumulatively, these indices represent the

entire pattern structure.

To test the accuracy and scalability of distributed approach for HGN algorithm, two

significant factors related to deployment of application within any distributed systems

are considered, namely (1) the varying capabilities of the participating nodes and (2)

the distribution of the computational load. Two different distributed schemes were simu-

lated. The first test addresses varying processing capabilities within a distributed system

through the non-uniform approach. The second test demonstrates the distributiveness of

the approach through the uniform distributed HGN model.

2.7.1 Distributed Approach Design

The simulation application for pattern recognition application has been developed using

C programming language with Message Passing Interface (MPI) support for GN commu-

nications. The test data for this simulation comprises a set of alphabet character patterns

which can be visually distinguished. The letters ’A’, ’I’, ’J’, ’S’, ’X’, and ’Z’ were selected

2.7. DISTRIBUTED APPROACH FOR HGN 75

in this regard. These letters were mapped onto 7x5 1-bit image representations, as shown

in Figure 2.23.

Figure 2.23: Test character representations in 7-by-5 1-bit format.

The letters would then be converted into sequences of 35-bit patterns, using a horizon-

tal scanning approach. These patterns would then be fed into the simulation. Each pat-

tern will be decomposed into several subpatterns, according to the quantity of hosts/sub-

compositions available. Each of these subpatterns will then be introduced into each HGN

subnet through its base layer of GNs. In bitmap representations, the dot pixel on the

image could be represented by 1, while the blank pixel could be represented by 0; as

demonstrated in Figure 2.24.

Figure 2.24: Character bitmap image representations.

The command “I10” would hence initialise the base-layer GNs with pattern element

1 and 0 respectively. The ‘STORE’ command is used to store the original patterns. An

example of the command to store a particular subpattern would be “S1111111”, where

the pattern after the letter ‘S’ will be stored. In response to the “STORE” command,

each subnet will generate a new index if the subpattern store operation was successful.

Otherwise, the index under which the subpattern was previously stored would be recalled.

The “RECALL” command is used to input distorted or test subpatterns to the distributed

HGN network. HGN subnet would respond with the output 0, if a close match is not

found. The subpattern index will be returned if a match was found. The “RECALL”

command takes the form of “R0000000”, where the letter ‘R’ is used to signify a recall

76 CHAPTER 2. PATTERN RECOGNITION AND DISTRIBUTED APPROACH

operation. This operation informs the subnet that the subpattern is either a new one or

it is a distorted version of a previously stored subpattern.

2.7.2 Non-Uniform Approach

As mentioned in the previous section, the distributed approach in HGN takes the form

of multiple HGN compositions. These compositions may then be distributed across the

networks. In non-uniform model, the compositions may vary in size. For this simulation,

a 7-21-7 composition has been chosen, where there are three sub-structures of HGN sub-

net, comprising two 7-element HGNs, and one 21-element HGN. Figure 2.25 illustrates

these compositions. Note that in this diagram, the middle host/network has been named

substantially larger than the other two hosts/networks.

Figure 2.25: Non-uniform distributed HGN approach with 7-21-7 compositions for 35-
element patterns with two possible values.

The non-uniform distribution takes into consideration an environment where some

parts of the network would have lower power resources, and hence would only be able to

provide limited processing capability as compared to other parts of the network. With

this scenario in mind, the effect of an unbalanced composition on the pattern recognition

accuracy of the distributed approach is analysed. The results of this simulation have

shown that the non-uniform model offers almost equivalent level of accuracy to the HGN.

Furthermore, it requires less number of GNs in its composition. The number of GN

required for a single HGN composition could be derived from Equation 2.7 as described in

2.7. DISTRIBUTED APPROACH FOR HGN 77

Section 2.6.1. On the other hand, the number of GN neurons required, N(P) for s subnets

in distributed HGN composition for a given pattern with size P = a is determined using

the following equation:

N (P) = v

(

(

a1+1
2

)2
+
(

a2+1
2

)2
+
(

a3+1
2

)2
+ · · ·+

(

an+1
2

)2
)

;
∑n

i=1 ai

N (P) = v
∑s

i=1

(

ai+1
2

)2
(2.18)

It may be readily noted that the squared term in Equation 2.18 would be substantially

smaller than the one in Equation 2.7 for the same sized problem, resulting in lesser number

of GNs being required.

The mapping process within our simulation begins with the input of the patterns.

Each of the patterns, as shown in Table 2.5, are segmented and then loaded into the HGN

subnets, by the SI module. In this regard, Figure 2.26 shows the bitmap of character ‘I’

being analysed by the distributed HGN. In this case, the character ‘I’ is stored after the

character ‘A’, which has the index value of 1. Hence the results show the character ‘I’ as

a new pattern with the index value of 2. Note that for this simulation, each segment is

input sequentially. However in an actual implementation, the processing of these pattern

segments would occur in parallel; vastly improving the execution time.

Character 35 bits Representation

A 00100010101000111111100011000110001

I 11111000010000110001100011000101110

J 01111100001000001110000010000111110

S 10001100010101000100010101000110001

X 10001100010101000100010101000110001

Z 11111000010001000100010001000011111

Table 2.5: Character representations of 35-bit patterns using a horizontal scanning ap-
proach.

Pattern recognition process

The overall store or recall decision depends upon on the decisions reached by the individual

HGN subnets. The top-layer GNs of each subnet would decide whether the subpattern

would produce a recall or a store. If the pattern segment has not been identified then

the active top GN would output the index value 0. Otherwise, the recalled index value of

78 CHAPTER 2. PATTERN RECOGNITION AND DISTRIBUTED APPROACH

Figure 2.26: The HGN subnets successfully store the bitmap pattern for character ‘I’ at
index value of ‘2’ after having stored the bit map pattern for character ‘A’ at index value
of ‘1’.

the subpattern will be displayed. Figure 2.27 shows the result of 1-bit distorted character

pattern ‘A’ being introduced to the network after the character patterns ‘A’, ‘I’, ‘J’, ‘S’,

‘X’, and ‘Z’ have been stored.

Figure 2.27: Results for introducing 1-bit distortion pattern of character ‘A’. The first
HGN subnet shows that a new subpattern has been found (with assigned index 0) while
other compositions correctly recall this as the pattern associated with index 1 (bitmap
pattern of ‘A’).

Figure 2.27 shows that only one of the subnets records the subpattern as a new pattern.

Other subnets recall the index value of 1, which is the index for the stored character pattern

‘A’. The decision whether the pattern is a recall or store is made using the cumulative

decision among the distributed HGN subnets, through the determination of recall value.

Equation 2.19 shows the calculation of recall Rc of distributed HGN scheme for s subnets.

Note that nr,i represents GNs that produce index that is similar to the index of targeted

pattern class r while nt,i represents each GN in a subnet i.

Rc =
nr,1+nr,2+nr,3+···+nr,s

nt,1+nt,2+nt,3+···+nt,s

Rc =
∑s

i=1
nr,i∑s

i=1
nt,i

(2.19)

2.7. DISTRIBUTED APPROACH FOR HGN 79

Using an example from Figure 2.28, the recall value for 1-bit distortion pattern of

character ‘A’ is (4 + 121 + 16) ÷ (16 + 121 + 16) = 141 ÷ 153 = 0.9216. Therefore, its

recall percentage would be 92.16%.

The non-uniform distributed scheme was tested by applying six levels of distortion to

the stored character patterns and then measuring the recall accuracy for these distorted

patterns. Figure 2.28 shows the original character patterns and the distorted patterns.

Figure 2.28: Character set used in distributed HGN simulation on pattern recognition.

The original character patterns were first stored in the HGN network, and then the

distorted patterns were introduced. The simulation was carried out using a Monash Uni-

versity’s SUN Grid system where parts of the network were assigned to separate grid nodes

for processing.

Results and discussion

The pattern recognition recall rates for distributed HGN and HGN, with respect to iden-

tifying distorted patterns correctly, are shown in Figure 2.29.

80
C
H
A
P
T
E
R

2.
P
A
T
T
E
R
N

R
E
C
O
G
N
IT

IO
N

A
N
D

D
IS
T
R
IB

U
T
E
D

A
P
P
R
O
A
C
H

(a) 1-bit (2.9%) distortion. (b) 2-bit (5.7%) distortion. (c) 3-bit (8.6%) distortion.

(d) 4-bit (11.4%) distortion. (e) 5-bit (14.3%) distortion. (f) 7-bit (20.0%) distortion.

Figure 2.29: Comparison on recall accuracy between non-uniform distributed HGN and HGN pattern recognition schemes on different distortion
levels applied to character set A, I, J, S, X, and Z.

2.7. DISTRIBUTED APPROACH FOR HGN 81

It may be seen from the figures that the recall values for distributed approach are

very similar to the results of the non-distributed approach. In fact, some of the values

obtained are higher than those of the HGN. For example, the 1-bit distorted patterns

show a significant increase in the recall as compared to the HGN. This is owing to the

encapsulation effect of distributed HGN where the effects of the distortion occurring within

a particular subnet do not affect the other subnets. Figure 2.30 shows the encapsulation

effect. It also shows the internal state of the subnets from the 1-bit distorted pattern of

character ‘A’. The effects of the distortion are limited to the first subnet, where a part of

the distorted pattern is analysed, the remaining subnets are not affected by the distortion.

Figure 2.30: A one-bit distortion occurring within the overall input pattern ’A’ stays
encapsulated within the left composition.

The HGN subnets are able to provide higher recall accuracy owing to this encapsulation

effect. The downside to this effect is that if the distortion occurs within the larger subnet,

then the recall accuracy may be adversely affected. This problem can be easily resolved

if all the compositions are of similar sizes. The uniform approach therefore implements

equal-sized compositions.

2.7.3 Uniform Approach

The uniform distributed HGN is introduced as a measure to delimit the effects of distortion

location experienced in non-uniform model. For the purpose of this pattern recognition

simulation, five HGN subnets for 7-bit subpattern were implemented to analyse 35-bit

binary character patterns. Figure 2.31 shows the structure of this composition.

82 CHAPTER 2. PATTERN RECOGNITION AND DISTRIBUTED APPROACH

Figure 2.31: Uniform distributed model composition for analysing 35-bit binary patterns.

The uniform approach has been developed to test the distribution of the HGN algo-

rithm for networks comprising small devices and/or limited processing and storage capa-

bilities. With the relatively smaller sized subnets, each processing node is able to store

smaller pattern segments and thus requires lesser processing capability for the pattern

recognition process. Having similar sized compositions also removes the problem of a

single composition affecting the accuracy of the results.

The simulation of uniform approach, using distorted character patterns from Fig-

ure 2.28, shows that uniform model produces greater efficiency in terms of pattern recog-

nition as compared to the non-uniform approach and the HGN. In this regard, Figure 2.32

shows the recall rates for the uniform distributed HGN and the HGN.

It may be seen from these graphs that the uniform model’s recall values are signifi-

cantly higher than those of the HGN. The increase in the recall accuracy is owing to the

encapsulation effect where the distortions are generally compartmentalized within specific

composition(s) and thus do not affect the findings of other compositions. The added ben-

efit of the uniform approach is that all the compositions are of similar sizes, hence the

problem of an over-sized composition affecting the accuracy of the results is alleviated.

Figure 2.33 shows the encapsulation effect within the uniform distributed approach for

pattern of character ’A’ with 2-bit distortion.

Figure 2.33 demonstrates that the distorted pattern segments are encapsulated within

the first and the third compositions from the left. The rest of the pattern segments are

recalled as pattern of character ‘A’ (represented by the bias index entry of ‘1’).

A comparison of recall accuracy for the uniform and non-uniform models are shown in

Figure 2.34.

It is apparent from these figures that the uniform approach generally produces higher

recall accuracy values for the distorted patterns as compared to the non-uniform ones.

2.7.
D
IS
T
R
IB

U
T
E
D

A
P
P
R
O
A
C
H

F
O
R

H
G
N

83

(a) 1-bit (2.9%) distortion. (b) 2-bit (5.7%) distortion. (c) 3-bit (8.6%) distortion.

(d) 4-bit (11.4%) distortion. (e) 5-bit (14.3%) distortion. (f) 7-bit (20.0%) distortion.

Figure 2.32: Comparison on recall accuracy between uniform distributed HGN and HGN pattern recognition schemes on different distortion levels
applied to character set A, I, J, S, X, and Z.

84 CHAPTER 2. PATTERN RECOGNITION AND DISTRIBUTED APPROACH

Figure 2.33: Encapsulation effect within uniform model when processing a pattern of char-
acter ‘A’ with 2-bit distortion. The effects of the distortions are localised within the two
compositions on the left and do not influence the findings of the remaining compositions.

Better performance of the uniform distributed HGN is due to the standard-size encap-

sulation of the local distortions. A close-up view of the difference in handling of the

distortion by the uniform approach may be observed in Figure 2.35. It shows the results

for 1-bit distortion using three 7-bit HGN subnets and one 21-bit HGN composition for

pattern recognition.

The distortion effect within the HGN composition cannot be localised and it propagates

along the right hand side of the composition (Figure 2.35), leading to a null recall. It is

evident that the smaller and similar sized distributed compositions have a better chance

of discovering the distorted pattern as compared to a single HGN composition.

It can be concluded from the information presented and discussed above that the

distributed approach in HGN provides a completely decentralised solution for pattern

recognition within distributed systems. It also retains single-cycle recognition character-

istic of HGN. This approach could be deployed in both micro and macro configurations.

In micro configuration, each GN in HGN subnet could be assigned to a specific comput-

ing node within a physical network. Consequently, each HGN subnet is represented by a

network of computing nodes. In macro configuration, each HGN subnet is assigned to a

specific host within a network, and these hosts in return, formed a computational network

of HGN distributed structure. Further discussion on distributed HGN configurations will

be presented in the next chapter.

2.7.
D
IS
T
R
IB

U
T
E
D

A
P
P
R
O
A
C
H

F
O
R

H
G
N

85

(a) 1-bit (2.9%) distortion. (b) 2-bit (5.7%) distortion. (c) 3-bit (8.6%) distortion.

(d) 4-bit (11.4%) distortion. (e) 5-bit (14.3%) distortion. (f) 7-bit (20.0%) distortion.

Figure 2.34: Comparison on recall accuracy between uniform and non-uniform distributed HGN pattern recognition schemes on different distortion
levels applied to character set A, I, J, S, X, and Z.

86 CHAPTER 2. PATTERN RECOGNITION AND DISTRIBUTED APPROACH

Figure 2.35: The effects of a 1-bit distortion in the pattern get localised within the uniform
distributed compositions (lower) whereas the effects of the distorted pattern are propa-
gated along the right side of the entire HGN composition, leading to a false conclusion.

2.8 Conclusions

In this chapter, a discussion on the pattern recognition concept and theories has been

presented and different kinds of approaches to pattern recognition have been explored. The

advantages and limitations of each approach in relation to scalability issue within pattern

recognition has also been discussed. In addition, based on the two scalability factors being

discussed, it can be derived that existing neural networks are far from providing a scalable

scheme for recognition purposes. However, initiatives are currently being undertaken in

creating more effective approaches using existing algorithms. One of these initiatives is

the development of Graph Neuron (GN) pattern recognition algorithm that implements

an in-network and parallel pattern recognition scheme.

This chapter has also presented a detailed analysis and discussion on GN-based pat-

tern recognition algorithms, namely Graph Neuron (GN) and Hierarchical Graph Neuron

(HGN). In summary, GN is a graph-based scheme that employs graph matching concepts

and performs an in-network processing within its recognition procedure. GN has been

proposed and implemented in different areas of applications, ranging from pattern recog-

nition to event detection in wireless sensor networks (WSNs) and mobile ad hoc networks

(MANETs). An extensive analysis on GN has also been presented. Common limitation of

GN, i.e. crosstalk or intersection problem has also been discussed in details with examples.

2.8. CONCLUSIONS 87

Moving from GN perspective, this chapter also discussed the evolution of HGN as

a solution towards crosstalk issue in GN pattern recognition scheme. HGN algorithm

for pattern recognition has been extensively described in (Nasution, 2007; Nasution and

Khan, 2008). In this chapter, an overview of HGN was provided, with its complexity

estimation. HGN has been found to be a highly accurate recognition scheme that is able

to perform recognition procedure within a distributed system. However, scalability is an

issue in HGN implementation. This is due to overgrowing network size with an increase

in size of patterns used. A number of possible solutions have been proposed, including the

use of high-dimensional HGN structure. Nevertheless, this increases the complexity of the

algorithm.

The main contribution of this chapter is the proposed distributed scheme for HGN

implementation. This distributed approach has been presented as a solution towards the

scalability issue in HGN pattern recognition algorithm. An overview of the proposed algo-

rithm has been provided, including a case study on different forms of its implementations

for binary character recognition. The results of the simulation that has been carried out

indicate that distributed approach produces higher recall accuracy for pattern recogni-

tion as compared to existing HGN scheme. This is mainly due to the error encapsulation

within the distributed HGN subnet that controls error propagation within HGN network.

Distributed approach for HGN also requires significantly less number of GNs as compared

to HGN implementation.

This chapter has established the core direction in this research. The next chapter

intend to explore this distributed HGN algorithm and its capabilities as a distributed

pattern recognition algorithm. In achieving this, a number of case studies and analyses

have been carried out. Distributed HGN as a GN-based algorithm also can be considered as

an associative memory (AM) algorithm and has a capability to perform parallel recognition

process. From this point onwards, the proposed distributed approach for HGN algorithm

will be known as Distributed Hierarchical Graph Neuron (DHGN). Further details on

DHGN algorithm will be presented and discussed in the next chapter.

88 CHAPTER 2. PATTERN RECOGNITION AND DISTRIBUTED APPROACH

Chapter 3

Distributed Hierarchical Graph

Neuron

Graph Neuron (GN)-based algorithms have been developed based upon two different con-

cepts known as graph-matching and associative memory. These two concepts have given

an added advantage in terms of scalability for GN-based algorithm implementations. GN

has the ability to perform pattern recognition processes on distributed systems due to

its simple recognition procedure and lightweight algorithm. Furthermore, GN incurs low

computational and communication costs when deployed in a distributed system. Previous

chapters have analysed both GN and HGN, and introduced distributed version of HGN

known as Distributed Hierarchical Graph Neuron (DHGN).

An important aspect in the development of pattern recognition scheme is its algorith-

mic design. A proper design will lead to high efficiency, and have the ability to generate

a more accurate classification strategy. In this chapter, the algorithmic design and per-

spective of the proposed DHGN algorithm for distributed pattern recognition scheme for

large-scale data sets is extensively discussed. The proposed algorithm extends the scala-

bility of the existing Hierarchical Graph Neuron (HGN) implementation by reducing its

computational requirement in terms of the number of neurons for recognition processes.

It provides comparable recognition accuracy as the HGN implementation that has been

presented in the previous chapter. DHGN provides a capability for recognition process to

be deployed as a composition of sub-processes that are being executed in parallel across

a distributed network. Each sub-process is conducted independently from each other,

making it less cohesive as compared to other pattern recognition approaches.

89

90 CHAPTER 3. DISTRIBUTED HIERARCHICAL GRAPH NEURON

The objectives of this chapter are as follows:

i. To describe features and characteristics of DHGN as a distributed pattern recogniser.

ii. To consider different pre-processing requirements for pattern recognition.

iii. To perform extensive evaluation and analysis on pattern recognition scheme using

DHGN algorithm.

iv. To present simulation results of DHGN distributed scheme for optical character and

image recognition.

v. To discuss possible extension for DHGN implementation using multiple values.

Some parts of this chapter have been published as a series of conference and journal

papers and book chapter including (Khan and Muhamad Amin, 2007; Muhamad Amin

and Khan, 2008b; Raja Mahmood, Muhamad Amin and Khan, 2008; Muhamad Amin and

Khan, 2009; Khan et al., 2010b).

The composition of this chapter is as follows: Section 3.1 contains an overview of

DHGN algorithm for pattern recognition. In this section, further description of the algo-

rithm together with its associated components will be presented. Section 3.2 describes a

number of dimensionality reduction techniques for patterns pre-processing that are related

to DHGN implementation. Section 3.3 provides an extensive review of the analyses that

have been carried out on the DHGN algorithm. These analyses focus on both complexity

and scalability of the algorithm. A number of comparative analyses between DHGN and

other existing pattern recognition algorithms are also conducted, and Section 3.4 presents

a set of pattern recognition simulation studies that have been carried out using DHGN

algorithm for optical characters and binary images. A multi-value DHGN model is pro-

posed in Section 3.6. This model extends existing DHGN capabilities by enabling it to

efficiently accept multiple different values of elements within patterns. Finally, Section 3.6

concludes this chapter.

3.1 DHGN for Distributed Pattern Recognition

In this chapter, a detailed explanation on DHGN algorithm for distributed pattern recog-

nition is provided. In chapter 2, an analysis of distributed HGN approach has been pre-

sented. It will be shown that having smaller sub-compositions in HGN networks will lead

3.1. DHGN FOR DISTRIBUTED PATTERN RECOGNITION 91

to better error control in distorted pattern recognition. DHGN follows this distributed

approach and implements a scalable pattern recognition scheme, suitable for large-scale

recognition deployment.

This section will extend our discussion on DHGN algorithm. This begins with an

explanation on associative memory concept that is being adopted by DHGN and other GN-

based algorithms. A discussion on AM concept will be presented in Subsection 3.1.1. This

section will also describe some important components of DHGN algorithm including its

architecture (Subsection 3.1.2), recognition procedure (Subsection 3.1.3), pattern storage

(Subsection 3.1.4) and learning mechanism (Subsection 3.1.5).

3.1.1 GN Associative Memory Concept

From a pattern recognition perspective, AM refers to a set of functions (or a learning

network) that has the ability to make an association between input and output. According

to Román-God́ınez, López-Yáñez and Yáñez-Márquez (2009), Associative memory M is

a system that provides an input-output relationship as follows: a→ M → b where a and

b are input and output respectively. In this perspective, each input vector is associated

with an output vector. This association can be represented in the form of a fundamental

set of associations: {(aµ, bµ) | µ = 1, 2, ..., p}. This set is a priori knowledge that must be

known by the AM system.

There are two types of AM for pattern recognition, namely auto-associative memory

(auto-AM) and hetero-associative memory (hetero-AM). In auto-AM, the system recog-

nises an input pattern that was presented and produces its associated output pattern.

Hence, for a given set of associations (aµ, bµ), the auto-AM rule is true with the follow-

ing condition: aµ = bµ, ∀µ ∈ {1, 2, ..., p}. It enables the system (either neural network

or learning system) to pass through input patterns towards output pattern without any

changes. This is due to the fact that input patterns and output patterns have similar

characteristics. An example of auto-AM algorithm is the Hopfield network.

Alternatively, hetero-AM pattern recognition follows the rule of association, such that

incomplete input patterns may also possibly lead to complete output patterns. There-

fore, in terms of association set (aµ, bµ), the following rule applies where aµ 6≡ bµ, for

∃µ ∈ {1, 2, ..., p}. In this case, given a distorted pattern āx of original pattern ax, the

hetero-AM system will be able to gain full recall of pattern ax. Bidirectional associative

92 CHAPTER 3. DISTRIBUTED HIERARCHICAL GRAPH NEURON

memory (BAM) is one of the neural network approaches that adopt this hetero-AM con-

cept. Hetero-AM also offers an ability to conduct a recognition based on patterns with

different sizes, such as being demonstrated in the work of Kosko (1988).

The AM approaches including Hopfield network, Fuzzy Associative Memory (FAM)

(Kosko, 1992), generally tend to be computationally intensive and iterative. Morphological

Associative Memory (MAM) (Ritter et al., 1998) on the other hand, provides solution

within a single iteration and thus implements single-cycle learning. MAM is however a

tightly coupled scheme, which relies on global maximum/minimum computations and is

not readily distributed.

Graph Neuron (GN) based algorithms including HGN and DHGN implements an au-

toassociative memory approach in their recognition procedure. GN has the ability to recall

patterns that have been memorised by the network. The memorisation could occur ei-

ther in pre-execution stage or instantaneously during the recognition process. The former

means that GN performs a supervised recognition, while the latter represents an unsu-

pervised mechanism. Furthermore, GN performs recognition on patterns with equivalent

size. Hence, the features of auto-AM have been fulfilled.

The scalability of DHGN and other GN-based algorithms has also been contributed

by the adoption of this associative memory approach. DHGN is an associative memory

system that capable of recognising patterns (either original or noisy), and it is able to

match multiple streams of input with historical data within the network in real-time

(Khan et al., 2010b). DHGN also performs internal association in the sense that for a

given pattern, an association between elements within a pattern is also being considered.

For example, given a pattern P with 5 elements {p1, p2, p3, p4, p5}, DHGN also take into

account the associations set {(p1, p2), (p2, p3), (p3, p4), (p4, p5)}. The following subsection

will further discuss the architecture of DHGN, in line with its pattern recognition process.

3.1.2 System Architecture

DHGN formalises the distributed HGN approach that has been described in Chapter 2.

DHGN adds a clustering mechanism in pattern recognition, by dividing and distributing

patterns into subpatterns. Each of the subpatterns undergoes a one-shot recognition

procedure. The results of sub-recognition will cumulatively add up to obtain the actual

recognition result.

3.1. DHGN FOR DISTRIBUTED PATTERN RECOGNITION 93

DHGN network constitutes a number of DHGN subnets (HGN sub-composition) and

a Stimulator/Interpreter Module (SI Module) node, as described in Muhamad Amin and

Khan (2008b). Figure 3.1 shows a complete architecture of DHGN network. In this

figure, a decomposition of binary image pattern ‘K’ into subpatterns is illustrated. This

decomposition is performed by the SI Module node. The input activates the GN nodes

corresponding to the bits of the input pattern. In doing so each pattern element within

a subpattern is mapped to relevant GNs in the respective subnet. Each subnet integrates

its responses and sends the results to the SI Module to form an overall response.

Figure 3.1: DHGN framework for distributed pattern recognition.

Figure 3.1 also shows that communications within DHGN network occur in a single-

cycle environment, in which each pattern is passed through the network only once. Recog-

nition result, in terms of recall (pattern is known) or store (pattern is memorised). Within

each DHGN subnet, the recognition process involving communication between GNs also

happening once for each subpattern. In this point of view, DHGN offers fast recognition

procedure by eliminating the needs for iterative mechanism to recall or store patterns.

Each DHGN subnet is derived from a composition of interconnected GNs. The size

of subnet depends on the size of the subpattern used in the system and the number of

different elements in the subpattern. Therefore, to define the size of each subnet, we

94 CHAPTER 3. DISTRIBUTED HIERARCHICAL GRAPH NEURON

consider the number of GNs ngn required for subpattern with size ssub and v different

element as shown in the following equation:

ngn = v

(

ssub + 1

2

)2

(3.1)

Network Generation

In order for the DHGN scheme to perform recognition on patterns, it must first be gen-

erated. Network generation involves the construction of SI module node and a collection

of DHGN subnets. SI module node is a control node, responsible for managing the inputs

and outputs among the DHGN subnets. The distribution of DHGN subnets within the

network depends on the pattern decomposition by the SI module. Given a pattern vector

P = {p1, p2, p3, ..., pm} of size m, and subpattern length ssub. The number of DHGN

subnets nsub that needs to be generated is determined by Equation 3.2:

nsub =
m

ssub
, ssub ≤ m (3.2)

The GN nodes within a DHGN subnet are structured in hierarchical manner, similar

to the HGN. Each GN layer within the DHGN subnet is populated with GN nodes.

The number of GN layers, lgn required within a DHGN subnet is given by the following

equation:

lgn =
ssub + 1

2
(3.3)

Note that the number of GN layers could be directly determined from the calculation

of size of the network as shown in Equation 3.1. The conditions for GN node generation

within a particular layer are as follows:

i. At base layer lbase, the number of GNs generated nlbase
gn is equivalent to the size of

subpattern multiplied by the number of different elements v, i.e. nlbase
gn × v.

ii. At a middle layer li, the number of nodes nli
gn varies according to the level of the

layer i in the hierarchy, except for the top layer. Therefore, nli
gn = v(ssub − 2i).

iii. At the top layer ltop, the number of processing nodes required is equivalent to the

number of different elements v. Hence, n
ltop
gn = v.

3.1. DHGN FOR DISTRIBUTED PATTERN RECOGNITION 95

In the network generation stage, SI module is also responsible for initialising DHGN

subnets. The initialisation involves communication of possible input values to the base

layer GN nodes before the actual store/recall operations can start. The message com-

munication between SI module and base layer GN nodes (within each DHGN subnets) is

conducted using a specific message communication protocol that has been developed for

bitmap patterns. SI module sends the possible input values to each DHGN subnet using

the instruction, message format. For example, if binary values are to be communicated

then the message would be initialize, (0,1).

Each initialisation message received by the base layer GN nodes is used to coordinate

the GN nodes within the base layer. Each node within the base layer represents a specific

position. The following pseudo code shows the formation of the base layer GN nodes for

binary pattern recognition:

Algorithm 2 Base Layer GN Formation

1: for GN ∈ lbase do
2: if GNid ≤ psize then
3: GNval = 1
4: else
5: GNval = 0
6: end if
7: end for

Note that the initialisation process involves uploading distinct (value, position) pairs

into the respective GNs for later use in the store/recall operations.

GN Communications

Communications in the DHGN recognition scheme involve a message-passing mechanism,

in which a single processing node communicates with other nodes in the network for

exchanging messages. It composed of two different types, namely macro- and micro-

communication. In macro-communication, communication costs at system level are taken

into account, i.e. communications incurred between SI Module and DHGN subnets. On

the other hand, micro-communication deals with GN communications within a particular

subnet for each pattern introduced into the system.

Macro-communication in DHGN implementations happened between SI Module node

and either base layer GNs or top GNs in each subnet. It occurs at three different phases:

96 CHAPTER 3. DISTRIBUTED HIERARCHICAL GRAPH NEURON

i. Network generation phase: SI module is responsible for communicating possible

input values of the patterns, which will be used in the recognition process, to all

base layer GNs within DHGN subnets. Equation 3.4 shows the number of messages

that needs to be communicated by SI module to these GN nodes, nmsg
SI→sub:

nmsg
SI→sub = nsub × ssub × v (3.4)

In this equation, nsub represents the number of available subnets. This equation is

based on the assumption that all DHGN subnets are of the same size. The messages

communicated from SI module to each GN is in the form of instruction, message

format as described earlier.

ii. Pattern input phase: After all DHGN subnets have been generated, SI module will

perform a divide-and-distribute process on input pattern that has been introduced

into the system. This process decomposes pattern into a number of subpatterns

according to the number of subnets available. Consequently, these subpatterns will

be sent to each subnet within the network. However, in the actual format, SI module

will communicate directly with each GN at the base layer of each DHGN subnet.

Hence, the number of messages communicated is similar to the number of messages

in network generation phase (as in Equation 3.4).

iii. Result communication phase: After recognition process in each DHGN subnet is

completed, the results (in terms of recall or store) will be communicated back to SI

module for further analysis. In this communication, messages in the form of subnetid,

status, index will be sent to SI module by all the top-layer GN of each subnet. In

regards to the communication cost, the total number of messages communicated from

subnets to SI module, nmsg
sub→SI is equivalent to the number of subnets available, nsub.

Hence, nmsg
sub→SI = nsub.

The following relations describe the micro-communications involved between GNs

within each DHGN subnet:

Base Layer. For each GNs in the base layer, the amount of message communications

incurred could be derived from the number of messages communicated between adjacent

neurons for each input subpattern. For GNs at the edge of base layer, the number of

3.1. DHGN FOR DISTRIBUTED PATTERN RECOGNITION 97

communication exchange is equivalent to the number of different elements within the

subpattern. For non-edge GNs, the communication is required between adjacent neurons

in both the preceding and the succeeding columns, as well as the communication of bias

indices to the GNs at the next higher layer. In this context, the amount of message

exchange is v2+1. The cumulative communication costs involved for each input recognition

process for all GNs in the base layer of a single DHGN subnet is derived from the following

equation:

nmsg
lbase

=
((

v2 + 1
)

(ssub − 2) + 2v
)

(3.5)

Middle layers. The communication costs for GNs in the middle layers are similar

to that at the base layer. However, the difference would be in the number of nodes

available within each layer. For each middle layer i, where 1 ≤ i ≤ top− 1, the number of

message exchanges occurred for a single input subpattern recognition could be derived as

the following:

nmsg
li

=
((

v2 + 1
)

(ssub − (2i+ 2)) + 2v
)

(3.6)

Equation 3.7 presents cumulative communication costs for all GNs in the middle layers:

nmsg

ltotali

=

top−1
∑

i=1

((

v2 + 1
)

(ssub − (2i+ 2)) + 2v
)

(3.7)

Top layer. These GN nodes are only responsible for communicating the final index

for each subpattern stored/recalled to the SI module. The costs for communicating these

indices have been included in the macro-communication evaluation.

This subsection has presented a detailed description of DHGN architecture for dis-

tributed pattern recognition. This architecture represents an abstract formation of the

network. In reality, this architecture could be deployed in a coarsely-distributed or finely-

distributed networked environment.

3.1.3 Dual-Phase Recognition Procedure

DHGN architecture that has been described in the previous subsection comprises two im-

portant entities; SI Module and DHGN subnets. Recognition of patterns mainly occurred

98 CHAPTER 3. DISTRIBUTED HIERARCHICAL GRAPH NEURON

within each DHGN subnet. However, at this instance, all that is known to each subnet

is only a sub-composition of the overall pattern. This means that there is a need for

DHGN system to restructure the overall information of the pattern, and produces result

for the entire pattern, i.e. whether the input pattern is known to the system or not. In

this regard, there is a need for another phase of recognition involving the results of the

recognition process executed within each of the subnet.

Recognition procedure for DHGN implementation can be analogically represented as

a distributed analysis procedure as shown in Figure 3.2. Imagine if there is a large block

of data needs to be analysed. Given a set of analysts, this large block of data could be

decomposed into sub-structure of data, and each analyst would work on it. In the end,

the results of the analysis must be recompiled to form the overall results on the analysis

of the overall large block of data.

Figure 3.2: Analogical representation of DHGN distributed pattern recognition scheme.

DHGN distributed pattern recognition performs pattern analysis on two different

phases: (1) subpattern recognition; and (2) pattern reconstruction and recognition. It

is best to note that these two phases occurred consequently and within a single-cycle

recognition mechanism.

3.1. DHGN FOR DISTRIBUTED PATTERN RECOGNITION 99

Phase 1 - Subpattern Recognition

In DHGN implementation, the core recognition process is conducted at the subpattern

level. There are four stages involved in this process:

Stage 1. After receiving an input from the SI module, each activated GNs at the base

layer will send a signal message to other nodes in the adjacent columns containing the row

number/address of the activated node. Those activated nodes that are at an edge of the

layer will only send the activation signal messages to the GNs in the penultimate columns.

The activated GNs that receive the signal messages from their adjacent neighbours will

respond by updating their bias array noting the activation signals. All other GNs will

remain inactive.

Stage 2. All active GNs at the base layer will then update their bias arrays. If

the bias entry value, bent(left, right) received from both the activated nodes in preceding

and succeeding columns have been recorded, the index of the entry will be sent to the

respective GN in the same position at the higher layer. If the bent(left, right) value is

not found within the bias array, then a new index will be created and sent to the GN

node in the higher layer. Note that active nodes at the edges of the base layer will not be

communicating with higher layer nodes since there is no node present at the edges of the

higher layer owing to the pyramid-like structure of the DHGN subnets.

Stage 3. GN nodes at a layer above the base that receive a signal message, containing

the index of the bias entry that has been created or recalled from stage 2, will be activated.

Similar process as in stage 1 and 2 will occur. However, the contents of the signal messages

from preceding and succeeding columns would be in the form of bent(left,middle, right)

for non-edge nodes and either bent(left,middle) or bent(middle, right) for the edge nodes.

The values for left, middle, and right are derived from the indices retrieved from the

lower layer nodes. For instance, left is for the preceding GN node’s index received from

its lower layer counterpart. After the message communication between adjacent nodes

has completed, the active GNs will update their bias arrays and send the stored/recalled

index/indices to the node at the same position in the higher layer (except for the GNs at

the edges). This stage will be repeated for each layer above the base layer, until it reaches

the top layer GN nodes.

Stage 4. One of the top layer GNs will receive a bias index from a GN in the layer

underneath it. This top layer activated node will search it bias array for this index. If the

100 CHAPTER 3. DISTRIBUTED HIERARCHICAL GRAPH NEURON

index is found, then this node will trigger a recall flag with the recalled index. Otherwise,

it will trigger a store flag and store the new index in its bias array. It will then send a

signal message to SI module with the message format {subnetid, status, index}, where

status is either recall or store. The signal message sent by top layer active GN marks the

completion of the recognition at subpattern level. In a DHGN implementation, lower bias

arrays are updated whenever a new entry is found. Note that bias index for lower layer

nodes may not be the same for a given pattern index.

Figure 3.3 shows the process workflow of the proposed recognition algorithm.

Figure 3.3: DHGN pattern recognition process workflow. This diagram represents DHGN
network with 3-layer subnets.

3.1. DHGN FOR DISTRIBUTED PATTERN RECOGNITION 101

Phase 2 - Pattern Reconstruction and Recognition

Recognition results obtained by SI module from all subnets within a DHGN network

require further analysis to derive an overall recall of respective input subpattern. In

accommodating this analysis, there are two different methods that have been considered.

These are recall-percentage and voting methods. These two methods differ in terms of

the mechanism being adopted. This research intends to compare and contrast these two

approaches from an accuracy perspective.

Recall-Percentage Method. The recall-percentage method underlines the use of

bias indices obtained from all GNs within each subnet. The main principle of this approach

is that the recall/store decision is mainly based upon the cumulative decisions of all GNs

within the network.

This method requires additional procedure conducted by each DHGN subnet for in-

dex collection before final recognition result being submitted to SI module. For each

subpattern introduced into the subnet and after all the recognition process have been

completed, the activated top GN will collect all the index information from all GNs

underneath it. These indices will then be compiled and structured with the format

{index : count}. These outputs will then be sent to SI module using message format

{subnetid; (index1 : count1), (index2 : count1), (index3 : count1), ..., (indexn : countn)}

for all n indices recalled or stored.

Some of the advantages of recall-percentage implementation for recognition at pattern

level include its high recall value precision, in terms of the percentages of pattern indices

being recalled. In this context, for a given input pattern, DHGN is capable of presenting

its precise recall value. DHGN also has a capability to analyse pattern composition, based

on the previous input patterns that have been stored within the network.

Apart from its advantages, the recall-percentage method also comes with a number

of limitations. These include its effect on DHGN recognition accuracy, as described in

Section 2.7.2. A nature of DHGN recognition process implies that a slight change in the

structure of the subpattern will affect the index calculation of the entire subnet.

The recall-percentage method also raises the issue on the level of confidence of the

outputs of the system. For instance, assuming a recognition output of a pattern obtained

from a DHGN network consists of three patterns previously stored: P1 0.4; P2 0.3; P3

0.3 ; the result of this recognition will favour P1 as the recalled pattern. However, criteria

102 CHAPTER 3. DISTRIBUTED HIERARCHICAL GRAPH NEURON

of P2 and P3 have also been detected in the pattern. Therefore, there is a need to establish

a level of confidence towards this kind of results in recognition perspective.

Voting method. Most of the existing pattern recognition schemes apply rejection

technique to remove highly-distorted patterns in its classification procedure. This tech-

nique adopts rejection/accuracy rate as a parameter to indicate levels of similarity of

patterns. The technique offers a precise mean to obtain good classification measurement.

However, it is mostly suitable for deployment within a single-decision system, in which the

classification is conducted using a single classifier/recogniser. With an introduction to-

wards distributed pattern recognition and/or classification, an important decision-making

mechanism is needed in order to combine all the decisions (in terms of accuracy/rejection)

made by each of the classifier.

One of the possible methods for combining decisions on classification is by using voting

method. There are several forms of voting available in literature. These include majority,

common-consent, unison, and unanimity voting (Battiti and Colla, 1994; Kuncheva, 2004).

In DHGN implementation, majority voting is used as a mean to obtain a combined decision

on the recalls made by each of the subnets within a recognition network.

For each recognition process, a decision whether the input pattern has been recognised

(i.e. recall) or new to the network (i.e. store) is determined by obtaining majority consent

from all the DHGN subnets. In this perspective, for a pattern to be recalled, the network

should confirm that most of the subpatterns belong to the respective input pattern. The

majority voting concept that has been adopted follows the work by Cruz, Sossa and Barrón

(2007), and has been described in (Muhamad Amin and Khan, 2008b).

In this pattern reconstruction and recognition process, SI module will initially receive

all the results of the recognition at subpattern level in the form of signal messages from all

the DHGN subnets. After all these messages have been received, the actual recognition

process is carried out. There are two stages involved at this level.

i. All the indices received from the DHGN subnets for original patterns are stored in

a 2-dimensional vector matrix S = {s11, s12, ..., smn}. The width of the matrix is

equivalent to the size of the pattern, i.e. m, while the height corresponds to the

number of stored patterns, n.

3.1. DHGN FOR DISTRIBUTED PATTERN RECOGNITION 103

ii. Calculate the frequency of the indices for each test pattern. All the indices for the

test pattern are stored in a vector R = {r1, r2, ..., rm}. The width of the matrix is also

equivalent to the size of the pattern. If an entry in vector R gives the list of indices

as {1, 2, 2, 2, 1}, then this indicates that three subnets have given a recall result of

pattern 2 while two subnets have given a recall result of pattern 1. Therefore, by

using the voting approach, the pattern will be recalled as pattern 2.

To describe the voting mechanism used, a simple pattern recognition problem is shown

as follows. Figure 3.4 shows four binary character images: A, E, U, and a distorted version

of A.

Figure 3.4: Samples of binary character images.

Consider PA, PE , PU , and P d
A represent the binary patterns for character A, E, U, and

the distorted image A, as shown below:

PA =







































0 0 1 0 0

0 1 0 1 0

1 0 0 0 1

1 1 1 1 1

1 0 0 0 1

1 0 0 0 1

1 0 0 0 1







































PE =







































1 1 1 1 1

1 0 0 0 0

1 0 0 0 0

1 1 1 1 0

1 0 0 0 0

1 0 0 0 0

1 1 1 1 1







































104 CHAPTER 3. DISTRIBUTED HIERARCHICAL GRAPH NEURON

PU =







































1 0 0 0 1

1 0 0 0 1

1 0 0 0 1

1 0 0 0 1

1 0 0 0 1

1 0 0 0 1

1 1 1 1 1







































P d
A =







































0 1 1 1 0

0 1 0 1 0

1 0 0 0 1

1 1 1 1 1

1 0 0 0 1

1 0 0 0 1

1 0 0 0 1







































Each pattern will then be decomposed into subpatterns and will be sent to DHGN

subnets for the first level recognition process. In this example, each character pattern

is decomposed into seven subpatterns where each subpattern represents a row of binary

values, as shown below:

PA =







































0 0 1 0 0

0 1 0 1 0

1 0 0 0 1

1 1 1 1 1

1 0 0 0 1

1 0 0 0 1

1 0 0 0 1







































→

P 1
A = (00100)

P 2
A = (01010)

P 3
A = (10001)

P 4
A = (11111)

P 5
A = (10001)

P 6
A = (10001)

P 7
A = (10001)

The results of the recognition process at subpattern level will be sent back to SI module

node. These results in the form of recalled/new indices for each subnet, k will be received

by SI module node and represented as a voting matrix V as shown in Table 3.1.

DHGN Subnets
k1 k2 k3 k4 k5 k6 k7

Patterns

PA 1 1 1 1 1 1 1
PE 2 2 2 2 2 2 2
PU 3 3 3 3 1 1 2
P d
A 4 1 1 1 1 1 1

Table 3.1: Recalled indices retrieved from all DHGN subnets after each pattern input.

The results of the recognition processes, show that when character pattern A is intro-

duced, all subnets response with index 1. This shows that all subnets agreed that this is

a newly stored pattern. Similarly, when pattern E is being introduced, all subnets give

3.1. DHGN FOR DISTRIBUTED PATTERN RECOGNITION 105

feedback with an increase in the index value, i.e. index 2. Consequently, pattern U obtain

various results from DHGN subnets. Four out of seven subnets produce a new index, while

two subnets recalled index of pattern A and one gives index of pattern E. In this case,

the maximum number of recalled/new indices will be chosen as the recalled/new pattern.

Similarly, for distorted pattern A, the highest number of index being recalled is index 1

that correlates with pattern A. Therefore, pattern A is recalled.

Consider that P is an array of stored patterns P = {p1, p2, p3, ..., pm}, where m repre-

sents the number of patterns being stored. For any pattern px to be recalled, maximum

vote V px
max, should be obtained using the following equation:

V px
max = argmax(wx), x ∈ m (3.8)

Where wx represents the voting element of pattern px in voting vector WP . It may be

noted from the steps involved in pattern recognition using DHGN approach, the recogni-

tion process for each pattern occurs in a single-cycle containing a fixed number of steps.

Also, DHGN adopts an unsupervised learning approach where no prior training on pat-

tern data is required. A discussion on extended analysis of voting mechanism used in

DHGN and how it affects the accuracy of DHGN recognition scheme can be referred to in

Appendix A.

3.1.4 Bias Array Design

In DHGN implementation, patterns are stored in the form of association between its

elements. This is somewhat different from other neural network approaches, in which

patterns are stored as composition of values. Pattern storage mechanism adopted by

DHGN is in the form of bias array, similar to the techniques used by GN and HGN

approaches as described in Chapter 2. However, the bias array capacity for DHGN might

be different from HGN and GN. Further discussion on this aspect will be presented in

Section 3.3. Figure 3.5 shows an abstract representation of GN node with its storage

structure.

DHGN minimises the storage requirement for input patterns, in the sense that the

bias array design limits the growth of storage element within each GN, through the use

of Index{left, right} format of bias entry for one-dimensional input patterns. Consider a

106 CHAPTER 3. DISTRIBUTED HIERARCHICAL GRAPH NEURON

Figure 3.5: GN node abstract representation showing its storage framework.

comparison between DHGN bias entry and feed-forward neural network storage require-

ment capacities for each neuron, given different binary pattern sizes used in the networks.

In feed-forward network, each neuron requires input from all the elements within a

particular pattern. Given a pattern P with n input elements (i.e. size) and d dimension,

each neuron must able to memorise dn combinations of patterns. Conversely, DHGN only

require 2d storage capacity for each neuron for memorisation. In this perspective, DHGN

offers significantly higher storage efficiency as compared to feed-forward neural network.

Further discussion and evaluation of the storage capacity of DHGN will be discussed in

later sections.

3.1.5 Collaborative-Comparison Learning (CCL)

DHGN implements a single-cycle learning approach in its recognition procedure. This

learning approach differs from other learning approaches such as Hebbian and incre-

mental learning in the sense that it implies that learning occurred through collabora-

tive learning between nodes, rather than independent learning by each of the processing

nodes in the network. The term we used for this collaborative learning is known as

Collaborative-Comparison Learning (CCL). The content of this subsection has been in-

cluded in (Muhamad Amin and Khan, 2009).

In DHGN implementation, an adjacency comparison approach is employed in the learn-

ing scheme using simple signal/data comparisons. Each GN node holds a segment of the

overall subpattern. Collectively, these neurons will have an ability to represent the entire

3.1. DHGN FOR DISTRIBUTED PATTERN RECOGNITION 107

subpattern. Consider the following base-level DHGN subnet structure as shown in Fig-

ure 3.6. The five GNs, where each is responsible to capture its adjacent neurons’ values,

will be able to store the entire pattern “ABCDE”. If we link up these neurons in a one-

dimensional structure, we are able to determine collaborative GNs that contain a memory

of pattern “ABCDE”.

Figure 3.6: Collaborative-comparison learning approach for one-dimensional pattern
“ABCDE”. Each activated graph neuron (GN) stores the signals received by its adjacent
neurons.

The collaborative-comparison learning approach compares external input pattern with

the stored entries within each GN’s bias array, which is a local data structure containing

history of adjacent node activation. In this perspective, each GN learns through compar-

isons among the signals from its adjacent neighbours and the recorded entries within its

memory i.e. the bias array. Consider a bias array M = (s1, s2, ..., sx) which consists of

signal entries si for i ∈ x. If external signal sext matches any of the stored entries, i.e.

sext ∈ M , then the respective bias index i of the matched si entry will be recalled. Oth-

erwise, the signal will be added into the memory as sx+1. There are two-fold advantages

using this approach. Firstly, it minimises data storage requirement, using the bias array

design for pattern storage. Secondly, the proposed approach accepts all kinds of data. For

instance, the signal could be in the form of data vectors or frequency signals, allowing spa-

tial and temporal data to be accommodated. In addition, the proposed learning technique

108 CHAPTER 3. DISTRIBUTED HIERARCHICAL GRAPH NEURON

does not require synaptic plasticity rule used by other learning mechanisms, such as the

Hebbian learning (Hebb, 1988) and incremental learning (Schlimmer and Granger, 1986)

approaches. Thus new patterns can be learnt without affecting previously stored informa-

tion.

3.2 Dimensionality Reduction in Pattern Pre-Processing

Pre-processing is an important task that needs to be carried out before any recognition

procedure. It is considered as a pre-requisite for some pattern recognition systems, due

to its critical influence in ensuring that pattern data is in the specific form that suits the

algorithm or implementation. Moreover, raw pattern data might need to be normalised

beforehand, to ensure that the data is well-distributed and does not contain any outlier

values.

When dealing with complex data, such as images, environmental sensory readings,

biomedical and biochemical structural data, the dimensions of data involve usually are at

higher dimensions (more than 1). In this perspective, there are two different approaches

that could be carried out to reduce the complexity of data, in terms of its dimensionality:

i. Structural reduction - In this approach, the structure of data will be reduced into

lower dimension.

ii. Content reduction - Data in higher dimension is reduced into its equivalent low-

dimension form using a specific data dimensionality reduction technique.

In this section, these two approaches are discussed in relation to DHGN implementa-

tion.

3.2.1 Structural Reduction

Structural reduction in DHGN pre-processing involves the reduction of structural compo-

sition of patterns from high-dimensional structure, into its corresponding low-dimensional

representation. In this approach, pattern data undergoes structural deformation, while the

contents or elements within the pattern remain intact. Furthermore, structural reduction

works on the basis that the structure of data is unlikely to be significant in determining

the characteristics of pattern.

3.2. DIMENSIONALITY REDUCTION IN PATTERN PRE-PROCESSING 109

Consider two-dimensional binary images with the size of 7-by-5 bits, i.e. 35-bit image

as shown in Figure 3.7. In the structural reduction approach, this image will be rearranged

in the form of one-dimensional bit-string. This rearrangement enables the algorithm to

work on patterns in low structural dimension. Hence, in the DHGN’s implementation

perspective, this approach enables each subnet to conduct recognition process using a

simple one-dimensional DHGN subnet structure. Therefore, it reduces the structural

complexity of DHGN subnets within the network. An advantage of using this structural

reduction approach is such that it reduces the structural complexity of patterns, while

maintaining the integrity of the contents or elements within these patterns. Hence, the

content information in each pattern is preserved.

Figure 3.7: Structural reduction on binary character images into one-dimensional bit-string
representation.

A limitation with this approach is such that it loses the structural information related

to the pattern. In this context, the structure of the pattern or data is unknown to the

system. Consider the same images as in Figure 3.7. DHGN pattern recogniser does not

have the knowledge that the image represents a character ’E’. Rather, it acknowledges

the bit information and its association between neighbouring pixels in one-dimensional

formation.

110 CHAPTER 3. DISTRIBUTED HIERARCHICAL GRAPH NEURON

A test was conducted to examine the effectiveness of structural reduction approach

for DHGN pre-processing scheme for both randomly and structurally distorted patterns.

The results of this analysis have been published in (Khan and Muhamad Amin, 2007).

Figure 3.8 shows the datasets that have been used and Figure 3.9 shows the results obtained

from the recognition procedure conducted using DHGN on one-dimensional binary-bit

string representation of the images.

Figure 3.8: Character patterns with structural and random distortions.

Figure 3.9: Results of DHGN pattern recognition on structural and random distorted
character patterns.

Note that for recognition involving structural reduction technique, the results show

that structurally-distorted patterns are less likely to be recognised by the system than the

randomly-distorted patterns. This is owing to the fact that structural distortion affects

the shape of the character. Whilst with random-bit distortions, the structure of the

characters often stays preserved. In this perspective, DHGN with one-dimensional pattern

representation was unable to detect the changes in the structure of the character, due to its

3.2. DIMENSIONALITY REDUCTION IN PATTERN PRE-PROCESSING 111

one-dimensional representation. Nevertheless, DHGN shows significantly accurate results

with average recall accuracy of 80% for structurally distorted patterns.

3.2.2 Content Reduction

Content reduction, more generally known as dimensionality reduction approach, involves

the process of selection or extraction of features from data, to be used in pattern recogni-

tion system. It also transforms the data from high-dimensional space into its equivalent

low dimension format. Some examples of dimensionality reduction techniques include

Principal Components Analysis (PCA), Linear Discriminant Analysis (LDA), Local Lin-

ear Embedding (LLE) and Kohonen maps.

Dimensionality reduction approach allows the recognition system to obtain the best

and cost-efficient data representation that has been extracted from the original raw data

obtained from sensory devices or from surroundings. However, some dimensionality re-

duction techniques require such an expensive computational cost for feature processing,

selection, and extraction.

Apart from these techniques, there are other techniques that have been proposed for

dimensionality reduction, which incur significantly low-level of computational complexity.

For instance, in content-based image retrieval (CBIR), the use of histograms and signa-

tures are the common approaches towards dimensionality reduction for image retrieval

using colour feature. This research specifically looks into signature scheme for data di-

mensionality reduction, based upon the works that have been carried out in CBIR using

signature approach by Nascimento and Chitkara (2002).

In the next subsection, a case study on the DHGN implementation using a binary

signature scheme for image recognition is presented.

3.2.3 Case Study: DHGN Image Recognition based on Binary Signature

Existing DHGN implementation has been focusing on the recognition of spatio-structural

representation of an image via the pixel-by-pixel analysis. This approach recognises the

integrity of the contents of an image against any occurrence of random-bit distortion.

However, it is insufficient for the recognition of image with multi-dimensional colour repre-

sentation, including grayscale images. The changes in the colour of an image may influence

accuracy of the recognition system. Our proposed approach adopts the binary signature

112 CHAPTER 3. DISTRIBUTED HIERARCHICAL GRAPH NEURON

scheme for content-based image retrieval (CBIR) in the colour recognition process, while

maintaining the binary analysis of image for its spatio-structural recognition.

Binary Signature for Colour Abstraction

In image recognition, colour is an important element that usually being considered. In

recognition perspective, colour enables us to differentiate two different objects. For in-

stance, imagine two balls coloured blue and orange respectively. An addition of colour

dimension in recognition enhances the accuracy of the proposed recognition scheme. The

content of an image could abstractly being represented by its colour distribution. Thus,

image recognition should also involve colour distribution analysis of a particular image.

Common approach in representing colour distribution within an image is to use a

Global colour Histogram (GCH). Given an n-colour model, a GCH will be developed

with an n-dimensional feature vector (p1, p2, ..., pn), where pi represents the normalized

percentage of colour pixels that corresponds to each colour element ci within an image.

Chitkara, Nascimento and Mastaller (2001) has proposed an alternative towards colour

distribution representation by using a binary signature scheme. Binary signature is a

compact form of existing GCH that uses binary bit-string as a signature that provides

an abstract representation of the image’s colour distribution. The bit-strings used in this

format are of a pre-determined size. The following section describes the image colour

distribution abstraction using binary signature.

The use of GCH in colour distribution representation has been directed towards finding

colour within an image having significant pixel dominance. However, this differs from

the binary signature approach that puts great emphasize on less dominant colour. The

justification for applying this concept is that less dominant colours usually differ from one

image to another. For example, an image of a person with a given background might

change, with similar background. The following scheme shows the image abstraction used

in this approach:

i. Image is quantized into a fixed number of n colours, C = (c1, c2, ..., cn).

ii. Each colour element ci is then discretised into j binary bins Bi = bi1b
i
2...b

i
j of equal

or varying capacities. This is referred to as bin-size. Fixed-size bin arrangement

is known as Constant-Bin Allocation (CBA), otherwise it is known as Variable-Bin

3.2. DIMENSIONALITY REDUCTION IN PATTERN PRE-PROCESSING 113

Allocation (VBA). The binary signature of an image is derived from both bins and

colour values, and is represented in a bit-string format. For instance, consider an

image comprising of n colours and j bins. The binary signature of this image, S

could be represented as S = b11b
1
2...b

2
1b

2
2...b

n
j , where, b

i
k represents the k-th bin relative

to the colour element ci.

iii. Each bin would correspond to the normalised percentage values of colour within an

image. For example, in CBA approach j = 5 bins will each corresponds to percentage

values as shown in Table 3.2:

bj Colour Composition Value

1 0-20%

2 21-40%

3 41-60%

4 61-80%

5 81-100%

Table 3.2: Colour composition values correspond to each bin bj .

In this section, we present an example of image abstraction. Figure 3.10 shows an

image with 4 different colours.

Figure 3.10: Block image with four different colours.

In this example, n = 4, hence, C = (c1, c2, c3, c4) = (white, black, grey, light grey).

The normalised colour densities of this image could then be represented by the vector

Hn = (h1, h2, h3, h4) = (0.56, 0.25, 0.13, 0.06), where hj represents the percentage pixel

dominance of colour ci. Assume that the colour distribution is discretised into j = 5 bins

of equal capacities as shown in Table 3.2. Thus, the image could be represented by the

following signature S = 00100010001000010000. The details of the signature are shown in

Table 3.3.

114 CHAPTER 3. DISTRIBUTED HIERARCHICAL GRAPH NEURON

Colour Density
Binary Signatures
b1 b2 b3 b4 b5

c1 56% 0 0 1 0 0
c2 25% 0 1 0 0 0
c3 13% 1 0 0 0 0
c4 6% 1 0 0 0 0

Table 3.3: Detailed binary signatures for image in Figure 3.10.

Binary Signature within DHGN implementation

In DHGN implementation for image recognition, we can use the binary signature scheme

to detect and recognize the colour distribution of an image. Each sub-signature (each

signature that represents each colour ci) can be entered into a single DHGN subnet.

Cumulatively, this approach will lead to colour recognition within an image. Figure 3.11

shows the processes involved within this colour recognition process.

Figure 3.11: DHGN implementation for colour recognition using binary signature.

The example given previously has shown the method of translating colour distribution

of an image into a single binary signature representation. However, there is a limitation

in this approach, where the coverage area for the colour distribution is significantly large,

and does not able to represent a slight or minimal changes within a section of an image.

Thus, this will affect the result of the recognition. Local binary signature approach could

be used, in which each image will be divided into grids and each grid will have its own

signature, as shown in Figure 3.12.

3.2. DIMENSIONALITY REDUCTION IN PATTERN PRE-PROCESSING 115

Figure 3.12: Block image is divided into grids with equivalent sizes.

Image in Figure 3.12 will have four different signatures, representing each quadrant

of the image (each quadrant is numbered clockwise, starting from top-left quadrant).

Table 3.4 shows the detailed signatures of the block image:

Quadrant Colour Density
Binary Signatures
b1 b2 b3 b4 b5

1

c1 100% 0 0 0 0 1
c2 0% 0 0 0 0 0
c3 0% 0 0 0 0 0
c4 0% 0 0 0 0 0

2

c1 75% 0 0 0 1 0
c2 0% 0 0 0 0 0
c3 0% 0 0 0 0 0
c4 25% 0 1 0 0 0

3

c1 50% 0 0 1 0 0
c2 0% 0 0 0 0 0
c3 50% 0 0 1 0 0
c4 0% 0 0 0 0 0

4

c1 0% 0 0 0 0 0
c2 100% 0 0 0 0 1
c3 0% 0 0 0 0 0
c4 0% 0 0 0 0 0

Table 3.4: Detailed binary signatures of block image in Figure 3.12.

With localised signatures, the colour distribution representation of an image will be

further optimized and able to provide higher possible recall precision for a given set of

images.

Results and Discussion. A greyscale image recognition test has been conducted

using DHGN on binary signature scheme for 40 images with a dimension of 512 x 512 pixels.

In doing this, the results of this scheme are compared with existing support vector machine

(SVM) implementation. The results from this test show that DHGN with binary signature

scheme produces comparable results to SVM implementation. Figure 3.13 shows a sample

116 CHAPTER 3. DISTRIBUTED HIERARCHICAL GRAPH NEURON

dataset, comprising of image Lena that has been used, together with their respective global

color histograms. The rest of the datasets are included as Appendix A.

(a) Lena image. (b) Lena image. (c) 15% RGB noise. (d) 15% RGB noise.

(e) 45% RGB noise. (f) 45% RGB noise. (g) 90◦ rotation. (h) 90◦ rotation.

Figure 3.13: Different levels of noise and rotational distortion for greyscale image of Lena
with respective colour histograms, used in the image recognition test.

The images used in this test are classified into five images classes namely image Baboon,

Camera, Goldhill, Lena, and Peppers. Each class consists of an original image, five noisy

images (RGB noise has been selected for the noise effect), and two rotationally-distorted

images. The recognition test is used to recognize and classify these images into their

respective classes. This therefore tests these images using both DHGN and SVM pattern

recognition schemes.

With the added RGB noise to original image, the colour distribution was also being

affected. RGB noise tends to distribute the colour composition of an image, in which me-

dian colour has higher pixel ratio over extreme colours. This effect will somehow influence

the image pattern, as each colour composition values change.

In this recognition test, variable color compositions were used according to the quan-

tization level used on the images. Figure 3.14 shows the total recall and error rates for

the recognition test that were conducted on 40 images with 5 original images for train-

ing. These rates have been derived from the number of images that have been classified

correctly, according to the classes specified previously.

3.2. DIMENSIONALITY REDUCTION IN PATTERN PRE-PROCESSING 117

Figure 3.14: Total recall and error rates for DHGN greyscale image recognition on 40
images using colour feature analysis.

From this result, it is evident that the quantisation level affects the recognition accuracy

of the scheme. At level 2 (binary level), colour composition produces highest recall value.

DHGN was able to fully detect positive images from the whole test set. Nevertheless, error

value recorded was 0.22, which is higher than the values obtained using other quantisation

levels. This may be due to the effect of low quantisation level that produces closely-

similar set of binary signatures for different images. Alternatively, high quantisation level

would also gives a insignificant effect, as it tends to distribute colour frequency to high

number of colour classes and thus, reducing the possibilities of colours to be grouped into

similar classes. Therefore, color recognition of images tends to be difficult as each colour

composition has a small range of colours. Figure 3.15 shows the transformation of global

color histogram for image Baboon from original image to 3-quantisation level image.

From the results of this recognition test, for the existing dataset, the recognition scheme

works best with quantisation level 3. In order to measure the efficiency of the proposed

scheme, a comparative test between DHGN with global binary signature scheme and SVM

pattern recognition scheme has been made. The recall values for both scheme, with given

quantisation level, are shown in Figure 3.16. A radial-based kernel SVM was used for this

test.

118 CHAPTER 3. DISTRIBUTED HIERARCHICAL GRAPH NEURON

(a) Histogram for Baboon im-
age.

(b) 7-Quantization level. (c) 6-Quantization level.

(d) 5-Quantization level. (e) 4-Quantization level. (f) 3-Quantization level.

Figure 3.15: Transformation of global colour histogram of image Baboon from original
image to 3-quantisation leve image.

The recognition test conducted has shown that DHGN produces higher recall values,

in comparison with SVM classifier. This is mainly due to the feature of DHGN recognition

which implies simple deterministic approach by using differences between the properties

of images. Furthermore, DHGN achieves this recall accuracy via a single-cycle learning

and one-shot recognition process.

The considerably-low recognition accuracy influenced by the global colour composition

within the proposed DHGN image recognition scheme could be further enhanced using a

localised approach. Further research will be carried out to analyse the effect of localisation

of colour composition on greyscale image recognition.

Another important aspect that has been observed with this binary signature scheme

is that it eliminates the need for pixel-by-pixel image recognition. Each image will have

the same signature size, regardless of the size of the image.

3.3. ANALYSIS AND EVALUATION 119

Figure 3.16: Comparison between SVM and DHGN total recall rates for greyscale image
recognition.

3.3 Analysis and Evaluation

A series of analyses and evaluations for DHGN implementation were conducted. These

evaluations focus on both the complexity and scalability of the proposed algorithm. The

following subsections described in details the analyses that have been carried out.

3.3.1 Complexity Evaluation

In regards to the complexity of DHGN algorithm, Big-O analysis has been considered

as the computational complexity indicator. It is mostly used as the computational com-

plexity measurement tool to describe how the input data affects an algorithm’s usage of

computational resources. According to Black (2008), Big-O analysis is defined as a the-

oretical measure of the execution of an algorithm, usually the time or memory needed,

given the problem size n, which is usually the number of items. Informally, saying some

equation f(n) = O(g(n)) means it is less than some constant multiple of g(n). Compar-

isons have been made with three different algorithms, namely Hopfield network, Kohonen

Self-Organising Map (SOM), and instantaneously-trained neural networks (ITNNs). It

is best to note however, that the comparative study that has been carried out does not

intend to outweigh the capabilities of these algorithms. Rather, indicates that DHGN

has a capacity to acquire significantly low computational complexity for its operations. A

120 CHAPTER 3. DISTRIBUTED HIERARCHICAL GRAPH NEURON

number of papers have been published, showing the results of the evaluations, including

(Muhamad Amin, Raja Mahmood and Khan, 2008; Raja Mahmood et al., 2008).

DHGN vs. Hopfield Network

In determining the complexity of the algorithms, a 2-stage process was implemented;

network generation and recognition stages. The notations for each stage within the im-

plementation have been derived.

Network Generation Stage. This stage involves the formation of a network that

comprises computing elements known as neurons. The number of neurons generated de-

pends on the algorithm being implemented.

In Hopfield network implementation, the number of neurons generated, RHopf is equiv-

alent to the size of the pattern Psize:

RHopf = Psize (3.9)

On the other hand, the number of neurons generated, RDHGN in DHGN implemen-

tation with number of different elements within the pattern v and a number of DHGN

subnets, NDHGN is given in this equation:

RDHGN = v

(

Psize

NDHGN
+ 1

2

)2

×NDHGN (3.10)

However, during network generation stage, only the base layer neurons of each DHGN

subnet, Rinit
DHGN will be initialised as shown in Equation 3.11.

Rinit
DHGN = v × Psize ×NDHGN (3.11)

Table 3.5 shows the details of the Big-O notation derived for the Hopfield network and

DHGN implementations.. The estimated time derived is based on the assumption that

the instruction speed used is 1 microsecond (µs) per instruction.

Algorithm Big-O Efficiency Iterations (n) Estimated Time (in seconds)

Hopfield O(n) Linear RHopf RHopf × 0.00001

DHGN O(n) Linear Rinit
DHGN Rinit

DHGN × 0.00001

Table 3.5: Big-O notations for Hopfield network and DHGN implementation in network
generation stage.

3.3. ANALYSIS AND EVALUATION 121

The results show that both DHGN and Hopfield network acquires comparable com-

putational complexity. However, in regards to the number of neurons generated at this

stage, DHGN incurred higher complexity since Rinit
DHGN > RHopf . However, if parallelism

is taken into account, for each DHGN subnet, the number of neurons generated for each

subnet is less than the overall neuron initialisation within the network. Therefore, the

estimated time for network generation in DHGN is lower than in the Hopfield network

implementation.

Recognition Stage. Recognition stage is the core process within the pattern recog-

nition application. Each algorithm shows different approach in handling this process. In

the Hopfield network, the recognition stage involves three sub-processes, namely weight

accumulation, weight determination for the whole network, and network propagation to

derive optimum solution. On the other hand, DHGN algorithm only implies a single-cycle

process of recognition within this recognition stage. This process of recognition involves

either store or recall process. Table 3.6 shows the Big-O notations derived from the analy-

sis on the Hopfield network recognition process. Similarly this is based on the assumption

that the instruction speed used is 1 microsecond (µs) per instruction.

Process Big-O Efficiency Iterations (n) Estimated Time
(in seconds)

Weight Accumulation O(n) Linear Psize Psize × 0.00001

Weight Determination O(n2) Quadratic R2
Hopf In minutes

Network Propagation O(nk) Polynomial Rk
Hopf In hours

Table 3.6: Big-O notations for Hopfield network in recognition stage.

The Hopfield network incurs a considerably high computational complexity, as indi-

cated in Table 3.6 with respect to its weight determination and network propagation pro-

cesses. Figure 3.17 shows the computational complexity for the three processes in recogni-

tion stage using the Hopfield network implementation. Note that for network propagation

process, the value k = 3 was used for polynomial representation.

The recognition stage for pattern recognition using DHGN algorithm involves a single-

cycle process in which each input pattern will be passed through the DHGN subnets

once and the store or recall process will be activated according to the instruction given.

Table 3.7 shows the Big-O notation for recognition stage using DHGN algorithm for each

DHGN array being used.

122 CHAPTER 3. DISTRIBUTED HIERARCHICAL GRAPH NEURON

Figure 3.17: Big-O notation comparisons for processes within Hopfield network recognition
stage.

Big-O Efficiency Iterations (n) Estimated Time (in seconds)

O(n) Linear RDHGN RDHGN × 0.00001

Table 3.7: Big-O notation for DHGN implementation in recognition stage.

From the Big-O notations derived from the analysis, it is best to conclude that DHGN

incurs less computational complexity in pattern recognition processes as compared to the

Hopfield network implementation. Specifically, DHGN employs simple linear function,

whereas the Hopfield network employs expensive polynomial and quadratic functions.

DHGN vs. Kohonen SOM

The Big-O notations for both SOM and DHGN have been estimated to study their com-

plexity levels. The supervised SOM consists of three important stages: (i) weight ini-

tialisation, (ii) BMU calculation, and (iii) weight adjustment. In the weight initialisation

stage, nodes are created with random assigned weight. At this stage, the computational

complexity depends heavily on the number of created nodes. Hence, for a given weight

initialisation process w, the complexity of n nodes can be simplified as f(w) = O(n3). Fig-

ure 3.18 shows the estimated time taken to initialise up to 100,000 nodes. The estimated

time derived is based on the assumption that the instruction speed used is 1 microsecond

(µs) per instruction.

3.3. ANALYSIS AND EVALUATION 123

Figure 3.18: Complexity measurement of SOM’s weight initialisation process.

In the BMU calculation stage, the complexity depends heavily on the number of it-

erations during training as well as the number of the input vector. Hence, for a given

BMU calculation process m, the complexity of n training iterations can be simplified as

f(m) = O(n4). The estimated time taken to perform up to 100,000 iterations of calculat-

ing the Euclidean distance between the input values and all neurons in this stage is given

in Figure 3.19.

Figure 3.19: Complexity measurement of SOM’s BMU calculation process.

124 CHAPTER 3. DISTRIBUTED HIERARCHICAL GRAPH NEURON

In the last stage, the weight adjustments are provided not only for the winning neu-

ron but also for its neighbours in a certain neighbourhood. The degree of adjustment

depends on the degree of similarity between the neuron and the input. As a result of

weight adjustment, a group of neurons are obtained forming a cluster. The Big-O for the

weight adjustment is similar to the BMU calculation (refers to Figure 3.19) and hence not

provided.

DHGN’s initialisation stage, as discussed previously is a low-computational process,

and hence acquires less computational time in comparison to SOM’s weight initialisation

process. Figure 3.20 shows the estimated time for this process. Similar speed assumption

of 1 microsecond (µs) per instruction is applied in this analysis. It can be seen that the

time taken in the DHGN initialisation process is far less than SOM. For instance, DHGN

takes only 0.2 seconds while SOM takes about 1.0 × 1010 seconds (see Figure 3.18) to

initialise 20,000 nodes.

Figure 3.20: Complexity measurement of DHGN’s network generation process.

In the classification process, only few comparisons are made for each subpattern, i.e.

comparing the input subpattern with the subpatterns of the respective bias index. The

computational complexity for the classification process is somewhat similar to the network

generation process. DHGN’s classification process requires less computational complexity

in comparison to SOM’s BMU calculation and weight adjustment activities. For instance,

the time taken for classification by DHGN in a network of 50,000 nodes is less than 3

seconds as shown in Figure 3.21, while SOM’s BMU calculation process alone takes about

3.3. ANALYSIS AND EVALUATION 125

5 × 1013 seconds to complete (see Figure 3.19), and with similar time needed to perform

weight adjustment.

Figure 3.21: Complexity measurement of of DHGN’s classification process.

In summary, the estimated time graph of the DHGN algorithm is linear, while the cor-

responding graph of SOM algorithm is exponential. This proves that the DHGN provides

an efficient, lightweight, and fast algorithm, comparable to SOM implementation.

DHGN vs. Instantaneously-Trained Neural Networks (ITNNs)

Instantaneously-trained neural network (ITNN) is a class of artificial neural networks that

allow rapid learning for classification and generalisation problems. These networks have

been developed based upon the motivation to model short-term memory in computational

intelligence applications. This motivation has led to the development of ITNN-based

networks, such as corner classification (CC) and fast classification (FC) neural networks

(Kak, 2002). In principle, ITNN implements non-intensive computations in its learning

mechanism, and involves linear mapping between patterns and networks. In terms of

network architecture, ITNN follows a basic feed-forward network structure, consisting of

neurons within input, hidden, and output layers.

The learning phase of FC neural network (an example of ITNN) involves a two-stage

process:

i. Synaptic weights assignments for input and output layers.

126 CHAPTER 3. DISTRIBUTED HIERARCHICAL GRAPH NEURON

ii. Radius generalisation for each training sample.

The complexity of learning mechanism applied in FC neural network is highly-dependable

on the radius generalisation process. This process takes place in order to find the max-

imum class boundary for each training sample. In FC network, the number of neurons

within hidden layer is equivalent to the number of training samples. This is a price that

has to be paid, in order for the networks to perform fast learning mechanism.

There are two steps involved in radius generalisation process:

i. Determine the Euclidean distances between each training sample.

ii. Calculate radius associated with each training sample.

The computational complexity of finding Euclidean distances involves a non-linear

process for each training sample, as shown in the following pseudocode:

Algorithm 3 Finding Euclidean Distances in FC Neural Networks

1: for i = 1 to MaxNeuron do
2: for j = 1 to MaxNeuron do
3: if i = j then
4: break()
5: else
6: for k = 1 to MaxInputWeight do

7: disti→j =
√

∑

(i.k − j.k)2

8: end for
9: end if

10: end for
11: end for

Using Big-O notation for computational complexity, the complexity of this Euclidean

distance function is equivalent to O(n3), where n represents a single executable instruction

within the function. Hence, f(EucDist) = O(n3).

When all the distances for each training sample have been determined, the training

process for FC network will initiate the radius calculation step. In soft generalisation

process, the radius is calculated as one-half of the minimum distance between a sample

pattern, with other stored patterns. This step can be represented as a quadratic function

f(RadCal) shown in Algorithm 4.

In this case, the complexity of radius calculation function is f(RadCal) = O(n2).

DHGN, as shown in the previous subsections, entails low computational complexity

in its collaborative-comparison learning (CCL) technique. This is comparable with ITNN

3.3. ANALYSIS AND EVALUATION 127

Algorithm 4 Radius Calculation Function in FC Neural Networks

1: minDist = 999
2: for i = 1 to MaxNeuron do
3: for j = 1 to MaxNeuron do
4: if i = j then
5: break()
6: else
7: if disti→j ≤ minDist then
8: minDist = disti→j

9: end if
10: radi = minDist÷ 2
11: end if
12: end for
13: end for

networks such as FC neural network, with DHGN’s complexity is lower than that of

FC networks. Both DHGN and FC networks however, share the same one-shot learning

characteristic, in which each pattern passes through the learning procedure only once.

Nevertheless, FC network requires additional computations in determining both Euclidean

distances and radius for each training patterns. A major drawback of this approach is such

that, with large number of training patterns used, it will severely affecting the performance

of the network.

The complexity analysis using Big-O notation for DHGN algorithmic implementation

has demonstrated the capability of this proposed approach in providing fast and low-

complexity scheme for large-scale data analysis. An important aspect in this kind of

implementation is the ability of DHGN to perform recognition procedure within a single-

cycle pass, without having to conduct iterative training procedure to train the network for

adaptation purposes. Rather, DHGN performs in situ recognition, in which the training

set could be memorised within a single pass (or cycle). This gives an edge to DHGN as a

solution for large-scale pattern recognition.

3.3.2 Scalability Analysis

Scalability factor for DHGN distributed pattern recognition scheme could be determined

from two different aspects - the storage capacity and the communication efficiency. A high

requirement for storage capacity would affect the scalability of the algorithm. For efficient

pattern recognition scheme, the storage requirement should not be heavily affected by an

128 CHAPTER 3. DISTRIBUTED HIERARCHICAL GRAPH NEURON

increase in the number of stored patterns and the communication should stay relatively

contention free.

Table 3.8 represents the terms that we will use to estimate the computational com-

plexity of DHGN algorithm.

Symbol Explanations

ssize Size of Subpattern.

mSI Number of messages communicated between SI module and GN nodes
in network generation stage.

nr Number of rows of GN nodes within a layer.

nsub Number of DHGN subnets within a network.

ml0
ne Number of messages communicated from non-edge GN nodes in base

layer.

ml0
e Number of messages communicated from GN nodes at the edge of base

layer.

ml0
total Total number of messages communicated from GN nodes at base layer.

mli
ne Number of messages communicated from non-edge GN nodes at middle

layer i.

mli
e Number of messages communicated from GN nodes at the edge of middle

layer i.

mli
total Total number of messages communicated from GN nodes at middle layer

i.

mDHGN
total Total number of messages communicated between all GN nodes in

DHGN subnet.

bsl0ne Maximum size of bias array for each non-edge GN node at base layer.

bsl0e Maximum size of bias array for each GN node at the edge in base layer.

bsl0total Total maximum bias array size for all GN nodes in base layer.

bsline Maximum size of bias array for each non-edge GN node at middle layer
i.

bslie Maximum size of bias array for each GN node at the edge in middle
layer i.

bslitotal Total maximum bias array size for all GN nodes in middle layer i.

bsltopall Maximum bias array size for all GN nodes in top layer.

bsDHGN
total Total maximum bias array size for all GN nodes in DHGN subnet.

lSI Size of the messages in network generation stage.

ltotalSI Total size of the messages communicated in network generation stage.

psize Pattern size.

Table 3.8: DHGN computational complexity terms.

Analyses have been conducted on the computational complexity of DHGN algorithm

for pattern recognition. In doing this, the two computational factors mentioned previ-

ously: storage capacity and communication efficiency have also been considered. The

computational complexity of DHGN with HGN algorithms for binary pattern recognition

have also been compared. The following subsection outlines the analysis.

3.3. ANALYSIS AND EVALUATION 129

Storage Capacity Analysis

Storage capacity estimation for DHGN algorithm involves the analysis of bias array capac-

ity for all the GN nodes within the distributed architecture, as well as the storage capacity

of the SI module node. In analysing the capacity of the bias array, the size of the bias

arrayis observed, as different patterns are being stored. The number of possible pattern

combinations increases exponentially with an increase in the pattern size. The impact of

the pattern size on the bias array storage is an important factor in bias array scalability

analysis. In this regard the analysis is conducted by segregating the bias arrays according

to the layers within a particular DHGN subnet.

The following equations show the bias array size estimation for binary patterns. This

bias array size is determined using the number of bias entries recorded for each GN node.

In this analysis, a DHGN implementation for one-dimensional binary patterns has been

considered; wherein a two-dimensional pattern is represented as a string of bits.

i. Base Layer.

For each non-edge GN node the maximum size of the bias array:

bsl0ne = n2
r (3.12)

For each GN node at the edge of the layer:

bsl0e = nr (3.13)

The cumulative maximum size of bias arrays at the base layer in each DHGN subnet

could be derived as shown in Equation 3.14:

bsl0total = nr

(

bsl0ne = n2
r (ssize − 2) + 2bsl0e

)

(3.14)

The maximum size of bias array, i.e. the total number of bias entries at the base

layer is mostly determined by the number of possible combinations of values within

a pattern.

ii. Middle Layers.

130 CHAPTER 3. DISTRIBUTED HIERARCHICAL GRAPH NEURON

The maximum size of the bias array at a middle layer depends on the maximum size

of the bias array at the layer below it. For non-edge GN node in a middle layer, the

maximum size of its bias array may be derived as follows:

bsline = bsli−1
ne × n2

r (3.15)

For each GN node at the edge, the maximum size of its bias array could be derived

as the following:

bslie = bsli−1
ne × nr (3.16)

Therefore, the cumulative maximum size of bias arrays in a middle layer (of a subnet)

could be estimated using the following equation:

bslitotal = nr

(

bsline (ssize − (2i+ 2)) + 2bslie

)

, for1 ≤ i ≤ ltop − 1 (3.17)

iii. Top Layer.

At the top layer, the maximum size of the bias array could be derived from the

preceding level non-edge GN node’s maximum bias array size. Hence, the maximum

size of the bias array of GN node at the top level is:

bs
ltop
all = bsli−1

ne × nr (3.18)

From these equations, the total maximum size of all the bias arrays within a single

DHGN subnet could be deduced as shown in Equation 3.19:

bsDHGN
total = bsl0total +

ltop−1
∑

i=1

bslitotal + bs
ltop
all (3.19)

3.3. ANALYSIS AND EVALUATION 131

Communication Complexity Analysis

DHGN is a distributed pattern recognition algorithm. In any distributed algorithm, com-

munication plays an important role in ensuring the efficiency of the algorithm. High

communication costs will incur additional overhead for the network to support the core

functions of the algorithm. Hence, the intention is to minimise the communication costs

within DHGN. In conducting an analysis of the communication costs, all the four steps

in the distributed pattern recognition scheme have been considered. This subsection esti-

mates the communication costs for the implementation.

i. Network Generation Step:

Network generation in DHGN implementation involves the initialisation of DHGN

subnets for recognition processes. Within this step, SI module is responsible for com-

municating possible input values of the patterns, which will be used in the recognition

process, to all the base layer GN nodes within DHGN subnets. Equation 3.20 shows

the number of messages that needs to be communicated by SI module to these GN

nodes.

mSI = nr × nsub × ssize (3.20)

This equation is based on the assumption that all DHGN subnets are of the same

size. In addition, the cumulative size of all the messages that will be transmitted is

shown in Equation 3.21:

ltotalSI = lSI (nr × nsub × ssize) (3.21)

ii. Pattern Input Step:

Within this step, SI module is required to decompose the pattern into subpatterns

and distribute these subpatterns to all available DHGN subnets. The distribution of

subpatterns to all DHGN subnets requires communication between SI module and

all the base layer GN nodes within the subnets. The communication costs incurred

during this step of recognition is similar to the previous step.

132 CHAPTER 3. DISTRIBUTED HIERARCHICAL GRAPH NEURON

iii. Recognition at Subpattern Level:

The following relations show the communication complexity of DHGN algorithm at

the subpattern recognition level.

(a) Base Layer.

For each GN nodes in the base layer, the communication costs could be derived

from the number of messages communicated between adjacent nodes for each

input subpattern.

For GN nodes at the edge of base layer:

ml0
e = nr (3.22)

For non-edge GN nodes:

ml0
ne = n2

r + 1 (3.23)

Note that for non-edge GN nodes, the communication is required between ad-

jacent nodes in both the preceding and the succeeding columns, as well as the

communication of bias indices to the GN nodes at the next higher layer.

The cumulative communication costs for all GN nodes in the base layer could

be derived as the following:

ml0
total = nr

(

ml0
ne (ssize − 2) + 2ml0

e

)

(3.24)

(b) Middle layers.

The communication costs for GN nodes in the middle layers are similar to the

GN nodes at the base layer. Hence Equation 3.22 and Equation 3.23 apply.

However, the difference would be in the number of nodes available within each

layer.

The cumulative communication costs for all GN nodes in each middle layer:

mli
total = nr

(

mli
ne (ssize − (2i+ 2)) + 2mli

e

)

, for1 ≤ i ≤ ltop − 1 (3.25)

3.3. ANALYSIS AND EVALUATION 133

(c) Top layer.

These GN nodes are only responsible for communicating the final index for

each subpattern stored/recalled to the SI module. Therefore, there is only one

message that needs to be passed to the SI module for each input subpattern.

The total cumulative number of communications required for each subpattern stored/recalled

in a DHGN subnet could be derived from Equation 3.26.

mDHGN
total = ml0

total +

ltop−1
∑

i=1

mli
total + 1 (3.26)

iv. Recognition at Pattern Level:

The recognition at pattern level does not require any communication since recogni-

tion takes place within the SI module.

Comparative Analysis

The research has conducted a comparative analysis between HGN and DHGN pattern

recognition algorithms with regards to their storage capacity and communication com-

plexity.

i. Storage Capacity:

Both DHGN and HGN implementations share the common storage entity known as

bias array. However, the total maximum number of possible bias entries is signifi-

cantly higher in HGN implementation as compared to DHGN implementation. An

increase in the size of the pattern can therefore affect the storage capacity in HGN

to a higher degree. This is primarily due to the larger hierarchical shape factor of

the HGN. Table 3.9 shows the total maximum size of bias arrays at each layer within

a HGN network for binary pattern with size 55.

The total maximum size of bias arrays vs. number of layers within the HGN network

and the maximum size of bias array for each GN node vs. number of layers within

the network can be plotted. Figure 3.22 shows the results of the analysis for 55-bits

binary pattern.

134 CHAPTER 3. DISTRIBUTED HIERARCHICAL GRAPH NEURON

Layer (i) log bslitotal Layer (i) log bslitotal
0 2.64 14 10.75

1 3.22 15 11.31

2 3.81 16 11.88

3 4.39 17 12.44

4 4.97 18 13.00

5 5.56 19 13.55

6 6.14 20 14.09

7 6.72 21 14.63

8 7.30 22 15.15

9 7.88 23 15.65

10 8.46 24 16.13

11 9.03 25 16.56

12 9.60 26 16.86

13 10.18 27 16.56

Table 3.9: Total possible bias entries for each layer within a HGN network for 55-bits
binary patterns.

The top chart in Figure 3.22 shows a slight drop in the total maximum possible bias

entries after layer 26. This is due to the number of the top layer GNs being substan-

tially lower than the middle layers. An increase in the number of layers within HGN

network would results in an increase in the possible maximum size/node and the to-

tal possible maximum size of bias arrays. Thus, the GN processing nodes must have

large storage capacity in order to fulfill all different combinations of input elements

within a pattern. Therefore, HGN could be applied in large processing nodes such

as grid node that is capable of storing large amount of data. It is important to note

that the possible maximum sizes do not imply that the actual storage requirements

will follow these theoretical maxima. The actual storage will be highly influenced

by the variations in the input patterns. With DHGN implementation, the storage

capacity requirement for each GN processing node has been reduced significantly,

to cater for lightweight processing nodes such as sensor nodes, to participate in the

recognition process.

The decomposition of HGN hierarchical structure into small-scale DHGN subnets

reduces the levels of the hierarchical network significantly, thereby improving its

storage capacity requirement. Table 3.10 shows the comparison between HGN and

DHGN implementation in terms of the total possible maximum size of bias arrays

3.3. ANALYSIS AND EVALUATION 135

Figure 3.22: The charts showing the total maximum possible bias entries for each layer
and within individual nodes for 55-bit binary patterns using the HGN approach.

and the size of the stored patterns. Note that for the equivalent DHGN implemen-

tation, the subnet with subpattern size of 5 has been chosen. On average, DHGN

reduces the size of total memory requirement for about 68.9% from equivalent HGN

implementation. Figure 3.23 shows this comparison.

psize log bsHGN
total log bsDHGN

total

5 2.11 2.11

15 5.11 2.58

25 8.18 2.81

35 11.19 2.95

45 14.20 3.06

55 17.22 3.15

Table 3.10: Comparison between the total possible maximum bias array size for HGN and
DHGN implementations for binary pattern recognition with different pattern sizes.

DHGN offers lower storage capacity requirement than HGN. Furthermore, DHGN

offers higher scalability with respect to the increase in the pattern size. Neither

HGN nor DHGN algorithm are affected by an increase in the number of patterns

stored. This is due to the fact that both DHGN and HGN bias array concept has

136 CHAPTER 3. DISTRIBUTED HIERARCHICAL GRAPH NEURON

Figure 3.23: Comparison between the total cumulative bias entries in DHGN and HGN
implementations. The subnet for DHGN is for handling subpattern with size 5 in this
comparison.

been specifically designed to rely on the adjacency information thereby avoiding the

bulk of global pattern recognition computations. Some patterns might share similar

adjacency information amongst each other. Therefore the bias array size estimation

is conservatively done, by assuming the worst case where the input patterns do not

share any adjacency information.

ii. Communication Complexity:

DHGN requires fewer hierarchical layers in comparison to HGN and thus reduces

the overall communication cost. Table 3.11 and Figure 3.24 show the comparison of

communication cost for HGN and DHGN.

psize mHGN
total mDHGN

total

5 58 58

15 548 174

25 1538 290

35 3028 406

45 5018 522

55 7508 638

Table 3.11: Comparison between HGN and DHGN implementations with regards to the
number of messages communicated per pattern recognition.

3.4. PATTERN RECOGNITION SIMULATION AND RESULTS 137

Figure 3.24: A comparison of communication costs, for each of the GN node, within HGN
and DHGN.

From these results, it can be derived that on average, 83.4% of message passing

savings have been obtained through DHGN implementation in comparison to HGN.

It can be further deduced that the distribution factor in DHGN algorithm helps with

improving the efficiency of this GN-based approach for pattern recognition.

The analyses that have been carried out indicate that DHGN provides high scala-

bility towards increasing size and dimension of patterns through the use of divide-

and-distribute approach within a single-cycle learning. Furthermore, DHGN has

been proven to reduce the complexity of HGN algorithm, in regards to its processing

requirement.

3.4 Pattern Recognition Simulation and Results

A series of recognition tests using DHGN’s distributed pattern recognition approach has

been conducted. The results of these tests are also included in Appendix A. In this

chapter, two different sets of patterns have been tested and discussed. The first set of

patterns is binary character patterns as shown in Figure 3.25, while the second set of

patterns is 16KB binary images. These sets were used as the base for generating noisy

patterns in their respective categories. Equal sized DHGN subnets, capable of storing

either 5-bit or 9-bit binary patterns, were adopted for these tests. The subnet size may be

138 CHAPTER 3. DISTRIBUTED HIERARCHICAL GRAPH NEURON

calculated by dividing the largest input pattern size with the number of available nodes

within the computer grid. Inter-nodes communications and SI-to-subnet communications

were implemented using MPICH-2 library for the message passing interface (MPI) (Gropp,

Thakur and Lusk, 1999). This simulation has been written in C/C++ language. The full

pseudocode for this simulation is included in Appendix B.

Figure 3.25: Original binary character patterns used in the recognition tests.

3.4.1 Binary Character Pattern Recognition

The character patterns used in this recognition test have been grouped into three different

representations. These are 5-by-7 bit representation, 8-by-8 representation, and 16-by-16

representation. Figure 3.26 shows the formation of these representations.

Figure 3.26: Bit representation for binary character patterns used in the recognition test.

For this test, Each DHGN subnet is used to store/recall 5-bit binary subpatterns.

Each character image used has been decomposed into 5-bit subpatterns of equal size. This

decomposition is conducted by SI module node. Recall rate using precision and recall

technique with voting mechanism has been used as a classification parameter in these

tests. Recall rates R, for the tests were obtained using the following equation:

R =
nT
DHGN

nT
DHGN + nF

DHGN

(3.27)

3.4. PATTERN RECOGNITION SIMULATION AND RESULTS 139

nT
DHGN and nF

DHGN both represent the number of DHGN subnets with correct and

incorrect recall respectively.

Figure 3.27 shows the comparison of recall rates among the three character patterns

“A” of different sizes as shown in Figure 3.26, which has been used in this test. The

recall rates are similar for all these different representations indicating that DHGN recall

accuracy is not sensitive to change in the pattern size.

Figure 3.27: Comparison among different character representation for DHGN pattern
recognition.

The recognition test has also been conducted on a set of binary character patterns

with random distortion. The random distortion applied to the character patterns vary

according to the level of distortion. Eight different levels of distortion were used as shown

in Figure 3.28.

For this test, Each DHGN subnet is able to store/recall 9-bit binary subpatterns.

Therefore, the SI module is responsible for decomposing each character pattern into 9-bit

subpatterns.

Figure 3.29 shows the results of the test. DHGN is able to recognise distorted character

patterns up to 25.70% distortion. This shows that DHGN offers a reasonably high level of

140 CHAPTER 3. DISTRIBUTED HIERARCHICAL GRAPH NEURON

Figure 3.28: Eight different levels of random distortion applied to binary character pat-
terns.

recall accuracy as a single-cycle learning algorithm. It may be noted that patterns with

random distortion higher than 25% are difficult to be identified, even with the human eye.

In analysing the effectiveness of our proposed two-level recognition scheme, a compar-

ative test was conducted between one-level DHGN (DHGN at subpattern level only) as

described in (Khan et al., 2010b) and the newly-proposed two-level DHGN recognition

schemes. Similar dataset has been used in this study. Figure 3.30 shows the results of the

test.

Two-Level DHGN recognition scheme provides higher recall percentage as compared to

the previous implementation of One-Level DHGN. This is due to the additional recognition

feature of SI module that enables the results of the recognition process at subpattern level

to be reanalysed to produce higher recall accuracy through voting mechanism as described

in Section 3.1.

3.4. PATTERN RECOGNITION SIMULATION AND RESULTS 141

Figure 3.29: Results for binary character pattern recognition with DHGN.

3.4.2 Recognition Test on Binary Images

The second recognition test in our study involves the recognition of noisy 128-by-128

bit binary images In this test, we have added different levels of Gaussian noise to the

image “Lena” and test these images over a set of different heterogeneous images. The

Gaussian noise used in this test has been determined using different percentages of noise

with Gaussian distribution over the size of the original image. With Gaussian distributed

noise, the original Lena image pixel value distribution has been changed using Gaussian

distribution. To test the recall accuracy of DHGN algorithm, we have used distorted

image “Lena” against a series of heterogeneous images as shown in Figure 3.31. We have

applied different levels of noise using Gaussian distribution to the “Lena” image, as shown

in Figure 3.32.

The pixel value distributions for noisy images are significantly different from the orig-

inal image, making it quite difficult to be recognised as the original image. Furthermore,

the number of pixels corresponds to the pure black and pure white values (0 and 255)

are deteriorating with an increase in the percentage of noise added to the image. The

Gaussian-distribution noise levels down the pure black and white pixels into different

levels of either blackness or whiteness (within range of 0-255).

This recognition test was divided into two parts. The first part involves the recognition

of Gaussian distributed noisy images with 10 heterogeneous binary images previously

stored within the DHGN network, while the second part implies similar configuration

142 CHAPTER 3. DISTRIBUTED HIERARCHICAL GRAPH NEURON

Figure 3.30: Comparison between One- and Two-Level DHGN pattern recognition on
binary characters.

with 20 heterogeneous binary images. Figure 3.33 and Figure 3.34 show the results of

recognition tests conducted.

The DHGN pattern recogniser is capable of providing high recall accuracy for distorted

heterogeneous binary image recognition. The dimensionality reduction from greyscale

images to binary images does not affecting the recall accuracy of DHGN. In addition,

DHGN is able to store all the 20 heterogeneous images’ data within a single-cycle learning

process without any reductions in its recall accuracy.

3.4.3 Performance Test on Binary Images

A study has been conducted on DHGN’s performance with respect to its recognition time

taken for each subnet, with different number of subpatterns stored/recalled. These subpat-

terns were derived from similar set of binary images as shown in Figure 3.31. Figure 3.35

and Table 3.12 show the results of the test that has been carried out.

The total recognition time for each DHGN subnet shows a stable performance of less

than 1.5 seconds for different number of patterns stored/recalled. However, the average

recall/store time for each image within a DHGN subnet decreases, with an increase in the

number of images stored/recalled. This reduction in recall/store time is caused by the

3.5. MULTI-VALUE DHGN MODEL 143

Figure 3.31: Heterogeneous binary images used in the image recognition test.

No. of subpatterns Stored/Recalled Average Recognition Time (in seconds)

10926 0.099683

12747 0.116156

14568 0.078546

16389 0.082982

Table 3.12: Average recognition time for each subnet in DHGN network for a given 16kb
binary image.

load-balancing feature of MPI communications used in our implementation. MPI com-

munications enable the message-passing process to be conducted at higher speed, with

an increase in the number of subpatterns introduced to the network. This load-balancing

feature of MPI communications within DHGN network enables the overall system to per-

form at a stable state, with an increase in the number of subpatterns introduced. As a

result, this performance test has shown that an increase in the number of subpatterns

stored within the network does not have any impact on the recall/store time of DHGN

implementation. It can therefore be concluded that the scalability of DHGN algorithm is

not affected by the number of stored pattern within the DHGN network. Further analysis

on DHGN message-passing model will be described in Chapter 5.

3.5 Multi-Value DHGN Model

One possible approach to reduce the cost of communications in DHGN implementation

is to reduce the number of processing nodes participated in the recognition process. This

could be achieved by implementing a distributed pattern recognition scheme using a single

14
4

C
H
A
P
T
E
R

3.
D
IS
T
R
IB

U
T
E
D

H
IE

R
A
R
C
H
IC

A
L
G
R
A
P
H

N
E
U
R
O
N

Figure 3.32: Four different levels of Gaussian noise added to image Lena.

3.5. MULTI-VALUE DHGN MODEL 145

Figure 3.33: Results of the image recognition test with ten binary images stored.

dimension DHGN structure, as shown in Figure 3.36. Note that each possible value

within the pattern is implemented as an internal action, rather than involving message

communication between different nodes. This scheme is known as Multi-Value DHGN

(MV-DHGN).

With this compressed scheme, the cost for communications is significantly reduced.

Table 3.13 shows the formulas to derive the number of communications occurring by

implementing this approach, given n number of GNs.

Communication Type Representation

Input n

Communication
∑

n+1

2
−1

i=0 2v + (n− (2i+ 2)) (3)
Output 1

Table 3.13: Representations for the amount for each different types of communication
performed in MV-DHGN message-passing model.

Note that for MV-DHGN approach, the dimension of patterns have been eliminated

in the calculation, since each node is capable of handling all different element values.

However, it requires the process of redesigning the bias array scheme for pattern storage

in DHGN implementation, in which each bias entry at the base level should include the

value, matched with the position of the node in a given pattern, in the form of idx(vl, vr),

where idx, vl, vr represent bias index, value from left-adjacent node, and value obtained

from the right-adjacent node respectively.

146 CHAPTER 3. DISTRIBUTED HIERARCHICAL GRAPH NEURON

Figure 3.34: Results of the image recognition test with twenty binary images stored.

An analytical observation on the effect of reducing the number of processing nodes for

communication savings has been conducted. Figure 3.37 shows the result of the comparison

between non-reduced and reduced approaches for DHGN message-passing model on binary

patterns with size up to 27-bits.

From the observation, It can be deduced that on average, 42.07% savings on the cost

of communications have been obtained through the use of MV-DHGN, in comparison

to original binary DHGN scheme. Therefore, the reduced approach seems to offer more

efficient communication strategy, in regards to the process action estimation for DHGN

message-passing model.

Besides an effective communication aspect, MV-DHGN has also been designed as a

mechanism for fault tolerance implementation, specifically in the event where processing

nodes failed to perform in any subnet during DHGN recognition process. This will be

further discussed in Chapter 5. Moreover, MV-DHGN implementation can also be included

in existing DHGN architecture. Figure 3.38 shows the architecture of DHGN with enjoined

MV-DHGN subnets.

3.5. MULTI-VALUE DHGN MODEL 147

Figure 3.35: Total recognition time for each DHGN subnet in binary pattern recognition
with different number of subpatterns derived from 16KB binary images.

3.5.1 Complexity Estimation

Two different aspects of complexity are considered in our proposed MV-DHGN scheme.

These include processing capacity and bias array design. Comparisons were also made in

terms of these aspects with existing DHGN scheme.

Processing Capacity

Processing capacity for MV-DHGN implies that its structure only accommodates each

position of elements within a given subpattern. In this perspective, each processing node

is capable of receiving different kinds of pattern elements. Thus, it reduces the structural

capacity of existing DHGN subnet composition. Given a DHGN composition for binary

patterns with subpattern length of l bits, the size of subnet, i.e. the number of GN nodes,

nV
GN required in MV-DHGN structure can be deduced from the following equation:

nV
GN =

(

l + 1

2

)2

(3.28)

148 CHAPTER 3. DISTRIBUTED HIERARCHICAL GRAPH NEURON

Figure 3.36: Multi-Value DHGN for binary pattern recognition on 5-bit patterns.

MV-DHGN eliminates the dimension factor of the estimation involving the number of

processing nodes required. Hence, the size of each subnet is smaller than existing DHGN

implementation. Figure 3.39 illustrates the comparative estimation that has been carried

out on the size of subnet in both binary DHGN and MV-DHGN schemes for increasing

pattern sizes.

Based on the analysis that has been carried out, 50% savings in terms of the number

of processing nodes required are achieved using MV-DHGN scheme.

This research also examined a comparative estimation between MV-DHGN and DHGN

implementation on the impact of increasing number of different pattern elements, on

the number of GN nodes required for recognition involving patterns with length l = 25.

Figure 3.40 shows the result of this estimation.

MV-DHGN implementation implies that each GN node is capable of storing different

values. Hence, a requirement for node’s value initialisation may be discarded in the pro-

posed scheme. Therefore, this increases its flexibility to adapt to different data values,

without having a need for reinitialisation.

3.5. MULTI-VALUE DHGN MODEL 149

Figure 3.37: Comparison between DHGN (with binary values) and MV-DHGN distributed
pattern recognition models on cost of communications.

Bias Array Design

The bias array composition in MV-DHGN model is exactly similar to existing DHGN

scheme. It implements index{left, right} composure for GN nodes at the base layer and

index{left, middle, right} for nodes at the middle layers. However, the value left or right

in MV-DHGN at the base layer does not reflect the row number of DHGN subnet com-

position. It represents the value obtained from adjacent nodes. For GNs at the middle

layers, each item in the entry represents the index obtained by its adjacent nodes from

their respective lower-layer GNs at the same position.

The size and total cumulative size of bias array is considered at each layer. Table 3.14

represent the terms that will be used in our bias array estimation.

Base Layer. For each GN at the edge, the maximum bias array size is equivalent to

the number of different elements within a pattern. Therefore, max bebase = v.

For non-edge GNs, the maximum bias array size may be determined using the following

equation:

max bnebase = v2 (3.29)

The cumulative maximum bias array size at the base-layer in MV-DHGN subnet could

be deduced as follows:

150 CHAPTER 3. DISTRIBUTED HIERARCHICAL GRAPH NEURON

Figure 3.38: DHGN compositions with DHGN and MV-DHGN subnets.

Cbmax
base = max bnebase (S − 2) + 2max bebase (3.30)

Middle layers. Similar to DHGN implementation that has been described in Section

3.1.4, the maximum bias array size for each GN at the middle layers are highly-dependent

on the size of bias array of GNs at the lower layer. Hence, for middle-layer GNs at the

edge, the maximum bias array size can be derived from Equation 3.31:

max beli = max bneli−1
× v2 (3.31)

Consequently, the maximum bias array size for non-edge middle-layer GNs can be

estimated as following:

3.5. MULTI-VALUE DHGN MODEL 151

Figure 3.39: Processing capacity estimation for both DHGN and MV-DHGN implemen-
tations.

max bneli = max beli × v (3.32)

The cumulative bias array size for GNs at the middle layer could therefore be repre-

sented using the following equation:

Cbmax
li

= max bneli (S − (2i+ 2)) + 2max beli 1 < i <
S + 1

2
(3.33)

Top Layer. The maximum bias array size of GN at the top layer is exactly equal to

the maximum bias array size of the non-edge GN in the layer below it. Hence, Cbmax
top =

max bneltop−1
.

Based on all the equations obtained, the overall size of bias arrays for all GNs in the

MV-DHGN subnet can be estimated using Equation 3.34:

TbC−DHGN = Cbmax
base +

S+1

2
−1

∑

i=2

Cbmax
li

+ Cbmax
top (3.34)

A comparison between the maximum size of bias array for each layer in a subnet

between MV-DHGN and DHGN schemes has been carried out, identifying a binary sub-

pattern with 55-bits. Figure 3.41 shows the result of this comparison.

The outcome of the analysis has shown that MV-DHGN implementation incurs equal

loads of bias entries for the entire subnet. However, it is best to note that the similar

152 CHAPTER 3. DISTRIBUTED HIERARCHICAL GRAPH NEURON

Figure 3.40: Comparative processing capacity estimation for DHGN and MV-DHGN on
the impact of increasing number of different pattern elements.

quantity of entries is distributed across less number of GNs within the subnet. Hence, the

computational load of each GN may increase significantly with this scheme. Therefore,

the use of this approach in critically resource-constrained network may not be appropriate

for long duration of time.

3.5.2 Recognition Accuracy

Pattern recognition simulation has been conducted to determine the accuracy of the pro-

posed C-DHGN. Similar character pattern dataset as in Section 3.4.2 has been used in

this test. The results of this simulation have shown that MV-DHGN performs equal-level

of accuracy as in DHGN implementation. Figure 3.42 and 3.43 show the results of the

recognition tests performed on MV-DHGN approach.

The results have indicated that MV-DHGN has a capability to recall all the patterns,

given different range of random distortions. However, the majority votes obtained, based

upon the character given shows that at higher distortion rates, some characters are domi-

nant than the other. For instance, at 8.60% and 11.40% distortion rates, character patterns

J and S obtained higher majority votes as compared to the other characters.

The recognition scheme has been simulated on a distributed environment using a high-

performance computing (HPC) architecture. A scalability analysis on MV-DHGN was also

conducted, demonstrating its capability to perform recognition on different large number

3.5. MULTI-VALUE DHGN MODEL 153

Symbol Explanation

l Layer in C-DHGN subnet
max bebase Maximum bias array size for base-layer GN at the edge.
max bnebase Maximum bias array size for non-edge base-layer GN.
Cbmax

base Cumulative bias array size for all base-layer GNs.
max beli Maximum bias array size for edged GNs at the middle-layer li,

where 1 ≤ i ≤ S+1
2 .

max bneli Maximum bias array size for non-edged GNs at the middle-layer li,

where 1 ≤ i ≤ S+1
2 .

Cbmax
li

Cumulative bias array size for all GNs in the middle layer li,

where 1 ≤ i ≤ S+1
2 .

Cbmax
top Maximum bias array size for GN in the top layer.

v Number of different pattern elements.
S Length of subpattern.
TbC−DHGN Total maximum bias array size for MV-DHGN subnet.

Table 3.14: MV-DHGN bias array estimation terms.

of patterns. Random bit subpatterns were used in this test. Table 3.15 describes this

dataset.

Dataset Subpattern Size (bits) No. of Stored Subpatterns

1 5 25 = 32
2 7 27 = 128
3 9 29 = 512
4 11 211 = 2048

Table 3.15: Dataset collection comprising of random binary subpatterns.

For each dataset, 20000, 40000, and 60000 random patterns were generated, and used

to test the recognition accuracy of MV-DHGN. The results of this test indicated that all

random subpatterns were able to be classified accordingly to each of the respective stored

subpatterns, i.e. no additional index has been created (for example, in 5-bits subpatterns

dataset, all the random patterns are classified according to the 32 subpatterns that have

been stored.

A performance test was also conducted, in regards to the recognition time incurred

for each subpattern in all datasets. The simulation was performed using a supercomputer

facility at Victorian Partnership for Advanced Computing (VPAC), Australia. The ma-

chines that were used comprise of high-performance cluster with AMD Opteron system,

where it consists of 95 Compute Nodes, 760 CPUs (or more correctly, cores). Each node

154 CHAPTER 3. DISTRIBUTED HIERARCHICAL GRAPH NEURON

Figure 3.41: Estimated cumulative bias array at all levels within a subnet for MV-DHGN
and DHGN implementations on binary 55-bits subpatterns.

has 2 AMD 2356 Quad Core Opterons, 32GB RAM and 4 × 320GB disks (1.2TB scratch

space).

Figure 3.44 shows the results of recognition time per subpattern obtained in the MV-

DHGN simulation using three different datasets as in Table 3.15.

From this graph, it shows that recognition process for each subpattern only requires

maximum of less than one millisecond for 20000 or more random patterns. In this regard,

MV-DHGN is capable of performing fast recognition and is not significantly affected by

an increase in the amount of subpatterns used.

3.5.3 Summary

This section has presented a new DHGN model known as MV-DHGN. It reduces the

amount of processing nodes required while maintaining the recognition accuracy that is

comparable with DHGN scheme. A significant drawback of this scheme is such that the

bias array size for each GN may increase as a result of its capability to handle different

types or dimension of elements within a subpattern. Therefore, the proposed compression

model may only be utilised in coarse-grained highly-resourceful networks such as compu-

tational grids.

3.6. CONCLUSIONS 155

Figure 3.42: Recognition test results obtained from the simulation using binary character
patterns A, I, J, S, X, and Z.

3.6 Conclusions

This chapter has presented the proposed approach for distributed pattern recognition,

known as Distributed Hierarchical Graph Neuron (DHGN). DHGN implements a divide-

and-distribute approach to HGN networks. Owing to its single-cycle learning and in-

network processing features of GN-based algorithms, DHGN is able to offer efficient recog-

nition scheme with high recall accuracy. Furthermore, DHGN’s distributed pattern recog-

nition scheme exerts low and stable recognition time, due to its ability to distribute the

recognition processes across a computational network.

DHGN is able to lower the storage and communication complexities for pattern recog-

nition process. In addition, the two-level recognition in DHGN algorithm offers both

recognition at pattern and subpattern levels, which contributed towards higher recall

accuracy for both the binary character patterns and the heterogeneous binary images.

Moreover, the use of dimensionality reduction schemes such as binary signature implies

low computational requirements for DHGN deployment.

156 CHAPTER 3. DISTRIBUTED HIERARCHICAL GRAPH NEURON

Figure 3.43: Percentage of majority votes for each character for different sets of distortion
rates.

In regards to the algorithmic complexity, DHGN has been proven to adapt low-level

complexity in its computation. This allows for fast recognition procedure with single-cycle

learning capability and divide-and-distribute approach towards patterns. Comparisons

with other pattern recognition algorithms including Hopfield network and Kohonen SOM

have also been conducted for the purpose of complexity measurement.

In terms of scalability, a detailed comparison has been made between the Hierarchical

Graph Neuron (HGN) approach and our proposed distributed version of the algorithm for

one-dimensional binary patterns. There is an 80.5% reduction in the number of GN pro-

cessing nodes in DHGN implementation in comparison to HGN. This reduction however

does not affect the recall accuracy and scalability of DHGN algorithm for binary pattern

recognition. In addition, there is an improvement in memory saving from an average

reduction of 68.9% in DHGN in comparison to equivalent HGN implementation. Further-

more, we have also provided evidence of message passing savings of 83.4% on average in

DHGN implementation.

A series of recognition tests were conducted on relatively small binary images. However,

it is best noted that there is no restriction on the overall size of the images being used.

Furthermore, the results of the tests have shown that the number of stored images does not

negatively influence the accuracy and resource requirements for the proposed approach.

3.6. CONCLUSIONS 157

Figure 3.44: Recognition time per subpattern for different subpattern size and number of
random subpatterns.

The divide-and-distribute approach, by working on relatively small segments of an

image, also allows adjustment of subnets according to the feature variation within an

image. Thus monotonous regions would be handled by fewer subnets than the ones with

high degree of variations. Our approach may also provide means to tackle the curse

of dimensionality since it radically reduces the computational complexity and resource

requirements within our hierarchical associative memory network.

This chapter also presented a work on multi-value DHGN for increased scalability in

handling patterns with large number of different elements. This multi-value model reduces

the number of communications between adjacent GNs while maintaining the similar level

of recognition accuracy, in comparison with existing DHGN scheme. However, there is

a limitation in this multi-value DHGN implementation that is related to the bias array

design. An increase in the size of bias array is expected with an increase in the number

of different elements within the pattern. Further research on accommodating multiple

value within DHGN is possible, by observing the design of bias array for pattern storage

mechanism. An application of MV-DHGN will be further discussed in Chapter 4.

158 CHAPTER 3. DISTRIBUTED HIERARCHICAL GRAPH NEURON

Chapter 4

Multi-Feature Pattern

Recognition: A Distributed

Approach

Pattern recognition involves a set of processes to define similarities and/or differences be-

tween two or more patterns. In this perspective, patterns or data need to be evaluated or

measured in order to find such distinctive characteristics of those patterns. In achieving

this, the first step in any pattern recognition schemes is to identify measurable quantities

or characteristics of patterns that matched with a specific class of data. These measurable

quantities are known as features. According to Theodoridis and Koutroumbas (2003),

features can be defined as a set of measurements used for recognition and classification.

These measurements in turn, form a feature vector that is used for recognition purposes.

In image recognition, examples of features may include colours, edges, and spectrum fre-

quencies.

Pattern recognition as described in previous chapters consists of a series of processes

including data acquisition, data pre-processing, and classification (Bow, 2002). For each

data presented for recognition, it has a number of related features that may be used to

classify it to a respective data class with closest matched characteristics. These features

are first to be extracted, before any classification/recognition process can takes place. This

process runs within the pre-processing stage of pattern recognition. A major problem with

existing pattern recognition schemes is such that the number of features used is very large.

159

160CHAPTER 4. MULTI-FEATURE PATTERN RECOGNITION: A DISTRIBUTED APPROACH

As a result, a phenomenon known as curse of dimensionality occurs. This is a result of

adding more features as dimensions to computational space.

This chapter focuses on pattern recognition scheme involving multiple features. Multiple-

feature implementation enables a holistic approach towards pattern recognition procedure

that takes into consideration all significant features, which represent a particular set of

patterns, such as images and sensor readings. This intends to reduce the bias effect of

selecting only a single feature for classification/recognition purposes. Current approaches

in pattern recognition require significant amount of effort to analyse different forms of fea-

tures, due to the curse of dimensionality problem. This limits their ability to seamlessly

and effectively perform recognition and classification involving complex data sets. Fur-

thermore, most of the existing schemes incur high computational complexity that inhibits

their capability to scale up for increasing number of features.

In solving this issue, the use of distributed approach in implementing pattern recog-

nition on multiple features is envisioned. It is argued that by having a set of distributed

computational networks working together, forming a distributed recognition network will

alleviate the issue of scalability of pattern recognition scheme against increasing number

of features to be considered. In addition, the use of single-cycle learning distributed pat-

tern recognition algorithm such as DHGN, will further improve the performance of this

multi-feature scheme. In contrast with contemporary machine learning approaches, our

approach allows induction of new patterns in a fixed number of steps. Whilst doing so

it exhibits a high level of scalability i.e. the performance and accuracy do not degrade

as the number of stored pattern increases over time. The pattern recognition capability

remains comparable with contemporary approaches such as the support vector machine

(SVM), self-organising map (SOM), and artificial neural network (ANN). Furthermore all

computations complete within the pre-defined number of steps and as such the approach

implements one shot, i.e. single-cycle or single-pass, learning. The one shot learning within

this method is achieved by side-stepping the commonly used error/energy minimisation

and random walk approaches. The network functions as a matrix that holds all possible

solutions for the problem domain. The network after applying our algorithm can find the

solution in a single-cycle (i.e. fixed number of steps). The DHGN approach finds and

refines the initial solution by passing the results through a pyramidal hierarchy of similar

arrays. In doing so it eliminates/resolves pattern defects, with distortions up to 20% being

4.1. DATA FEATURES FOR PATTERN RECOGNITION 161

tolerated (Khan et al., 2010b). Previously encountered patterns are revealed whilst new

patterns are memorised without loss of stored information. In fact the pattern recognition

accuracy continues to improve as the network processes more sensory inputs (Nasution

and Khan, 2008).To achieve this goal, the work on DHGN distributed pattern recognition

algorithm is extended for multi-feature recognition and analysis of complex data.

The objectives of this chapter are as followings:

i. To discuss all significant factors in implementing multi-feature recognition. This will

include review of related approaches.

ii. To extend the work on DHGN distributed approach for one-shot multi-feature pat-

tern recognition scheme.

iii. To evaluate the complexity and scalability of the proposed multi-feature scheme.

iv. To present studies related to multi-feature recognition implementation on complex

data, such as face image and handwritten character recognition.

This chapter is structured as follows. Section 4.1 describes basic concepts of data

features and some common approaches in pattern recognition based on multiple data fea-

tures. Section 4.2 provides a detailed description of our proposed multi-feature pattern

recognition using DHGN. This section will also covers complexity estimation on the pro-

posed scheme. A study on the implementation of multi-feature scheme on face image

recognition will be presented in Section 4.3. In Section 4.4, further analysis on DHGN

multi-feature implementation in complex handwritten numeral character classification will

also be discussed. Finally, Section 4.5 concludes the chapter.

4.1 Data Features for Pattern Recognition

Consider a data representation shown in Figure 4.1. With mean pixel value as a feature

for a set of images, we are considering a one-dimensional problem of determining which

class does a particular image belongs to. However, as another feature is added as shown

in Figure 4.1b, additional computation is required to determine the correlation between

features that produces distinctive classes of images. With more features added, the com-

putational costs of determining such correlations become progressively higher. According

162CHAPTER 4. MULTI-FEATURE PATTERN RECOGNITION: A DISTRIBUTED APPROACH

to Theodoridis and Koutroumbas (2003), although two features may carry good classifica-

tion if treated separately, there is small gain if these features are combined in the feature

vector, due to high mutual correlation. In this regard, complexity increases with fewer

benefits to the recognition process.

(a) Mean pixel value. (b) Mean pixel value, µ vs. standard deviation, σ.

Figure 4.1: Data feature representation for a set of images.

In classification design of existing pattern recognition schemes, the high number of

features used is directly translated to the number of classifier parameters adopted in the

schemes. Therefore, this increases the complexity of the algorithm to determine synaptic

weight and make adjustments to it during the recognition process, as demonstrated in the

work of Hongtao, Feng and Rong-chun (2002) in multi-feature recognition using radial-

basis function networks (RBFNs). It is imperative that the number of features shall be

kept at minimum to ensure the efficiency of the recognition scheme. Nevertheless, selecting

features for recognition is a complex process that needs to be performed objectively.

4.1.1 Common Approaches to Feature-based Pattern Recognition

In dealing with the curse of dimensionality problem, current approaches extend the recog-

nition process by having a feature selection mechanism to select the best features that

represent the whole dataset that is being used. However, this process adds to the com-

plexity of recognition processes by having to perform such dimensionality reduction on

features using costly algorithm including principal component analysis (PCA). Further-

more, the selection of features may affect the accuracy of the recognition scheme through

4.1. DATA FEATURES FOR PATTERN RECOGNITION 163

possible erroneous feature selection. According to Bow (2002), much work has been done

in finding the dependences of the probability of misclassification on the dimensionality of

the feature vector, the number of training samples, and the true parameters of the class-

conditional densities. In this perspective, there is a need for a simpler recognition scheme

that allows more than one features to be analysed, without having prior feature selection

mechanism in dealing with selection of best features for data representation.

4.1.2 Pattern Recognition (PR) using Multiple Features

The concept of pattern recognition using multiple features has been introduced in a number

of publications including (Cao et al., 1995; Zhu, Zhang, Sun and Xiao, 2008; Yu, Ma and

Lu, 2007; Hongtao et al., 2002). Most of the work on multi-feature recognition has been

dealing with images and optical characters. This is probably due to large number of

features that could be extracted from images, including lines, colour, curves, and texture

regions.

Existing literature on multi-feature recognition has been able to produce high recog-

nition accuracy due to increased number of features to be considered. Nevertheless, the

complexity of overall recognition scheme also increases due to the large number of features

to be analysed. For instance, the multi-feature face detection scheme proposed by Zhu

et al. (2008) implements probabilistic-based AdaBoost to train different features for recog-

nition purposes. This significantly affects the scalability of the scheme due to iterative

probabilistic interpretation process to converge these features to global minimum output.

In other research, Cao et al. (1995) have proposed multiple-expert system for handwritten

recognition using neural network. They introduced incremental learning in recognising

handwritten patterns. In addition, iterative clustering algorithm has been adopted in this

implementation. The combination of complex and highly-iterative algorithms makes this

approach less scalable. Furthermore, accuracy of this scheme is highly-dependable on the

outputs produced by a single rejection neuron.

Apart from these studies, Duin and Tax (2000) have also considering the use of com-

bined classifiers for pattern recognition involving multiple features. In their research, a

number of classifiers, including statistical, machine learning and neural networks have been

applied for classification process. Nevertheless, the proposed scheme incurs significantly-

high computational costs in determining accurate classification output. As a result, the

164CHAPTER 4. MULTI-FEATURE PATTERN RECOGNITION: A DISTRIBUTED APPROACH

scalability of the scheme deteriorates as the number of training and testing data sets

increases.

In this chapter, a new approach to multi-feature recognition is proposed by including

the distributiveness that occurs in natural schemes. The DHGN algorithm is adapted,

which is fully-distributed for recognition using multiple data features. The following

sections will describe our proposed scheme together with a number of implementation

examples.

4.2 DHGN Multi-Feature Recognition

The proposed multi-feature scheme conducts distributed pattern recognition using multiple

features obtained from pattern data through a feature extraction method. It provides a

scalable approach, in which the number of features required for the recognition purposes

may always be extended, as long as sufficient computational resources are available. In

this context, the number of features used f , is directly proportional to the computational

resources available for the recognition scheme to be conducted, c. Hence, f ∝ c. These

resources are in the form of distributed computational networks, that provide greater

scalability for recognition purposes.

4.2.1 System Architecture

The architecture for multi-feature recognition comprises a collection of DHGN networks.

Each network performs a distributed recognition scheme for a single feature. Figure 4.2

represents DHGN multi-feature recognition system architecture.

In this configuration, a coordinator node that is used for data acquisition and networks

coordination is introduced. This node will communicate the patterns received to all SI

module nodes (see Section 3.1.2) on different DHGN network. Each SI module will have a

copy of pattern set for the recognition process. This process starts with SI module gener-

ating a single feature obtained from the input patterns. The feature data will then be used

as pattern for recognition purposes. The rest of the recognition procedures within each

network are similar to the original DHGN scheme as described in Chapter 3. The results

for each recognition process conducted by each DHGN network will then be sent to its re-

spective SI module. Each SI module will produce a result of the recognition/classification

4.2. DHGN MULTI-FEATURE RECOGNITION 165

Figure 4.2: DHGN multi-feature recognition scheme that is made up of a collection of
DHGN networks for analysing patterns using multiple sets of features.

for each pattern, in context with the operator-specified accuracy parameter(s). These pa-

rameters may include recall, precision, and error values. These results will then be passed

to coordinator node for error calculation. Each error value, per test object, Perr for a

given number of test objects otest is calculated using the following equation:

Perr =
F+ve + F−ve

otest
(4.1)

Where F+ve and F−ve represent false positive and negative values respectively.

4.2.2 Recognition Analysis

The results of recognition on each feature will be sent to coordinator for determining the

best feature(s) using a selected set of accuracy parameters. For instance, a recognition

procedure may require a selection of features that produces lowest error for any given

patterns. With this kind of condition, a minimum/maximum voting scheme is proposed

to determine the feature with best parameter values for a given pattern class.

Consider the following scenario for recognition accuracy based on error values. Given

a series of patterns P with n classes P = {p1, p2, ..., pn}, and a set of features F =

{f1, f2, ..., fm}. For each pattern class px, x = 1, 2, ..., n, select feature fy, y = 1, 2, ...,m

that produces the minimum recognition error value, errfx for all test patterns. Therefore,

the recall accuracy rpx for each pattern class can be derived using the following equation:

166CHAPTER 4. MULTI-FEATURE PATTERN RECOGNITION: A DISTRIBUTED APPROACH

rpx = argmin{errf1 : errfm}, x = 1, 2, ...n (4.2)

It is important to note that minimum error value is not the only parameter for de-

termining the most effective recall accuracy for multi-feature pattern recognition. Other

possible means include normal mean, median and standard deviation and other statistical

estimations, such as Bayes and maximum-likelihood estimators.

4.2.3 Complexity Estimation

In multi-feature recognition using DHGN distributed pattern recognition (DPR) scheme,

we apply a similar approach towards recognising features for each pattern, as the original

DHGN implementation described in previous chapter. Hence, the complexity of basic

recognition function (for recognition at subpattern level) remain as low as the originally-

proposed scheme. However, in multi-feature scheme, the voting mechanism is applied at

two levels, i.e. at the SI module and the coordinator nodes.

At the SI module node, voting determines the matched pattern class for a given pattern,

while at the coordinator node; voting is used to select the best selected feature that reflects

optimum value for the specified accuracy parameter.

Voting Scheme at SI Module

As described earlier, voting scheme applied at SI module involves the process of classifying

test pattern into a specific pattern class, based upon similar characteristic or feature value

acquired. Inputs to this voting process are the indices retrieved from all DHGN subnets.

In regards to multi-feature recognition, Each SI module will be handling specific feature

for a particular dataset.

The maximum voting scheme in this DHGN implementation involves a process of

finding the maximum number of similar indices obtained from all the subnets. There are

two stages involved in our voting scheme, namely vote counting and maximum vote search.

In vote counting process, the SI module will have to perform index-matching process

to compare index obtained from the test pattern with the index of pattern stored for each

pattern class. The following pseudocode illustrates this process:

4.2. DHGN MULTI-FEATURE RECOGNITION 167

Algorithm 5 SI Module Voting Scheme

1: for i = 1 to MaxTestPatternNo do
2: for j = 1 to MaxSubnetNo do
3: for k = 1 to MaxStoredPatternNo do
4: if i.index ≡ k.index then
5: k.vote++
6: end if
7: end for
8: end for
9: end for

The complexity of this process may be further analysed using a Big-O analysis. In this

context, we can deduce that the complexity for vote-counting process is of n-polynomial,

where n = 3. Given a vote-counting function f(vcount), its complexity in Big-O notation:

f(vcount) = O(n3) (4.3)

Where n represents a single executable instruction within the function. After the

number of votes has been counted, the SI module performs a search function to identify

the highest voted pattern class for the tested pattern. In this regard, this function will

execute a linear search to find the maximum number of votes.

A copy of the pseudocode for SI module’s voting mechanism is included in Appendix B.

Voting Scheme at Coordinator

Voting scheme at coordinator is used to select the best accuracy parameter of a feature

from a collection of available features that have been used in the earlier recognition scheme

using multiple DHGN networks.

In multi-feature recognition, each SI module will communicate the results of the recog-

nition of features as patterns to coordinator node for further analysis. In this regard,

the coordinator will have to store all the received accuracy parameters from SI modules.

Table 4.1 shows a sample of error values obtained from two SI module nodes for each

feature, on 5 different pattern classes.

Based on the values obtained from Table 4.1, we may conclude that Feature 1 is best

to represent pattern classes 1, 3 and 4, since its error values are lower than Feature 2.

Meanwhile, pattern classes 2 and 5 are likely to be represented by Feature 2.

168CHAPTER 4. MULTI-FEATURE PATTERN RECOGNITION: A DISTRIBUTED APPROACH

Feature
Pattern Class

1 2 3 4 5

1 5.26 4.25 1.78 0.85 3.99

2 21.03 3.25 9.36 10.05 2.01

Table 4.1: Example of data obtained from SI modules, in the form of error values for each
feature.

With regards to the complexity of the voting function within the coordinator node, it

simply represents linear search complexity. The following pseudocode outlines the coordi-

nator’s voting function:

Algorithm 6 Coordinator Voting Scheme

1: MinFeature = 99.99
2: for i = 1 to MaxPatternClass do
3: for j = 1 to MaxFeatureNo do
4: if i.j.FeatErr ≤MinFeature then
5: MinFeature = i.j.FeatErr
6: end if
7: end for
8: end for

This function is used to find the minimum error value for each feature, obtained from

the recognition process. Similar to vote counting function in SI module nodes, we can

derive a big-O notation for the coordinator’s voting function, f(vmin) as a n-polynomial

function with executable instructions, n = 2. Hence the following big-O notation applies:

f(vmin) = O(n2) (4.4)

Figure 4.3 shows the estimated execution time for the voting function with increasing

number of features used, nfeat for 10000 pattern classes involved in the recognition process,

assuming that an instruction takes up 1 µs of the computation time.

Note that the minimum voting function takes only one second to select the lowest error

value from 100 features on 10000 pattern classes (trained patterns). This exhibits higher

scalability for recognition approach using our proposed multi-feature scheme, through

distribution of recognition procedure on a group of collaborative DHGN networks.

4.2.
D
H
G
N

M
U
L
T
I-F

E
A
T
U
R
E

R
E
C
O
G
N
IT

IO
N

169Figure 4.3: Estimated execution time for minimum voting function within coordinator node for 10000 pattern classes with increasing number of
features.

170CHAPTER 4. MULTI-FEATURE PATTERN RECOGNITION: A DISTRIBUTED APPROACH

Based upon the complexity analysis presented, we can deduce that DHGN multi-

feature recognition scheme allows recognition to be performed in a scalable manner, ex-

tending a capability to use large number of features for patterns in its recognition pro-

cedure. By having a distributed architecture in recognition scheme, DHGN provides an

avenue for recognition/classification to be executed in a highly-scalable fashion, while

maintaining its low computational complexity.

A point to note however, that the proposed pre- and post-processing mechanisms

described in this section do not entail a rigid framework. Different data analysis and

feature extraction may be accommodated in this scheme. In this context, the proposed

multi-feature scheme may be considered as a commodity application that can be used in

different kinds of application domains. Further discussions on this matter will be presented

in Chapter 5.

In regards to the applications of DHGN multi-feature recognition, both face and hand-

written image recognition have been tested. The following two sections provide descrip-

tions of this current work on image recognition using distributed multi-feature approach.

4.3 Greyscale Image Recognition using Multi-Feature Ap-

proach

In this section, we intend to demonstrate the capabilities of our proposed approach

to achieve multi-feature pattern recognition using collaborative-comparison single-cycle

learning in DHGN within a computational network. This chapter will demonstrate that

our distributed pattern recognition scheme is able to include multiple image features as

inputs within the recognition process. It is also capable of providing accurate classification

within the bounds of single-cycle learning. The proposed multi-feature DHGN is readily

deployable within various network environments, ranging from coarse-grained computa-

tional networks such as computational grid network to fine-grained networks such as the

WSN (See Chapter 5).

Accuracy in image recognition is generally the benchmark against which most contem-

porary schemes are measured against. Scalability and learning flexibility are other key

aspects that must also be taken into consideration if the effectiveness of a scheme is to be

fully assessed. Existing DHGN distributed pattern recognition scheme has been able to

4.3. GREYSCALE IMAGE RECOGNITION USINGMULTI-FEATURE APPROACH171

provide high scalability for the recognition scheme, as explained in both Chapter 2 and

3. Furthermore, our proposed collaborative-comparison learning enables memorisation of

patterns to be conducted with low level of complexity.

In this section, we extend our DHGN implementation to include a multi-feature ap-

proach for facial image recognition. Our approach looks into two distinctive features for

facial images, namely colour intensity and edge. The following subsections described the

work that has been carried out.

4.3.1 Multi-Feature DHGN for Facial Image Recognition

The proposed scheme takes a holistic approach towards incorporating both the colour and

spatio-structural features into the image recognition process simultaneously. A binary

signature scheme has been adopted for content-based image retrieval (CBIR) proposed

by Nascimento and Chitkara (2002) within a pattern recognition procedure. This scheme

integrates this global binary signature with Sobel’s edge detection (Kimmel et al., 2005)

for DHGN single-cycle image recognition. This approach simply follows the design of

multi-feature DHGN scheme as described in Section 4.2.

A number of networks were selected, each comprises a number of DHGN subnets for

each feature within an image. Thus any number of features can be included for pattern

analysis by incorporating a sufficient number of DHGN networks.

Global Binary Signature Scheme for Colour Recognition

A common approach in representing colour distribution within an image is to use a Global

Colour Histogram (GCH). Given an n-colour model, a GCH is developed with an n-

dimensional feature vector {p1, p2, ..., pn}, where pi represents the normalised percentage

of colour pixels that corresponds to each colour element within an image. Nascimento and

Chitkara (2002) have proposed an alternative approach for colour distribution represen-

tation by using a global binary signature scheme. It is a compact form of existing GCH

that uses binary bit-strings as a signature. This signature is an abstract representation of

the image’s colour distribution. The bit-strings are of a pre-determined size, which makes

it ideal for use within DHGN binary pattern representations. Further explanations of the

proposed binary signature scheme can be referred to in Section 3.2.3.

172CHAPTER 4. MULTI-FEATURE PATTERN RECOGNITION: A DISTRIBUTED APPROACH

Sobel’s Edge Recognition for Structural Information

Edges provide important spatio-structural information for image recognition. The pro-

posed scheme of this thesis therefore includes the edge detection into its colour-based

recognition process. Sobel’s edge detection mechanism has been adopted, such that out-

puts from the edge detection process are represented as an edge map. Figure 4.4 shows

the transformation of a greyscale image into the corresponding edge map. In our imple-

mentation, we have used a common detection threshold value of 70, to generate the edge

maps.

Figure 4.4: Edge map generation using Sobel’s edge detection technique when applied to
an original greyscale facial image.

With the ability to capture and convert the two main features of an image, namely

colours and edges into binary patterns, the researcher in this thesis was able to apply a

highly scalable single-cycle learning technique for binary patterns within computational

networks towards multi-feature pattern recognition. Any number of features may be in-

cluded in the scheme as long as a separate network is available for each feature (see

Figure 4.2).

4.3.2 Recognition Accuracy Analysis

The following tests have been conducted to investigate the relative usefulness of our multi-

feature approach. There are two important factors that need to be investigated, namely

recognition accuracy and recognition speed. For recognition accuracy, the simulation

results were compared with a standard back-propagation neural network (BPNN). This

simulation involves multi-feature detection within greyscale facial images using the DHGN

network. In this regard, 80 DHGN subnetworks, of 18 nodes each were used to handle

horizontal image segments of 5 bits.

4.3. GREYSCALE IMAGE RECOGNITION USINGMULTI-FEATURE APPROACH173

Facial images were chosen that include similar background condition and different

structural representations as the test data set. The simulation program was executed

within a parallel distributed environment to represent natural characteristics of a com-

putational network. A set of 1000 facial images of 50 different individuals were used in

this study, retrieved from Face Recognition Data, University of Essex, United Kingdom.

These images were of the size 180 x 200 pixels as shown in Figure 4.5.

Figure 4.5: Fifty different individuals in the face image dataset obtained from the Face
Recognition Data.

For colour recognition, all the greyscale images were quantised into 4 grey-levels (n =

4). Ten different range of values was used (termed as bins (See Section 3.2.2)) (j = 10)

for signature representation. It was determined that these values were able to represent

distinctive colour feature for all the analysed images. 40-bit signatures were created from

this process. Each signature was then decomposed into sub-signatures of size 5-bits for

use with the DHGN setup.

For edge detection, small-scale edge maps were developed for all the facial images.

Each edge map was a binary representation of the image with the size of 18 x 20 pixels,

and it was developed using 3x3 Sobel’s matrix kernel with both horizontal and vertical

scanning procedures. These edge maps were also decomposed into 5-bit subpatterns for

the DHGN recognition process. The multi-feature recognition scheme was implemented

using a message-passing DHGN model with fully-distributed approach which will be later

described (Chapter 5).

174CHAPTER 4. MULTI-FEATURE PATTERN RECOGNITION: A DISTRIBUTED APPROACH

4.3.3 Results and Discussion

The recognition tests involved classification of 1000 facial images into 50 classes, corre-

sponding to 50 distinct individuals. Each class consists of 20 images of the same individual

with different facial expressions. These images were converted into greyscale images, to

standardise the background representation for these images. For both multi-feature DHGN

and BPNN schemes, 50 randomly selected individual images were used as the training set,

while the rest of the images were used as the testing set.

Recognition Accuracy

In our simulation, two separate studies were conducted to assess on the accuracy of multi-

feature DHGN using single-feature recognition and dual-feature recognition.

Single-feature recognition. This study relates to facial recognition using only image

colour for binary signature generation. The results from this test show that our single-cycle

learning DHGN scheme has been able to produce an error value of 0.0173 (Equivalent to

1.73%). 42% of the 50 image classes produced 100.00% recall, i.e. perfect recognition. In

this implementation, recall error was defined as the number of wrongly classified images

from the overall 950 images used in the test. Figure 4.6 shows the error values for all the

50 facial image classes obtained using DHGN scheme.

To improve this result, larger quantisation value may be used in order to provide better

greyscale value representation of the facial images.

A comparison between our single-feature DHGN scheme and iterative Hebbian-based

learning back propagation neural network (BPNN) however showed that the approach

generally produced a lower recall error as compared to the BPNN for all the image classes.

Table 4.2 shows the parameters for BPNN implementation. From the results shown in

Figure 4.7, BPNN incurred an overall of 59.85% error for this test which is on the average

substantially higher than that of DHGN. High error values for BPNN may be due to the

low number of training images introduced to the network. Hence, optimum outputs that

mostly reflect the original trained images were not achieved.

The results also indicate that colour recognition alone does not provide overall infor-

mation on an image. So the next set of tests incorporates recognition of multiple features

by including edge information within the greyscale image analysis.

4.3.
G
R
E
Y
S
C
A
L
E
IM

A
G
E
R
E
C
O
G
N
IT

IO
N
U
S
IN

G
M
U
L
T
I-F

E
A
T
U
R
E
A
P
P
R
O
A
C
H
175

Figure 4.6: Error values obtained for 50 facial image classes from original DHGN implementation using only colour feature on 1000 test images.

17
6C

H
A
P
T
E
R
4.

M
U
L
T
I-
F
E
A
T
U
R
E
P
A
T
T
E
R
N
R
E
C
O
G
N
IT

IO
N
:A

D
IS
T
R
IB

U
T
E
D
A
P
P
R
O
A
C
H

Figure 4.7: Analysis on error values obtained from recognition simulation on greyscale value feature using DHGN and BPNN.

4.3. GREYSCALE IMAGE RECOGNITION USINGMULTI-FEATURE APPROACH177

Parameters Values

Epoch 1000

Layer 3

No. of Neurons
Input Layer 4
Hidden Layer 8
Output Layer 1

Table 4.2: BPNN execution parameters.

Dual-feature recognition. Dual-feature recognition on facial images integrates both

greyscale recognition and edge detection into a single process. The results from both

recognition processes was analysed by the coordinator. In this simulation, minimum voting

within the coordinator node is performed to obtain the minimum error value for each of the

facial images used. Figure 4.8 shows all the error values retrieved by DHGN multi-feature

scheme.

The recall/store decision was made using the voting mechanism as previously done by

Muhamad Amin et al. (2008). Figure 4.9 shows the dual-feature recognition results, in

terms of the error values produced and its comparison with the BPNN approach.

It is evident from the result shown in Figure 4.9 that the recognition using both edge

and greyscale features vastly improved the image recognition accuracy. The overall recall

error value was reduced from of 0.0173 (Equivalent to 1.73%) to of 0.0081 (Equivalent

to 0.81%), while 54% of the images recorded 100% recall. These results show that the

multi-feature DHGN scheme can integrate multiple features simultaneously to increase the

image recognition accuracy.

Recognition Efficiency

The execution times taken for store/recall within each DHGN subnet for edge feature

recognition are shown in Figure 4.10. The recognition approach used in this study took on

the average less than 50 milliseconds for each store/recall process per image. Furthermore,

this time limit remained consistent throughout the test.

The results of the store/recall time has once again shown the significant contribu-

tion of our proposed scheme, in providing fast recall time for pattern recognition using a

distributed approach. Similar results can also be referred to in Chapter 5.

Figure 4.11 shows the overall store/recall time for each DHGN subnet for processing

the input patterns. Each DHGN subnet recorded a total execution time of less than 30

17
8C

H
A
P
T
E
R
4.

M
U
L
T
I-
F
E
A
T
U
R
E
P
A
T
T
E
R
N
R
E
C
O
G
N
IT

IO
N
:A

D
IS
T
R
IB

U
T
E
D
A
P
P
R
O
A
C
H

Figure 4.8: Comparison on error values between greyscale value and edge feature on 50 facial images obtained using DHGN multi-feature scheme.

4.3.
G
R
E
Y
S
C
A
L
E
IM

A
G
E
R
E
C
O
G
N
IT

IO
N
U
S
IN

G
M
U
L
T
I-F

E
A
T
U
R
E
A
P
P
R
O
A
C
H
179

Figure 4.9: Analysis on error values obtained from recognition simulation on greyscale and edge features using Multi-Feature DHGN and BPNN.

180CHAPTER 4. MULTI-FEATURE PATTERN RECOGNITION: A DISTRIBUTED APPROACH

Figure 4.10: Total execution time for each subnet in DHGN network for edge recognition
process.

seconds for processing all the 1000 images within a simulated computational network. The

processing times will substantially reduce for a real computational network with parallel

processing resources, making it possible to process live image data streams and large data

sets in real-time.

4.3.4 Concluding Remarks

This section has shown that our multi-feature DHGN recognition scheme displays superior

single-cycle learning and improved accuracy to the existing Hebbian learning techniques

such as the back-propagation neural network (BPNN). Nevertheless, the comparison made

solely based upon the objective of demonstrating DHGN’s capability for multi-feature

recognition. DHGN multi-feature scheme provides a highly efficient and scalable mech-

anism for undertaking multi-feature pattern recognition using computational networks.

This multi-feature recognition approach represents a holistic process where more features

can be taken into consideration without any changes to the approach. The scheme is

shown to be highly scalable where the processing time and recognition accuracy are not

4.4. HANDWRITTEN OBJECT RECOGNITION WITH MULTIPLE FEATURES 181

Figure 4.11: Store/recall time for each subpattern within each DHGN subnet for edge
recognition process.

adversely affected with the increase in number of processed patterns. The approach dis-

cussed in this chapter works well on greyscale images and it can thus be applied across a

number of areas requiring greyscale image analysis. The flexibility to include any image

feature at any point creates a ’plug-and-play’ capability for dynamic image analysis. This

scheme opens up the possibility of real time image recognition to be performed on large

data sets in biomedical imaging and video streaming. Furthermore, through distribution

of features, DHGN also capable of performing recognition process, with increasing size

and dimension of patterns. It is best to note however, that the use of facial images in the

recognition simulation conducted does not imply DHGN as a face recognition application

with promising high level of accuracy. Rather, the simulation indicates the capability of

DHGN to perform multi-feature recognition on complex patterns such as greyscale images.

4.4 Handwritten Object Recognition with Multiple Features

Apart from greyscale facial image recognition, a series of tests were also conducted using

DHGN multi-feature scheme on handwritten character recognition, using feature data

182CHAPTER 4. MULTI-FEATURE PATTERN RECOGNITION: A DISTRIBUTED APPROACH

obtained from Frank and Asuncion (2010). In this section, the capabilities of DHGN

distributed scheme as a single classifier for combined multi-feature pattern recognition

will be demonstrated. A comparative evaluation with the previous works done by Duin

and Tax (2000) will also be discussed. It is best to note however, that this work on

DHGN multi-feature scheme is not intended for showcasing an optimum solution with

high accuracy for complex pattern recognition. Rather this study has been carried out to

provide an alternative approach for pattern recognition scheme involving multiple features.

4.4.1 The Data Set

The tests have been carried out on a data set containing four out of six different feature

sets obtained from a similar set of objects. It contains 2000 handwritten numeral char-

acters extracted from a set of Dutch utility maps. This data set comprises of ten classes

of characters ranging from numerals “0” to “9”, in which each class holds 200 objects.

This data set is also publicly available from Machine Learning Repository by Frank and

Asuncion (2010). Each object character in this data set was converted to a 30 x 48 binary

image.

For the purpose of recognition tests, the data set was divided into training and testing

data sets. The training data contains 10 objects for each class, while the remaining 190

objects are used for testing. The four features that have been used in this analysis include:

i. Fourier: 76 Fourier coefficients of the character shapes.

ii. Pixel: 240 pixel averages in 2 x 3 windows.

iii. Zernike: 47 Zernike moments.

iv. Morph: 6 morphological features.

4.4.2 Classification Procedures

The classification process in our proposed DHGN multi-feature scheme involves a series

of single-cycle stages that have been applied to the feature data set of numeral characters

described earlier. A 3-stage process was implemented in the recognition scheme; feature

pre-processing, recognition, and results evaluation. It should be noted that our proposed

scheme implements a single-classifier for multi-feature recognition. The following subsec-

tion will detail out these implementation stages.

4.4. HANDWRITTEN OBJECT RECOGNITION WITH MULTIPLE FEATURES 183

Feature Pre-Processing

In the pre-processing stage, all selected features will undergo a discretisation process, in

which continuous feature value is transformed into a discrete format. This process is

a pre-requisite for existing DHGN scheme that implements recognition procedure using

discrete-format data values.

A discretisation was performed on the feature set using a binning approach. For each

feature set, with an exception on pixel average, five bins (thresholds) were defined with a

different range of values. These bins were created based on the maximum, minimum, and

mean values obtained from the whole feature set. Table 4.3 shows instances of the bin

range values for all features used. For pixel average, the exact values were used, since the

data provided are of discrete values.

Feature min max µ
Bins

1 2 3 4 5

Zernike 0.0011 777.86 88.64 ≤ 25 26-50 51-90 91-400 401-800

Fourier 0.0002 0.7965 0.1320 ≤ 0.001 0.002-0.05 0.06-0.14 0.15-0.50 0.51-0.80

Morph 1.1431 17572.2 2104.4 ≤ 50 51-500 501-2500 2501-10000 10001-18000

Table 4.3: Discretisation on feature data values using variable-binning methods.

This discretisation process allows a reduction in feature data composition by trans-

forming the feature set from continuous data space to a discrete one. This reduces the

complexity of the data set to be used in the recognition procedure, however, it also exposes

the data set to inaccurate data representation, as some of the actual values are lost during

the conversion.

The output of this discretisation process is a set of patterns for each feature. These

patterns correspond to all the test objects used in the tests. Table 4.4 shows a sample of

patterns for Zernike moment features obtained from the discretisation process. The size

of patterns reflects the number of values/coefficients for each feature, while the dimension

of patterns corresponds to the number of bins used, i.e. 5.

Multi-Feature Recognition

The multi-feature recognition for multiple features of numeral character objects have been

carried out using our proposed DHGN scheme, as shown in Figure 4.2. Four different

DHGN networks were implemented to process feature patterns obtained from the pre-

processing stage. Each network performs recognition on a specific feature set. In this

184CHAPTER 4. MULTI-FEATURE PATTERN RECOGNITION: A DISTRIBUTED APPROACH

Object ID Feature Pattern

1 12343000132001234000030000400120033010033011400

2 01243000222001134001320022300220131012033011400

3 01243000121001234001200022400100130011034011400

4 12243000112001233001120023300120131001034002400

5 01143000122001234000120022300120132001033012400

Table 4.4: Sample of Zernike moment’s feature patterns obtained using discretisation.

regard, the composition for each network is different from one another, in terms of its size.

Table 4.5 shows details of the DHGN architecture that have been used in this multi-feature

recognition. This simulation adopts the recognition scheme using multi-value format for

DHGN implementation (See Chapter 3).

Parameters Values
No. of DHGN networks 4
Subpattern size 9
No. of GNs per subnet 25

No. of subnets

Zernike 5
Fourier 9
Morph 1

Pixel Avg. 27

Table 4.5: Multi-feature DHGN architecture parameter details.

The recognition process starts with the coordinator node communicating the entire

feature patterns to SI module node on each network according to specific feature that has

been assigned. The communications of patterns in this scheme follow a message-passing

model that will be further described in Chapter 5.

SI module node in each network then divides and distributes the received patterns to all

the available subnets within the network. Each DHGN subnet then initiates a recognition

process at subpattern level. The results of this recognition process is sent back to the SI

module node for maximum voting process to identify the best match pattern class for each

respective pattern. After a completion of this process, SI module will then determine the

values of accuracy parameters used in the scheme. These parameters may include precision

rate, recall rate, accuracy level, and error value. These values will then be communicated

to coordinator node for results evaluation stage.

4.4. HANDWRITTEN OBJECT RECOGNITION WITH MULTIPLE FEATURES 185

Results Evaluation

The results evaluation stage involves a process of determining the best or optimum feature

to be selected as the best representative for each pattern class in the recognition scheme.

This process occurred within the coordinator node. The values obtained from SI module

node were compared to accuracy parameter(s) used. For the purpose of this recognition

test, error value, precision, recall and accuracy value were selected as our parameters for

evaluation.

The results evaluation stage in DHGNmulti-feature recognition applies rather a generic

approach, in which different sets of recognition accuracy parameters may be used in the

classification process. In this perspective, it allows decision on classification to be im-

plemented in a flexible fashion, in which different accuracy factors may be observed and

analysed.

4.4.3 Results and Discussion

As mentioned in Section 4.2, the recognition tests have been carried out on the feature

data sets of 2000 numeral character objects with 100 training and 1900 test objects inclu-

sively. A number of recognition accuracy parameters were selected for use in classification

decision, including error value, precision and recall rates, and accuracy value. Table 4.6

shows detailed descriptions on each of these parameters, given values of total number

of test objects ctest, true positive t+ve, false positive f+ve, true negative t−ve, and false

negative f−ve.

Recognition Parameters Representations

Precision t+ve

t+ve+f+ve

Recall t+ve

t+ve+f−ve

Accuracy t+ve+t−ve

t+ve+t−ve+f+ve+f−ve

Error Value f+ve+f−ve

ctest

Table 4.6: Recognition accuracy parameters and their respective representations.

186CHAPTER 4. MULTI-FEATURE PATTERN RECOGNITION: A DISTRIBUTED APPROACH

Recognition Accuracy Analysis

Table 4.7 shows the results of classification decision obtained from the outputs of the

proposed DHGN multi-feature recognition scheme. The value of the best result (selected

feature) for each object class is underlined.

Precision

Feature
Object Class

Average
0 1 2 3 4 5 6 7 8 9

Morph 0.8863 0.2538 0.6550 0.3744 0.4524 0.0000 0.4973 0.0000 0.9734 0.0000 0.4092

Zernike 0.3557 0.3945 0.3079 0.2845 0.1831 0.1754 0.3118 0.5625 0.4225 0.3059 0.3304

Fourier 0.3944 0.2071 0.3514 0.3333 0.2028 0.4700 0.3492 0.5672 0.6338 0.3107 0.3820

Pixel 0.3023 0.4212 0.5685 0.4061 0.6994 0.3750 0.5188 0.5560 0.5577 0.4811 0.4886

Recall

Feature
Object Class

Average
0 1 2 3 4 5 6 7 8 9

Morph 0.9842 0.9684 0.5895 0.3842 0.1000 0.0000 0.9632 0.0000 0.9632 0.0000 0.4953

Zernike 0.6684 0.6000 0.5526 0.3579 0.1368 0.1579 0.1526 0.3316 0.1579 0.1368 0.3253

Fourier 0.9632 0.3684 0.4789 0.2842 0.1526 0.2474 0.2316 0.4000 0.2368 0.1684 0.3532

Pixel 0.4789 0.6895 0.5895 0.4895 0.6368 0.2211 0.4368 0.7579 0.1526 0.2684 0.4721

Accuracy

Feature
Object Class

Average
0 1 2 3 4 5 6 7 8 9

Morph 0.9858 0.7121 0.9279 0.8742 0.8979 0.9000 0.8989 0.9000 0.9937 0.9000 0.8991

Zernike 0.8458 0.8679 0.8311 0.8458 0.8526 0.8416 0.8816 0.9074 0.8942 0.8826 0.8651

Fourier 0.8484 0.7958 0.8595 0.8716 0.8553 0.8968 0.8800 0.9095 0.9100 0.8795 0.8706

Pixel 0.8374 0.8742 0.9142 0.8774 0.9363 0.8853 0.9032 0.9153 0.9032 0.8979 0.8944

Error Value

Feature
Object Class

Average
0 1 2 3 4 5 6 7 8 9

Morph 0.0142 0.2879 0.0721 0.1258 0.1021 0.1000 0.1011 0.1000 0.0063 0.1000 0.1009

Zernike 0.1542 0.1321 0.1689 0.1542 0.1474 0.1584 0.1184 0.0926 0.1058 0.1174 0.1349

Fourier 0.1516 0.2042 0.1405 0.1284 0.1447 0.1032 0.1200 0.0905 0.0900 0.1205 0.1294

Pixel 0.1626 0.1258 0.0858 0.1226 0.0637 0.1147 0.0968 0.0847 0.0968 0.1021 0.1056

Table 4.7: Results of the classification decision on 4 different features of numeral character
objects.

The results of the analysis have shown that morphological and pixel average features

produce best and optimum recognition rates for most of the object classes. On average,

morphological feature indicates low error value and high recall and accuracy rates. On

the other hand, pixel average feature gives a high precision rate. These two features

are closely-related to the structural information of the numeral character objects. It is

not surprising that these two features effected a high level of recognition accuracy, in

comparison with other features, since structural information is essential in determining

the differences and similarities of character objects, including handwritten numerals.

With a focus on error value, all the estimated error values are obtained from the same

data set and thereby not independent. It was observed that on average there were 192

4.4. HANDWRITTEN OBJECT RECOGNITION WITH MULTIPLE FEATURES 187

objects that have been erroneously classified by the scheme from the total of 1900 test

objects. In this regard, an error estimate for this finite set has a standard deviation of

0.007, which is insignificant.

Comparative Analysis

In comparison with other classifiers, described in Duin and Tax (2000), DHGN multi-

feature recognition implements a comparable level of recognition accuracy for the same

feature sets. Table 4.8 shows some results of comparative analysis that have been carried

out on the error values obtained from all the classifiers.

Classifiers
Features

Morph Zernike Fourier Pixel
Bayes Normal-2 0.3100 0.2120 0.2520 0.0620
Bayes Normal-1 0.2910 0.1800 0.2130 0.0990
Nearest Mean 0.5400 0.2780 0.2240 0.0960

1-NN 0.5700 0.1970 0.1920 0.0370
k-NN 0.5100 0.1930 0.1890 0.0370
Parzen 0.5210 0.1850 0.1710 0.0370
Fisher 0.2820 0.2100 0.2480 0.1530

Decision Tree 0.3290 0.5980 0.4540 0.5490
ANN-20 0.3280 0.9000 0.9000 0.8520
ANN-50 0.7170 0.2650 0.2450 0.8100
SVC-1 0.8480 0.2940 0.2460 0.0770
SVC-2 0.8110 0.1930 0.2120 0.0600
DHGN 0.1011 0.1347 0.1295 0.1058

Table 4.8: Comparative analysis on error values between DHGN and other classifiers for
similar data set with respective features.

Based on the outcome of comparative analysis that has been performed, DHGN im-

poses lowest error values for all the tested features with an exception on pixel average.

Nevertheless, DHGN performs sufficiently accurate on pixel average with a difference of

0.0688. The results also reveal that artificial neural networks (ANN) perform least ac-

curate, in the sense that they incur a high rate of misclassification in the recognition

process. On the other hand, other statistical approaches produce comparatively high level

of accuracy. However, their complexity in regards to its parameter estimation process is

significantly high.

Another important point to be discussed is that the number of objects in training

and testing sets of the features in DHGN and other classifiers is different. In DHGN,

we implemented 1:19 (100 to 1900 objects) ratio of training to testing data, while in the

188CHAPTER 4. MULTI-FEATURE PATTERN RECOGNITION: A DISTRIBUTED APPROACH

research of Duin and Tax (2000), it is 1:1 (1000 to 1000 objects). In this perspective, this

study only used 10% of the training data used in their research. For an efficient pattern

recognition scheme, it is essential that the recognition scheme to use minimum number of

training data, while producing high level of recognition accuracy. DHGN seems to acquire

this characteristic.

4.4.4 Concluding Remarks

In this section, the study on the multi-feature recognition involving handwritten numeral

characters using the proposed multi-feature DHGN scheme has been presented. An anal-

ysis of the accuracy of our proposed scheme has been made using four different sets of

features derived from the objects. The results have demonstrated DHGN’s ability to cater

for multi-feature (combined) pattern recognition using small number of training data,

within a simple computational scheme using in-network single-cycle processing approach,

and have identified morphological and pixel average features as the best representation

for this kind of character recognition, due to their ability to project the object’s struc-

tural information. The benefits of distributed pattern recognition scheme have also been

demonstrated. These include:

i. Distributed approach in DHGN allows an extension to the number of features used

within the recognition process, by allocating additional DHGN network for each

feature recognition.

ii. DHGN allows a single-classifier mechanism to be used over different number of fea-

tures. Unlike existing multi-feature schemes that implement combined-classifiers for

classification.

Comparisons with some other classifiers have shown that DHGN produces comparable

level of accuracy, in terms of the overall error value. However, the main intention of this

study is not to provide an optimum solution for multi-feature recognition with high-level of

accuracy. Rather, this study intends to demonstrate DHGN’s capability to perform multi-

feature recognition as a scalable classifier with low level of complexity. This has been

shown in our complexity estimation analysis for DHGN distributed scheme (see Sections

3.3.1 and 4.2.3)

4.5. CONCLUSIONS 189

4.5 Conclusions

This chapter has presented a distributed approach for multi-feature pattern recognition.

We propose the use of single-cycle learning DHGN algorithm for distributed feature analy-

sis on a collaborative computational network. The proposed approach implements a single

classifier scheme for different feature sets. This is achieved using a divide-and-distribute

approach on the available features for each data set. The study has proven that the pro-

posed approach is not affected by the curse of dimensionality problem, which is mainly due

to increasing number of features used. DHGN approach implements a scalable recognition

scheme, by allowing features to be added in the analysis, using available computational

networks.

This study implemented a multi-feature recognition scheme that allows multiple fea-

tures to be included in the recognition and classification analysis. This provides more

effective scheme that is capable of taking into account all features within the data anal-

ysis process. This is essential in data mining applications involving complex data, such

as biomedical images that contain hundreds or thousands of features to be considered.

We have also exhibit DHGN’s ability to perform recognition and classification using small

training data set, and at the same time producing comparably high-level of recognition

accuracy. This characteristic is beneficial for effective pattern recognition that imposes

minimum complexity while producing high accuracy.

The proposed scheme works equally well with two arbitrarily chosen pattern recogni-

tion problems i.e. greyscale images and handwritten expressions. Each of the two problems

has quite different features sets and pattern recognition requirements. The approach is

thus not only highly scalable and supports single-cycle learning, but it is also generic

where large and complex data sets from a variety of sources and representing diverse pat-

tern recognition requirements can be analysed in real-time. The scheme thus demonstrates

that large-scale pattern recognition is possible through the distributed processing. Generic

commodity based systems such as computer clusters and grid when enabled with a dis-

tributed learning scheme such as DHGN can effectively deal with data deluge of complex

data comprising geometric relationships and structural properties, as previously described

in Chapter 1.

190CHAPTER 4. MULTI-FEATURE PATTERN RECOGNITION: A DISTRIBUTED APPROACH

Despite its robust and effective approach towards multi-feature recognition, there are a

number of possible limitations in existing DHGN implementation. These include network

availability. DHGN distributed scheme requires a distinct amount of available networks

to perform its recognition procedure. By having this, DHGN scalability is again, highly-

correlated with network availability. Further works on the analysis of network availability

and resource-awareness in DHGN implementation will be presented in Chapter 5.

Chapter 5

Resource Considerations for

Distributed PR

A distinctive difference in conventional and distributed pattern recognition is on the re-

source consideration. In a distributed approach, the system must be capable of utilising

the available resources effectively and efficiently. In acquiring this, a communication model

needs to be considered to ensure proper utilisation and communication of resources be-

tween processing nodes.

Distributed pattern recognition (DPR) has the capability to scale up the process,

with an increase in the size of the problem. However, it should be noted that scalability

depends on the resource availability within a particular computational network. This

resource availability may be influenced by the capacity and stability of the computational

network.

The network capacity aspect in distributed applications such as DPR, may be observed

in terms of the granularity of the network. Commonly, computational network may ei-

ther be in the form of coarse-grained network such as Grid computing or in the form of

fine-grained network as in wireless sensor network (WSN). These networks may differ in

terms of their processing capacity and capability. Existing DPR schemes tend to be non-

adaptive to different range of network granularity, due to specific application deployment

that focuses on a single problem domain. DHGN distributed pattern recognition scheme

as described in Chapter 3, has been developed with adaptive network granularity consid-

eration (Muhamad Amin and Khan, 2008b), that enables the algorithm to be deployed in

both coarse- and fine-grained networks.

191

192 CHAPTER 5. RESOURCE CONSIDERATIONS FOR DISTRIBUTED PR

Apart from capacity, the stability of a computational network also plays an important

role in determining its resource availability. A stable network may be defined as a network

with minimum or no resource interference due to fault or error occurrences. In order for

a particular application such as DPR to smoothly performed its function with minimum

or no interruptions, fault tolerance mechanism needs to be considered.

In this chapter, the discussion on DHGN message-passing as a communication model

is extended, and an analysis of resource-awareness in DHGN implementation is presented.

Existing distributed pattern recognition schemes may suffer from performance degradation

due to fault or lack of processing and storage resources available within a given network.

For instance, classification schemes such as artificial neural networks (ANNs) that have

been commonly applied as classification techniques for event detection schemes in WSN,

are unable to achieve optimum performance due to lack of computational resources. These

schemes include the research by Catterall, Van Laerhoven and Strohbach (2003) through

an implementation of Kohonen Self-Organising Map (SOM) in sensory data clustering for

distributed event classification within WSN. SOM incurs extensive computations in its

classification scheme, hence requires substantial processing resources.

In considering resource-awareness of DHGN implementation, two important aspects

of computational networks have been identified. These are network granularity and fault

tolerance mechanism. These aspects are highly-correlated with the aforementioned re-

source availability factors (capacity and stability)of computational networks. To evaluate

the proposed scheme against these two aspects, this chapter will aim to:

i. evaluate DHGNmessage-passing model for inter-process communication in distributed

pattern recognition;

ii. analyse the performance and adaptability aspects of DHGN against the granularity

of network; and

iii. consider fault tolerance as important implementation factor for DHGN as a DPR

system.

The composition of this chapter is as follows: Section 5.1 provides an extensive dis-

cussion on DHGN message-passing model, that has been briefly discussed in Chapter 3.

Message-passing model represents an implementation-based model of DHGN execution

5.1. MESSAGE-PASSING MODEL FOR DHGN 193

within the body of network. Section 5.2 presents a discussion on network granularity

aspect of DHGN implementation. This section intends to examine the robustness and

scalability of DHGN DPR scheme against varying granularity of networks. In Section 5.3,

we present a discussion on the fault tolerance aspect and the fault tolerance mechanisms

adopted by DHGN recognition scheme. Finally, Section 5.4 concludes this chapter.

5.1 Message-Passing Model for DHGN

Process communication plays an important role in any distributed systems. It determines

the efficiency of a system, in terms of how it deals with different network configurations

and characteristics. Communication of processes within a particular network may happen

through message exchanges between processing nodes. In any distributed system, each

processing node may require data exchange with other nodes in order to complete a spe-

cific task or process. In this regard, a thorough analysis of inter-process communication

should be carried out, to ensure that the proposed system is capable of handling different

network conditions. Similarly, distributed algorithms being proposed require significant

consideration on this process communication aspect.

A number of inter-process communication models have been developed in recent years.

These include message-passing, shared memory, and mobile agent (Ghosh, 2006). These

models provide assistance towards better understanding of the communication proce-

dure occurring within a computational network. In DHGN implementation, we consider

message-passing model for inter-process communication within a distributed network. This

section briefly discusses this model.

Message-passing is one of the inter-process communication models that have been

developed as a guideline for process cooperation between computing nodes in a parallel

environment. This model is based on a set of fundamental principles including:

i. Each process has its own local memory.

ii. Processes communicate their data using message exchange structure (sending and

receiving messages).

iii. The transfer of data requires cooperative operations by each process involved, i.e.

each send operation must have its corresponding receive operation.

194 CHAPTER 5. RESOURCE CONSIDERATIONS FOR DISTRIBUTED PR

The cooperative operations in message-passing model deal basically with how the com-

munication is being conducted between processing nodes within a particular network.

These operations formed the components of a message-passing library, which in return be-

ing used in the implementation of message-passing communication. Examples of message-

passing libraries include Message Passing Library (MPL) that has been introduced for

IBM SP2, Parallel Virtual Machine (PVM), and Message Passing Interface (MPI).

MPI library provides extensive portability and capable to be deployed on different

kinds of platforms. MPI has been established as a standard specification for message-

passing routines. An enhancement of MPI standard, known as MPI-2, offers dynamic task

control, as well as the functional parallel I/O capability (Gropp et al., 1999).

Message-passing model in DHGN implementation has been designed to cater for dif-

ferent network formation, ranging from coarse-grained to fine-grained computational net-

works. DHGN has been developed with important principles of in-network and parallel

processing capabilities. With that in mind, it has been developed using message-passing

model. Two important components in this model include process actions and system

synchronisation.

5.1.1 Process Actions

DHGN distributed pattern recognition scheme is being conducted over a computational

network that comprises a collection of processing nodes. With this understanding, the

message-passing model has been designed with an assumption that each neuron within

the DHGN logical network is assigned to each processing node within a physical network.

Hence, the followings apply:

i. Each neuron has its own local memory.

ii. Communications between neuron involve message-passing procedure.

iii. Cooperative cooperation is being held for each message transfer.

As discussed in Chapter 3, DHGN recognition procedure involves a two-stage pro-

cess, i.e. recognition at both subpattern and pattern level. In communication perspec-

tive, this procedure is conducted using different process actions between participating

networks/processing nodes. According to Ghosh (2006), there are four process actions

available within the message-passing model. These include:

5.1. MESSAGE-PASSING MODEL FOR DHGN 195

i. Internal action - action involving internal memory structure processes of particular

processing nodes.

ii. Input action - communication from external input to the system.

iii. Output action - communication involving message send from a network to external

entity.

iv. Communication action - action involving message exchange between processing nodes

in a network.

Figure 5.1 illustrates the process actions involved in a DHGN network with a single

subnet, when pattern “01110” is introduced. Note that this network is capable of recog-

nising binary patterns with 5-bits length, and takes the assumption that the SI module

node is external to the network.

Given a DHGN network with equal-sized subnets for subpatterns with v different

elements and size n, the process actions involved (input, output, and communication)

may be derived using the representation as shown in Table 5.1.

Process Action Representation

Input n

Communication
∑

n+1

2
−1

i=0 2v + (n− (2i+ 2))
(

v2 + 1
)

Output 1

Table 5.1: Representations for different process actions in DHGN message-passing model.

The input action corresponds to the length of subpatterns used, while the communi-

cation action relates to the number of messages communicated within each subnet during

each recognition process, as previously discussed in Chapter 3. The value 1 in output

action is derived from the number of messages communicated between top node and SI

module. This message contains an index retrieved from the recognition of a particular

subpattern.

Collectively, the total process actions, TDHGN
pa occurring in a DHGN network with S

subnets may be derived using the following equation:

TDHGN
pa = snv + s

∑

n+1

2
−1

i=0 2v + (n− (2i+ 2))
(

v2 + 1
)

+ s

TDHGN
pa = s

(

nv +
∑

n+1

2
−1

i=0 2v + (n− (2i+ 2))
(

v2 + 1
)

+ 1

) (5.1)

196 CHAPTER 5. RESOURCE CONSIDERATIONS FOR DISTRIBUTED PR

Figure 5.1: DHGN process actions within a message-passing model for binary pattern
recognition on 5-bit patterns.

The complexity of DHGN in message-passing model in regards to the cost of process

actions depend upon two different variables, namely pattern size and dimension. Size

of patterns does not significantly increase the action cost for each processing node, in

comparison with the dimension of pattern (number of different possible elements). An

increase in the dimension of patterns requires the node to communicate the value retrieved

from either SI module or node from lower layer within a subnet to all adjacent nodes.

The number of adjacent nodes nadj for each corresponding node in a DHGN subnet is

directly proportional to the number of different elements r for a given pattern, in the

form of nadj = 2r for one-dimensional DHGN structure. On the other hand, a pattern

length increment will only affect the number of processing nodes required to perform a

5.1. MESSAGE-PASSING MODEL FOR DHGN 197

recognition process. In this context, DHGN is scalable against an increase in the length

of patterns but slightly susceptible to an increase in the dimension of patterns.

In summary, this section has considered all the process actions involved in the message-

passing model of DHGN implementation. An exception is given to the internal action,

since it mainly deals with the bias array access and search as being described in Chapter

2 and 3.

5.1.2 System Synchronisation

DHGN message-passing model implementation can either be performed in synchronous or

asynchronous communication environment. This is mainly due to the flexibility of the al-

gorithm, in which the recognition process at each node only require a linear search function

on the bias array for matched (value, position) entries from adjacent nodes. Therefore,

the urgency for the message to receive from one node to the other is not an important con-

sideration in the implementation. However, in pattern recognition applications involving

real-time response, this issue might need to be taken into account.

A significant difference between synchronous and asynchronous communications in

DHGN implementation is that an increase in latency will be experienced in asynchronous

mode. This latency occurs from the waiting time for the processing node to receive its

neighbouring/adjacent indices or values in the form of communicating messages. Figure 5.2

shows the timeline diagrams for synchronous and asynchronous DHGN communication for

a single processing node n with two adjacent nodes n− 1 and n+ 1.

Note that an uncertainty, in terms of waiting period may occur in asynchronous com-

munication. Moreover, the bias entry search can only be instantiated when all the in-

dices/values have been obtained from all adjacent nodes. In an implementation using

message-passing programming model such as MPICH-2 (Gropp et al., 1999), the use of a

wait function, such as MPI WAIT() is required in asynchronous (non-blocking) mode, to

ensure that all the messages have been received at a particular node.

In synchronous communication, each processing node will ensure that each message

arrived at the destination, before other process continues. This helps in the coordination

of processes. However, in an unsecure and unreliable network environment, this may cause

infinite waiting time, in the case of the lost of message transmission or erroneous messages

retrieved.

198 CHAPTER 5. RESOURCE CONSIDERATIONS FOR DISTRIBUTED PR

Figure 5.2: State chart for DHGN implementation in synchronous and asynchronous com-
munications.

5.2 Network Granularity Analysis and Evaluation

Granularity of a computational network refers to the levels of its composition. Coarse-

grained network mainly consists of a few large processing entities, which are capable of

handling significantly high computational loads. An example of this kind of network is

computational grid network. Conversely, fine-grained network can be defined as a network

that comprises many small processing nodes that perform simple and lightweight tasks,

such as the wireless sensor network (WSN). Table 5.2 shows some of the differences between

coarse-grained and fine-grained computational networks.

DHGN implementation for distributed pattern recognition takes into account these

two levels of granularity within any computational network. This is essential in providing

5.2. NETWORK GRANULARITY ANALYSIS AND EVALUATION 199

Coarse-Grained Fine-Grained

No. of Processing Nodes Low to High High

Processing Capacity High Low

Storage Capacity High Low

Energy Supply High Low

Example Computational Grid WSN

Table 5.2: Comparison between fine-grained and coarse-grained networks.

a scalable and robust scheme that could be used in different network conditions. Further-

more, with this network granularity consideration, the proposed DHGN algorithm may

be made aware of the resource availability for a given computational network in which

a recognition process is to be performed. This section will describe some of the DHGN

concepts and implementations that have been applied in both coarse- and fine-grained

networks.

5.2.1 DHGN Configurations for Adaptive Granularity

In considering different network capabilities and conditions, two different configurations

for DHGN implementation were proposed; fully-distributed and clustered configurations.

Fully-distributed Configuration

The original configuration for DHGN algorithm, as described in Chapter 3 involves dis-

tributing all the GNs within DHGN subnet among the processing nodes. This implies

that each node is responsible for a single GN within a DHGN subnet. This configura-

tion eliminates the requirement for high processing capability and storage capacity since

the recognition process only involves a single atomic element within an overall input sub-

pattern to be processed by the computing node. However, the communication costs for

each node are in need of considerable attention - each node is required to communicate

with other neighbouring nodes frequently as to update its bias array. Figure 5.3 shows

the fully-distributed configuration of DHGN algorithm for WSN. Note that each GN is

mapped to a processing node. The processing nodes which are close together are grouped

into individual DHGN subnets.

This fully-distributed DHGN configuration may be deployed in a fine-grained network

such as WSN, in which each sensor node has restricted computing resources. A major issue

in this implementation is such that it requires rapid inter-node communications for message

200 CHAPTER 5. RESOURCE CONSIDERATIONS FOR DISTRIBUTED PR

Figure 5.3: Fully-distributed DHGN configuration for fine-grained network.

exchange during recognition process. In this aspect, DHGN deployment must be able to

perform single-hop communication between adjacent nodes for message exchange process.

Hence, physical distance factor should be taken into account when implementing DHGN

distributed recognition application in WSN, to ensure that efficient energy-communication

utilisation is achieved during the recognition process.

Clustered Configuration

Clustered configuration involves mapping of each DHGN subnet over a single processing

node. Each node is capable of conducting recognition process based on the input subpat-

terns obtained from the SI module node. In this configuration, processing node should

acquire high processing capability and storage capacity, since the recognition process in-

volves the entire input subpattern. However the communication costs between sensor

nodes are minimised, since the communication only involves message communication from

SI module node to each of the processing nodes. Figure 5.4 shows the clustered configu-

ration of DHGN algorithm for WSN.

Each processing node in clustered DHGN configuration may performed recognition

on each subpattern independently from other processing nodes. In this context, the node

should be able to provide sufficient processing and storage capacity in order to conduct the

recognition process. This configuration is intended to be used on coarse-grained networks

5.2. NETWORK GRANULARITY ANALYSIS AND EVALUATION 201

Figure 5.4: Clustered DHGN Configuration for coarse-grained network where each DHGN
node is capable of performing the entire subpattern recognition processes.

such as grid and cloud computing, in which additional processing and storage capacity

made available to be used. Nevertheless, this research intends to look into its implemen-

tation on scalable WSN networks.

An important benefit of having this DHGN cluster performed on a single processing

node is such that it eliminates all the communication actions involved in DHGN message-

passing model for distributed systems. For each subpattern recognition process, each

node only communicate the corresponding index generated to the SI module. Therefore

reducing the chances of recognition failures due to transmission or communication errors.

DHGN implementation using clustered configuration involves the formation of DHGN

subnet using node’s internal memory structure. An associative array structure for each

DHGN subnet was adopted as shown in Table 5.3, for DHGN subnet with 5-bit binary

subpatterns.

Communications between each GN memory structure in DHGN subnet are conducted

using conventional value store/retrieve process in which internal bias array values are

updated using value assignment as shown in the code snippet below:

GN[x+1].entry[LEFT] = GN[x].row;

GN[x+4].entry[LEFT] = GN[x].row;

202 CHAPTER 5. RESOURCE CONSIDERATIONS FOR DISTRIBUTED PR

GN ID Row Layer Value
Bias Array

Index Entry
1 1 0 0 1 #,1

2 1 0 0 1 1,1

3 1 0 0 1 1,1

4 1 0 0 1 1,2

5 1 0 0

6 2 0 1 1 #,2

7 2 0 1 1 2,2

8 2 0 1 1 2,2

9 2 0 1 1 2,2

10 2 0 1
1 1,#
2 2,#

11 1 1 # 1 #,1,1

12 1 1 # 1 1,1,1

13 1 1 # 1 1,1,#

14 2 1 # 1 #,1,1

15 2 1 # 1 1,1,1

16 2 1 # 1 1,1,#

17 1 2 # 1 1

18 2 2 # 1 2

Table 5.3: DHGN subnet associative array structure after subpatterns 00001 and 11111
have been memorised.

This code shows the process of assigning row number of activated GN (at the edge) x

to its adjacent GNs.

5.2.2 Performance Analysis

Apart from recognition accuracy, the performance of DHGN distributed pattern recogni-

tion scheme with different configurations can also be observed from the recall and total

execution times taken during each subpattern recognition process undertaken by each

DHGN subnet. A series of recognition performance tests using DHGN message-passing

model (with MPICH-2 implementation) have been conducted on both fully-distributed

and clustered configurations.

Clustered DHGN

A series of recognition performance tests on DHGN recognition scheme on binary pat-

terns have been conducted, and a 35-bit pattern recognition involving 7 DHGN subnets

(each capable of storing/recalling 5-bit subpatterns) has been implemented. These tests

have been performed on a HPC machines provided by Victoria Partnership for Advanced

5.2. NETWORK GRANULARITY ANALYSIS AND EVALUATION 203

Computing (VPAC). Each compute node in this architecture has 2 AMD 2356 Quad Core

OpteronsTM , 32GB ram and 4 x 320GB disks (1.2TB scratch space). Inter-node commu-

nication is conducted using Infiniband Interconnect (2µ measured MPI latency) on 95

nodes.

This research examined total and average recall times for each recognition procedure

performed on subpattern within each DHGN subnet. In clustered configuration, each

DHGN subnet is assigned to a single compute node. The study implemented these tests

on 8 compute nodes in which one of these nodes is assigned as the SI module node.

Figure 5.5 shows the total execution time for each DHGN subnet with increasing

number of patterns used.

Figure 5.5: Effects of increasing binary pattern length on the total execution time for
clustered DHGN implementation on HPC machines.

Throughout the tests, total execution times for all compute nodes (DHGN subnets)

consistently increasing with an increase in the number of patterns used. Nevertheless, the

execution times remain less than 0.5 seconds even for 20000 binary patterns with 5-bit

length. This significant performance of DHGN demonstrates its enhanced scalability and

robustness for coarse-grained network deployment. Furthermore, with abundant resources

available for each compute node, DHGN has a greater ability to produce fast recognition

procedure.

The average recall time for each subpattern in clustered DHGN implementation was

evaluated, and is shown in Figure 5.6.

204 CHAPTER 5. RESOURCE CONSIDERATIONS FOR DISTRIBUTED PR

Figure 5.6: Average recall time for each subpattern in clustered DHGN implementation
on HPC machines.

The results exhibit fast recall time in comparison with the outcomes of the performance

tests that have been described in Section 5.2.1. Results indicate that clustered DHGN

configuration does not affect the recognition accuracy of DHGN scheme, as described in

Chapter 3. Rather, the configuration improves the performance of recognition process

when it is being conducted in the resource-abundant coarse-grained networks.

Fully-Distributed DHGN

In fully-distributed configuration using message-passing model, a binary pattern recogni-

tion was implemented on 5-, 7-, 9-, 11-, and 13-bits subpattern size with different number

of subpatterns used. Each node containing GN communicates with its adjacent nodes

using message-passing scheme that is handled by MPICH-2 functions such as mpi send()

and mpi recv(). This implementation has been executed using Unix GCC C programming

platform with MPICH-2 support on a Pentium PC with processing speed of 2.80GHz and

1GB RAM. Each GN in DHGN subnet is assigned to a virtual processing node created by

MPI program.

Figure 5.7 shows the recall time for each subpattern with different size and quantities

used for a single DHGN subnet.

5.2.
N
E
T
W
O
R
K

G
R
A
N
U
L
A
R
IT

Y
A
N
A
L
Y
S
IS

A
N
D

E
V
A
L
U
A
T
IO

N
205

(a) 100 binary subpatterns. (b) 1000 binary subpatterns.

(c) 10000 binary subpatterns.

Figure 5.7: Recall time for a single binary subpattern in DHGN fully-distributed configuration implementation over different subpattern sizes and
quantities.

206 CHAPTER 5. RESOURCE CONSIDERATIONS FOR DISTRIBUTED PR

Note that for different number of subpatterns used, the recall times remain consistent

and at minimum (less than 0.1 seconds), with an exception of the first subpattern intro-

duced. This may be caused by the node’s initiation process that leads up to an increase

in the recall time for the first subpattern. Based on the results obtained, it can also be

deduced that DHGN imposed fast recognition, in which on overage, it requires less than

100 milliseconds for each subpattern to be stored or recalled. Furthermore, this recall

time does not being significantly affected by an increase in the number or size of the

subpatterns.

An interesting outcome of the recognition tests that have been carried out is that the

average recall time reduces significantly with an increase in the number of subpatterns

stored or used in the recognition tests, as shown in Figure 5.8. This may be caused by

the recall/store mechanism in DHGN implementation, in which all the possible entries

in bias array has been achieved and hence, no update is required for each store/recall

process. Figure 5.9 shows the effect of increasing subpattern length on average recall time

for different number of subpatterns used.

Figure 5.8: Average store/recall time for DHGN implementation on binary subpattern
with different length and quantities.

This research has implemented a series of case studies involving DHGN in different net-

work arrangements ranging from coarse-grained to fine-grained networks. These include

the works on Structural Health Monitoring (SHM) using WSN and DHGN intrusion detec-

tion scheme in mobile ad hoc networks (MANETs). The contents of these case studies have

5.2. NETWORK GRANULARITY ANALYSIS AND EVALUATION 207

Figure 5.9: Effects on the average store/recall time for DHGN implementation with in-
creasing binary subpattern length.

also been published as conference papers and book chapters, including (Muhamad Amin

and Khan, 2009; Khan and Muhamad Amin, 2009; Khan, Muhamad Amin and Raja Mah-

mood, 2010a).

A discussion on DHGN adaptation on different levels of network granularity has

brought forward an initiative to examine in greater details on the different DHGN configu-

rations that have been proposed. In this study, two different implementation perspectives

were assessed, namely DHGN implementations on coarse-grained and fine-grained net-

works. This study intended to demonstrate DHGN’s ability to perform under different

network distributions, and hence, exhibits DHGN’s resource-awareness capability. The

following subsections detailed out some of the works that have been carried out in deter-

mining the adaptiveness of DHGN against varying network granularity.

5.2.3 Clustered DHGN for Coarse-Grained Networks

The rapid development of high-performance computing (HPC) and grid architecture has

enabled a variety of applications to be deployed over a fast distributed network. With

increasing processing speed and storage space, HPC architecture such as grid and cloud

computing promises a scalable mean towards applications involving large-scale domains.

These computing architectures represent a coarse-grained network infrastructure, in which

each processing node has extensive processing and storage capabilities.

208 CHAPTER 5. RESOURCE CONSIDERATIONS FOR DISTRIBUTED PR

In this subsection, DHGN’s performance in HPC environment is examined using the

proposed clustered configuration. An analysis on DHGN recall time for distributed pattern

recognition involving binary patterns over grid architecture will be presented. A proposed

framework for DHGN implementation in a commodity-grid infrastructure will then be

presented and explained. This infrastructure offers significant extension for DHGN imple-

mentation for DPR across different application domains. Some of the contents of this sub-

section have been published as a conference paper in (Muhamad Amin and Khan, 2008a).

DHGN Commodity Grid Framework for DPR

Distributed pattern recognition provides an avenue for achieving large-scale pattern recog-

nition by using a state-of-the-art data classifier for fast tracking large-scale data analyses.

A framework has been proposed, that employs a grid-enabled DHGN distributed pattern

recognition scheme. The framework comprises commodity-grid network (von Laszewski,

Foster and Gawor, 2000) for pattern recognition processing using the DHGN single-cycle

learning approach. The commodity-grid can provide an easy-to-use front-end for accessing

a distributed system supporting complex operations.

The proposed framework for our distributed pattern recognition is a combination of

commodity-grid based architecture with the single-cycle learning DHGN associative mem-

ory approach for pattern recognition. Having commodity grid, as the infrastructure, en-

ables us to offer the pattern recognition service to multiple users from different expertise

domains and application areas. For instance, the climatic change research may use the

proposed system for long term climate pattern discovery while bioinformatics field may

use this resource for protein structure recognition and classification. This extends the

scalability of DHGN DPR scheme across different application domains.

Distributed Pattern Recognition Architecture. With regards to the distributed

pattern recognition framework, the architecture for the pattern recognition application

would directly follows the DHGN architecture with clustered configuration described ear-

lier. Figure 5.10 shows the grid network outlay for the proposed framework.

The communication between the DHGN sub-networks and SI module is done using

the existing file transfer or resource allocation services such as GridFTP or GRAM. Each

DHGN sub-network may be hosted by a single computing node, or group of nodes within

a sub-network. Within each of these sub-networks, the communications among the nodes

5.2. NETWORK GRANULARITY ANALYSIS AND EVALUATION 209

Figure 5.10: Proposed commodity grid-based distributed pattern recognition framework.

are handled by Message Passing Interface (MPI). MPI also facilitates the parallel DHGN

computations.

The proposed distributed pattern recognition is a real-time application that is able to

produce the results in a single cycle of computations. Furthermore, each of the DHGN sub-

networks executes independently thus providing a high level of scalability and efficiency

by removing the need for inter-sub-network communications. The SI role and a DHGN

sub-network role could be easily interchanged, where any node within the grid could take

over the SI role for the framework.

Distributed Pattern Recognition Workflow. Work flow support is the key to

diversifying this application as a generic resource for E-Research. Figure 5.11 illustrates

the workflow for the proposed distributed pattern recognition framework.

The proposed framework utilises both the commodity-grid processes, as well as the core

pattern recognition service. Also to note is that the front-end of the system is handled by

the CoG portal.

The Proposed Framework. Figure 5.12 shows the framework for implementing the

distributed pattern recognition system.

The framework is designed to cater for different types of users/applications that need

to access a large-scale low latency pattern recognition resource in a flexible manner. The

CoG Portal and Engine also offers the authentication and security services for the users.

210 CHAPTER 5. RESOURCE CONSIDERATIONS FOR DISTRIBUTED PR

Figure 5.11: DPR-Commodity Grid workflow.

In addition, Java CoG Kit offers a security infrastructure compatible with the Globus

Toolkit Grid Security (von Laszewski, Gawor, Peña and Foster, 2002). More information

on the security implementation of Java CoG Kit can be found in (Laszewski and Sosonkin

2005).

The framework used in this study implemented the Karajan CoG grid engine (von

Laszewski, Hategan and Kodeboyina, 2006). Figure 5.13 shows the Karajan architecture

adopted from von Laszewski et al. (2006).

The Karajan architecture offers additional libraries for the front-end design through

its HTML and forms libraries. It uses the task library for grid integration, which is based

on the Java CoG Kit abstractions.

The CoG grid architecture provides its own method of task creation for handling

user defined workflows. For this framework, the initial task would be to execute the

distributed pattern recognition program. This could be done in the CoG environment

using the following pseudo code:

Task prTask = new Task();

JobSpecification prSpec = new JobSpecificationImpl();

prSpec.setExecutable(”usr/bin/mpiexec”);

prSpec.addArguments(”-n 30 /home/anangh/dhgn/dhgnMain”);

5.2. NETWORK GRANULARITY ANALYSIS AND EVALUATION 211

Figure 5.12: Framework for commodity-grid based pattern recognition.

prSpec.setStdOutput(”results.txt”);

prTask.setSpecification(prSpec);

CoG Grid Karajan Engine also offers a specification language (usually in XML format)

for tasks creation and delegation. The following code shows specification language used

in our framework for remote execution of the pattern recognition application.

< projectname = ”DistributedPRExecution” >< includefile = ”cogkit.xml”/ >

< task : authenticateprovider = ”GSI”/ >

< setname = ”host”value = ”gngrid.infotech.monash.edu.au”/ >

< setname = ”path”value = ”/usr/bin”/ >

< task : transferdesthost = host”provider = ”gridftp”srcfile = ”dhgnMain”/ >

< task : Executehost = ”host”provider = ”gt4”executable = ”path/mpiexec”

arguments = ”− n30dhgnMain”/ >

< /project >

It may be noted that the proposed framework also offers user authentication through

the Grid Security Infrastructure (GSI).

Summary. In this subsection, a framework for distributed pattern recognition re-

source utilisation is presented. The framework is a combination of commodity-grid envi-

ronment and single-cycle learning approach. The framework can effectively harnesses the

advantages of distributed systems within a grid to form a generic online data classification

resource for a range of E-Research applications.

212 CHAPTER 5. RESOURCE CONSIDERATIONS FOR DISTRIBUTED PR

Figure 5.13: The Karajan grid engine architecture.

5.2.4 Fully-Distributed DHGN for Fine-Grained Networks

The intensive development of wireless technologies and increasing miniaturisation of RF

devices and micro electro-mechanical systems (MEMS) have been a driving force in the

advancement of small and tiny computing devices such as in the WSN technology (Hafez,

Haroun and Lambadaris, 2005). These devices are inter-connected, forming a computa-

tional network that capable of providing a frontline processing schemes for specific appli-

cations such as event detection. This kind of networks could be referred as fine-grained

networks, due to their characteristics of having large number of computing nodes with

limited power, storage, and processing capabilities.

DHGN implementation as extensively described in Chapter 3, has been configured in

a fully-distributed manner in which each GN is assigned to a single compute node and the

collaborations of inter-connected compute nodes will then formed a DHGN subnet. Having

simple bias array search computations involved for each node, this configuration is well-

suited for fine-grained networks such as WSN in which simple computations are possible

with limited processing and storage capacities. This research demonstrates the robustness

and scalability of DHGN for distributed recognition process over such fine-grained net-

works. In achieving this, the research investigates a distributed pattern recognition scheme

for event detection within a WSN environment. Some of the contents of this subsection

5.2. NETWORK GRANULARITY ANALYSIS AND EVALUATION 213

has been published as conference papers in (Muhamad Amin and Khan, 2008a; Amin and

Khan, 2008; Muhamad Amin and Khan, 2009).

A Distributed Event Detection Scheme for Wireless Sensor Networks

Highly-complex computations, iterative learning, and large training set requirements are

some of the weaknesses of the commonly employed event detection schemes in Wireless

Sensor Network (WSN). These schemes mainly apply conventional neural networks or

machine learning algorithms that require extensive retraining as well as a huge number

of training datasets for effective generalisation. Furthermore, centralised processing or

single-processing approach in existing schemes create some major problems including high

communication overheads due to the constant flow of sensory data, re-routing procedures,

and relocation activity of sensor nodes that often occurs in real-time applications and

significantly long delays in detecting critical events with the presence of computational

bottleneck. These problems limit the schemes scalability for massive sensory data pro-

cessing.

Artificial neural networks (ANNs) and other machine learning techniques are the most

commonly applied classification techniques for event detection schemes in WSN. Catterall

et al. (2003) have proposed an implementation of Kohonen Self-Organising Map (SOM)

in sensory data clustering for distributed event classification within WSN. Radial-Basis

Function (RBF) neural network has been proposed for dynamic energy management within

WSN network for particle filter prediction by Wang, Ma, Wang and Bi (2007). RBF has

been proven to offer fast learning scheme for neural networks. However, its learning com-

plexity and accuracy are highly affected by the training and network generation method

being used, e.g. K-means clustering or evolutionary algorithms. Kulakov and Davcev

(2005a) proposed the implementation of Adaptive Resonance Theory (ART) neural net-

work for event classification and tracking. The scheme reduces the communication over-

head by allowing only cluster labels information is sent to the base station. However, the

implementation incurs excessive learning cycles to obtain optimum cluster/class matches.

The proposed event detection scheme within WSN implements a fully-distributed

DHGN configuration in which a collection of sensor nodes collaborate and formed a DHGN

subnet and perform an event detection based upon the sensory readings obtained from

their environment as shown in Figure 5.14.

214 CHAPTER 5. RESOURCE CONSIDERATIONS FOR DISTRIBUTED PR

Figure 5.14: DHGN distributed event detection framework.

Note that SI Module is intended to be deployed in a controlling node, such as the base

station. On the other hand, DHGN subnet module is located within each WSN subnet

that is located within a specified sensory region.

Event Detection using Classification Approach. The classification process

within DHGN event detection scheme is a dual-layer process. The first layer focuses

on the subpattern recognition at DHGN subnet, while the second layer involves pattern

classification using a voting scheme that is conducted by the SI Module. Subpattern

recognition is a process of determining the recall/store status of an input subpattern.

This process is conducted within DHGN subnets. The output of this process is either a

recalled index of the stored subpattern or a new index for the respective input subpattern.

It will then be sent out to the SI module for pattern classification. Figure 5.15 shows the

proposed workflow for the distributed event detection scheme within WSN.

Classification process within DHGN implements voting mechanism as described by

Muhamad Amin and Khan (2008b). It is performed by the SI Module. Each subpattern

index received from each DHGN subnet is analysed and the result of this process are

5.2. NETWORK GRANULARITY ANALYSIS AND EVALUATION 215

Figure 5.15: Process workflow for the proposed event detection scheme using fully-
distributed DHGN algorithm

recorded in the form of class labels. For supervised classification, the number of class

label is fixed, while in unsupervised classification, it can be incremented.

The proposed scheme only requires binary input patterns, and consider multiple sen-

sory readings that are used to detect the occurrence of critical events. Given a set

of x sensory readings {s1, s2, ..., sx} where si ∈ {R} and i = 1, 2, ..., x, we perform a

dimensionality-reduction technique known as threshold-signature that converts each read-

ing value to its respective binary signature. The threshold-signature technique utilises the

threshold classes to represent a single data range into a binary format. Given a sensory

reading si where i = 1, 2, ..., x and with K-threshold class, the equivalent binary signature

that implies bi → si is in the form of bi ∈ {0, 1}
K . Therefore, for x-set sensory readings

{s1, s2, ..., sx} will be converted into a set of binary signatures {b1, b2, ..., bx}.

If the output index from DHGN subnet matches the stored pattern for the critical

event, then a signal is transmitted to the base station in the form of data packet (node id,

timestamp, class id). The class id parameter is the identification for class of event that

216 CHAPTER 5. RESOURCE CONSIDERATIONS FOR DISTRIBUTED PR

Threshold Range Class
Noise Level ≥ 25

Event
Light Exposure Level ≥ 100

Noise Level < 25
Non-event

Light Exposure Level < 100

Table 5.4: Threshold classes with respective value range used in the tests.

has been detected. At a given time t, the base station might receive a number of signals

from the network.

Analysis and Results. Analysis of DHGN distributed event recognition scheme has

been carried out using a simulation approach. The sensory data taken from the research

by Catterall et al. (2003) have been used to investigate the performance of our proposed

classifier. The data consists of five Smart-It wireless sensor nodes readings that detect

various environmental conditions such as light, sound intensity, temperature, and pressure.

WA test was performed to detect the occurrences of light and sound simultaneously. The

simulation involves assigning a DHGN subnet to each Smart-It sensor data. Recognition

tests were performed over 1690 datasets. For comparison, similar tests using support

vector machine (SVM) and self-organizing map (SOM) have also been conducted. This

analysis extends the research by (Muhamad Amin and Khan, 2009) through a comparison

between this approach and SOM. This research has used SVMLight (Joachims, 1999)

implementation with both linear-type and 2-degree polynomial kernel and SOM Toolbox

(Vesanto, Himberg, Alhoniemi and Parhankangas, 2000) with default configuration.

DHGN retrieves sensory readings in the form of binary representation using the dis-

cussed threshold-signature technique. Table 5.4 shows the adopted threshold classes.

Figure 5.16 shows the results of the recognition test conducted on sensor datasets for

Smart-It 1, 2, 3, 4, and 5. In general, datasets with high level of both noise and light

represent event and vice versa. The DHGN detects these event occurrences only in Smart-

It 1, Smart-It 2, and Smart-It 5. Smart-It 3 and 4 produces no output since the datasets

do not meet the conditions as shown in Table 5.4.

A recognition accuracy analysis was conducted to find the optimum classification

scheme between DHGN, SVM and SOM classifiers for event detection. Table 5.5 shows a

comparative analysis on different accuracy parameters used for sensory data from Smart-It

5.2.
N
E
T
W
O
R
K

G
R
A
N
U
L
A
R
IT

Y
A
N
A
L
Y
S
IS

A
N
D

E
V
A
L
U
A
T
IO

N
217

(a) Smart-It 1. (b) Smart-It 2. (c) Smart-It 3.

(d) Smart-It 4. (e) Smart-It 5.

Figure 5.16: DHGN event detection results for test using 1690 sensor datasets (x-axis). Note that Smart-It 3 and Smart-It 4 produce non-events
since noise and light exposure readings are well below the threshold values (T-Light and T-Noise).

218 CHAPTER 5. RESOURCE CONSIDERATIONS FOR DISTRIBUTED PR

1, Smart-It 2, and Smart-It 5. The accuracy parameters used include precision, recall, ac-

curacy and error values, as described in Section 4.4.3. In this experiment, SVM and SOM

classifiers use a set of six readings in their training set, while DHGN only uses datasets

with two entries. For both SVM classifiers, six support vectors have been initialised and

implemented for classification purposes. The value of the best result (selected feature) for

each parameter is underlined.

SmartIt Classifier
Parameters

Precision Recall Accuracy Error

1

DHGN 1.0000 1.0000 1.0000 0.0000
Linear SVM 0.9388 0.7419 0.9888 0.0112
Poly-2 SVM 1.0000 0.7538 0.9905 0.0095

SOM 1.0000 0.8367 0.9953 0.0047

2

DHGN 1.0000 1.0000 1.0000 0.0000
Linear SVM 0.9074 0.6364 0.9805 0.0195
Poly-2 SVM 1.0000 0.6279 0.9811 0.0189

SOM 1.0000 0.5741 0.9864 0.0136

5

DHGN 1.0000 1.0000 1.0000 0.0000
Linear SVM 0.1923 0.6250 0.9858 0.0142
Poly-2 SVM 0.5000 0.3077 0.9923 0.0077

SOM 0.8000 0.5000 0.9970 0.0030

Table 5.5: Comparative analysis on recognition accuracy parameters between DHGN and
other classifiers for event recognition using sensory data obtained from three wireless
sensors (Smart-It 1, Smart-It 2, and Smart-It 5).

From the results obtained, DHGN has been shown to exert high recognition accu-

racy with zero error value and perfect recall. Both SVM and SOM classifiers have also

demonstrated high precision and accuracy. However, their recall value is comparatively

low against DHGN. This is due to the low true positive values obtained during the classi-

fication process. Furthermore, both algorithms have also recording small error values.

In general, DHGN’s overall recognition accuracy shows better results than the other

two algorithms. In regards to the precision value, SOM and polynomial SVM however

exhibit similar performances (Smart-It 1, and Smart-It 2) except for Smart-It 5 in which

SOM outperforms polynomial SVM. The polynomial SVM however produces slightly bet-

ter results than the linear approach (for Smart-It 1, Smart-It 2, and Smart-It 5). This

shows that SVM approach depends heavily on the types of kernel being implemented (ei-

ther linear or polynomial) and the nature of data used. This data dependency problem

limits the flexibility of SVM for event detection within WSN. Although SOM produces

5.2. NETWORK GRANULARITY ANALYSIS AND EVALUATION 219

better overall results than SVM, this iterative algorithm is known to be resource inten-

sive and hence impractical to be deployed in the resource-scarce wireless sensor networks.

DHGN on the other hand, is a lightweight, single-cycle learning algorithm that is able to

provide high detection accuracy when used together with our simple threshold-signature

technique.

This research also included a performance analysis to measure the recognition time

incurred for each sensor data collected by each sensor node. The simulation was con-

ducted using a fully-distributed configuration with message-passing implementation using

MPICH-2 package under GNU C program, and was executed on VPAC HPC machines.

Figure 5.17 shows the results of the performance analysis of DHGN distributed event

detection on five different wireless sensor nodes (Smart-It 1 to Smart-It 5).

The scheme only takes on average, less than 0.002 seconds for a sensor data to be

recalled or memorised. This fast recognition time has been achieved through a simple

recognition procedure using a collaborative-comparison learning (CCL) mechanism as de-

scribed in Section 3.1.5. Furthermore, the average recall time for each sensor data remains

consistent for entire sensor data collection. This indicates significant consistency of our

approach in regards to the recognition time per pattern, for a recognition application in-

volving large amount of data. These results have also exihibit a potential for real-time

development of pattern recognition scheme within a resource-constrained network such as

WSN.

5.2.5 Summary

In this section, the capability of DHGN DPR scheme to provide a scalable and robust ap-

proach for pattern recognition has been presented. DHGN harnesses the distributed com-

puting potentials by considering available resources within a network through its adaptive

network granularity. This adaptiveness has been acquired using different system configu-

rations in DHGN implementation. Through both clustered and fully-distributed DHGN

configurations, pattern recognition was able to be conducted, regardless of the network

limitations in terms of node’s processing and storage capabilities. Moreover, the results of

this adaptivity study have shown that DHGN performs fast recognition and able to recall

or store up to 20000 patterns within on average less than a second. This effect further

22
0

C
H
A
P
T
E
R

5.
R
E
S
O
U
R
C
E

C
O
N
S
ID

E
R
A
T
IO

N
S
F
O
R

D
IS
T
R
IB

U
T
E
D

P
R

(a) Smart-It 1. (b) Smart-It 2. (c) Smart-It 3.

(d) Smart-It 4. (e) Smart-It 5.

Figure 5.17: Recognition time for each sensor data in 1690 sensor datasets (x-axis) for all Smart-It nodes using DHGN distributed pattern recognition
scheme.

5.3. DHGN FAULT TOLERANCE MECHANISM 221

proves that DHGN single-cycle learning approach is capable of providing fast and accurate

recognition.

It is important to note that DHGN configurations that have been described do not

have to be exclusively applied in both coarse- and fine-grained networks. In some contexts,

clustered DHGN may be more appropriately appilicable in fine-grained networks and vice-

versa. For instance, in the area of multi-sensory WSN networks. Further works need to

be carried out in the area of adaptive network granularity, in order to enable DHGN to be

able to be applied in different kinds of application domains and systems configurations.

The next section will further analyse the performance and robustness of DHGN DPR

scheme, with a focus on fault tolerance mechanism for distributed system deployment.

5.3 DHGN Fault Tolerance Mechanism

DHGN distributed pattern recognition scheme adopts resource-awareness in its implemen-

tation. For resource-constrained environment such as wireless sensor networks (WSNs),

the use of computationally expensive processes may lead to resource exhaustion, in terms

of power and storage. Hence, it is imperative that pattern recognition applications such

as DHGN are able to conserve the node’s energy.

Fault tolerance is an important aspect in distributed systems. It focuses on the flex-

ibility of a system to handle an event of failure. Fault tolerance refers to the capability

of a system to perform adequately in the event of failure in some of its components

(Schalkoff, 1997).

Fault tolerance is considered an important aspect in the design and implementation of

DHGN as a distributed pattern recognition algorithm. Initial design and implementation

of DHGN assumes that the capability of computational network to provide sufficient pro-

cessing capacity, such as in the grid environment. Nevertheless, with regards to different

kinds of networks and applications, additional consideration should also be put in place

for DHGN implementation in resource-constrained and fragile environment such as mobile

ad hoc network (MANET) or wireless sensor network (WSN).

Two levels of fault in DHGN execution for pattern recognition have been identified.

These are subnet and node fault. Error resulting in the entire subnet malfunction is

222 CHAPTER 5. RESOURCE CONSIDERATIONS FOR DISTRIBUTED PR

known as subnet fault, while error due to loss of node function and capability is known as

node-fault.

5.3.1 Subnet Fault

In the network environment, occurrences of errors and malfunctions are unavoidable, but

can be prevented, diagnosed and treated. The use of network fault management paradigm

helps in sustaining the availability of particular network. Some of the possible failures that

may happen include communication failures, network overloading, and security attacks.

In the case of DHGN implementation on distributed network environment, network

fault may affect the performance and accuracy of the recogniser, due to its in-network

processing feature. For instance, consider a DHGN network with n subnets, and each

subnet is capable of handling subpatterns of length p. A failure on a single subnet will

affect the result of the recognition, due to insufficient processing capacity of the entire

network to function for pattern length of (n − 1)p. An increase in the number of faulty

subnets may leads to significant deterioration of the DHGN performance.

The performance degradation of DHGN implementation implies that the recogniser

has limited capacity of recognising the entire pattern for a specified period of time. In

this case, an increase in the number of faulty subnets would linearly degrade performance

of the system. Hence, there is a need for a mechanism to be applied in DHGN when

executing under fragile or best-effort network environment.

Fault management scheme provides a capability to detect, isolate, and resolve the

failures. This research applies a holistic approach in managing fault that occurs at subnet

level.

Given a scenario where one or more subnets failed to commit to the recognition process,

the coordinator node (or SI module in DHGN architecture) will be alerted when the faulty

subnet(s) is/are unable to deliver responses to recognition request. In the case where the

faults occurred during execution, SI module is able to detect these whenever top node in

the respective faulty subnet failed to deliver recall/stored index of subpattern that has

been sent to it.

Once the SI module has been made aware of possible fault, it may have to initiate a

response by relegating recognition tasks to available subnets. This approach may require

rearrangement of subnets and /or processing nodes, as to cater for recognition process of

5.3. DHGN FAULT TOLERANCE MECHANISM 223

remaining patterns. Figure 5.18 shows task redelegation method that could be applied in

the case of fault occurrences at subnet level in DHGN execution.

Figure 5.18: Subpattern-division method for task redelegation in DHGN fault management
scheme.

In this figure, the two red-coloured subnets have malfunctioned due to faults. As a

result, the network is incapable of continuing the recognition process, due to insufficient

number of subnets available. To overcome this shortage of subnets, DHGN network must

be restructured in the sense that the size of each subnet may be increased, in order to

handle subpatterns that have been directed to the faulty subnets.

The subpattern-division method is used with basic assumptions that the non-affected

subnets are capable of providing additional resources to be utilised for the remaining recog-

nition tasks and each subnet is initially of equal sizes. In this approach, the subpattern-

to-subnet position will be rearranged to accommodate the length of subpattern(s) that

has/have been ignored by the malfunctioned subnet(s). Consider a DHGN scheme for bi-

nary patterns with subpattern length x and n number of subnets. Given y faulty subnets,

224 CHAPTER 5. RESOURCE CONSIDERATIONS FOR DISTRIBUTED PR

the new subnet arrangement will accommodate z subpattern length using the following

equation:

z = x+
yx

n− y
(5.2)

Figure 5.19 shows the subpattern length and subnet size increments, following an

increase in the number of faulty subnets for DHGN with 50 subnets and binary patterns

with 7-bits length.

Figure 5.19: Size and subpattern length of subnet using subpattern-division method on
DHGN network with increasing subnet faults.

Note that for large number of faulty subnets, this method does not seem to be appli-

cable, since the subnet size overheads tend to be extremely high.

5.3.2 Node Fault

In most best-effort networking environment, failures among processing nodes are common.

These are mainly due to communication failures, security attacks, or simply processing

node malfunctions. In critical systems, failure of a single node may affect the performance

of the entire network. Moreover, if the system is built upon a high-cohesion infrastructure

(tightly-coupled design), it will also have a significant influence on the outputs of the

system.

5.4. CONCLUSIONS 225

Neural network systems for pattern recognition take different forms of fault tolerance.

These include tolerance against inexact computations and network mapping. Two different

mechanisms for fault tolerance have been introduced by Panduranga, Rao and Deshpande

(2007). These include training algorithm modification and explicit augmenting redun-

dancy. In addition, Jiang, Liu and Wang (2006) proposed the use of pseudo-attractor and

region of attraction concepts for estimating fault tolerance within a feed-forward neural

network system.

In DHGN, we consider both forms of fault tolerance as a single task to be solved. This

is due to the fact that in its implementation, inexact network mapping may lead to error

in the recognition procedure, since DHGN applies (value, position) matching approach. A

single node failure may result in the entire subnet to produce incorrect recognition output.

Failures at processing node level do not necessarily fail the entire subnet from carrying

out the recognition process. Hence, there should be a mechanism for detecting, isolating,

and resolving the faulty nodes.

In order to be able to conduct a recognition process, existing DHGN design requires

that the number of processing nodes are sufficient enough to handle the length and di-

mension of the specified subpattern. In the case of faulty nodes occurrences, there is a

need for DHGN to work on a constrained condition where the number of processing nodes

nGN , is less than the required capacity for a given subpattern with length l and dimension

r, as shown in the following equation:

nGN < r

(

l + 1

2

)2

(5.3)

In this context, there is a need to consider a fault tolerance mechanism for handling

node failures in DHGN scheme. The researcher proposes a compressed model of DHGN

implementation using multi-value DHGN (MV-DHGN) as described in Section 3.5, that

enables it to perform recognition process with less number of GNs while maintaining

similar level of accuracy.

5.4 Conclusions

This chapter presented an important aspect in DHGN implementation, i.e. resources.

DHGN as a distributed application requires constant awareness of network resources, in

226 CHAPTER 5. RESOURCE CONSIDERATIONS FOR DISTRIBUTED PR

order to effectively performed recognition procedures. Understanding of different levels of

network granularity helps in determining a suitable configuration for DHGN distributed

pattern recognition deployment. Consequently, this improves the robustness and scalabil-

ity of the proposed approach.

The performance of DHGN recognition scheme has been demonstrated, in regards to

its execution and recall times. Furthermore, the ability of the proposed scheme to deliver

single-cycle learning mechanism has enable it to adapt to large-scale data sets and its

ability to perform parallel pattern recognition using a message-passing model has also

been presented.

Apart from granularity, fault tolerance is an important aspect to be considered. Net-

work or node failure may lead to disruption of recognition process, hence imposing delays

in producing outputs. Several approaches were proposed to deal with this aspect, including

subnet redelegation and compressed DHGN model using multi-value DHGN (MV-DHGN).

The next chapter will examine a case study on DHGN implementation in adaptive

granular networks, specifically in fine-grained networks for distributed event detection

applications within WSN networks.

Chapter 6

Distributed PR Applications

within Fine-Grained Networks

The ability to acquire resource-awareness characteristic has been discussed in the previ-

ous chapter, and is essential for the design of distributed applications, including pattern

recognition. DHGN as a distributed pattern recognition scheme, has been developed with

adaptive granularity consideration in its design. This enables it to be deployed in both

coarse- and fine-grained networks.

Parallel pattern recognition scheme for applications within fine-grained systems such

as WSN has been intially introduced by Khan and Mihailescu (2004). In this research, a

distributed recognition framework for detecting stress patterns from a simple finite element

model stored within WSN network has been proposed. Further research work has also

been carried out within a domain of pattern recognition applications in WSN, including

the works on GN-based pattern recognition/event detection (Baqer et al., 2005; Baig

et al., 2006). Moreover, a distributed pattern recognition model for event detection has

also been proposed by Nasution and Khan in their Hierarchical Graph Neuron (HGN)

implementation (Nasution and Khan, 2008).

The motivation for this chapter lies in the aforementioned applications using GN-based

algorithms. DHGN, with its features including high scalability and granular-adaptive, can

be applied in real applications such as event detection. With the ability to distribute

recognition process within the body of network, DHGN enables recognition scheme to be

deployed in small and resource-constrained devices such as sensor nodes in WSN network.

227

228CHAPTER 6. DISTRIBUTED PR APPLICATIONSWITHIN FINE-GRAINED NETWORKS

This chapter provides a discussion on DHGN implementation on real applications. As

an example, a case study on distributed pattern recognition application for a lightweight

event detection scheme within a fine-grained network will be presented. To achieve this, a

DHGN implementation with one-shot learning recognition capability for event detection

is proposed, specifically within WSN network. DHGN, as described in Chapter 3, has the

potential to recognise and classify multi-dimensional sensory input for identifying natural

or man-made phenomena through clustered and hierarchical graph-based representation

of input patterns for use within fully-decentralised networks. DHGN has the ability to

divide-and-distribute recognition tasks throughout the network in a fine-grained manner

for minimising the energy use. Thus, it is highly-suited for resource-constrained networks

such as WSN. In addition, as being discussed in both Chapter 2 and 3, DHGN provides

a comparable level of accuracy in comparison with HGN implementation. However, as

described in Section 3.3, scalability of DHGN outperforms HGN, in regards to the number

of processing GN nodes requirement. DHGN is also capable of integrating vast networks of

sensors into intelligent macroscopes for observing our surroundings. These will bring un-

precedented capabilities within our reach that transform the way we deal with phenomena

occurring over large distances and inaccessible regions.

Apart from applications such as stress pattern detection, this research intends to con-

sider beyond a simple event detection application and move towards a scheme involving

critical real-time detection applications such as forest-fire detection. This kind of applica-

tions require fast response time and lightweight recognition model for in-network detection

involving large-scale real-time data. With single-cycle learning and low-computational

complexity characteristics as being described in Chapter 3, DHGN has a potential for

such applications. Furthermore, as discussed in Chapter 5, DHGN has an ability to con-

duct recognition procedure with parallel processing and low-memory utilisation. This is

mostly suitable for fine-grained parallel systems such as WSN networks.

The objectives of this chapter are as the followings:

i. To present a case for distributed pattern recognition implementation on event de-

tection within a fine-grained WSN network.

ii. To conduct a review on WSN and other related event detection schemes.

6.1. WSN EVENT DETECTION 229

iii. To analyse the performance and accuracy aspects of DHGN for event detection

application within a fine-grained network implementation.

iv. To present and evaluate a study related to distributed forest-fire detection using

DHGN recognition scheme within WSN network.

v. To propose an integrated WSN-Grid infrastructure for complex spatio-temporal

event detection using DHGN distributed pattern recognition scheme.

The outline for this chapter is as follows. Section 6.1 provides an overview of WSN

technology and explains the current event detection schemes within WSN and some sig-

nificant issues related to it. Section 6.2 describes the proposed dimensionality reduction

technique on sensory data. Details on our proposed DHGN-WSN integration will be fur-

ther described in section 6.3. Section 6.4 reports on the case study on forest fire detection

using DHGN-WSN scheme. Finally, section 6.5 concludes the chapter.

6.1 WSN Event Detection

With regards to different levels of network granularity, existing breakthrough in commu-

nication technologies have not only enhanced the performance of existing coarse-grained

networks capabilities such as cloud and grid computing. Research has also leads to the

rapid growth of emerging fine-grained networks such as wireless sensor networks (WSNs).

These networks emerged from the confluence of wireless communication, extensive com-

putational schemes, and sophisticated sensor technology. WSNs in particular, are created

from a collection of self-organised wireless and battery-powered devices with sensing capa-

bilities. The future of this kind of networks is promising, as been mentioned by Stankovic

(2008), “The potential of these systems is nothing short of revolutionary. This technology

will affect all aspects of our lives, bringing about substantial improvements in a broad

spectrum of modern technologies ranging from healthcare to military surveillance”. Apart

from this promising future, the emergence of these self-organised networks comprising of

large number of tiny processing devices have also lead towards an ability for parallel and

distributed computing deployment within such fine-grained systems.

Unfortunately, the current scenario in WSN deployment is still far away from its

tremendous potential. WSN has only been demonstrated for humble applications such

230CHAPTER 6. DISTRIBUTED PR APPLICATIONSWITHIN FINE-GRAINED NETWORKS

as meter reading in buildings and basic form of ecological monitoring. Achieving full po-

tential of this technology requires an intelligent computational scheme which at present is

still missing.

Common approach implemented within existing WSN applications usually involve a

number of processing steps including sensory data capture and conveyance of these data

to a central entity known as the base station for further refinement and analysis. Conse-

quently, this approach would leads to a system bottleneck, if it is scaled up for widespread

use. Furthermore, processing delay would intermittently occur due to latency between

data capture/aggregation and processing time. These limitations make WSN less suitable

for real-time monitoring applications. Therefore, we require a new approach for data pro-

cessing within WSN that acquires the abilities to process their sensory data in situ and

with decentralised manner and to generate highly condensed and sophisticated outputs in-

ternally. These abilities will alleviate the bottleneck problem within WSN through on-site

computations, and improves its performance by reducing the processing delay experienced

using existing approach.

Figure 6.1 shows a generic wireless sensor node architecture. Currently, there are a

number of commercially available wireless sensor nodes of different types of applications.

These include Berkeley Mica Mote (http://www.xbow.com) and UCLA iBadge (Park,

Locher, Savvides, Srivastava, Chen, Muntz and Yuen, 2002). The specifications of the

Berkeley Mica Mote sensor node that is used in a number of surveillance networks (Levis

and Culler, 2002; Lewis, 2004) are also listed in Table 6.1.

Figure 6.1: A generic wireless sensor node architecture.

On a macro level, WSN is built up from a network of wireless sensor nodes that are

linked together through a common entity known as the base station (also commonly known

as sink). Due to limited power and processing capabilities, communications between sensor

6.1. WSN EVENT DETECTION 231

Dataset Subpattern Size (bits)

CPU: 8-bit 4 MHz

Memory: 128KB Flash and 4KB RAM

Communication: 916 MHz 40 Kbps Radio

Power: 2 AA Batteries

Table 6.1: Berkeley Mica Mote sensor node specifications.

nodes and base station usually involve a series of data aggregation techniques to reduce

the volume of traffic enroute to the base station.

6.1.1 WSN Deployment Issues for Event Detection

Issues withWSN deployment across wide area of applications encircled towards its resource-

constrained characteristics, which include limited communication bandwidth, power, pro-

cessing capability and memory capacity (Culler, Estrin and Srivastava, 2004). In addition,

any algorithm that may entail computations, communications, or storage resources within

a sensor node would lead to quick exhaustion of the limited battery power available per

node. The limited energy and computational resources of sensors imply that the data pro-

cessing and transmission must be kept to a minimum in order to conserve energy (Khan

and Muhamad Amin, 2009).

In solving these issues, systems designers must be able to produce a well-managed de-

sign for WSN deployment in which it will provide long-term reliability to the network. An

effective design should include principles such as data-centric mechanism, localised algo-

rithms, and lightweight middleware. In this chapter, a new design for WSN deployment is

proposed for event detection which incorporates these principles for highly-reliable sensor

networks.

One of the primary purposes of the existence of WSN is to provide capabilities for mon-

itoring, detecting, and reporting various significant occurrences of events in the sensory

domain. An event can be defined as a behavioural change over time on a certain dy-

namic phenomenon (Guralnik and Srivastava, 1999). An example is the change in rainfall

amount, ranging from light to heavy to extreme. The behavioural change mentioned here

could be either a change involving single environmental parameter value or changes in-

volving composite parameters. In explaining this, Li, Lin, Son, Stankovic and Wei (2004)

proposed an event hierarchy terminology that differentiates between atomic events and

232CHAPTER 6. DISTRIBUTED PR APPLICATIONSWITHIN FINE-GRAINED NETWORKS

compound events. Atomic event can be determined based on an observation of a sensor,

while compound event cannot be determined from a single observation. Rather, compound

event is a collection of observations on different types of sensors. For instance, forest fire

is a compound event in which observations could be made on four different parameters

including temperature, relative humidity, wind speed, and rainfall.

Research in the area of event detection using WSN is commonly classified into two

groups. These are performance-specific research and application-specific research. The

performance-specific research concerns the efficiency of the event detection scheme. The

main research goal in this area is to develop an event detection scheme with minimum en-

ergy consumption and extended lifetime of the WSN network. Alternatively, application-

specific research focuses on the development of event detection mechanism that provides

accurate and reliable detection for predefined applications such as intrusion detection or

phenomenon detection. The common goal of this research area is to obtain efficient mech-

anism for event detection that deploys specific data processing algorithm that is able to

provide accurate and reliable detection using WSN network. This section will further

described these two common research areas.

Performance-specific Event Detection Schemes

Most of the recent research works on performance-specific event detection schemes are

looking into efficient localisation and routing mechanism that could be deployed within a

WSN network. Localisation and routing are the two important factors in determining the

optimum coverage and performance of WSN network. Furthermore, these studies have

also considered multiple event detection.

A collaborative event detection and tracking in wireless heterogeneous sensor networks

has been proposed by Shih, Wang, Chen and Yang (2008). In this research, emphasis has

been put into tracking procedure and localization of sensors attribute region for event

detection. Event detection scheme known as CollECT (Collaborative Event Detection

and Tracking) has been introduced. A collaboration of different types of sensor nodes is

used for event detection and tracking. Three main procedures involved: vicinity triangu-

lation, event determination, and border sensor node selection. The scheme allows event

detection and tracking to be conducted simultaneously. However, the scheme requires sig-

nificant distinction of sensor nodes and their attributes according to its sensing capability.

6.1. WSN EVENT DETECTION 233

Furthermore, it also requires extensive collaboration of sensor nodes to derive towards

maximum accuracy in the event detection.

Banerjee, Xie and Agrawal (2008) introduces multiple-event detection scheme with

fault tolerant within WSN. They propose the use of polynomial-based scheme that ad-

dresses the problems of Event Region Detection (PERD). There are two-components in-

volved, including event recognition and event report with boundary detection. For event

recognition, they adopt min-max classification scheme which classifies event according to

the sensor reading values. These values would then be transformed into polynomial co-

efficients and passed through a data aggregation scheme. The proposed event detection

scheme has enabled a 33% savings in the communication overhead experienced by the

network.

Another important contribution in this event detection with performance-specific re-

search is on the work conducted by Ai, Hou, Li and Beyah (2009) in Authentic Delay

Bounded Event Detection System (ADBEDS) for WHSN. ADBEDS implements iterative

event detection scheme using event detection tree. This approach is responsible for simul-

taneous event detection and packet routing mechanisms. ADBEDS support singular and

composite event monitoring. Important aspects within ADBEDS implementation include

energy efficiency and authenticity within WSN deployment for event detection. ADBEDS

implements user specified bounded delay for event detection. Energy efficiency is achieved

through sleep-awake alternation between sensor nodes.

The development of energy-efficient scheme for event detection within WSN has also

been carried out by Baqer (2008) using GN pattern recognition scheme with voting capa-

bilities. This work provides a foundation for energy-efficient pattern recognition scheme

to be deployed within WSN infrastructure for real-time applications such as structural

health monitoring (SHM). This research intends to extend the capabilities of parallel pat-

tern recognition scheme using voting-GN towards a more scalable scheme using DHGN

distributed approach.

Application-specific Event Detection Schemes

Application-specific schemes for event detection refer to the area of research involving

development of application middleware for WSN. This middleware provides enhanced ca-

pability and accuracy for event detection using sensor networks. Several machine learning

234CHAPTER 6. DISTRIBUTED PR APPLICATIONSWITHIN FINE-GRAINED NETWORKS

algorithms have been applied by a number of research studies, including Fuzzy-ART neural

network, multi-layer perceptrons (MLPs), and Self-Organizing Maps (SOMs).

The use of Adaptive Resonance Theory (ART) neural network for event tracking was

introduced by Kulakov and Davcev (2005b). Further classification scheme for event de-

tection within WSN has also been introduced in Kulakov and Davcev (2005a). In these

research, the use of artificial neural networks (ANNs) in the form of an ART network has

been used as pattern classifier for event detection and classification. The scheme offers

reduction in communication overhead with only cluster labels being sent to the sink, in-

stead of the overall sensory data. However, the implementation of ART neural network

incurs excessive iterative cycle to achieve optimum cluster matches.

The research by Kulakov and Davcev (2005b) on ART neural network for event track-

ing has also been further researched by Li and Parker (2008) in their study on intruder

detection using a WSN with fuzzy-ART neural networks.

Self-organisation for event detection has also been a major focus in application specific

research within WSN networks. Catterall et al. (2003) propose a concept of distributed

event classification through the use of Kohonen self-organising map (SOM) approach

(Kohonen, 2000). The occurrence of events, which are signified by changes in sensor

parameter values, could be mapped into clusters representation. The proposed scheme

however, imposes significant iterative learning procedure and the classification process is

carried out on each input unit, rather than collective input units.

6.1.2 Summary

Existing schemes for event detection using WSN commonly involve centralised processing

at the sink or base station. Efforts to minimise the tendency for this singular process-

ing base have been shown by the research on both performance and application-specific

research works. However, a complete decentralisation has yet to be achieved. There are

several factors related to this issue. These include complex learning algorithms for event

detection and tightly-coupled schemes being deployed for event detection. With a ref-

erence to Table 6.1, any algorithm that may entail computations, communications, or

storage resources within a sensor node would lead to quick exhaustion of the limited bat-

tery power available per node. The limited energy and computational resources of sensors

6.2. INTEGRATED DHGN-WSN SCHEME 235

imply that the data processing and transmission must be kept to a minimum in order to

conserve energy.

It is evident through the research by Kulakov and Davcev (2005b) and Catterall et al.

(2003) that they require extensive learning procedures to derive clusters of events. Con-

sequently, the inputs from the sensors would need to be processed separately and thus

incur additional communication overhead for inter-nodes communication. In addition, the

proposed schemes do not take into account the variable data processing latency for each

sensor nodes in which some inputs might require longer processing time than the others.

The research conducted by Shih et al. (2008) and Banerjee et al. (2008) offer significant

contribution in the efficiency of communication schemes for event detection using WSN.

However, the tendency for centralised processing is somewhat undeniable. Furthermore,

approaches for distinguishing different roles of specific nodes within WSN are still within a

scope of further discussion, due to the nature of WSN network which consists of uniformly-

equivalent resource-constrained sensor nodes.

This chapter proposes a holistic solution for event detection using WSN. It incorporates

a distributed pattern recognition scheme within WSN network and provides on-site and

localised computation. This chapter details the implementation of DHGN single-cycle

learning distributed pattern recognition algorithm . Within this scheme, a dimensionality

reduction approach has been employed for minimising the need for complex computation,

as well as the incurrence of communication overhead within the network. The proposed

scheme is also capable of providing scalable detection, enabling allowance for the outgrowth

of event classes. Furthermore, an integration with computational grid for further complex

event analysis is viable throughout this scheme. Finally, the proposed lightweight event

detection scheme also equipped with a detailed workflow of the event detection process.

Details of the DHGN distributed pattern recognition scheme can be further referred to in

Chapter 3.

6.2 Integrated DHGN-WSN Scheme

With distributed and lightweight features of DHGN, an event detection scheme for WSN

network is able to be carried out at the sensor node level. It acts as a front-end middleware

that could be deployed within each sensor nodes in the network, forming a network of event

236CHAPTER 6. DISTRIBUTED PR APPLICATIONSWITHIN FINE-GRAINED NETWORKS

detectors. Hence, our proposed scheme minimizes the processing load at the base station

and provides near real-time detection capability. Preliminary work on DHGN integration

for WSN has been conducted in (Amin and Khan, 2008). Two distinctive configurations

for DHGN deployment within WSN have been proposed, as been further described in

Chapter 5.

When integrating DHGN within WSN for event detection, mapping each DHGN subnet

into each sensor node is considered, using clustered configuration as described in Chapter 5.

The proposed scheme is composed of a collection of wireless sensor nodes and a sink.

Deployment of WSN in two-dimensional plane with w sensors, represented by a set W =

(w1, w2, ..., wn) , where wi is the ith sensor is examined. The placement for each of these

sensors is uniformly located in a grid-like area, A = (x× y), where x represents the x-axis

coordinate of the grid area and y represents the y-axis coordinate of the grid area. Each

sensor node will be assigned to a specific grid area as shown in Figure 6.2. The location

of each sensor node is represented by the coordinates of its grid area (xi, yi).

Figure 6.2: Sensor nodes placement within a Cartesian grid. Each node is allocated to a
specific grid area.

For the communication model, a single-hop mechanism for data transmission from

sensor node to the sink is proposed. WThe use of “autosend” approach is planned as

proposed by Saha and Bajcsy (2003) to minimise error due to the loss of packets during

data transmission. The proposed scheme does not involve massive transmission of sensor

readings from sensor nodes to the sink, due to the ability of front-end processing approach.

It has been concluded from previous research that single-hop mechanism is the most

6.2. INTEGRATED DHGN-WSN SCHEME 237

suitable approach for DHGN deployment. On the other hand, communication between

the sink and sensor nodes is done using broadcast method.

6.2.1 Dimensionality Reduction in Sensory Data

Event detection usually involves recognition of significant changes or abnormalities in

sensory readings. In heterogeneous sensor networks, specifically, sensory readings could be

of different types and values, e.g. temperature, light intensity, and wind speed. In DHGN

implementation, these data need to be pre-processed and transformed into acceptable

format, while maintaining the values of the readings.

In achieving a standardised format for pattern input from various sensory readings,

the use of adaptive threshold binary signature scheme for dimensionality reduction and

standardisation technique is proposed for multiple sensory data. This scheme has originally

been developed by Nascimento and Chitkara (2002) in their studies on content-based image

retrieval (CBIR). Further discussion on this binary signature scheme has been presented

in this thesis and can be referred to in Section 3.2.2. Binary signature is a compact

representation form that capable of representing different types of data with different

values using binary format.

Given a set of n sensory readings S = (s1, s2, , sn), each reading si would have its own

set of k threshold values Psi = (p1, p2, ..., pk), representing different levels of acceptance.

These values could also be in the form of acceptable range for the input. The following

procedures show how the adaptive threshold binary signature scheme is being conducted:

i. Each sensor reading si, is discretised into j binary bins (Bi = bi1b
i
2...b

i
j) of equal

or varying capacities. The number of bins used for each data is equivalent to the

number of threshold values Psi . This bin is used to signify the presence of data

which is equivalent to the threshold value or within a range of the specified pi values

using binary representation.

ii. Each bin would correspond to each of the threshold values. Consider a simple data

as shown in Table 6.2. If the temperature reading is between the range 20-25 degrees

Celsius, the third bin would be activated. Thus, a signature for this reading is 01000.

238CHAPTER 6. DISTRIBUTED PR APPLICATIONSWITHIN FINE-GRAINED NETWORKS

iii. The final format of the binary signature for all sensor readings would be a list of

binary values that correspond to specific data, in the form of Sbin = b11b
1
2b

2
1b

2
2...b

n
j ,

where bkj represent the binary bin for kth sensor reading and jth threshold value.

Temperature Threshold Range (◦C) Binary Signature

0 - 20 10000

21-40 01000

41-60 00100

61-80 00010

81-100 00001

Table 6.2: Example of a simple temperature readings with respective binary signature.

6.2.2 DHGN Event Classification

DHGN distributed event detection scheme involves a bottom-up classification technique, in

which the classification of events is determined from the sensory readings obtained through

WSN. As been discussed before, our approach implements adaptive threshold binary sig-

nature scheme for pattern pre-processing. These patterns would then be distributed to all

available DHGN subnets for recognition and classification purposes.

The recognition process involves finding dissimilarities of the input patterns from the

previously stored patterns. Any dissimilar patterns will create a response for further

analysis, while similar patterns will be recalled. This research will conduct supervised

single-cycle learning approach within DHGN that employs recognition based upon the

stored patterns. The stored patterns in our proposed scheme include the set of ordinary

events that could be translated into normal surrounding/environmental conditions. These

patterns are derived from the results of the analysis conducted at the base station, based

upon the continuous feedback from the sensor nodes. Figure 6.3 shows our proposed

workflow for event detection.

The proposed event detection scheme incorporates two-level recognition: front-end

recognition and back-end recognition. Front-end recognition involves the process of de-

termining whether the sensor readings obtained by the sensor nodes are either could be

classified as extraordinary event or simply a normal surrounding condition, through the

use of DHGN pattern matching mechanism. Conversely, the spatial occurrence detection

is conducted through the back-end recognition. In this approach, the use of signals sent

6.2. INTEGRATED DHGN-WSN SCHEME 239

Figure 6.3: A process workflow for DHGN distributed event detection within WSN.

by sensor nodes is considered as pattern for detecting event occurrences at specific area

or location. This chapter will explain more details of our front-end recognition scheme.

Pattern Matching at Sensor Level

In event detection application using DHGN algorithm, the occurrences of abnormal events

are detected using a pattern matching approach. Sensory readings are considered as

patterns, and any significant changes in the structure of normal patterns are classified

as events or critical events that need to be reported back to the base station. The use

of clustered DHGN configuration maps each sensor node with DHGN subnet that able

to accept a number of different sensory readings as a single subpattern. The following

algorithm describes our proposed pattern matching approach for event detection at sensor

level.

In this algorithm, the output of the pattern matching process is in the form of signal,

alerting SI Module in base station, of a new event that has been detected. Base station will

respond by performing spatio-temporal analysis on the readings obtained. This analysis

will be further described in Section 6.3.5.

240CHAPTER 6. DISTRIBUTED PR APPLICATIONSWITHIN FINE-GRAINED NETWORKS

Algorithm 7 Pattern Matching Function at Sensor Level

1: given n sensory readings for t time: St = (s1, s2, ...sn)
2: convert St to binary signature Bt. Therefore f(binsig) : St 7→ Bt

3: trigger = FALSE
4: eventAlert.Sensor = FALSE
5: repeat
6: for i = 0 to MAXREADINGS do
7: {check for matched subpattern (sensory readings) within sensor data storage}
8: if new.Bt == s[i].Sensor then
9: {new.Bt: new readings, matching process is conducted using DHGN algorithm}

10: exit FOR
11: else
12: s[MAXREADINGS + 1].Sensor = new.Bt

13: trigger = TRUE
14: eventAlert.Sensor = TRUE
15: end if
16: end for
17: until trigger = TRUE
18: send eventAlert.Sensor and s[MAXREADINGS+1].Sensor to SI Module function

at base station
19: MAXREADINGS = MAXREADINGS + 1

6.2.3 Performance Metrics: Memory Utilisation

Memory utilisation estimation for DHGN algorithm involves the analysis of bias array

capacity for all the GNs within the distributed architecture, as well as the storage capacity

of the SI Module node. A detailed analysis of bias array capacity has been presented in

Chapter 3. Based upon the analysis one could derive the fact that DHGN offers efficient

memory utilisation due to its efficient storage/recall mechanism. Furthermore, it only

uses memory to store newly-discovered patterns, rather than storing all pattern inputs.

Figure 6.4 shows the comparison between the estimated memory capacities for DHGN

processing cluster with increasing subpattern size against the maximum memory size for

a typical physical sensor node (referring to Table 6.1).

The memory capacity requirements for DHGN as shown in the Figure 6.4, have been

derived from the equations 3.12 - 3.19 in Chapter 3. As the size of subpattern increases,

the requirement for memory space is considerably increases. It is noted that small sub-

pattern sizes only consume less than 1% of the total memory space available. Therefore,

DHGN implementation is best to be deployed with small subpattern size.

6.3. CASE STUDY: FOREST FIRE DETECTION USING INTEGRATEDDHGN-WSN241

Figure 6.4: Maximum memory consumption for each DHGN subnet for different pattern
sizes. DHGN uses minimum memory space with small pattern size.

6.3 Case Study: Forest Fire Detection using Integrated DHGN-

WSN

In recent years, forest fire has become a phenomenon that affects both human and the

environment. The damages incurred by this event cost millions of dollars in recovery.

Current preventive measures seem to be limited, in terms of its capability and thus require

active detection mechanism to provide early warnings for the occurrence of forest fire. In

this chapter, a preliminary study on the adoption of DHGN distributed pattern recognition

scheme for forest fire detection using WSN is presented.

6.3.1 Existing Approaches

There are a number of distinctive approaches that have been used in forest fire detection.

These include the use of lookout towers using special devices such as Osborne fire finder

(Fleming and Robertson, n.d.), video surveillance systems such as in the works of Arrue,

Ollero and de Dios (2000).

There are also a few research studies on forest fire detection using WSN, including the

works of Pripuzic, Belani and Vukovic (2010). The main interest is in the implementation

of forest fire detection using Fire Weather Index (FWI) and Fine Fuel Moisture Code

(FFMC) for standard detection measurement. FWI and FFMC have been introduced by

242CHAPTER 6. DISTRIBUTED PR APPLICATIONSWITHIN FINE-GRAINED NETWORKS

Canadian Forest Service (CFS) and (de Groot, Wardati and Wang, 2005). FWI is used

to describe the spread and intensity of fires, while FFMC is used as a primary indicator

for a potential forest fire. At this stage, our interest is mainly focuses on early detection

for potential forest fire. Hence, this research is concentrating on the use of FFMC values

for fire detection.

6.3.2 Dimensionality Reduction on FFMC Values

FFMC value is derived from an extensive calculation involving environmental parameter

values including temperature, relative humidity, precipitation, and wind speed. The ap-

proach using DHGN recognition scheme is looking into reducing this burden experienced

by the back-end processing within the sink, by providing a front-end detection scheme

that enables only valid readings that will be sent for further processing.

Table 6.3 shows the FFMC value versus ignition potential level. This FFMC value

provides an indication of relative ease of ignition and flammability of fine fuels due to

exposure to extreme heat. In general, fires usually begin to ignite at FFMC values around

70, and the highest probable value to be reached is 96 (de Groot et al., 2005).

Ignition Potential FFMC Value

Low 0 - 76

Moderate 77 - 84

High 85 - 88

Very High 89 - 91

Extreme 92+

Table 6.3: Ignition potential versus FFMC value.

The DHGN implementation performs dimensionality reduction on the FFMC values,

by combining the levels for ignition potential into two stages: High Risk and Low Risk,

as shown in Table 6.4. This approach could be used to determine the possibility of forest

fire occurring, given certain values of sensory readings.

Ignition Potential FFMC Value

Low Risk 0 - 84

High Risk 85+

Table 6.4: Modified FFMC classification for DHGN event detection scheme.

6.3. CASE STUDY: FOREST FIRE DETECTION USING INTEGRATEDDHGN-WSN243

6.3.3 Methodology

The implementation of DHGN for forest fire detection involves a series of steps that reduces

the expensive computation of FFMC values at the base station. The research proposes a

distributed detection scheme that enables each sensor node to perform simple recognition

process using DHGN to detect any abnormal readings obtained from its surroundings.

The first processing step in our proposed recognition scheme is the reduction of sensory

data dimension using adaptive threshold binary signature approach. In this approach, we

assume that each sensor node is composed of multiple sensors including temperature,

relative humidity, precipitation, and wind speed. The readings would be converted into

binary string representation or binary signature, as discussed in Chapter 3.

The second step is the actual recognition process, in which the binary signature is

treated as subpattern and being introduced into specific DHGN processing cluster within

each of the sensor nodes. It is assumed that DHGN processing cluster in this context has

taken place as a block of memory space that could be used for simple DHGN recognition

process. In addition, it is also assumed that each node is handling a subpattern (sensory

readings) which collectively could become an overall pattern for the whole sensor nodes

within the network. The recognition process is conducted by using reference subpatterns

which consist of normal event pattern/readings.

Once the sensor node detected abnormal occurrence of subpattern (subpattern is not

being recalled), it will send a signal to the base station for further analysis. This signal

consists of all the sensory readings and event flag. The base station would then compute

the FFMC value for the readings. Continuous signals being sent to the base station could

be interpreted as an increment towards potential risk of fire. Therefore, early process of

prevention could be executed at the specific location within the area of the sensor nodes.

A test was conducted on the accuracy of this scheme and a comparison with Kohonen’s

self-organizing map (SOM). Forest fire data was taken from Cortez and Morais (2007).

The DHGN simulation was performed on computational grid environment for this dataset

with 517 items. Three distinctive readings were taken from the dataset, which include

temperature, relative humidity and wind speed. The precipitation (rainfall) values for

this dataset have not been included in the analysis as it has shown minimal effect to the

FFMC values. Table 6.5 shows the bits allocation for each of the readings. This bits

244CHAPTER 6. DISTRIBUTED PR APPLICATIONSWITHIN FINE-GRAINED NETWORKS

allocation eventually will be represented as a binary signature. The results of this test are

presented in the following subsection.

Data Bit Allocation

Temperature 2 bits

Relative Humidity 3 bits

Wind Speed 2 bits

Table 6.5: Sensory data with allocated binary signature bits.

6.3.4 Classification/Recognition Results

In this study, a supervised classification test was performed on DHGN event detection

scheme, and the results compared with Kohonen’s self-organizing map (SOM). The sole

purpose of this comparison is only to demonstrate DHGN’s ability to perform classification

of events with high recall accuracy. In doing this, it was possible to benchmark the

proposed scheme with commonly used classifiers such as Kohonen SOM. It is not the

main intention of this research to replace SOM as an established classification tool. The

SOM toolbox for Matlab that has been developed by Vesanto et al. (2000) was used. The

results from this test have shown that this approach produces equivalent recall accuracy

with both minimum training and training data. Furthermore, this scheme only requires

binary input patterns.

Multiple sensory readings that are used to detect the occurrence of critical events,

are considered as follows; given a set of x sensory readings (r1, r2, ..., rx) where ri ∈ R

and i = 1, 2, ..., x. A dimensionality-reduction technique known as threshold-signature

was performed that converts each reading value to its respective binary signature. The

threshold-signature technique utilises the threshold classes to represent a single data range

into a binary format. Given the same sensory reading and H-threshold class, the equiv-

alent binary signature that implies bi → ri is in the form of bi ∈ {0, 1}H. Therefore,

for x-set sensory readings (r1, r2, ..., rx) will be converted into a set of binary signatures

(b1, b2, ..., bx). The following data in Table 6.6 shows samples of temperature threshold

range with its equivalent binary signature.

If the output index from DHGN subnet matches the stored pattern for the critical

event, then a signal is transmitted to the base station in the form of data packet (node id,

timestamp, class id). The class id parameter is the identification for class of event that

6.3. CASE STUDY: FOREST FIRE DETECTION USING INTEGRATEDDHGN-WSN245

Temperature Threshold Range (◦C) Binary Signature

0 - 20 10000

21-40 01000

41-60 00100

Table 6.6: Temperature threshold ranges with respective binary signatures.

has been detected. At a given time t, the base station might receive a number of signals

from the network.

The training data used only signifies the normal event data (FFMC values lower than

84). For similar number of training data used, DHGN produces higher classification ac-

curacy as compared to Kohonen SOM. Table 6.7 shows the training data that have been

used in this classification test. The error value obtained using DHGN only incurs 0.1122,

while SOM experienced high error value of up to 0.9439 for 3-class mode, as shown in

Table 6.8.

Data 1 2 3

FFMC Value ≤ 84 ≤ 84 ≤ 84

Temperature (◦C) 0-40 (10) 0-40 (10) 0-40 (10)

Relative Humidity > 70 (001) ≤ 40(100) > 70 (001)

Wind Speed (km/h) ≤ 3(10) ≤ 3(10) > 3 (01)

Binary Signature 1000110 1010010 1000101

Table 6.7: Training data set in the form of specific threshold ranges used in classification
test. Binary digits in brackets represent signature for the respective data range.

Classifier Error Value 1 - Error Value

DHGN 0.1122 0.8878

SOM (3 classes) 0.9439 0.0561

SOM (4 classes) 0.5532 0.4468

SOM (5 classes) 0.4487 0.5513

SOM (6 classes) 0.1103 0.8897

Table 6.8: Comparison on classification accuracy between DHGN and Kohonen SOM
classifiers for forest fire detection. Different numbers of training data were used for each
SOM implementation.

As shown in Table 6.8, the test on Kohonen SOM was extended to observe the effect of

the training data increment on its classification accuracy, and abnormal event data (FFMC

values higher than 84) was added. Note that an increase in the number of training data

improves the accuracy of SOM classifier. Nevertheless, higher class value may leads to

246CHAPTER 6. DISTRIBUTED PR APPLICATIONSWITHIN FINE-GRAINED NETWORKS

higher complexity in obtaining a good classification output. Through this observation,

DHGN’s capability to perform classification and recognition of event data using small

classes was demonstrated. Furthermore, the results produced are comparable with SOM

implementation on higher number of classes.

The test also reveals that DHGN offers higher accuracy with minimum training data,

in comparison with SOM approach. Furthermore, our distributed approach requires no

training iteration, as it adopts a single-cycle learning mechanism. Comparatively, SOM

requires high training iteration to achieve high classification accuracy. Figure 6.5 shows

the number of iterations incurred for different number of training data being used in this

test.

Figure 6.5: Analysis on learning iteration between Kohonen SOM and DHGN for different
number of classes used in training.

The results of this test have also provided evidence to support the claim that the

proposed scheme is capable of providing high classification accuracy with minimum effort.

Thus, makes it deployable over resource-constrained networks such as WSN.

6.3.5 Spatio-Temporal Analysis of Event Data

The spatio-temporal analysis is a process of observing the frequency and distribution of

events within the wireless sensor networks. It is conducted at the base station, since it has

6.3. CASE STUDY: FOREST FIRE DETECTION USING INTEGRATEDDHGN-WSN247

the bird’s eye view of the overall network. Figure 6.6 shows a scenario of spatio-temporal

analysis using our proposed scheme.

Figure 6.6: Analysis of event data triggered by the sensor nodes and received by the base
station.

The dashed arrow shows the direction over time as the event occurs within the network.

A brief process workflow for the proposed spatio-temporal recognition process is shown in

Figure 6.7.

6.3.6 Summary

This section presents a case study on forest fire detection using DHGN distributed pat-

tern recognition algorithm within WSN network. The proposed implementation involves

minimum modification towards existing WSN infrastructure. Furthermore, based on the

results of the classification test, DHGN has shown to perform well with minimum training

data and within a single-cycle learning mechanism. This makes the proposed approach

more viable for WSN deployment in forest fire detection.

There are several benefits and advantages in our DHGN implementation for event

detection within WSN network. This new approach offers low memory consumption for

event data storage using simple bias array representation. Furthermore, this scheme only

stores subpatterns/patterns that relate to normal event, rather than keeping the records

of all occurring events. The results also show that the approach is most effective for small

subpattern size, since it uses only a small portion of the memory space in a typical physical

sensor node in WSN network.

248CHAPTER 6. DISTRIBUTED PR APPLICATIONSWITHIN FINE-GRAINED NETWORKS

Figure 6.7: Process workflow for the proposed spatio-temporal event detection scheme
using DHGN.

On a different note, DHGN is also susceptible to some limitations. Firstly, DHGN

simple data representation would requires significant advanced pre-processing at the front-

end of the system. This might not be viable for strictly-resource constrained sensor nodes,

where processing capability is very limited. In addition, DHGN single-hop communication

for event detection scheme is not viable for large area monitoring, due to high possibility

of communication error due to data packet loss during transmission. Our existing DHGN

implementation has also been focusing on supervised classification. There is a need for

unsupervised classification technique to be deployed for rapid event detection scheme.

These limitations of DHGN distributed event detection scheme would perhaps be the

path for future research. Future research intentions of this researcher include looking into

event tracking scheme using DHGN distributed detection mechanism, as well as providing

6.4. CONCLUSIONS 249

unsupervised classification capability for rapid and robust event detection scheme. Fur-

thermore, future research may involve looking forward into implementation of this scheme

in large-area monitoring using multi-hop communication strategy.

6.4 Conclusions

In this chapter, a case for distributed pattern recognition applications within a fine-grained

system was presented. The research adopted a study on DHGN pattern recognition

in event detection within WSN, as an example of such implementation within a fully-

distributed and self-organised network. This case study has demonstrated the capabilities

of DHGN to perform a distributed and lightweight detection mechanism for occurrences

of events within a resource-constrained network such as WSN. There are several benefits

and advantages in our DHGN implementation. The new approach offers low memory con-

sumption for event data storage using simple bias array representation. Furthermore, this

scheme only stores subpatterns/patterns that relate to normal event, rather than keeping

the records of all occurring events. The research has also demonstrates that this new

approach is most effective for small subpattern size, since it uses only a small portion of

the memory space in a typical physical sensor node in WSN network.

In addition to this efficient memory usage, DHGN also eliminates the need for complex

computations for event classification technique. With the adoption of single-cycle learning

and adjacency comparison approaches, DHGN implements non-iterative and lightweight

computational mechanism for event recognition and classification.

DHGN is a distributed pattern recognition algorithm. By having this distributed

characteristic, DHGN would be readily-deployable over a distributed network. With such

feature, DHGN has the ability to perform as a front-end detection scheme for event de-

tection within WSN. Through divide-and-distribute approach, complex events could be

perceived as a composition of events occurring at specific time and location. This new

approach would be able to be used in event tracking in the future. However, the discus-

sion on event tracking is not within the scope of this chapter. Nevertheless, our proposed

scheme has been demonstrated to perform efficiently within an event detection scheme

such as forest fire detection using WSN.

250CHAPTER 6. DISTRIBUTED PR APPLICATIONSWITHIN FINE-GRAINED NETWORKS

A case study on forest fire detection using DHGN-WSN infrastructure has also been

presented. DHGN performances have been compared with Kohonen SOM and the results

have shown that DHGN offers more efficient approach. Nevertheless, this comparison does

not intended for a replacement of Kohonen SOM with DHGN, but more of comparative

indication of DHGN’s ability for event detection.

Despite all the benefits being discussed previously, DHGN is also susceptible to some

limitations. Firstly, DHGN simple data representation would requires significant pre-

processing mechanism at the front-end of the system. This might not be viable for strictly-

resource constrained sensor nodes, where processing capability is very limited. In addition,

DHGN single-hop communication for event detection scheme is not viable for large area

monitoring, due to high possibility of communication error due to data packet loss during

transmission. The existing DHGN implementation has also been focusing on supervised

classification. There is a need for unsupervised classification technique to be deployed for

rapid event detection scheme.

These limitations of DHGN distributed event detection scheme would perhaps be the

path for future research, which includes looking into event tracking scheme using DHGN

distributed detection mechanism, as well as providing unsupervised classification capability

for rapid and robust event detection scheme. Furthermore, looking into implementation

of this scheme in large-area monitoring using multi-hop communication strategy is also a

potential area for future research.

Chapter 7

Conclusions

7.1 Summary

The research conducted in this thesis has focused on the scalability problem in pattern

recognition (PR). Scalability has been found to be highly significant in pattern recognition

when dealing with the data deluge phenomenon. With the current outgrowth of data,

particularly for their increasing complexity and size, the existing recognition schemes

failed to provide optimum solutions for high-dimensional and large-scale patterns. Theory

on distributed processing approach has been developed as a solution for the increasing

issue of scalability in the existing CPU-centric pattern recognition schemes. A summary

of the contents of this thesis is as follows.

i. A review has been conducted on current implementations of scalable pattern recog-

nition (Chapter 2). The review has indicated three different approaches towards

solving the scalability problem within PR schemes, namely data, learning, and dis-

tributed approaches. As described in Sections 1.2 and 2.3, the data approach imple-

ments reduction or modification of data, while the learning approach tends to reduce

the complexity of memorisation and recognition processes. Nevertheless, both the

data and learning approaches do not fully overcome this scalability problem. This is

mostly due to after-effects of these schemes, including loss of data integrity and low

recognition accuracy. Moreover, the computational cost of using the learning ap-

proach is significantly expensive, making it less suitable for deployment in resource-

constrained environments. The distributed approach has been shown to exhibit high

scalability for PR implementation, that involves large and complex datasets. This

251

252 CHAPTER 7. CONCLUSIONS

is mainly due to its ability to distribute data and processes within computational

network(s), and to extend the processing capacity for patterns with large size and

dimension. Nevertheless, the existing distributed pattern recognition schemes are

unable to achieve optimum scalability, due to the tightly coupled and highly com-

plex nature of recognition algorithms applied within those schemes.

ii. This thesis has also showcased fundamental research on the distributed approach for

pattern recognition. The position taken in this thesis is that a distributed pattern

recognition scheme with single-cycle learning and bottom-up approach will remain

scalable for any given size or dimensions of data, if sufficient computational re-

sources are available. In this research, two important characteristics of a scalable

distributed pattern recognition scheme have been identified. These are single-cycle

learning mechanism and in-network processing capability. An effective and simple

learning mechanism for memorising patterns is essential as part of the low-resource

consumption approach for recognition procedure. This is accomplished within our

proposed scheme through a learning mechanism that performs recognition within

a single-cycle phase. From a different perspective, in-network processing capabil-

ity provides a facility for expandable computational resources to be implemented.

This makes a contrast with the existing recognition procedure with tightly-coupled

schemes designed for single-CPU processing.

iii. Based on the above position, a distributed scheme was proposed. This scheme incor-

porates both single-cycle learning mechanism and in-network processing capability

for scalable pattern recognition involving large and complex data. These data are

not only limited to numerical and textual data. Rather, the proposed scheme is

highly-capable of handling complex patterns, such as high-dimensional images and

multi-sensory readings. Complexity analysis of the proposed recognition algorithm

was conducted using distributed approach. The study has indicated that the pro-

posed scheme requires low computational complexity in its recognition procedure.

iv. Apart from scalability considerations and the proposed distributed pattern recogni-

tion scheme, this research has also covered the works on recognition with multiple

features. This research demonstrates that the proposed distributed pattern recogni-

tion scheme is capable of analysing complex patterns using multiple features. The

7.2. RESEARCH CONTRIBUTIONS 253

recall accuracy obtained from the simulation indicated that the scheme has been

able to produce low error values for multi-feature recognition on complex patterns

including facial images and handwritten character objects (see Chapter 6). Further-

more, the simulation results have indicated the ability of the proposed scheme to

produce high recall accuracy with the minimum number of training data.

v. In this research, a study on capability of the proposed scheme to perform pattern

recognition on different levels of network granularity was established. This granu-

larity ranged from coarse-grained networks such as the computational grid, to fine-

grained networks including wireless sensor networks (WSNs). This capability was

accomplished through the use of simple recognition procedure with low processing

and storage capacity requirements.

From an overall perspective, this thesis has delivered a fundamental knowledge on

distributed scheme as a solution for the scalability issue in pattern recognition applications

that involve large-scale and complex data. Proofs of its high scalability and low complexity

have also been presented. The adaptive granularity feature of the proposed scheme has

also provided greater capacity for scalability considerations. Furthermore, the outcomes

of the research have indicated a strong capability of the proposed distributed scheme to

perform recognition on complex data with multiple features, while keeping its algorithmic

complexity at minimum. Hence, simple pattern recognition procedure involving large and

complex data is viable by the mean of distributed processing approach.

Even though the proposed distributed approach was presented as a solution for the

scalability issue, it is best to note that the proposed scheme is not a replacement for existing

pattern recognition schemes. Numerous initiatives have been made in developing highly-

accurate pattern recognition schemes. This research does not only looks at accuracy, but

also considers a distributed approach for the scalability issue in its implementation. As a

result, the proposed scheme is scalable and highly suited for applications in parallel and

distributed architectures.

7.2 Research Contributions

In this thesis, four key contributions have been made. These key contributions are reca-

pitulated below, in the sequence that they appear in the thesis.

254 CHAPTER 7. CONCLUSIONS

Initial discussions on scalability and distributed pattern recognition have been pre-

sented in Chapter 2. These comprise overall literature reviews conducted in this research,

specifically on existing initiatives on distributed pattern recognition. Furthermore, back-

ground knowledge have also been added to the literature, on the aspects of pattern dis-

tribution techniques for recognition (See Section 2.4), together with current single-cycle

learning approaches in distributed pattern recognition schemes (Sections 2.5-2.7).

The primary research contribution lies in the proposed distributed pattern recogni-

tion scheme, Distributed Hierarchical Graph Neuron (DHGN), (Chapter 3). There are

three distinctive characteristics of the scheme that make it highly-suitable for scalable

implementation for pattern recognition involving large-scale data. These include:

i. Bottom-up algorithmic architecture. DHGN is a distributed pattern recognition

scheme with in-network processing capability. Unlike any other distributed schemes

that implement CPU-centric processing approach in distributed environment, DHGN

has been developed purely with a network processing principle, making it highly-

deployable within any computational networks (Section 3.1.2). The existing dis-

tributed pattern recognition schemes mainly rely on adaptive learning mechanisms

such as incremental learning, to perform recognition in a distributed manner. This

kind of learning has been initially developed with single-processing capacity, and

requires extensive computational requirements. Hence, it makes this learning less

applicable in a distributed environment. DHGN performs its recognition procedure

using a body of network, by implementing distributed learning mechanism, in which

each processing unit is capable of memorising a unit/segment of patterns.

ii. Divide-and-distribute technique for pattern analysis. Pattern analysis in DHGN dis-

tributed scheme involves a process of dividing and distributing patterns into subpat-

terns for recognition process. DHGN works as a collection of subnets that perform

recognition on subpatterns. This divide-and-distribute technique makes a substan-

tial contribution to reduce the complexity of existing Hierarchical Graph Neuron

(HGN) implementation, by reducing the number of processing nodes (labelled as

Graph Neuron (GN)) up to 95% (See Section 2.7). This technique also improves

the scalability of HGN, allowing more subnets to be added with an increase in the

size of patterns. In addition, the divide-and-distribute technique in DHGN pattern

7.2. RESEARCH CONTRIBUTIONS 255

recognition scheme also introduces an effect known as error encapsulation, in which

small distortion occurrence within a pattern is unlikely to affect recall accuracy of

the overall pattern (Section 2.7.2). DHGN also performs a dual-layer recognition,

in order to obtain overall information (at both pattern and subpattern levels) of

the given pattern. This creates a holistic view for recognition and classification of

patterns.

iii. Single-cycle learning mechanism. DHGN implements a collaborative learning ap-

proach known as Collaborative-Comparison Learning (CCL) (see Section 3.1.5). This

learning approach performs pattern memorisation and recall within a single cycle,

without further iterations. This is different from existing learning approaches such

as Hebbian-based learning that heavily rely on iterative weight or value adjustments

to obtain optimum outputs. Furthermore, CCL is capable of performing memorisa-

tion with a low-impact on storage requirements. This was achieved by storing only

unique bias entry composition within each GN node (Section 3.1.4). In relation to

this single-cycle learning, DHGN is also capable of performing recognition procedure

with minimum number of training patterns (Sections 3.4, 4.3, and 4.4.)

iv. Binary signature approach data representation. DHGN has adopted a binary signa-

ture scheme for dimensionality reduction and data representation. This approach

offers a high representation factor for complex patterns using binary data format.

In an overall perspective, DHGN is capable of performing scalable pattern recognition.

The results obtained from a number of simulations have shown that its recall accuracy is

considerably high for distorted pattern recognition. In examining the accuracy of DHGN

recogniser, it was found that the proposed scheme is capable of producing perfect recall for

up to 20% distortion on binary character images (Section 3.4). At this level of distortion,

even human eye can barely associate the original pattern with distorted ones. Besides its

high accuracy, DHGN imposes low computational complexity (Section 3.3). Comparative

analysis of recognition accuracy and complexity has been carried out between DHGN and

other recognisers/classifiers such as HGN, Hopfield Network, and Kohonen SOM. The

results of this analysis have indicated DHGN’s relatively low complexity in performing

recognition process, in comparison with these highly-iterative approaches. In terms of

Big-O complexity estimation, DHGN only impose linear complexity as low as (O(n))

256 CHAPTER 7. CONCLUSIONS

in its recognition process, where n represents a single executable instruction within the

procedure. This was achieved using our collaborative-comparison learning approach. This

study also extend its comparative analysis to include neural networks with fast learning

mechanism such as Instantaneously-Trained Neural Networks (ITNN).

The second key contribution of this thesis lies in the distributed properties of CCL

learning mechanism as a solution for an important pattern recognition problem within

this scalable distributed framework. This problem relates to the recognition involving

multiple features. In this thesis, a multi-feature pattern recognition implementation using

DHGN distributed scheme has been considered (Chapter 4). This research has demon-

strated DHGN capability to perform pattern recognition that involves multiple features

analysis and evaluation. The proposed solution enables high-dimensional patterns such

as images, to be represented with a number of different features in recognition process,

without incurring high computational costs. Furthermore, the multi-feature scheme al-

lows extensive amount of features to be analysed, without impending on its scalability.

This is achieved using the DHGN distributed architecture that provides scalable resources

in the form of computational networks. The results of DHGN multi-feature implemen-

tation on greyscale facial images and handwritten numeral objects have indicated high

recall accuracy for a large number of patterns used. Therefore, this solution offers signif-

icantly important contribution in the area of complex pattern recognition. Furthermore,

comparative analysis with other combined-classifier approaches for multi-feature pattern

recognition has indicated DHGN’s high recall accuracy for complex patterns with mini-

mum number of training dataset used.

The final key contribution of this research lies in the resource-awareness characteristic

of DHGN. This contribution has been extensively described in Chapter 5, with a case

study in Chapter 6. DHGN, being a purely distributed pattern recognition scheme, has

acquired a behaviour that relates to its adaptability against different levels of network

granularity. This resource-awareness characteristic provides capability for DHGN to per-

form its recognition procedure with minimum storage and processing capacity. Apart from

this characteristic, DHGN has also been proven to perform fast recognition procedure, in

which for a single recall/store process of each subpattern, the execution time will only

7.3. FUTURE RESEARCH 257

lasts about less than 0.1 seconds (60-70 milliseconds). Therefore a real-time DHGN pat-

tern recognition is a possibility, based upon the case on its implementation within a WSN

distributed event detection scheme (See Chapter 6).

7.3 Future Research

This research has primarily aimed to create a scalable scheme for pattern recognition in-

volving complex and large-scale data. For this reason, a distributed approach for scalable

pattern recognition has been proposed, which incorporates in-network processing capa-

bility and single-cycle learning mechanism. DHGN as a distributed pattern recognition

scheme has been able to provide a scalable recognition framework with high recall accuracy

and low computational complexity.

It is possible to suggest two directions to further improve the DHGN scheme for scalable

pattern recognition, namely focus on algorithm and application.

7.3.1 Algorithm-Specific Research

Two specific improvements on DHGN scheme that may be carried out as future works

have been identified. These include:

i. Bias array design. The existing bias array design heavily relies upon unique bias

entries stored within the array. This enables efficient savings on storage space, as

only unique entries, representing unique patterns will be memorised. However, as

more unique patterns being stored, the array size may significantly be large and the

physical storage of each GN could no longer be able to accommodate such outgrowth

in size. Further research on bias array design may be carried out for an efficient

design can be proposed as a solution to this possible limitation.

ii. Network structure. An important aspect of DHGN architecture is its network struc-

ture, specifically in regards to network composition. Even though DHGN has been

able to significantly reduce the required number of processing nodes, this number

still remain high, for large pattern size and dimension. Further study has to be

carried out in this respect, by looking at other forms of structural representation,

apart from the existing pyramidal and hierarchical form.

258 CHAPTER 7. CONCLUSIONS

7.3.2 Application-Specific Research

Four possible areas of application developments have been identified, to further improve

DHGN implementation:

i. Object recognition. In the evaluation of the DHGN distributed pattern recognition,

this thesis did not include pattern recognition that involves objects such as human

movements, as well as object tracking. In addition, a future work may also be

carried out on the recognition mechanism on patterns/objects involving structural

distortion, such as rotation, transformation and relocation.

ii. Spatio-temporal event detection. Distributed event detection using DHGN within

WSN has been proposed in Chapter 6 of this thesis. DHGN provides capability for

event detection to be deployed within a WSN, by performing recognition procedure

at the sensory level. To extent this capability for WSN real-time event detection, we

propose a future work on DHGN-based event detection to include spatio-temporal

analysis of event. This analysis involves a process of observing the frequency and

distribution of event, such as forest fire within a given sensory network. This could

be achieved by implementing dual-recognition procedure that entails initial event de-

tection occurring at the sensor level using DHGN algorithm and event distribution

detection that is performed at the base station using DHGN algorithm on computa-

tional grid.

iii. Cloud data management. The efficiency of the existing cloud system in dealing with

data intensive applications through parallel processing, essentially lies in how data

is partitioned among nodes, and how collaboration among nodes are handled to

accomplish a specific task (Wu and Wu, 2009). Dependency on cloud file systems

such as Hadoop Distributed File Systems (HDFS) for data storage and retrieval can

create single-points of failure for Map/Reduce infrastructure, especially at master

nodes. In fact, if they go down, all running jobs are lost. As a result, and to

address the aforementioned concerns in relation to data storage and retrieval in

cloud, any data access scheme should aim to handle partitioning between processing

nodes, as well as node collaborations in a robust manner. These two features are

still lacking in the current data access mechanisms. Hence, new data management

approaches need to be investigated for cloud computing environments. DHGN’s

7.3. FUTURE RESEARCH 259

pattern matching capability and the small response time, that remains insensitive to

the increases in the number of stored patterns, can make this approach remarkably

suitable for clouds. Moreover, the DHGN does not require definition of rules or

manual interventions by the operator for setting of thresholds to achieve the desired

results, nor does it require heuristics entailing iterative operations for memorisation

and recall of patterns.

iv. Content-based image retrieval (CBIR). Current approaches in large-scale image re-

trieval are highly-dependable upon keyword meta-tags search. However, there is

considerably weak association between these keywords and their targeted images,

due to semantic disconnection between words and visual content. Future works en-

tailing the use of DHGN in content-based image retrieval applications is possible.

DHGN has been shown to produce high recall accuracy in pattern recognition in-

volving both heterogeneous (e.g. handwritten character objects) and homogeneous

(e.g. facial images) images. Furthermore, DHGN exerts low-computational require-

ments with fast recognition time, making it suitable for large-scale and real-time

deployment.

260 CHAPTER 7. CONCLUSIONS

References

Abadi, D. J. (2009). Data management in the cloud: Limitations and opportunities, IEEE

Data Eng. Bull. 32(1): 3–12.

Ai, C., Hou, H., Li, Y. and Beyah, R. (2009). Authentic delay bounded event detection

in heterogeneous wireless sensor networks, Ad Hoc Netw. 7(3): 599–613.

Akyama, M. T. and Kikuti, M. (2001). Recognition of character using a morphological

associative memory, SIBGRAPI ’01: Proceedings of the 14th Brazilian Symposium

on Computer Graphics and Image Processing, IEEE Computer Society, Washington,

DC, USA, p. 400.

Al-Hertani, H. and Ilow, J. (2005). Pattern recognition based detection and localization

in a network of randomly distributed sensor nodes, ISDA ’05: Proceedings of the

5th International Conference on Intelligent Systems Design and Applications, IEEE

Computer Society, Washington, DC, USA, pp. 412–419.

Albiol, A., Monzo, D., Martin, A., Sastre, J. and Albiol, A. (2008). Face recognition using

hog-ebgm, Pattern Recognition Letters. 29(10): 1537–1543.

Amin, A. H. M. and Khan, A. I. (2008). Parallel pattern recognition using a single-

cycle learning approach within wireless sensor networks, PDCAT: Ninth International

Conference on Parallel and Distributed Computing, Applications and Technologies,

PDCAT 2008, Dunedin, Otago, New Zealand, 1-4 December 2008, pp. 305–308.

Anderson, C. (2008). The end of theory: The data deluge makes the scientific method

obsolete. accessed on 03/03/2010.

http://www.wired.com/science/discoveries/magazine/16-07/

261

262 REFERENCES

Arrue, Bego n. C., Ollero, A. and de Dios, J. R. M. (2000). An intelligent system for false

alarm reduction in infrared forest-fire detection, IEEE Intelligent Systems 15(3): 64–

73.

Auwatanamongkol, S. (2007). Inexact graph matching using a genetic algorithm for image

recognition, Pattern Recognition Letters 28(12): 1428 – 1437.

Baig, Z. A., Baqer, M. and Khan, A. I. (2006). A pattern recognition scheme for distributed

denial of service (ddos) attacks in wireless sensor networks, ICPR (3), pp. 1050–1054.

Banerjee, T., Xie, B. and Agrawal, D. P. (2008). Fault tolerant multiple event detection

in a wireless sensor network, J. Parallel Distrib. Comput. 68(9): 1222–1234.

Baqer, M. (2008). Energy Ecient Event Recognition for Wireless Sensor Networks, PhD

thesis, Faculty of Information Technology, Monash University.

Baqer, M. and Khan, A. (2007). Energy-efficient pattern recognition approach for wire-

less sensor networks, Intelligent Sensors, Sensor Networks and Information, 2007.

ISSNIP 2007. 3rd International Conference on, pp. 509–514.

Baqer, M., Khan, A. I. and Baig, Z. A. (2005). Implementing a graph neuron array for

pattern recognition within unstructured wireless sensor networks, EUC Workshops,

pp. 208–217.

Battiti, R. and Colla, A. M. (1994). Democracy in neural nets: voting schemes for classi-

fication, Neural Netw. 7(4): 691–707.

Beck, M., Dongarra, J. and Plank, J. S. (2005). Netsolve/d: A massively parallel grid exe-

cution system for scalable data intensive collaboration, IPDPS ’05: Proceedings of the

19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)

- Workshop 10, IEEE Computer Society, Washington, DC, USA, p. 223.1.

Bengoetxea, E. (2003). Inexact Graph Matching Using Estimation of Distribution Algo-

rithms, PhD thesis, Département Traitement du Signal et des Images, Ecole Nationale

Supérieure des Télécommunications.

Berglund, E. and Sitte, J. (2006). The parameterless self-organizing map algorithm, Neural

Networks, IEEE Transactions on 17(2): 305–316.

REFERENCES 263

Black, P. E. (2008). big-o notation. accessed on 06/04/2010.

http://www.itl.nist.gov/div897/sqg/dads/HTML/bigOnotation.html

Blazejewski, A. and Coggins, R. (2004). Application of self-organizing maps to clustering

of high-frequency financial data, ACSW Frontiers ’04: Proceedings of the second

workshop on Australasian information security, Data Mining and Web Intelligence,

and Software Internationalisation, Australian Computer Society, Inc., Darlinghurst,

Australia, Australia, pp. 85–90.

Bondi, A. B. (2000). Characteristics of scalability and their impact on performance, WOSP

’00: Proceedings of the 2nd international workshop on Software and performance,

ACM, New York, NY, USA, pp. 195–203.

Bouvrie, J. (2006). Notes on convolutional neural networks.

http://cogprints.org/5869/

Bow, S.-T. (2002). Pattern Recognition and Image Preprocessing, Marcel Dekker, Inc.,

New York, NY, USA.

Caetano, T. S., McAuley, J. J., Cheng, L., Le, Q. V. and Smola, A. J. (2009). Learning

graph matching, IEEE Transactions on Pattern Analysis and Machine Intelligence

31: 1048–1058.

Canny, J. (1986). A computational approach to edge detection, IEEE Transactions on

Pattern Analysis and Machine Intelligence 8(6): 679–698.

Cao, J., Ahmadi, M. and Shridhar, M. (1995). Recognition of handwritten numerals with

multiple feature and multistage classifier, Pattern Recognition 28(2): 153 – 160.

Casali, D., Costantini, G., Perfetti, R. and Ricci, E. (2006). Associative memory design

using support vector machines, Neural Networks, IEEE Transactions on 17(5): 1165–

1174.

Catterall, E., Van Laerhoven, K. and Strohbach, M. (2003). Self-organization in ad hoc

sensor networks: an empirical study, ICAL 2003: Proceedings of the eighth interna-

tional conference on Artificial life, MIT Press, Cambridge, MA, USA, pp. 260–263.

Cheng, J. and Wang, K. (2007). Active learning for image retrieval with co-svm, Pattern

Recognition 40(1): 330 – 334.

264 REFERENCES

Cheung, Y.-M. and Law, L. (2007). Rival-model penalized self-organizing map, Neural

Networks, IEEE Transactions on 18(1): 289–295.

Chitkara, V., Nascimento, M. A. and Mastaller, C. (2001). Content-based image retrieval

using binary signatures, Technical Report 00-18, University of Alberta.

Choi, H.-C. and Oh, S.-Y. (2006). Efficient human-like memory management based on

walsh-based associative memory for real-time pattern recognition, IJCNN, pp. 3657–

3663.

Chow, T. W. S. and Huang, D. (2008). Data reduction for pattern recognition and data

analysis, Computational Intelligence: A Compendium, Springer, Berlin / Heidelberg,

pp. 81–109.

Cortes, C. and Vapnik, V. (1995). Support-vector networks, Mach. Learn. 20(3): 273–297.

Cortez, P. and Morais, A. (2007). Data mining approach to predict forest fires using

meteorological data, New Trends in Artificial Intelligence, Proceedings of the 13th

EPIA 2007 - Portuguese Conference on Artificial Intelligence, pp. 512–523.

Cruz, B., Sossa, H. and Barrón, R. (2007). A new two-level associative memory for efficient

pattern restoration, Neural Process. Lett. 25(1): 1–16.

Culler, D. E., Estrin, D. and Srivastava, M. B. (2004). Guest editors’ introduction:

Overview of sensor networks, IEEE Computer 37(8): 41–49.

de Groot, W., Wardati and Wang, Y. (2005). Calibrating the fine fuel moisture code for

grass ignition potential in sumatra, indonesia, International Journal of Wildland Fire

14: 161–168.

Dong, J.-X., Krzyzak, A. and Suen, C. (2005). Fast svm training algorithm with decom-

position on very large data sets, Pattern Analysis and Machine Intelligence, IEEE

Transactions on 27(4): 603–618.

Duin, R. P. W. and Tax, D. M. J. (2000). Experiments with classifier combining rules,

MCS ’00: Proceedings of the First International Workshop on Multiple Classifier

Systems, Springer-Verlag, London, UK, pp. 16–29.

REFERENCES 265

Favata, J. T. and Srikantan, G. (2002). A multiple feature/resolution approach to hand-

printed digit and character recognition, International Journal of Imaging Systems

and Technology 7: 304–311.

Fei, B. and Liu, J. (2006). Binary tree of svm: a new fast multiclass training and classifi-

cation algorithm, Neural Networks, IEEE Transactions on 17(3): 696–704.

Fei-Fei, L., Fergus, R. and Perona, P. (2006). One-shot learning of object categories,

Pattern Analysis and Machine Intelligence, IEEE Transactions on 28(4): 594–611.

Fleming, J. and Robertson, R. G. (n.d.). Fire management tech tips, Technical report,

San Dimas CA, USA.

Foo, S. K., Saratchandran, P. and Sundararajan, N. (1995). Comparison of parallel and se-

rial implementation of feedforward neural networks, J. Microcomput. Appl. 18(1): 83–

94.

Fox, G. C., Aktas, M. S., Aydin, G., Donnellan, A., Gadgil, H., Granat, R., Pallickara,

S., Parker, J., Pierce, M. E., Oh, S., Rundle, J., Sayar, A. and Scharber, M. (2005).

Building sensor filter grids: Information architecture for the data deluge, SKG ’05:

Proceedings of the First International Conference on Semantics, Knowledge and Grid,

IEEE Computer Society, Washington, DC, USA, p. 2.

Frank, A. and Asuncion, A. (2010). UCI machine learning repository. accessed on

06/10/2010.

http://archive.ics.uci.edu/ml

Garai, G. and Chaudhuri, B. (2007). A distributed hierarchical genetic algorithm for

efficient optimization and pattern matching, Pattern Recognition 40(1): 212 – 228.

Garey, M. R. and Johnson, D. S. (1990). Computers and Intractability; A Guide to the

Theory of NP-Completeness, W. H. Freeman & Co., New York, NY, USA.

Ghosh, S. (2006). Distributed Systems: An Algorithmic Approach, CRC Press.

Giorgetti, G., Gupta, S. K. S. and Manes, G. (2007). Wireless localization using self-

organizing maps, IPSN ’07: Proceedings of the 6th international conference on Infor-

mation processing in sensor networks, ACM, New York, NY, USA, pp. 293–302.

266 REFERENCES

Gropp, W., Thakur, R. and Lusk, E. (1999). Using MPI-2: Advanced Features of the

Message Passing Interface, MIT Press, Cambridge, MA, USA.

Guoqing, Y., Songcan, C. and Jun, L. (1992). Multilayer parallel distributed pattern

recognition system model using sparse ram nets, Computers and Digital Techniques,

IEEE Proceedings on 139(2): 144–146.

Guralnik, V. and Srivastava, J. (1999). Event detection from time series data, KDD

’99: Proceedings of the fifth ACM SIGKDD international conference on Knowledge

discovery and data mining, ACM, New York, NY, USA, pp. 33–42.

Hafez, R., Haroun, I. and Lambadaris, I. (2005). Building wireless sensor networks. ac-

cessed on 18/05/2010.

http://www.mwrf.com/Article/ArticleID/11071/11071.html

Hassoun, M. and Watta, P. (1996). The hamming associative memory and its relation to

the exponential capacity dam, Neural Networks, 1996., IEEE International Confer-

ence on, Vol. 1, pp. 583–587.

Hattori, M., Fukui, A. and Ito, H. (2002). A fast method of constructing kernel patterns

for morphological associative memory, Neural Information Processing, 2002. ICONIP

’02. Proceedings of the 9th International Conference on, Vol. 2, pp. 1058–1063.

Hebb, D. O. (1988). The organization of behavior, Neurocomputing: foundations of re-

search pp. 43–54.

Hecht-Nielsen, R. (1989). Neurocomputing, Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA.

Hey, A. J. G. and Trefethen, A. E. (2003). The data deluge: An e-science perspective.

accessed on 06/10/2010.

http://eprints.ecs.soton.ac.uk/7648/

Hongtao, S., Feng, D. D. and Rong-chun, Z. (2002). Face recognition using multi-feature

and radial basis function network, VIP ’02: Selected papers from the 2002 Pan-

Sydney workshop on Visualisation, Australian Computer Society, Inc., Darlinghurst,

Australia, Australia, pp. 51–57.

REFERENCES 267

Hopfield, J. and Tank, D. (1985). Neural computation of decisions in optimization prob-

lems, Biological Cybernetics 52: 141–152.

Hsiao, S.-J., Sung, W.-T. and Fan, K.-C. (2002). Web-based distributed pattern recogni-

tion system, Information Visualisation, International Conference on p. 375.

Huang, G.-B., Mao, K., Siew, C.-K. and Huang, D.-S. (2005). Fast modular network

implementation for support vector machines, Neural Networks, IEEE Transactions

on 16(6): 1651–1663.

Ikeda, N., Watta, P., Artiklar, M. and Hassoun, M. H. (2001). A two-level hamming

network for high performance associative memory, Neural Networks 14(9): 1189 –

1200.

Jain, A. K., Duin, R. P. and Mao, J. (2000). Statistical pattern recognition: A review,

IEEE Transactions on Pattern Analysis and Machine Intelligence 22(1): 4–37.

Jiang, H., Liu, T. and Wang, M. (2006). Direct estimation of fault tolerance of feed

forward neural networks in pattern recognition, Neural Networks, 2006. IJCNN ’06.

International Joint Conference on, pp. 864 –869.

Joachims, T. (1999). Making large-scale support vector machine learning practical,

pp. 169–184.

Kak, S. (2002). A class of instantaneously trained neural networks, Information Science-

sApplications: An International Journal 148(1-4): 97–102.

Kalos, A. (2005). Automated heuristic growing of neural networks for nonlinear time series

models, Neural Networks, 2005. IJCNN ’05. Proceedings. 2005 IEEE International

Joint Conference on, Vol. 1, pp. 320–325.

Kamath, C. and Musick, R. (2000). Scalable data mining through fine-grained paral-

lelism: The present and the future, Advances in Distributed and Parallel Knowledge

Discovery pp. 29–77.

Kasabov, N. K. (1996). Foundations of Neural Networks, Fuzzy Systems, and Knowledge

Engineering, MIT Press, Cambridge, MA, USA.

268 REFERENCES

Kbir, M. A., Maalmi, K., Benslimane, R. and Benkirane, H. (2000). Hierarchical fuzzy

partition for pattern classification with fuzzy if-then rules, Pattern Recognition Letters

21(6-7): 503–509.

Khan, A. I. (2002). A peer-to-peer associative memory network for intelligent informa-

tion systems, Enabling Organisations and Society Through Information Systems: The

Proceedings of The Thirteenth Australasian Conference on Information Systems, Mel-

bourne, Victoria, Australia, pp. 317–326.

Khan, A. I., Isreb, M. and Spindler, R. S. (2004). A parallel distributed application

of the wireless sensor network, HPCASIA ’04: Proceedings of the High Performance

Computing and Grid in Asia Pacific Region, Seventh International Conference, IEEE

Computer Society, Washington, DC, USA, pp. 81–88.

Khan, A. I. and Mihailescu, P. (2004). Parallel pattern recognition computations within

a wireless sensor network, ICPR (1), pp. 777–780.

Khan, A. I. and Muhamad Amin, A. (2007). One shot associative memory method for

distorted pattern recognition, AI 2007: Advances in Artificial Intelligence, Springer,

Berlin/Heidelberg, pp. 705–709. accessed on 06/10/2010.

http://www.springerlink.com/content/g4315t3170t54h01

Khan, A. I. and Muhamad Amin, A. H. (2009). Integrating sensory data within a structural

analysis grid, Parallel, Distributed and Grid Computing for Engineering, Saxe-Coburg

Publications, Stirlingshire, UK.

Khan, A. I., Muhamad Amin, A. H. and Raja Mahmood, R. (2010a). Lightweight event

detection scheme using distributed hierarchical graph neuron in wireless sensor net-

works, Wireless Sensor Networks, In-Tech Publications. In-Press.

Khan, A. I., Muhamad Amin, A. H. and Raja Mahmood, R. A. (2010b). An on-line scheme

for threat detection within mobile ad hoc networks, Research in Mobile Intelligence,

John Wiley & Sons, Inc.

Kim, J. H., Yoon, S. H., Kim, Y. H., Park, E. H., Ntuen, C. A. and Sohn, K. (1992).

Efficient matching algorithm by a hybrid Hopfield network for object recognition, in

REFERENCES 269

S. K. Rogers (ed.), Society of Photo-Optical Instrumentation Engineers (SPIE) Con-

ference Series, Vol. 1709 of Presented at the Society of Photo-Optical Instrumentation

Engineers (SPIE) Conference, pp. 908–916.

Kimmel, R., Shaked, D., Elad, M. and Sobel, I. (2005). Space-dependent color gamut map-

ping: a variational approach, IEEE Transactions on Image Processing 14(6): 796–803.

Kohonen, T. (2000). Self-Organizing Maps, 3rd edn, Springer.

Kokiopoulou, E. and Frossard, P. (2006). Distributed svm applied to image classification,

Multimedia and Expo, 2006 IEEE International Conference on, pp. 1753–1756.

Kosko, B. (1988). Bidirectional associative memories, IEEE Trans. Syst. Man Cybern.

18(1): 49–60.

Kosko, B. (1992). Neural networks and fuzzy systems: a dynamical systems approach to

machine intelligence, Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

Kulakov, A. and Davcev, D. (2005a). Distributed data processing in wireless sensor net-

works based on artificial neural-networks algorithms, ISCC ’05: Proceedings of the

10th IEEE Symposium on Computers and Communications, IEEE Computer Society,

Washington, DC, USA, pp. 353–358.

Kulakov, A. and Davcev, D. (2005b). Tracking of unusual events in wireless sensor

networks based on artificial neural-networks algorithms, ITCC ’05: Proceedings of

the International Conference on Information Technology: Coding and Computing

(ITCC’05) - Volume II, IEEE Computer Society, Washington, DC, USA, pp. 534–

539.

Kumar, V., Shekhar, S. and Amin, M. B. (1994). A scalable parallel formulation of the

backpropagation algorithm for hypercubes and related architectures, IEEE Trans.

Parallel Distrib. Syst. 5(10): 1073–1090.

Kuncheva, L. I. (2004). Combining Pattern Classifiers: Methods and Algorithms, Wiley-

Interscience.

Lawrence, S., Giles, C. and Tsoi, A. C. (1996). Convolutional neural networks for face

recognition, pp. 217 –222.

270 REFERENCES

LeCun, Y. and Bengio, Y. (1995). Convolutional networks for images, speech, and time-

series, in M. A. Arbib (ed.), The Handbook of Brain Theory and Neural Networks,

MIT Press.

Lecun, Y., Bottou, L., Bengio, Y. and Haffner, P. (1998). Gradient-based learning applied

to document recognition, Proceedings of the IEEE 86(11): 2278 –2324.

Levis, P. and Culler, D. (2002). Maté: a tiny virtual machine for sensor networks,

ASPLOS-X: Proceedings of the 10th international conference on Architectural sup-

port for programming languages and operating systems, ACM, New York, NY, USA,

pp. 85–95.

Lewis, F. (2004). Wireless sensor networks, Smart Environments: Technology, Protocols

and Applications, John Wiley & Sons, Inc.

Lewis, R. A., Hall, C. J., Hufton, A. P., Evans, S., Menk, R. H., Arfelli, F., Rigon,

L., Tromba, G., Dance, D. R., Ellis, I. O., Evans, A., Jacobs, E., Pinder, S. E. and

Rogers, K. D. (2003). X-ray refraction effects: application to the imaging of biological

tissues, Br J Radiol 76(905): 301–308.

Li, S., Lin, Y., Son, S. H., Stankovic, J. A. and Wei, Y. (2004). Event detection services

using data service middleware in distributed sensor networks, Telecommunication

Systems 26(2-4): 351–368.

Li, Y. and Parker, L. E. (2008). Detecting and monitoring time-related abnormal events

using a wireless sensor network and mobile robot, IROS, pp. 3292–3298.

Li, Y., Tang, Z., Xia, G. and Wang, R. (2005). A positively self-feedbacked hopfield neural

network architecture for crossbar switching, Circuits and Systems I: Regular Papers,

IEEE Transactions on 52(1): 200–206.

Lin, X., Soergel, D. and Marchionini, G. (1991). A self-organizing semantic map for

information retrieval, SIGIR ’91: Proceedings of the 14th annual international ACM

SIGIR conference on Research and development in information retrieval, ACM, New

York, NY, USA, pp. 262–269.

REFERENCES 271

Lobo, V., Bandeira, N. and Moura-Pires, F. (1998). Ship recognition using distributed self

organizing maps, Proceedings of the 1998 International Conference on Engineering

Applications of Neural Networks (EANN98), pp. 326–329.

Löwe, M. (1999). On the storage capacity of the hopfield model with biased patterns,

IEEE Transactions on Information Theory 45(1): 314–318.

Mavroforakis, M. and Theodoridis, S. (2006). A geometric approach to support vector

machine (svm) classification, Neural Networks, IEEE Transactions on 17(3): 671–

682.

Miller, E., Matsakis, N. and Viola, P. (2000). Learning from one example through shared

densities on transforms, Computer Vision and Pattern Recognition, 2000. Proceed-

ings. IEEE Conference on, Vol. 1, pp. 464–471.

Moore, G. E. (2000). Cramming more components onto integrated circuits, pp. 56–59.

Morrill, J. P. (1998). Distributed recognition of patterns in time series data, Commun.

ACM 41(5): 45–51.

Mu, X., Watta, P. and Hassoun, M. (2007). A weighted voting model of associative

memory, Neural Networks, IEEE Transactions on 18(3): 756–777.

Muhamad Amin, A. H. and Khan, A. I. (2008a). Commodity-grid based distributed

pattern recognition framework, AusGrid ’08: Proceedings of the sixth Australasian

workshop on Grid computing and e-research, Australian Computer Society, Inc., Dar-

linghurst, Australia, Australia, pp. 27–34.

Muhamad Amin, A. H., Raja Mahmood, R. A. and Khan, A. I. (2008). Analysis of pat-

tern recognition algorithms using associative memory approach: A comparative study

between the hopfield network and distributed hierarchical graph neuron (dhgn), CIT-

WORKSHOPS ’08: Proceedings of the 2008 IEEE 8th International Conference on

Computer and Information Technology Workshops, IEEE Computer Society, Wash-

ington, DC, USA, pp. 153–158.

Muhamad Amin, A. and Khan, A. I. (2008b). Single-cycle image recognition using an

adaptive granularity associative memory network, AI 2008: Advances in Artificial

272 REFERENCES

Intelligence, Springer, Berlin/Heidelberg, pp. 386–392. accessed on 06/10/2010.

http://www.springerlink.com/content/u8550287378r8815

Muhamad Amin, A. and Khan, A. I. (2009). Collaborative-comparison learning for com-

plex event detection using distributed hierarchical graph neuron (dhgn) approach

in wireless sensor network, AI 2009: Advances in Artificial Intelligence, Springer,

Berlin/Heidelberg, pp. 111–120. accessed on 06/10/2010.

http://www.springerlink.com/content/074871630060g843

Nadal, J.-P. (1989). Study of a growth algorithm for a feedforward network, Int. J. Neural

Syst. 1(1): 55–59.

Nagy, G. (2005). Interactive, mobile, distributed pattern recognition, CIAP05, pp. 37–49.

Nascimento, M. A. and Chitkara, V. (2002). Color-based image retrieval using binary

signatures, SAC ’02: Proceedings of the 2002 ACM symposium on Applied computing,

ACM, New York, NY, USA, pp. 687–692.

Nasution, B. B. (2007). Trusted Transaction Secure Network: Agent-Based Distributed Se-

curity Control System for Traffic on the Internet, PhD thesis, Faculty of Information

Technology, Monash University.

Nasution, B. B. and Khan, A. I. (2008). A hierarchical graph neuron scheme for real-time

pattern recognition, IEEE Transactions on Neural Networks 19(2): 212–229.

Nasution, B. B., Khan, A. I. and Kendall, E. A. (2005). Incorporating graph neurons (gns)

to the trusted transient simple network (ttsn) security control system architecture,

IASTED Conf. on Software Engineering, pp. 13–19.

Nebauer, C. (1998). Evaluation of convolutional neural networks for visual recognition,

Neural Networks, IEEE Transactions on 9(4): 685 –696.

Ng, W. W., Dorado, A., Yeung, D. S., Pedrycz, W. and Izquierdo, E. (2007). Image clas-

sification with the use of radial basis function neural networks and the minimization

of the localized generalization error, Pattern Recognition 40(1): 19 – 32.

Nguyen, D. and Ho, T. (2006). A bottom-up method for simplifying support vector

solutions, Neural Networks, IEEE Transactions on 17(3): 792–796.

REFERENCES 273

Nilsson, N. (1996). Introduction to machine learning: An early draft of a proposed text-

book. accessed on 06/10/2010.

http://robotics.stanford.edu/people/nilsson/mlbook.html

Nowicki, D. and Dekhtyarenko, O. (2004). Kernel-based associative memory, Neural Net-

works, 2004. Proceedings. 2004 IEEE International Joint Conference on, Vol. 1, pp. –

744.

Pal, S. K. and Mitra, P. (2004). Pattern Recognition Algorithms for Data Mining: Scala-

bility, Knowledge Discovery, and Soft Granular Computing, Chapman & Hall, Ltd.,

London, UK, UK.

Panduranga, P. P., Rao, D. and Deshpande, A. G. (2007). Fault tolerance analysis of

neural networks for pattern recognition, Computational Intelligence and Multimedia

Applications, International Conference on 1: 222–226.

Park, S., Locher, I., Savvides, A., Srivastava, M. B., Chen, A., Muntz, R. and Yuen, S.

(2002). Design of a wearable sensor badge for smart kindergarten, Wearable Com-

puters, IEEE International Symposium p. 231.

Pripuzic, K., Belani, H. and Vukovic, M. (2010). Early forest fire detection with sensor net-

works: Sliding window skylines approach, Knowledge-Based Intelligent Information

and Engineering Systems, Springer Berlin / Heidelberg.

Raja Mahmood, R., Muhamad Amin, A. and Khan, A. (2008). A lightweight, fast and ef-

ficient distributed hierarchical graph neuron-based pattern classifier, International

Journal of Intelligent Engineering and Systems (IJIES) 1(4): 9–17. accessed on

06/10/2010.

http://www.inass.org/publications.asp?id=502

Ritter, G. and Sussner, P. (1996). An introduction to morphological neural networks,

Pattern Recognition, International Conference on 4: 709–717.

Ritter, G., Sussner, P. and Diaz-de Leon, J. (1998). Morphological associative memories,

Neural Networks, IEEE Transactions on 9(2): 281–293.

274 REFERENCES

Román-God́ınez, I., López-Yáñez, I. and Yáñez-Márquez, C. (2009). Classifying patterns

in bioinformatics databases by using alpha-beta associative memories, Biomedical

Data and Applications pp. 187–210.

Rosenblatt, F. (1957). The perceptron — a perceiving and recognizing automaton, Tech-

nical Report No.85-460-1 .

Rueda, L. and Herrera, M. (2008). Linear dimensionality reduction by maximizing the

chernoff distance in the transformed space, Pattern Recognition 41(10): 3138–3152.

Rumelhart, D. E. and Zipser, D. (1988). Feature discovery by competitive learning, Con-

nectionist models and their implications: readings from cognitive science, Ablex Pub-

lishing Corp., Norwood, NJ, USA, pp. 205–242.

Saha, S. and Bajcsy, P. (2003). System design issues in single-hop wireless sensor networks,

The IASTED International Conference on Communications, Internet and Informa-

tion Technology 2003 (CIIT 2003), Scottsdale, AZ, USA, 17-19 November 2003.

Schalkoff, R. J. (1991). Pattern recognition: statistical, structural and neural approaches,

John Wiley & Sons, Inc., New York, NY, USA.

Schalkoff, R. J. (1997). Artificial Neural Networks, McGraw-Hill Companies.

Schlimmer, J. C. and Granger, Jr., R. H. (1986). Incremental learning from noisy data,

Machine Learning 1(3): 317–354.

Shih, K.-P., Wang, S.-S., Chen, H.-C. and Yang, P.-H. (2008). Collect: Collaborative

event detection and tracking in wireless heterogeneous sensor networks, Computer

Communications 31(14): 3124 – 3136.

Simard, P. Y., Steinkraus, D. and Platt, J. C. (2003). Best practices for convolutional

neural networks applied to visual document analysis, ICDAR ’03: Proceedings of

the Seventh International Conference on Document Analysis and Recognition, IEEE

Computer Society, Washington, DC, USA, p. 958.

Song, F., Liu, H., Zhang, D. and Yang, J. (2008). A highly scalable incremental facial

feature extraction method, Neurocomputing 71(10-12): 1883 – 1888. Neurocomputing

for Vision Research; Advances in Blind Signal Processing.

REFERENCES 275

Srinivas, A. V. and Janakiram, D. (2005). A model for characterizing the scalability of

distributed systems, SIGOPS Oper. Syst. Rev. 39(3): 64–71.

Stankovic, J. A. (2008). Wireless sensor networks, IEEE Computer 41(10): 92–95.

Sulehria, H. and Zhang, Y. (2008). Study on the capacity of hopfield neural networks,

Information Technology Journal 7(4): 684–688.

Sussner, P. and Valle, M. (2006). Gray-scale morphological associative memories, Neural

Networks, IEEE Transactions on 17(3): 559–570.

Talukder, A., Sheikh, T. and Chandramouli, L. (2004). Real-time intelligent pattern recog-

nition, resource management and control under constrained resources for distributed

sensor networks, Neural Networks, IEEE Proceedings International Joint Conference

on 2: 1321 – 1326.

Theodoridis, S. and Koutroumbas, K. (2003). Pattern Recognition, Academic Press, San

Diego, CA, USA.

Tsang, I., Kwok, J. and Zurada, J. (2006). Generalized core vector machines, Neural

Networks, IEEE Transactions on 17(5): 1126–1140.

Turkoglu, I. and Arslan, A. (2001). Optimisation of the performance of neural network

based pattern recognition classifiers with distributed systems, Parallel and Distributed

Systems ICPADS 2001, Proceedings of the Eighth International Conference on pp. 379

–382.

Vazhkudai, S. S., Ma, X., Freeh, V. W., Strickland, J. W., Tammineedi, N. and Scott,

S. L. (2005). Freeloader: Scavenging desktop storage resources for scientific data,

SC ’05: Proceedings of the 2005 ACM/IEEE conference on Supercomputing, IEEE

Computer Society, Washington, DC, USA, p. 56.

Vesanto, J., Himberg, J., Alhoniemi, E. and Parhankangas, J. (2000). Self-organizing map

in matlab: the som toolbox, In Proceedings of the Matlab DSP Conference, pp. 35–40.

Vivanco, R. A., Demko, A. and Pizzi, N. J. (2005). Scopira: A pattern recognition

application framework for biomedical datasets, ICMLA ’05: Proceedings of the Fourth

International Conference on Machine Learning and Applications, IEEE Computer

Society, Washington, DC, USA, pp. 165–170.

276 REFERENCES

von Laszewski, G., Foster, I. T. and Gawor, J. (2000). Cog kits: a bridge between com-

modity distributed computing and high-performance grids, Java Grande, pp. 97–106.

von Laszewski, G., Gawor, J., Peña, C. J. and Foster, I. T. (2002). Infogram: A grid service

that supports both information queries and job execution, HPDC, pp. 333–342.

von Laszewski, G., Hategan, M. and Kodeboyina, D. (2006). Work coordination for grid

computing, Grid Technologies, WIT Press, Southampton, UK.

Wang, H., Zheng, H. and Azuaje, F. (2007). Poisson-based self-organizing feature maps

and hierarchical clustering for serial analysis of gene expression data, IEEE/ACM

Trans. Comput. Biol. Bioinformatics 4(2): 163–175.

Wang, X., Ma, J., Wang, S. and Bi, D. (2007). Dynamic energy management with im-

proved particle filter prediction in wireless sensor networks, ICIC (1), pp. 251–262.

Wilson, R. C. (2009). Parallel hopfield networks, Neural Comput. 21(3): 831–850.

Wilson, R. C., Hancock, E. R. and Luo, B. (2005). Pattern vectors from algebraic

graph theory, IEEE Transactions on Pattern Analysis and Machine Intelligence.

27(7): 1112–1124.

Wu, S. and Chow, T. (2007). Self-organizing and self-evolving neurons: A new neural

network for optimization, Vol. 18, pp. 385–396.

Wu, S. and Wu, K.-L. (2009). An indexing framework for efficient retrieval on the cloud,

IEEE Data Eng. Bull. 32(1): 75–82.

Wythoff, B. J. (1993). Backpropagation neural networks: A tutorial, Chemometrics and

Intelligent Laboratory Systems 18: 115–155.

Yang, A., Jafari, R., Kuryloski, P., Iyengar, S., Sastry, S. S. and Bajcsy, R. (2007). Dis-

tributed segmentation and classification of human actions using a wearable motion

sensor network, Technical report, Electrical Engineering and Computer Sciences, Uni-

versity of California at Berkeley. accessed on 17/03/2010.

http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-143.html

REFERENCES 277

Yang, F. and Paindavoine, M. (2003). Implementation of an rbf neural network on em-

bedded systems: real-time face tracking and identity verification, Neural Networks,

IEEE Transactions on 14(5): 1162–1175.

Yu, D., Ma, L. and Lu, H. (2007). Lottery digit recognition based on multi-features,

Systems and Information Engineering Design Symposium, 2007. SIEDS 2007. IEEE,

pp. 1–4.

Zaremba, M., St-Laurent, L., Niemann, O. and Richardson, D. (2000). Integration of self-

organizing maps with spatial indexing for efficient processing of multi-dimensional

data, GIS ’00: Proceedings of the 8th ACM international symposium on Advances in

geographic information systems, ACM, New York, NY, USA, pp. 77–82.

Zhao, Z.-Q., Huang, D.-S. and Sun, B.-Y. (2004). Human face recognition based on multi-

features using neural networks committee, Pattern Recognition Letters 25(12): 1351

– 1358.

Zhu, H., Zhang, L., Sun, H. and Xiao, R. (2008). Face detection using multi-feature,

Advances in Cognitive Neurodynamics ICCN 2007, Springer Netherlands, pp. 921–

925.

278 REFERENCES

Appendix A

Extended Analysis and Results

A.1 Greyscale Image Recognition

This section presents extended results obtained from the analysis on DHGN distributed

pattern recognition implementation for heterogeneous greyscale images using binary sig-

nature for colour representation. Some of the results have been reported in Chapter 4.

A.1.1 The Dataset

A recognition test using DHGN scheme on 40 greyscale images from 5 different classes has

been implemented. Each class represent similar images with random pixel noise distortions

and rotations. Figure A.1 shows all the images used in this test.

Each image used is of size 512 × 512 with 256-greyscale levels. Figure A.2 shows

histograms of all the images used in this test. These histograms indicate different greyscale

levels between each image class, proving their heterogeneity. Note that with increasing

level of noise introduced, the structure of each histogram also changes accordingly.

In this recognition test, 6 colour quantisation levels are considered, in creating patterns

that represent the greyscale images using binary signature scheme as described in Section

3.2.2.

A.1.2 Extended Results

In this subsection, a set of extended results of the recognition test that has been performed

are presented. The analysis on recognition accuracy for greyscale image recognition us-

ing DHGN takes two important parameters namely recall and error values. The results

279

280 APPENDIX A. EXTENDED ANALYSIS AND RESULTS

Figure A.1: 40 heterogeneous greyscale images used in DHGN image recognition test.
These images belongs to 5 different classes, namely Babboon, Lena, Goldhill, Peppers,
and Camera.

indicate that DHGN with binary signature scheme on different quantisation levels have

produced high recall values. This is mainly due to DHGN’s ability to recognise distinc-

tive colour or greyscale level of different set of images. On the other hand, error values

for DHGN scheme have been recorded considerably high. On average, the error value

for DHGN recognition scheme on the greyscale images is 0.153. This has been mainly

influenced by the use of global binary signature scheme that implements a single signature

pattern to represent a particular image. This perhaps can be improved, using local binary

signature scheme as described in Section 3.2.2.

Figure A.3 shows the error values obtained for each image class on different quantisa-

tion levels.

A
.1.

G
R
E
Y
S
C
A
L
E

IM
A
G
E

R
E
C
O
G
N
IT

IO
N

281

Figure A.2: Image histograms for 40 greyscale images used in DHGN image recognition test. Each image comprises 256-greyscale levels.

282 APPENDIX A. EXTENDED ANALYSIS AND RESULTS

Note that in this test, DHGN performed recognition with the lowest error values for

a quantisation value 5. A particular issue that needs to be solved in using this binary

scheme is in finding the best representation for the image. Different quantisation level will

affect the accuracy of the scheme, due to improper representation of patterns.

Figure A.4 shows the recall values derived from the image recognition test conducted.

From the recall analysis, we also discovered that DHGN has been able to produce high

recall values. About 31% of the entire test patterns obtained perfect recall for different

noise distortion levels and rotational directions in this recognition test.

A.2 Negative Image Detection using DHGN

Negative image contains the most contradictive pixel information to the original image.

However, the structure of the image remains intact. Therefore, in pattern recognition

context, we can deduce that negative image is a form of full spatial-distortion. This

distortion is uniform, i.e. the pixel information changes uniformly across the entire image.

Figure A.5 shows an example of binary character image with its negative representation.

This study has made observations of how DHGN networks are able to positively react

to negative images. The results of the analysis have shown that smaller subnets, together

with minimum voting scheme adopted by the SI module node, enables the network to give

accurate responses to the negative images. The size of the input subpattern determines the

capacity of spatial information each subnet holds. Thus, the capacity of spatial information

of an image within a DHGN subnet is directly proportional to the size of input subpattern.

A.2.1 Subpattern Size Reduction

This study has discovered that a reduction in the size of input subpattern Bs will increase

the recall accuracy of the DHGN network, in terms of its V max
Px

or V min
Px

values. DHGN

enables recognition of negative images through the concept of spatial encapsulation. It

involves the process of encapsulating the spatial information through a decomposition

process. In this context, an image could be decomposed into subpatterns with various

decomposition sizes. This work is focusing on uniform decomposition, i.e. decomposition

of pattern into subpatterns of equal sizes. This process encapsulates spatial information

of an image. Large encapsulation usually reduces the detailed characteristics of an image.

A.2. NEGATIVE IMAGE DETECTION USING DHGN 283

This is due to the fact that large encapsulation collectively holds more information as

compared to small encapsulation.

Given a binary pattern Pk = (011011010) and its distorted pattern P̃k = (011011011).

If DHGN subnet with an input subpattern size Bk
s = 9 is used, thus no decomposition

is made. The output of the recognition process using maximum voting will results in a

new pattern being detected, since V max
Pk

= 0. However, if we decompose the patterns

into equal-sized subpatterns Bk
s = 3, thus we have three DHGN subnets working on the

subpatterns:

P 1
k = (011) P̃ 1

k = (011)

P 2
k = (011) P̃ 2

k = (011)

P 3
k = (010) P̃ 3

k = (011)

The output of recognition process using maximum voting will results in a recall of

pattern Pk. This is due to the responses obtained from all DHGN subnets that produces

V max
Pk

= Pk (two subnets give recall responses to the distorted input, while a subnet

recorded a new subpattern).

This scenario explains the encapsulation effect in DHGN pattern recognition scheme.

The distortion in this example is well-encapsulated within a subpattern and thus, improv-

ing the recall accuracy of the entire DHGN network. This encapsulation effect also plays

similar role in minimum voting scheme as described previously.

Proof: A reduction in the size of input subpattern BP of pattern P will possibly increase

the number of votes (maximum or minimum) VP , given that 0 ≤ VP ≤ n, where n

represents the number of subnets used.

BP = P
n
, Given ∃BP ∈ N: BP is odd

n = P
BP

Given 0 ≤ VP ≤ n, ∴ 0 ≤ VP ≤ BP

(A.1)

As the value of BP decreasing, therefore the possible values of VP will increase.

284 APPENDIX A. EXTENDED ANALYSIS AND RESULTS

A.2.2 Negative Image Recognition

Apart from the previous discovery, we have also able to show that given a negative image

Ibin of original binary image Ibin, the amount of vote obtained from the recognition process

using minimum voting will always be zero.

With an ability to provide a bird’s eye view of the entire binary image, the DHGN net-

work would be able to detect total changes in the pixel values within the image. Therefore,

changes from original image to negative image will leads to massive changes in image’s

pixel information. Thus, none of the subnets are able to recall the original image. However,

this could be taken as full recall, when the voting mechanism is switched between maxi-

mum and minimum. Figure A.6 shows a recognition result for a set of binary character

images and the minimum voting value derived from all subnets.

Note that all subnets will only respond with zero minimum voting value, given a

negative of image ’E’. This condition however will change with an increase in the size of

input subpattern, as shown in Figure A.7.

The main justification of this effect is such that with an increase in the size of input

subpattern, DHGN network is not able to detect the spatial structure of the image. Small

encapsulation enables the localisation of spatial structure within the image and hence,

able to be memorised by the network. Further description of this localisation effect can

be referred to in Section 2.7.

A.2.3 Recognition Tests and Results

This research has conducted a series of recognition tests involving binary character images

using min-max DHGN pattern recognition scheme. Four different sets of 100 x 100 pixels

greyscale character images (26 characters from A to Z) were used as shown in Figure A.8.

The first set of images act as stored patterns while the rest of the images act as the test

patterns. Three different recognition tests were conducted using different input subpattern

sizes, namely 5-, 7-, and 9-bits, and subsequent simulation tools have been developed using

C programming language with Message Passing Interface (MPI) capabilities for parallel

processing using MPICH2 toolkit (Gropp et al., 1999). The following subsections describe

in details of the results of these recognition tests.

A.2. NEGATIVE IMAGE DETECTION USING DHGN 285

9-bits Input Subpatterns

Table A.1 shows the results of the recognition test using 9-bits input subpatterns. In

this test, 1111 subnets were used for 100 x 100 pixels greyscale homogeneous character

images. Note that for Dataset I, the result of the maximum voting gives a perfect recall

for the entire set of character images. Dataset II and III are negative images of the stored

character images, as outcomes of the image translation process. The outputs from DHGN

network have shown that minimum voting is able to provide perfect recall for almost entire

images in those datasets. There are few exceptions including letters E, F, and L. The main

reason for this is that with 9-bits input subpattern representation, the encapsulation effect

is not able to encapsulate the spatial structure of the character images of those letters.

Therefore, all the three letters will respond with minimum voting. The same situation

also applied to letter O and Q.

Patterns
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Dataset I
max A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
min W W W W W W W Q W Q W W W W W W W W W W W Q Q G Q W

Dataset II
max W W W T W W W T W M W W W W W M W M M M J M M M M M
min A B C D E,F,L E,F,L G H I J K E,F,L M N O,Q P O,Q R S T U V W X Y Z

Dataset III
max W M W T W W W T W M W W W W W M W M M M J M M M M M
min A B C D E,F,L E,F,L G H I J K E,F,L M N O,Q P O,Q R S T U V W X Y Z

Table A.1: Results of image recognition test using DHGN recognition scheme with 9-bits
input subpatterns.

7-bits Input Subpatterns

With a reduction in the size of input subpattern, the results of the recognition test has been

improved significantly using both maximum and minimum voting schemes for Datasets I,

II, and III, as shown in Table A.2.

Patterns
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Dataset I
max A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
min W W W W W W W Q W Q G W W W W W W W W W W Q Q G Q W

Dataset II
max W W W M W W W W W M W W W W W M W W W M J M M M M M
min A B C D E,F,L E,F,L G H I J K E,F,L M N O P Q R S T U V W X Y Z

Dataset III
max W W W M W W W T W M W W W W W M W W W M J M M M M M
min A B C D E,F,L E,F,L G H I J K E,F,L M N O P Q R S T U V W X Y Z

Table A.2: Results of image recognition test using DHGN recognition scheme with 7-bits
input subpatterns. There is an improvement on the accuracy of this DHGN scheme.

In this test, 1428 subnets were used for similar datasets as described earlier. Note that

there is an improvement in recall outputs for Datasets II and III. The DHGN network

is able to recognise and differentiate character images O and Q. The reason for this is

286 APPENDIX A. EXTENDED ANALYSIS AND RESULTS

that with a reduction in the size of subpattern, DHGN network is able to encapsulate the

spatial structure of the character images more precisely. Nevertheless, this network is still

unable to recognise and differentiate character images E, F, and L.

5-bits Input Subpatterns

This recognition test involves 2000 subnets. The results obtained from this test show that

DHGN network is able to fully recall all the images in Datasets I, II, and III, as shown in

Table A.3.

Patterns
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Dataset I
max A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
min W W W W W W W Q W Q G W W W W W W W W W W Q Q G Q W

Dataset II
max W W W M W W W W W M W W W W W M W W W M W M M W M M
min A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Dataset III
max W W W M W W W T W M W W W W W M W W W M W M M W M M
min A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Table A.3: Results of image recognition test using a recognition scheme with 5-bits input
subpatterns. DHGN is able to recall all the characters using minimum voting scheme on
both dataset II and III.

A.2.4 Discussions

The results of recognition tests conducted have shown an interesting phenomenon for

both positive and negative image recognition. DHGN produced perfect recalls for all the

characters in Dataset I using maximum voting scheme, regardless of its configuration,

i.e. size of the input subpattern used. This outcome reveals the capability of DHGN

max-voting mechanism to recall all the test character images that contain similar colour

proportions as the stored images. Furthermore, with voting technique being applied, the

approximation process to find the nearest matched images is possible. Figure A.9 shows

character-to-maximum vote ratios for selected character images in Dataset I that has been

collected using DHGN-9 (9-bit input subpattern) scheme.

On negative image recognition perspective, DHGN has the ability to recognise char-

acter images with negative colour. Nevertheless, its ability is significantly improved with

an increase in the amount of subnets involved during computation, i.e. smaller input sub-

pattern being used. The character-to-maximum vote ratios for negative characters A, E,

F, L, O, and Q in Dataset III that has been used in all DHGN configurations are shown

in Figure A.10.

A.2. NEGATIVE IMAGE DETECTION USING DHGN 287

These tests reveal that DHGN is able to provide accurate recall for both positive and

negative images, given a condition that the size of input subpattern is able to withhold

the spatial-structure information of the images. However, it is best noted that there is

also a significant increase in the number of DHGN subnets being used.

The results obtained from these series of recognition tests have revealed two important

factors in the performance of DHGN network for image recognition. These are the number

of DHGN subnets being used and the recall accuracy of DHGN network. To get high recall

accuracy for binary character images, more DHGN subnets are required as a direct result

in the reduction of the size of input subpatterns. Figure A.11 shows an approximate

comparison between recall accuracy for the binary character images against the number

of DHGN being used in the tests.

Note that the slopes of both graphs are similar. Thus, it could be deduced that the

reduction in recall accuracy is directly proportional to a decrease in the number of subnets

available for the network. However, in real implementation, a single subnet may be used

for multiple sets of input subpatterns, without having to allocate a unique subnet for each

input subpattern. This is an idea for recyclable DHGN subnets. Further research work

will be carried out to ensure the outgrowth of these subnets does not significantly affects

the recall accuracy of the overall network.

288 APPENDIX A. EXTENDED ANALYSIS AND RESULTS

(a) Level-2 Quantisation. (b) Level-3 Quantisation.

(c) Level-4 Quantisation. (d) Level-5 Quantisation.

(e) Level-6 Quantisation. (f) Level-7 Quantisation.

Figure A.3: Error values obtained for each quantisation level from recognition test on 5
classes of greyscale images with noise distortion and rotation.

A.2. NEGATIVE IMAGE DETECTION USING DHGN 289

(a) Level-2 Quantisation. (b) Level-3 Quantisation.

(c) Level-4 Quantisation. (d) Level-5 Quantisation.

(e) Level-6 Quantisation. (f) Level-7 Quantisation.

Figure A.4: Recall values obtained for each quantisation level from recognition test on 5
classes of greyscale images with noise distortion and rotation.

Figure A.5: Binary character image ’E’ with its negative.

290 APPENDIX A. EXTENDED ANALYSIS AND RESULTS

Figure A.6: Recognition results using DHGN image recognition scheme. The similarities
represent the minimum voting obtained from all subnets. The grey areas within the test
patterns show the pixel value of test pattern that is similar to stored pattern.

A
.2.

N
E
G
A
T
IV

E
IM

A
G
E

D
E
T
E
C
T
IO

N
U
S
IN

G
D
H
G
N

291

Figure A.7: Extended recognition results showing the effect of input subpattern size to the minimum voting scheme.

292 APPENDIX A. EXTENDED ANALYSIS AND RESULTS

Figure A.8: Datasets used in DHGN image recognition tests.

A.2. NEGATIVE IMAGE DETECTION USING DHGN 293

Figure A.9: Character-to-maximum vote ratio for characters A, E, F, L, O, and Q in
Dataset I retrieved using DHGN-9 recognition scheme. Note that the star represent column
for respective test character.

29
4

A
P
P
E
N
D
IX

A
.
E
X
T
E
N
D
E
D

A
N
A
L
Y
S
IS

A
N
D

R
E
S
U
L
T
S

(a) DHGN-9. (b) DHGN-7.

(c) DHGN-5.

Figure A.10: Character-to-maximum vote ratio for characters A, E, F, L, O, and Q in Dataset III retrieved using different DHGN input subpattern
size. Note that the star represents column for respective test character.

A.2. NEGATIVE IMAGE DETECTION USING DHGN 295

Figure A.11: Comparison between percentage of recall and number of subnets against the
input subpattern size in DHGN pattern recognition with minimum voting scheme.

296 APPENDIX A. EXTENDED ANALYSIS AND RESULTS

Appendix B

Algorithms and Pseudocodes

B.1 Single-Value (Original) DHGN

The original DHGN implementation as described in Chapter 4 comprises 4 important

functions. These are SI Module, voting, adjacency comparison, and bias calculation.

Figure B.1 shows a context diagram for the functions within the DHGN architecture. The

pseudocode for each function is listed in this Appendix.

Figure B.1: Context diagram showing important functions within DHGN implmentation.

297

298 APPENDIX B. ALGORITHMS AND PSEUDOCODES

The SI Module function deals with how patterns are communicated from the SI node

to all other GN nodes within all the subnets. Three distinguished commands have been

used, namely init, store, and abort. These represent initialisation, recall/store, and abort

processes respectively. This function communicates directly with each subnet, via the

base-layer GNs.

Algorithm 8 SI Module Function

Require: GNtop = 2×
(

size+1
2

)2
{Determine the top GN id from subpattern size}

1: repeat
2: read input from file
3: broadcast input to all GN
4: if command.input equals command.init then
5: get next input from file
6: else if command.input equals command.store then
7: for i = 1 to GNtop do
8: get msg from GN(i) listen for MPI messages from each GN
9: if i == GNtop then

10: idx.input = msg.GNtop

11: return idx.input
12: end if
13: end for
14: invoke VOTING function
15: get next input from file
16: else if command.input equals command.abort then
17: abort
18: end if
19: until end of file

The Voting function implements voting procedure for results of the recognition per-

formed at subpattern level. Each subnet will communicate each index retrieved (idx) to

SI Module node. SI Module node will then perform this function.

Adjacency comparison function involves a process of communicating entries between

adjacent GNs within each DHGN subnet. Once a particular GN is activated, it will perform

this function to obtain subpattern entries from adjacent nodes. This function produces

bias entries for Bias calculation function. Note that in this pseudocode, we implemented

binary pattern recognition, in which each layer within DHGN subnet consists of two levels

of GN. Level 0 corresponds to value 0 while Level 1 reflects value 1 in binary patterns.

Bias calculation function performs bias matching process within the bias array struc-

ture of each GN node. Each bias entry received will be matched with stored entries.

If entry has been found, then the index will be recalled. Otherwise, new index will be

generated.

B.1. SINGLE-VALUE (ORIGINAL) DHGN 299

Algorithm 9 Voting Function

1: for i = 0 to max.pattern do
2: for j = 0 to max.subnet do
3: get idx[i][j]
4: end for
5: end for
6: for i = max.storage to max.pattern do
7: for j = 0 to max.subnet do
8: for k = 0 to max.storage do
9: if idx[i][j] == idx[k][j] then

10: idx[i].count[k] + +
11: end if
12: end for
13: end for
14: end for
15: for i = max.storage to max.pattern do
16: for j = 0 to max.storage do
17: find max idx[i].count[k]
18: return max idx[i].count[k]
19: end for
20: end for

Algorithm 10 Adjacency Comparison Function (Base Layer GNs)

Require: active.GN = true and size = subpatternlength
1: check GN position within subnet
2: if edge.GN == left then
3: send idx.bias.GN(this) to GN + 1 and GN + (size+ 1)
4: receive idx.bias.GN from either GN + 1 or GN + (size+ 1)
5: else if edge.GN == right then
6: send idx.bias.GN(this) to GN − 1 and GN + (size− 1)
7: receive idx.bias.GN from either GN − 1 or GN + (size− 1)
8: else if edge.GN == middle then
9: send idx.bias.GN(this) to GN + 1 and GN + (size+ 1)

10: send idx.bias.GN(this) to GN − 1 and GN + (size− 1)
11: receive idx.bias.GN from either GN + 1 or GN + (size+ 1)
12: receive idx.bias.GN from either GN − 1 or GN + (size− 1)
13: end if

Algorithm 11 Bias Calculation Function

1: receive entry.pattern from ADJACENCY COMPARISON function
2: for all test.pattern in pattern do
3: for i = 0 to MAXBIAS do
4: if entry.pattern == element.bias[i].GN then
5: idx.pattern.GN = i
6: exit FOR
7: else
8: idx.pattern.GN = MAXBIAS + 1
9: end if

10: end for
11: return idx.pattern.GN
12: end for

300 APPENDIX B. ALGORITHMS AND PSEUDOCODES

B.2 Multi-Value DHGN

In terms of the modular functions, the multi-value DHGN implementation is very similar

to the original DHGN implementation. However, the adjacency comparison function only

requires communication of entries between GNs within a single level per layer as shown in

the following pseudocode:

Algorithm 12 Adjacency Comparison Function (Base Layer GNs) for Multi-Value DHGN

Require: active.GN = true and size = subpatternlength
1: check GN position within subnet
2: if edge.GN == left then
3: send idx.bias.GN(this) to GN + 1
4: receive idx.bias.GN from GN + 1
5: else if edge.GN == right then
6: send idx.bias.GN(this) to GN − 1
7: receive idx.bias.GN from GN − 1
8: else if edge.GN == middle then
9: send idx.bias.GN(this) to GN + 1

10: send idx.bias.GN(this) to GN − 1
11: receive idx.bias.GN from GN + 1
12: receive idx.bias.GN from GN − 1
13: end if

The rests of the modular functions are similar to the single-value DHGN functions

described in previous section.

