Efficient search for association rules

Geoffrey |I. Webb
School of Computing and Mathematics
Deakin University
Geelong, Vic. 3217, Australia

webb@deakin.edu.au

ABSTRACT

This paper argues that for some applications direct search
for association rules can be more efficient than the two stage
process of the Apriori algorithm which first finds large item-
sets which are then used to identify associations. In par-
ticular, it is argued, Apriori can impose large computa-
tional overheads when the number of frequent itemsets is
very large. This will often be the case when association rule
analysis is performed on domains other than basket analy-
sis or when it is performed for basket analysis with basket
information augmented by other customer information. An
algorithm is presented that is computationally efficient for
association rule analyses during which the number of rules to
be found can be constrained and all data can be maintained
in memory.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications—

data mining; 1.2.6 [Artificial Intelligence]: Learning; H.3.3
[Information Storage and Retrieval]: Information Search
and Retrieval

General Terms

Association Rule, Search

1. INTRODUCTION

The Apriori algorithm [2] and its derivatives [15, 11, 17]
have become the de facto standard for discovering associa-
tion rules. This paper presents an alternative approach to
association rule discovery that may be more efficient when
all data can be retained in memory and the number of can-
didate itemsets cannot be adequately constrained by con-
sidering individual itemsets in isolation. Given the current
availability of very large memory machines, many potential
applications of the new algorithm may satisfy the first con-
straint. Many data miners will consider their time more
valuable than the cost of a few extra gigabytes of memory.

To appear in KDD-2000 Boston, MA, August, 2000.

The Apriori algorithm relies on constraining the number
of itemsets by considering features of itemsets in isolation,
most commonly, by placing a lower limit on the frequency
of an itemset, below which itemsets will not be considered.
This is often feasible for simple basket analysis, as few com-
binations of products will be bought together in large quan-
tities. However, even for basket analysis, the numbers of
frequent itemsets may rapidly increase if simple basket anal-
ysis is augmented by considering socio-economic or other at-
tributes of the customers. Augmenting simple basket anal-
ysis in this way can add much to the richness of the knowl-
edge gained. However, if a customer description attribute
is common to 50% of the customer base then that attribute
will occur frequently with a large number of item combina-
tions. Add a number of such attributes to the analysis and
the number of frequent itemsets can rapidly expand to an
extent where application of Apriori becomes infeasible.

The same problem occurs when association rule analysis is
applied to domains other than basket analysis. Association
rules can be a very valuable tool for discovering interesting
inter-relationships between variables in many different types
of domain, as they do not filter through a machine learning
bias the rules that are presented to the user. This enables
the user to identify the interesting rules rather than rely-
ing on a machine learning system to determine the rules of
interest.

This paper describes how a search algorithm can take advan-
tage of inter-association-rule constraints to find association
rules efficiently.

2. BACKGROUND

Early approaches to identifying interesting rules from data
were dominated by attempts to form small sets of rules for
accurate classification of further previously unsighted data
[9, 7, 13]. For the most part, borrowing from an elegant
characterization of mining optimized rules by Bayardo and
Agrawal [3], this activity can be characterized as follows:

e A training set is a finite set of records where each
record is an element to which we apply Boolean pred-
icates called conditions.

e A rule consists of two conditions or combinations of
conditions (typically conjunctions or, less frequently,
disjunctions) called the antecedent and consequent. A
rule with antecedent A and consequent C is denoted

as A— C.

e The search is limited to exploring rules that have as
consequent the values of a distinguished attribute, called
the class attribute.

e The search seeks a set of rules that optimize some
function of quality. The search is usually incremental,
adding one rule at a time. The quality function usu-
ally attempts (often indirectly) to trade-off complexity
against errors on the training set.

e In consequence, the rules selected tend to have an-
tecedents that select subsets of the training set that
are strongly dominated by a single class variable.

In the nineties, this research program took two divergent
branches. On one hand, a number of researchers explored
techniques for identifying large numbers of classification rules
[4, 8, 10, 12, 14, 16]. This work was distinguished by the
removal of the objective of using the rules for classification
and hence of the requirement that a small number of rules
be identified. Rather, all rules that satisfied some criterion
of interestingness were sought. Interestingness was usually
evaluated by some measure that led to identification of rules
for which the antecedent identified subsets of the training set
that were dominated by a single value of the class attribute,
the intent being to predict the occurrence of that value.

The other branch was association rule discovery [1]. As-
sociation rule discovery differs in intent from most other
rule discovery paradigms. While the other paradigms have
concentrated on finding rules that are predictive of a sin-
gle, preselected, class variable, association rule discovery has
been motivated by finding rules that predict increased fre-
quency of an attribute value, or collection of attribute val-
ues, without limitation on the values that may appear in
the consequent of a rule. Association rule discovery can be
distinguished by the aims of

e discovering all rules that satisfy a given set of con-
straints,

e an emphasis on processing large training sets, and

¢ allowing any available condition to appear as either an
antecedent or consequent.

Due to its emphasis on analysis of large datasets, association
rule discovery has concentrated on algorithms that process
data via database access whereas the other branches of rule
discovery have tended to concentrate on algorithms that re-
tain all data in memory. This has led to the development of
very different forms of algorithm. Association rule discov-
ery algorithms have sought to minimize the number of passes
through the data due to the very high time overheads that
these imply when accessing a database. This is less of a
concern when data is retained in memory.

Recent research has started to bring these two divergent
branches of rule discovery research back together. Bayardo
and Agrawal [3] present a variant of the OPUS search al-
gorithm [18], developed in the context of classification rules

research, to discover key rules of the type sought by as-
sociation rule discovery. However, as is typical in classifica-
tion rules research, their technique considers only the search
space for a single consequent at a time, limiting its applica-
bility in the most common association rule activity, market
basket analysis, where it is often desirable to consider every
product as a possible candidate rule consequent.

This paper presents techniques for employing the OPUS
search algorithm for rule discovery where the search space
encompasses rules for which the antecedent can contain any
conjunction of available predicates and the consequent can
be any single predicate. It is further distinguished by the
ability to efficiently find a prespecified number of rules that
maximize an arbitrary function measuring rule quality. This
distinguishes the approach from typical association rule al-
gorithms that explore all rules that satisfy prespecified con-
straints. This distinction is particularly significant. For
dense search spaces, typical rule constraints may result in
numbers of itemsets that make the Apriori approach infea-
sible. The ability to restrict search to a predefined number
of target rules can allow the new algorithm to efficiently
process such search spaces.

A major concern in developing association rule algorithms
has been minimizing the number of database accesses that
are required. I contend that the need to do this is reduced
if the database is retained in main memory. I further con-
tend that doing so is now feasible for a large range of data
mining tasks due to the increase in the availability of very
large memory computers. However, I recognize that there
will always remain some tasks for which it is not feasible to
retain a sufficient sample of cases in memory for acceptable
association rule discovery. The techniques explored in this
paper do not address that scenario.

2.1 The Apriori algorithm

The Apriori algorithm discovers association rules in two
steps, utilizing the concept of an itemset. An itemset is
a conjunction of conditions!. A large itemset is an item-
set that occurs more frequently than a predefined minimum
frequency. The Apriori algorithm exploits the observation
that many common measures of the value of an associa-
tion rule are functions of the frequency of LHS, RHS, and
LHSARHS, where LHS and RH S represent, respectively,
the itemsets for the antecedent and consequent of the asso-
ciation rule.

The two top-level steps of the Apriori algorithm are:

1. Find all large itemsets.

2. Generate association rules from the large itemsets.
The first stage plays two roles,

1. limiting the number of rules that need be explored to

'In basket analysis the relevant conditions are predicates,
one for each of the available items, each of which is true iff
the corresponding item was purchased by a customer, hence
the name itemset.

those for which the union of the LHS and RHS occur
with sufficient frequency, and

2. caching the relevant information about those itemsets,
specifically their frequency, so that the search for asso-
ciation rules need not repeatedly access the database
to compute them.

This strategy can be very successful at reducing the num-
ber of passes through the data base. Indeed, variants of the
approach can reduce database access to two passes [15, 17].
However, where there are numerous large itemsets, the over-
heads of itemset maintenance and manipulation can severely
impact upon the computational feasibility of the approach.
A dramatic illustration of this is provided in Section 3,
below. In this example, applying Apriori with standard
settings to the Cover Type data set, with just 120 items,
but with many items occurring very frequently, results in
14,567,892 large item sets. With so many large itemsets,
management and manipulation of those itemsets creates a
large computational burden.

2.2 The OPUS search algorithm

The move towards search for large numbers of classifica-
tion rules resulted in the development of algorithms for effi-
cient traversal of the search spaces involved. These initially
relied upon assigning an arbitrary order to the conditions
which was then used to structure the search space so that
each combination of conditions was considered just once. A
search space with four conditions (a, b, ¢, and d) structured
in this manner is presented in Fig. 1.

Such a search space is exponential in size. If there are 10,000
conditions, a figure commonly exceeded in market basket
analysis, the search space size is 2'99%°. Clearly it will
only be possible to explore such a search space if it can be
pruned. Under fixed structure search, algorithms typically
seek branches that cannot contain a solution?, and prune
those branches. Fig. 2 demonstrates the effect of pruning
the branch for condition ¢ from the fixed-structure search
space illustrated in Fig. 1. As can be seen, this removes
only one node from the search space.

The identification of branches to be pruned requires pruning
rules. These identify regions of the search space that cannot
contain a solution. In rule discovery search, many pruning
rules consider for a given node N whether any search node
in the space below N that contains a given condition C' can
be a solution. Thus, the pruning illustrated in Fig. 1 may
have resulted from a pruning rule identifying that no node
containing ¢ may contain a solution. In this case, the ideal
outcome would be the removal from the search space of all
nodes containing c¢, as illustrated in Fig 3. As can be seen,
this approximately halves the remaining search space®

What constitutes a solution will depend upon the search
objective. For example, in association rule discovery, a solu-
tion might any set of conditions that is a frequent itemset.
3Tt does not exactly halve the remaining search space as the
root node has already been visited, as, depending upon the
search technique, may have the node containing ¢, and hence
these nodes should not be counted as part of the remaining
search space.

An elegant method of achieving this outcome is to reorder
the search space so that any condition to be pruned at a
node precedes all conditions not to be pruned. This is the
OPUSS strategy [18]. This algorithm guarantees that every
pruning action approximately halves the remaining search
space. The OPUSO algorithm [18] extends OPUSS for opti-
mization search, using a heuristic that reorders the search
space to maximize the amount of the space associated with
the least promising search operator®. This is illustrated in
Fig. 4. The OPUS algorithms have been demonstrated to
support efficient complete search of a number of standard
rule discovery search tasks[18].

A further approach to pruning is provided by inclusive prun-
ing [19]. Whereas the (ezclusive) pruning actions illustrated
above involve excluding from the search space those nodes
containing a particular condition, inclusive pruning results
in the exclusion of all nodes that do not contain a given con-
dition. Like exclusive pruning, each inclusive pruning action
approximately halves the remaining search space.

2.3 Efficient search for association rules
Many frequent itemsets will relate to association rules that
are not of interest. This might be addressed by placing ad-
ditional constraints upon the itemsets that are considered.
It is possible, although computationally expensive, to take
account of the relationship between the antecedent and con-
sequent of association rules that might be derived from an
itemset, such as the potential lift>. However, this would
require duplicating during the first stage much of the work
of the second stage of the Apriori algorithm. More impor-
tantly, it is not possible to impose constraints that rely on
relationships between association rules, such as only find-
ing itemsets that could participate in the 1000 association
rules with the highest lift. It will often be the case that the
end users to receive the association rule reports will only
be interested in considering a limited number of association
rules. Selecting a prespecified number of those that maxi-
mize a particular measure will be desirable from the user’s
perspective and can be used to constrain a directed search
for association rules.

Search for association rules can be tackled as a search pro-
cess that starts with general rules (rules with one condition
on the LH S) and searches through successive specializations
(rules formed by adding additional conditions to the LHS).
Such search is unordered. That is, the order in which suc-
cessive specializations are added to a LH S is not significant.
AABAC — X is the sameis CABAA — X. An important
component of efficient search in this context is minimizing
the number of association rules that need be considered. A
key technique used to eliminate potential association rules
from consideration is optimistic pruning. Optimistic prun-
ing operates by forming an optimistic evaluation of the high-
est rule value that may occur in a region of the search space.

“In rule search each condition can be considered a search
operator. Formally, the search operator is the inclusion of
the condition in the set of conditions associated with a node.
SLift is a frequently utilized measure of association rule util-

: . L _ |LHSARHS| /|RHS]
ity. The lift of an association rule = THS] /=

where |X| is the number of cases with conditions X and
n is the total number of cases in the data set.

{b,c} {b,c,d}
b
O { }<<:{md}
(¢} (c,d})
(d}

Figure 1: A fixed-structure search space

ab,c ab,c,d
{a’b}‘::iadei { :
{a}<§£§{a,c} {a c,d)
{a,d}
o (b} {b,c} {b,c,d}
{b,d}
{c}
{d}

Figure 2: Pruning a branch from a fixed-structure search space

{a,b}\{a,b,d}

{a}<::
{a,d}

{} {b}\{b,d}

Figure 3: Pruning all nodes containing a single operator from a fixed-structure search space

{c}

e tal

{a.b}
{a.d}

{ab,d}

{b} ——{b,d}

{d}

Figure 4: Pruning with a restructured search space

An optimistic evaluation is one that cannot be lower than
the actual maximum value. If the optimistic value for a re-
gion is lower than the lowest value that can be of interest,
then that region can be pruned. If search seeks the top m
association rules, then it can maintain a list of the top m
rules encountered so far during the search. If an optimistic
evaluation is lower than the lowest value of a rule in the top
m, then the corresponding region of the search space may
be pruned. Other pruning rules may identify regions that
can be pruned because they can contain only rules that fail
to meet prespecified constraints such as:

e minimum support (the frequency in the data of the
RHS or of the RHS and LHS in combination);

e minimum lift (as defined in footnote 5); or

e being one of the top m association rules on some spec-
ified criteria.

I use the term credible rule to denote association rules for
which, at some given point in a search, it is possible that
the rule will be of interest, using whatever criteria of interest
apply for the given search.

If we restrict association rules to have a single condition on
the RHS, two search strategies are plausible,

1. for each potential RH S condition explore the space of
possible LH S conditions; or

2. for each potential LHS combination of conditions ex-
plore the space of possible RHS conditions.

The former strategy leads to the most straight-forward im-
plementation as it involves a simple iteration through a
straight-forward search for each potential RHS condition.
However, this implies accessing the count of the number of
cases covered by the LHS many times, once for each RHS
condition for which an LH S is considered. At the very least
this entails the computational overheads of caching informa-
tion. At the worst it requires a pass through the data each
time the value is to be utilized. While a pass through the
data has lower overheads when the data is stored in memory
rather than on disk, it is still a time consuming operation
that must be avoided if computation is to be efficient.

These considerations mitigate in favor of the second strat-
egy. We systematically explore the space of possible LHS
condition combinations, searching from the general to the
specific. During this process we track the set of condi-
tions that can appear on the RHS of a credible rule in
the search beyond the current point. We then organize the
search to attempt to minimize the number of LHS condi-
tion combinations that are explored. A single pass through
the data can be performed for every LHS combination dur-
ing which all statistics are collected for both the LHS and
each of the RHS conditions currently under consideration.
We prune from the search space any regions of potential
LHSs for which optimistic evaluation can ascertain no RHS
can result in a credible rule. The relative efficiency of this
approach against the Apriori approach will depend on the
cost of a pass through the data (lower favoring the new di-
rect search), the number of frequent itemsets (lower favoring
Apriori), and the number of LHS combinations that must
be explored (lower favoring direct search).

Table 1 displays the algorithm that results from applying
the OPUS search algorithm [18] to obtain efficient search for
this search task. The algorithm is presented as a recursive
procedure with three arguments,

CurrentLHS: the set of conditions in the LHS of the rule
currently being considered.

AvailableLHS: the set of conditions that may be added to
the LHS of rules to be explored below this point

AvailableRHS: the set of conditions that may appear on
the RHS of a rule in the search space at this point and
below

The initial call to the procedure sets CurrentLHS to {}, and
AvailableLHS and AvailableRHS to the sets of conditions
that are to be considered on the LHS and RHS of association
rules, respectively.

Step 2(c)iiA records each credible association rule as it is
evaluated. If the search seeks the m best rules on some
metric, once m rules have been added at this step, as new
rules are added, the rule with the lowest value on the metric
can be removed from the table of best rules. A rule will
not be credible if it fails other constraints, such as minimal
strength, or, once the table is full, has lower value on the

Table 1: The OPUS search algorithm adjusted for
search for association rules

Algorithm: OPUS_AR(CurrentLHS, AvailableLHS,
AvailableRHS)

com CurrentLHS is the set of conditions in the LHS
of the rule currently being considered.

com AvailableLHS is the set of conditions that may
be added to the LHS of rules to be explored
below this point

com AvailableRHS is the set of conditions that
may appear on the RHS of a rule in the search
space at this point and below

1. SoFar := {}
2. FOR EACH P in AvailableLHS

(a) NewLHS := CurrentLHS U {P}
(b) AvailableLHS := AvailableLHS - P

(c) IF pruning rules cannot determine that
Vx C AvailableLHS: Vy € AvailableRHS:
—credible(x U NewLHS — y) THEN
i. NewAvailableRHS = AvailableRHS
ii. FOR EACH Q in AvailableRHS

A. IF credible(NewLHS — Q) THEN
record NewLHS — Q

B. IF pruning rules determine that
Vx C AvailablelHS: x = {} V
—credible(x U NewLHS — Q) THEN

NewAvailableRHS :=
NewAvailableRHS - Q

iii. IF NewAvailableRHS # {} THEN

OPUS_AR (NewLHS, SoFar,
NewAvailableRHS)

iv. SoFar := SoFar U {P}

evaluation metric than the worst rule in the table of best
rules.

Step 2c prunes conditions from the space of those explored
on the LHS of a rule. Rather than exploring the space of pos-
sible LHS sets beyond the current one, optimistic techniques
with low computational overheads should be employed. For
example, if |CurrentLHSU{P}| is less than minimum sup-
port then no rule in the relevant space of possible rules
can achieve minimum support as all are specializations of
|CurrentLHS U {P}| and hence cannot have higher sup-
port.

Step 2(c)iiB prunes conditions from the space of those ex-
plored on the RHS of a rule. Optimistic rules with low
computational overheads should be employed here also. For
example, if |CurrentLHS U {P}| = 0 then no credible rule
will exist in the relevant space of possible rules.

For both of the pruning steps, the exact pruning rules to be
employed will depend upon the specific constraints for the
search.

Without pruning this algorithm will systematically explore
the entire search space. The pruning step removes from the
search space below a node all and only those rules contain-
ing the identified condition. It follows, therefore, that the
algorithm is complete, always finding the target association
rules, so long as the pruning rules employed are correct.

This algorithm is based on OPUSS rather than OPUSO. This
is because the more efficient OPUSO requires at least two
passes through the available LHS conditions at each node of
the search tree, one to select and sort the LHS conditions
and the second to make the recursive call for each LHS with
the appropriate second and third arguments. The overheads
of doing this are excessive for this search task because an
evaluation of which RHS conditions should be retained for
each LHS would need to be performed in both loops. If
there are a very large number of potential RHS conditions,
either calculating this each time or caching the information
between loops, will have very high overheads. For example,
if there are 1,000 conditions then there might be 1,000 LHSs
for each of which 1,000 potential RHS values need to be con-
sidered. Examining each of the resulting 1,000,000 possible
combinations twice would clearly be undesirable as would
caching such a large number of values. Thus, a single pass
approach is employed that sacrifices the efficiencies to be
gained from dynamic reordering on optimistic value but de-
livers far greater efficiency in processing a search node than
would otherwise be possible.

3. AN EXAMPLE

The largest dataset in the UCI machine learning repository
was subjected to association rule analysis using both the
Apriori algorithm and the above OPUS search. The Cover
Type data set was selected as the largest of the UCI machine
learning repository datasets. A data set from the machine
learning repository was used instead of one from the UCI
KDD repository due to ease of access by the researcher.
The Cover Type data set was already in a format that could
be directly employed by both the Apriori and OPUS search
software without further data manipulation.

The Cover Type data set was collected for the purpose of
predicting forest cover type from cartographic variables only
[6]. However, it is quite conceivable that association rule
analysis might also detect interesting inter-relationships be-
tween those cartographic variables in addition to between
them and the variable describing the forest cover. 581,012
cases are described by 55 attributes. The ten continuous val-
ued attributes were discretized into three sub-ranges with as
close as possible to equal numbers of cases within each sub-
range. The remaining 45 attributes were all binary. In con-
sequence there were 120 attribute-values, each of which was
treated as a separate condition for association rule analysis
purposes. Note that this treatment results in many frequent
items, as for each binary attribute at least one value must
occur for > 50% of the cases.

The publicly available apriori system developed by Borgelt
[6] was applied to the Cover Type dataset. This implemen-
tation of Apriori generates rules with a single RHS condi-
tion and multiple LHS conditions, thus exploring the same
space of rules as the OPUS based algorithm. It generated
14,567,892 itemsets when employed with its default settings
(maximum itemset size of 5; minimum coverage of 10% of
the data for the LHS of a rule; minimum strength of 80%).
The coverage of a set of conditions is the proportion of the
training set for which the conditions are true. The strength
of an association is the coverage of the union of the LHS and
RHS divided by the coverage of the LHS. From the mini-
mum LHS coverage and strength apriori can determine that
only itemsets with coverage of 8% or higher need be gener-
ated. This required 96 hours and 44 minutes CPU time on
a 350MHz PIII linux computer. It was not possible to com-
plete the generation of all association rules as the file size
limit was exhausted after 30,677,279 rules were generated.

The OPUS_AR algorithm was applied to the same data on
the same computer. The same search space was explored to
find the top 1000 associations on lift.

Four pruning rules were employed. To describe these we use
the following abbreviations.

e cover(s) is the coverage of the set of conditions s, the
proportion of the training set for which the conditions
in s are all true.

e strength(LHS — RHS) is the strength of associa-
tion rule LHS — RHS. strength(LHS — RHS) =
cover(LHS U RHS)/cover(LHS).

The first pruning rule, used at step 2c, prunes any condi-
tion P for which cover(NewLHS) < minLH Scover, where
minLH Scover is the minimum allowed LHS coverage. No
superset of such a LHS can exceed the minimum LHS cov-
erage as the coverage of a superset of conditions must be no
larger than the coverage of the original set of conditions.

The second pruning rule is used at step 2(c)iiB. It prunes
any RHS condition Q for which cover(NewLHS U {Q}) <
minRH Scover, where minRH Scover = minLH Scover X
min_strength and min_strength is the minimum allowed
value for association strength. This is the minimum allowed

coverage for LHSU RH S for any association. The justifica-
tion for this rule mirrors that for the previous.

The next pruning rule is also used at step 2(c)iiB. This rules
utilizes an optimistic assessment of the maximum value of
association strength for a rule with @Q as the consequent
in the search space below the current node. First we de-
termine the maximum number of specialization operations
that may be applied to the current node to reach a node
in the search space below the current node. max_spec =
min(max_LHS_size — |[NEWLHS|,|SOFAR|), where

max_LHS _size is the maximum number of conditions al-
lowed in a LHS. There may be no more specializations than
there are conditions available to specialize by (|[SOFAR]).
Nor may there be more specializations than allowed by the
constraint on the number of conditions permitted in a LHS.

Next we determine an upper limit on the maximum reduc-
tion in coverage that may result from the addition of any
one condition to the LHS of an association in the search
space below the current node. All associations in this search
space cover subsets of the items covered by the associa-
tion for the current node. Hence, no condition may re-
move more items from the cover of an association in that
search space than it removes from the cover of the associ-
ation for the current node. Hence max_cover_reduction =
maz(cover(LHS) — cover(LHS U {c}) : ¢ € SOF AR).

The next step is to determine the minimum coverage for the
LHS of a rule in the search space below the current node. It
is not possible for the coverage to be reduced by more than
maz_spec * mazx_cover_reduction. Nor is it possible for it
to be reduced below the minimum allowed LHS coverage.
Hence, min_cover = max(minLH Scover,cover(LHS) —
maz_spec X max_cover_reduction).

If min_cover < cover(LHS U {Q@}) then the optimistic as-
sessment of the maximum strength (opt_strength) for an
association with Q as consequent that may lie below the
current node is 1.0 on the basis that the specializations may
remove from the cover of LHS all cases that are not covered

by Q.

Otherwise, opt_strength = cover(LHS U {Q})/min_cover,
the result that would be obtained if all reduction in coverage
removed cases covered by the LHS but not the RHS of the
associations.

If opt_strength < min_strength, where min_strength is a
constraint on the minimum allowed value for strength, then
the RHS condition 3 can be pruned.

The final pruning rule also applies at step 2(c)iiB. This rule
determines an optimistic value for lift for associations in the
search space below the current node that have Q as a conse-
quent. Lift is maximized when strength is maximized. Thus,
opt lift = opt_strength/cover({Q}). If opt_li ft < min_lift,
where min_lift is the minimum allowed lift, then the RHS
condition Q can be pruned. Note that min_lift could be
a global constraint on associations, but may also be deter-
mined dynamically. In the current application, min_lift was
initialized to zero. However, once the target number of as-
sociations had been added to the table of best association

rules, at step 2(c)iiA, min_lift was progressively updated
to equal the minimum value of lift for a rule in the table.
Hence, as the search progressed and the overall quality of the
associations in the table improved, more stringent pruning
could occur.

Using these pruning rules, a total of 384,312 association
rules were evaluated and only 84,639 distinct antecedents
considered. This took 48 minutes and 9 seconds CPU time.
To find the top 100 associations on lift required the explo-
ration of 204,264 association rules involving 51,678 distinct
antecedents and took 26 minutes and 49 seconds CPU time.

4. DISCUSSION

The above example demonstrates that using OPUS search
and pruning the search space on the basis of inter-relationships
between itemsets, it can be feasible to perform efficient as-
sociation rule analysis on data sets for which the Apriori
approach is infeasible. Whether or not this is useful de-
pends, of course, upon whether there are inter-itemset con-
straints that should be applied for the given association rule
application. It seems plausible, however, that for many ap-
plications an upper-limit on the number of association rules
to be generated will be appropriate, and this can be all that
is required to enable efficient search.

Further search constraints, such as SC-Optimality [3], might
usefully be employed to deliver even greater computational
efficiency within the OPUS_AR framework.

That OPUS_AR has wider application than the single dataset
examined herein is demonstrated by the commercial associ-
ation rule discovery system Magnum Opus®. This system,
that utilizes the OPUS_AR algorithm, is routinely employed
for commercial association rule discovery from datasets con-
taining millions of cases each described by tens of thousands
of variables.

Association rule discovery has been firmly rooted in the do-
main of market basket analysis. However, prior to the pop-
ularization of market basket analysis, a number of machine
learning researchers were exploring techniques with many
similarities to association rule discovery. These researchers
were exploring the use of complete or extensive search to
form large rulesets in the belief that such rulesets could pro-
vide insight or other utility beyond that obtained from the
small rulesets normally generated by machine learning sys-
tems [8, 12, 14, 16]. The current work can be viewed as
a direct descendent of this research effort, extending it by
utilizing the efficient OPUS search algorithm and by utiliz-
ing metrics of rule value developed within the field of basket
analysis.

5. CONCLUSIONS

I have presented an algorithm for association rule analy-
sis based on the efficient OPUS search algorithm. This ap-
proach is distinguished from the widely utilized Apriori algo-
rithm by its ability to use inter-relationships between item-
sets to constrain the number of itemsets that are considered.
It is distinguished from a number of recent rule mining algo-

®Magnum Opus is distributed by Rulequest Pty Ltd,
http://www.rulequest.com.

rithms, that have been presented as alternatives to Apriori
[4, 3, 10], by exploring associations containing all available
conditions as consequents. However, the approach has the
potential disadvantage, compared with Apriori, that it re-
quires many more passes through the data. Where the data
can be maintained in main memory this need not be a se-
rious handicap. The availability of very large memory com-
puters means that quite sizeable data sets can be retained
in main memory. Where the data cannot be maintained in
main memory, however, this approach to association rule
discovery is unlikely to be feasible.

A simple example has been used to demonstrate the poten-
tial advantage of the new approach in some applications.
Analysis of the Cover Type data set requires generation and
analysis of 14,567,892 itemsets when the Apriori algorithm
is utilized, even when the itemset size is restricted to five. In
contrast, finding the 1000 association rules with the highest
values of lift within the same constraints required evalua-
tion of only 384,312 rules and 84,639 distinct antecedents.
With the implementations employed, the OPUS search was
completed with all 1000 rules identified in less than 50 CPU
minutes while it took apriori more than 96 CPU hours just
to generate the itemsets. This starkly illustrates the poten-
tial advantages of the new approach.

Acknowledgements

I am very grateful to Christian Borgelt for making his excel-
lent implementation of the Apriori algorithm publicly avail-
able. T am also grateful to Jock A. Blackard and the UCI
machine learning repository librarians Catherine Blake and
Chris Mertz for providing access to the Cover Type data.

6. REFERENCES

[1] R. Agrawal, T. Imielinski, and A. Swami. Mining
associations between sets of items in massive
databases. In Proceedings of the 1993 ACM-SIGMOD
International Conference on Management of Data,
pages 207-216, 1993.

[2] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and
A. 1. Verkamo. Fast discovery of association rules. In
U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and
R. Uthurusamy, editors, Advances in Knowledge
Discovery and Data Mining, pages 307-328. AAAI
Press, Menlo Park, CA., 1996.

[3] R. J. Bayardo, and R. Agrawal. Mining the most
interesting rules. In Proceedings of the Fifth ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 145-154, 1999.

[4] R. J. Bayardo, R. Agrawal, and D. Gunopulos.
Constraint-based rule mining in large, dense
databases. Data Mining and Knowledge Discovery,
4(2/3):217-240, 2000.

[6] J. A. Blackard. Comparison of Neural Networks and
Discriminant Analysis in Predicting Forest Cover
Types. PhD thesis, Colorado State University
Department of Forest Sciences, Fort Collins, Colorado,
1998.

[6]

[9]

[10]

[11]

[14]

[15]

C. Borgelt. apriori. (Computer Software)
http://fuzzy.cs.Uni-Magdeburg.de/ borgelt/, February
2000.

P. Clark and T. Niblett. The CN2 induction
algorithm. Machine Learning, 3:261-284, 1989.

S. H. Clearwater and F. J. Provost. RL4: A tool for
knowledge-based induction. In Proceedings of Second
Intl. IEEE Conf. on Tools for AI, pages 24-30, Los
Alamitos, CA, 1990. IEEE Computer Society Pres.

R. S. Michalski. A theory and methodology of
inductive learning. In R. S. Michalski, J. G. Carbonell,
and T. M. Mitchell, editors, Machine Learning: An
Artificial Intelligence Approach, pages 83-129.
Springer-Verlag, Berlin, 1983.

S. Morishita and A. Nakaya. Parallel
branch-and-bound graph search for correlated
association rules. In Proceedings of the ACM SIGKDD
Workshop on Large-Scale Parallel KDD Systems,
volume LNAT 1759, pages 127-144. Springer, Berlin,
2000.

J. S. Park, M.-S. Chen, and S. Y. Philip. An effective
hash based algorithm for mining assiociation rules. In
Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages 175-186.
ACM Press, 1995.

F. Provost, J. Aronis, and B. Buchanan. Rule-space

search for knowledge-based discovery. CIIO Working
Paper IS 99-012, Stern School of Business, New York
University, , NY, NY 10012, 1999.

J. R. Quinlan. Generating production rules from
decision trees. In IJCAI 87: Proceedings of the Tenth
International Joint Conference on Artificial
Intelligence, pages 304-307, Los Altos, 1987. Morgan
Kaufmann.

R. Rymon. Search through systematic set
enumeration. In Proceedings KR-92, pages 268-275,
Cambridge, MA, 1992.

A. Savasere, E. Omiecinski, and S. Navathe. An
efficient algorithm for mining association rules in large
databases. In Proceedings of the 21st International
Conference on Very Large Data Bases, pages 432-444.
Morgan Kaufmann, 1995.

R. Segal and O. Etzioni. Learning decision lists using
homogeneous rules. In AAAI-9/, Seattle, WA, 1994.
AAALI press.

H. Toivonen. Sample large databases for association
rules. In Proceedings of the 22nd International
Conference on Very Large Data Bases, pages 134-145.
Morgan Kaufmann, 1996.

G. I. Webb. OPUS: An efficient admissible algorithm
for unordered search. Journal of Artificial Intelligence
Research, 3:431-465, 1995.

[19] G.I. Webb. Inclusive pruning: A new class of pruning

rule for unordered search and its application to
classification learning. In Proceedings of the
Nineteenth Australasian Computer Science
Conference, pages 1-10, Melbourne, January 1996.

