Discovering associations with numeric variables

Geoffrey I. Webb
School of Computing and Mathematics
Deakin University
Geelong, Vic. 3217, Australia
webb@deakin.edu.au

ABSTRACT

This paper further develops Aumann and Lindell’s [3] pro-
posal for a variant of association rules for which the conse-
quent is a numeric variable. It is argued that these rules
can discover useful interactions with numeric data that can-
not be discovered directly using traditional association rules
with discretization. Alternative measures for identifying in-
teresting rules are proposed. Efficient algorithms are pre-
sented that enable these rules to be discovered for dense
data sets for which application of Auman and Lindell’s al-
gorithm is infeasible.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications—
data mining; 1.2.6 [Artificial Intelligence]: Learning; H.3.3
[Information Storage and Retrieval]: Information Search
and Retrieval

General Terms

Impact Rule, Association Rule, Numeric Data, Search

1. INTRODUCTION

Association rules [1] have demonstrated the ability to de-
tect interesting associations between fields in a database.
However, they utilize frequency statistics and hence have
limited utility for quantitative analyses. In particular, they
cannot directly segment data to optimize a numeric tar-
get. Aumann and Lindell [3] propose rule structures that
associate conditions (an antecedent) with an impact upon
a target numeric variable. Somewhat confusingly, they use
the name quantitative association rules, previously used by
Srikant and Agrawal [17] to describe techniques for auto-
matic discretization for association rules. This paper presents
extensions to Aumann and Lindell’s [3] proposal, which is
renamed impact rules in order to distinguish it from the
work of Srikant and Agrawal. Impact rules provide a form

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

To appear in KDD-2001 San Francisco, CA, August, 2001.
Copyright 2001 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

of data mining analysis for detecting useful interactions be-
tween combinations of data selectors and a numeric variable.

I characterize impact rules as follows. A training set is a
finite set of records, where each record is an element to which
we apply Boolean predicates called conditions, and which
is associated with a numeric value called the target. An
impact rule consists of a conjunction of conditions, called the
antecedent, and one or more statistics, called the consequent,
describing the impact on the target of selecting the training
set records that satisfy the antecedent.

Impact rule analysis may seek a finite number n of impact
rules that individually optimize some function of quality,
usually one of the rule statistics. Alternatively, as proposed
by Aumann and Lindell, it may seek all impact rules that
satisty specified constraints.

The following provides a simple example of a hypothetical
impact rule.

prev-response>0.2 & region=E & socio-class=F
— profitability: count=105211, mean=12.51,
sum=1316190.61, max=205.31, min=-1.05

In this example, the antecedent is the three conditions
that precede the arrow (—), the target is profitability, and
the consequent comprises statistics summarizing the impact
on the target of selecting the records that satisfy the an-
tecedent. Such a rule might be valuable for identifying
classes of customers from a mailing list that might be tar-
geted most profitably in a mailing campaign.

Aumann and Lindell [3] propose that such rules be found
by identifying frequent itemsets [1] and then, treating each
as an antecedent, calculating the appropriate statistics for
the target. An itemset is a set of conditions. A frequent
itemset is an itemset that covers at least a predefined mini-
mum number of training set records. The primary difficulty
with this approach is that frequent itemset generation is
only feasible for sparse data [5]. This paper presents an
alternative strategy for impact rule discovery, utilizing the
OPUS search algorithm [19], that has lower computational
requirements than a frequent itemset approach and which
avoids in many cases the requirement that arbitrary con-
straints (namely, minimum cover) be imposed on the rules
that be considered.

Aumann and Lindell [3] suggested that distribution based
measures of interestingness be utilized, such as the devia-
tion of the mean or variance of the target for the records
selected by the antecedent from the mean or variance of the
training set. I propose alternative measures of interesting-
ness that are likely to be useful in a wide range of practical
applications.

2. ALTERNATIVE NUMERIC DATA MIN-
ING TECHNIQUES

It is valuable to contrast impact rules to alternative data
mining algorithms that address numeric data. These fall
into two categories, regression techniques and association
rules using discretization of numeric values.

Regression techniques can be used to predict a numeric
value for a given set of input parameters. Examples of such
techniques include linear regression, regression trees [9], and
neural networks. The relationship between regression tech-
niques and impact rules is like the relationship between clas-
sification rules and association rules. Regression techniques
allow a prediction to be made about a target value for a
given data point. However, they do not provide an explicit
segmentation of the data on the basis of performance on the
target value. For example, regression techniques may allow
the user to predict for a given customer the likely profitabil-
ity of that customer, but they will not provide an explicit
description of a segment of customers for whom profitabil-
ity is particularly high. In contrast, impact rules provide a
characterization of a segment of the data which has a par-
ticular impact on the target variable, but do not support
prediction of numeric values.

One approach that has been employed for segmentation
with numeric data is association rule discovery with dis-
cretization. Under this strategy, numeric data fields are con-
verted to discrete valued data fields by aggregating values
within set ranges. A particularly sophisticated approach to
this is proposed by Srikant and Agrawal [17]. Their quan-
titative association rule discovery algorithm performs dy-
namic discretization, forming appropriate ranges on numeric
attributes during the association discovery process.

However, even such a sophisticated approach is limited in
its utility with respect to segmenting data with respect to
a numeric value. Provision of statistics relating to the fre-
quency of one sub-range of values of a target variable does
not directly address the issue of the impact on the general
distribution of values for that variable. For example, a data
segment that has increased frequency for profitability =
high, irrespective of the definition of high, could have a
decreased mean value for high, due to a corresponding in-
creased frequency of extremely low values for the target.
Likewise, two associations with identical frequencies of some
specific sub-range of profitability may have dramatically dif-
ferent mean values of profitability. Similar comments apply
to statistics other than the mean, such as the sum, mode,
or median, that might be of interest. There are clear advan-
tages to segmenting on the basis of the precise distribution
of a numeric value rather than a distribution distorted by
discretization.

3. THE OPUS SEARCH ALGORITHM

The OPUS search algorithm [19] provides a framework
for efficient search for impact rules. It enables systematic
search through the combinations of conditions that may ap-
pear in an antecedent, pruning the search space according to
the requirements of a particular search. OPUS was explic-
itly designed to provide efficient search through such search
spaces. It improves upon previous algorithms for rule search
[10, 14, 15, 16] by substantially increasing the amount of the
search space that is pruned by each pruning action. It has
been successfully applied to learning both classification rules

{a}
{p}—{a,b}

{a,c}
-{} {c}{{b, c}—{a,b, c}

{a,d}
{d} {b, d}—{a7 b, d}
{c,d}-[{a7 c,d}

{b7 c) d}_{a’ b) C7 d}

Figure 1: A fixed-structure search space

{a}
{p}— x

{a,c}
-{ {c}{{b, cl—{a,b, c}

{a,d}
{d} {b,d}—{a,b, d}
feap (o)

{b7 CJ d}_{a’ bJ c7 d}

Figure 2: Pruning a branch from a fixed-structure
search space

[18] and association rules [20].

OPUS was developed to provide efficient search for com-
binations of elements that optimize some given metric. Pre-
vious algorithms [10, 13, 14, 15, 16] relied upon assigning an
arbitrary order to the elements that was then used to struc-
ture the search space so that each combination of elements
was considered just once. A search space with four elements
(a, b, ¢, and d) structured in this manner is presented in
Fig. 1.

Such a search space is exponential in size. For m elements
the search space is 2™. In many data mining contexts where
the elements are the conditions that may appear in the an-
tecedent of a rule, m may exceed 10,000. Clearly it will
be possible to explore such a search space only if it can be
pruned. Under fixed structure search, algorithms typically
seek to identify branches that cannot contain a solution,
and prune those branches. Under this search strategy, prun-
ing the nodes below {b} removes only one node from the
search space, as illustrated in Fig. 2.

The identification of branches to be pruned requires prun-
ing rules. These identify regions of the search space that can-
not contain a solution. In rule discovery search, many prun-
ing rules consider for a given node N whether any search
node in the space below N that contains a given condition
C can be a solution. Thus, a pruning rule identifying that
no node containing b may contain a solution would enable
pruning the nodes below {b}. This is the pruning achieved
by the previous search algorithms. In this case, the ideal
outcome would be the removal from the search space of all
nodes containing b, as illustrated in Fig 3. This approxi-

"What constitutes a solution will depend upon the search
objective. For example, in association rule discovery, a solu-
tion might be any set of conditions that is a frequent itemset.

{a)
{b}— x
RN
{a.q)

e x =

{c7 d}{{a’ ;: d}_

X

Figure 3: Pruning all nodes containing a single op-
erator from a fixed-structure search space

mately halves the remaining search space?.

The OPUSS search strategy [19] achieves this with mini-
mal overheads by maintaining at each node a set of search
operators® that may be applied below that node, and delet-
ing from that set any operator that cannot lead to a so-
lution below the current node. This algorithm guarantees
that every pruning action approximately halves the remain-
ing search space. This algorithm has been demonstrated to
achieve dramatic reductions in compute time in comparison
to previous search algorithms for these search spaces and to
support efficient complete search of a number of standard
rule discovery search tasks [19].

4. SEARCH FOR IMPACT RULES

Using OPUS for impact rule discovery, search may be con-
strained to find the top n impact rules on some measure, and
pruning may remove branches that cannot lead to an impact
rule that satisfies that constraint. For many measures, this
constraint is sufficient to provide efficient search. Where
the measure does not facilitate effective pruning, additional
constraints, such as minimum cover, can be employed.

Table 1 presents OPUS_IR, an impact rule discovery al-
gorithm based on OPUS. Current is the set of conditions
in the antecedent of the rule currently being considered.
Auwailable is the set of conditions that may be added to the
antecedent of rules to be explored below this point. The al-
gorithm is called with initial arguments Current = {} and
Awvailable = the set of all available conditions. The predi-
cate solution(X) is true if and only if X is an antecedent
of one of the impact rules sought in the search. For exam-
ple, if the algorithm is invoked to discover the 1000 impact
rules with the highest impact, then only the 1000 impact
rules with the highest impact are solutions. The algorithm
records at Step 2b all impact rules encountered that might
be solutions. As rules are recorded at Step 2b, only the top
n so far are retained. When the search terminates, those
retained will be the n best impact rules from the search
space.

The pruning rules used at Step 2b will vary depending
on the objectives of the search. The pruning rules below

2Tt does not exactly halve the remaining search space as the
root node has already been visited, as, depending upon the
search technique, may have the node containing ¢, and hence
these nodes should not be counted as part of the remaining
search space.

3In rule search each condition can be considered a search
operator. Formally, the search operator is the inclusion of
the condition in the set of conditions associated with a node.

Table 1: The OPUS_IR algorithm

Algorithm: OPUS_IR(Current, Available)

1. SoFar := {}
2. FOR EACH P in Available

(a) New := Current U {P}

(b) IF pruning rules cannot determine that Vx
C Available: -—solution(x U New) THEN

record New — relevant stats
0PUS_IR(New, SoFar)
SoFar := SoFar U {P}

END IF

END FOR

are utilized in the current work. The following definitions
are used: targ is the mean of the target for all records;
value(z) is the value of the target for a record z; cover(X)
is the set of records for which the condition X is true;
ante(ir) is the antecedent of impact rule ir; mean(ir) is the
mean value of the target for records covered by ante(ir);
impact(ir) = (mean(ir) — targ) x |cover(ante(ir))|; and
I Rule,, is the impact rule with the nth highest mean (or
impact if searching by impact) of those recorded so far at
Step 2b. Note that for a superset C' of set of conditions C,
cover(C") C cover(C).

e For all searches, if New covers no records then no su-
perset of New may be a solution as no superset of New
may cover any records.

e When searching for the n impact rules with high-
est impact, after n rules have been recorded at
Step 2b7 if ZzEco’ueT(Ne'w):value(z)zm(value(w) -
targ) < impact(IRule,) then no superset of New
may be a solution because the greatest possible im-
pact of a subset of cover(New) will be for the sub-
set that excludes all records with value less than targ.
Thus ZzEco’ueT(Ne'w):value(z)zm(value(w) —targ) sets
an upper limit for the impact of a superset of New and
no superset of New may be a solution if this value is
less than the impact of the n‘" best rule discovered so
far.

e When searching for the n impact rules with the high-
est sum, after n rules have been recorded at Step 2b,
if ZIECOWT(NM):WIW(Z)ZO value(z) < sum(lRuley)
then no superset of New may be a solution because the
greatest possible sum for a subset of cover(New) will
be for the subset that excludes all records with value
less than 0. Thus 3, c over(New)vatue(z)>0 Value(T))
sets an upper limit for the sum for a superset of New
and no superset of New may be a solution if this value
is less than the sum for the n** best rule discovered so
far.

e If a constraint, minsup, has been set on the minimum
number of records that the antecedent of an impact

rule may cover, if |cover(New)| < minsup then no
superset of New may be a solution as for every S D
New, |cover(S)| < |cover(New)|.

4.1 Completeness

THEOREM 1 (CORRECTNESS). OPUS_IR records all so-
lution impact rules.

Proor. That OPUS IR records all solution impact rules
follows from the completeness of the underlying OPUS algo-
rithm. Without pruning OPUS will enumerate all combina-
tions of conditions. Pruning removes from the available con-
ditions only those that cannot participate in the antecedent
of a solution impact rule in the search space below the cur-
rent node. Hence, all solutions must be recorded. [

4.2 Relative complexity

The impact rule search space is exponential on the num-
ber of conditions and requires very effective pruning for effi-
cient exploration. The dominant costs are scanning the data
to determine whether a potential itemset is frequent or to
accumulate its impact rule statistics. In the current work
we assume that the data is loaded into the host computer’s
memory. We must either iterate through the records and
for each record iterate through each candidate itemset, or
iterate through the candidate itemsets and for each item-
set iterate through each record. The former is the frequent
itemset approach and the latter is employed by OPUS_IR.
The frequent itemset approach was developed for process-
ing data using database accesses. Hence minimizing the
number of data accesses was important. When the data is
loaded in memory, however, the computational costs of each
strategy will be equivalent. The frequent itemset approach
involves many itemset lookup actions whereas the OPUS_IR
approach involves many record lookup actions.

Aumann and Lindell [3] propose that frequent item-
sets be generated using the Apriori algorithm [2], and
then impact rules be generated for the frequent item-
sets. The frequent itemset approach first generates all
itemsets {x1,...,Zn—2,Zn—1,2n} of size n such that both
{z1,...;xn-1} and {z1,...,zn_2,2z,} are frequent itemsets.
In a second step it then prunes from the resulting any item-
set for which a subset is not a frequent itemset. This requires
n — 2 lookups as it is already known that {z1,...,xn—1} and
{z1,...,Tn_2,zn} are frequent itemsets, and hence it is only
necessary to check the subsets formed by deleting z1 to z,—2.
The main computational burden imposed by this approach
is not the lookup, but rather the memory requirement of
storing all frequent itemsets of size n and size n — 1. As we
will see, the numbers of such itemsets can be prohibitive for
many real world data sets.

THEOREM 2 (ITEMSET GENERATION). With prun-
ing on minimum cover only and assuming equivalent
ordering of conditions, OPUS_IR also generates all item-

sets {x1,...,Tn—2,Tn_1,Tn} of size n such that both
{z1, .y Tn_2,2n-1} and {z1,..,Tn_2,zn} are frequent
itemsets.

Proor. Itemset {x1,...,Zn—2,Tn—1,Zn} will be generated
as a child of {x1,..., xn—2,xn—1}*. Tt will only be generated

4See Figure 1. Note that the order is arbitrary under each
search strategy, so equivalent orderings must be assumed, in
this case: n =4, v1 =d, Tn—2 = ¢, Tn—1 = b, and =, = a)

if z,, € Available for the call to OPUS_IR with Current =
{z1,...;Zn—2,2n—1}. This call is made by the activation
of OPUSIR with Current = {x1,...,2n—2}. This acti-
vation of OPUS IR will generate both {z1,...,Zn—2,Zn-1}
and {z1,...;Zn—2,Zn}. If a set of attribute values New is
not a frequent itemset then the pruning rules can deter-
mine that no specialization of New can be a frequent item-
set, and hence that Yz C Awailable : —solution(z U New).
As a result, if {z1,...,Zn—2,2n} is not a frequent item-
set then z, will not be added to SoFar and hence will
not be passed as a member of Available to the activation
with Current = {z1,...,Zn—2,Zn—-1}. If {21, ..., Zn—2,Zn—1}
is not a frequent itemset then there will be no call to
OPUSIR with Current = {z1,...,%n—2,Zn—1}. Either
way, {1,...,Tn—2,Zn_1,Zn} will not be generated. If
both are frequent itemsets then the call will be made and
Tn—1 will be passed as a value in Awailable and hence
{z1,...;Zn—2,Tn-1,2,} will be generated. [

If other pruning rules are used in addition to pruning by
minimum cover, OPUS_IR may consider even fewer itemsets.
Irrespective of this issue, OPUS_IR avoids the large mem-
ory requirements of a frequent itemset approach by avoid-
ing the need to store all frequent itemsets. Where the other
constraints are sufficiently powerful, OPUS_IR further al-
lows search without the need to specify a minimum cover,
thus avoiding the risk that useful impact rules will fail to be
discovered because they fall outside the specified arbitrary
constraint on cover.

5. INTERESTINGNESS MEASURES

Association rule discovery will often generate very large
numbers of associations. This imposes a large burden on
the data analyst who must determine manually which of
these associations are of interest. An active area of research
is the identification of suitable measures of interestingness
that might be applied to automatically filter associations [6,
11, 12]. This is also of importance for impact rule discovery.

Aumann and Lindell [3] suggested that distribution mea-
sures be used to measure interestingness for impact rules.
Their examples include the deviation from that of the train-
ing set as a whole of the mean or variance of the target for
the records selected by the antecedent. These measures will
tend to identify groups of ‘scientific’ interest, in that the
groups differ from the norm. In commercial applications,
however, identifying groups that are different will often not
be of primary importance. Rather, the primary objective
will be to identify groups that contribute most (or least) to
some outcome, such as profit or cost. Identifying a group
with a high mean value does not equate to identifying a
group that contributes a large amount to the total, as the
group may be small. In consequence, I argue that aggregate
measures will often be of greater interest, such as the sum
or the impact (as defined in Section 2). These measures will
evaluate the total contribution of the group selected by the
antecedent. The sum will tend to be of interest where the
target directly measures the end objective, such as the true
profit from a transaction. The impact will tend to be of
interest where the target is an intermediate variable, such
as the income from a transaction. This is because it favors
large groups for which the individuals each contribute more
than average. While this paper considers search for impact
rules that maximize these measures it is trivial to recast it

Table 2: Data sets

name records attributes target
abalone 4177 8 Rings
covtype 581012 54 Elevation
housing 506 13 MEDV
ipums.la.99 88443 60 inctot
kddcup98 52256 480 TargetD
ticdata2000 5822 85 CARAVAN
Table 3: Results
data set CPU time item sets
abalone 0:0:1 2667
covtype 17:5:55 1158671
housing 0:0:1 3797
ipums.la.99 0:12:15 120787
kddcup98 0:17:46 958160
ticdata2000 0:13:7 2508494

to seek impact rules that minimize the measures.

6. EVALUATION

To demonstrate the applicability of the proposed algo-
rithm, data sets with appropriate numeric targets were iden-
tified from the UCI knowledge discovery and machine learn-
ing repositories [4, 7). Table 2 lists for these data sets the
name, the number of records, the number of attributes (ex-
cluding the target), and the name of the target attribute. As
the conditions in the antecedent must be Boolean, numeric
attributes other than the target were discretized into three
categorical values applying to as close as possible to equal
numbers of records each. Each condition tested whether an
attribute took a specific value.

OPUS IR was implemented as a DOS program and run
on an 800MHz PIII Windows PC with 256 Mb RAM and
approximately 660Mb virtual memory. This implementation
was applied to each data set to find the 1000 impact rules
with the highest impact on the target. Impact was chosen
as the metric of interestingness as only for the ipums.la.99
data set did the target have negative values and hence for
the other data sets the sum would tend to be maximized by
the impact rules with the greatest cover. Therefore, search
by impact is the more challenging of the two search tasks.
The number of conditions in the antecedent was limited to a
maximum of 5. This was achieved by suppressing recursive
calls to OPUSIR below depth 5. Table 3 lists the CPU
time (hours:minutes:seconds) and the number of item sets
for which statistics were evaluated by the system for each of
these tasks.

6.1 Example rules

To illustrate the technique the highest value impact rule
for each data set is presented. Each rule is preceded by the
summary population statistics for the data set. The results
for the data sets from the KDD Repository are particularly
notable. The rule for ipums.la.99 selects a segment con-
taining 5% of the data that accounts for over 25% of the
target (total income). The rule for kddcup98 also selects a

segment containing 5% of the data. However, this rule ac-
counts for over 99% of the target (amount donated). The
rule for ticdata2000 selects a segment containing 38% of the
data. This segment accounts for 64% of the target (caravan
insurance). Each of these rules identifies a relatively small
group that contributes a disproportionately large amount of
the total for the target variable.

Abalone: Rings: mean=9.9; min=1; max=29; sum=41493

Shell weight > 0.2940 — Rings: mean=12.0; min=6;
max=29; sum=16680; coverage=0.333 (1390);
impact=2927.2

Covtype: Elevation: mean=2959.4; min=0; max=3858;
sum=1719423451

WA4=0 & ST04=0 & ST10=0 & ST11=0 & ST12=0 —
Elevation: mean=3042.1; min=0; max=3858;
sum=1449198640; coverage=0.820 (476381);
impact=39430149.3

Housing: MEDV: mean=22.5; min=>5; max=50;
sum=11402

LSTAT<8.43 - MEDV: mean=31.0; min=12; max=>50;
sum=>5239; coverage=0.334 (169); impact=1427.0

ipums.la.99: inctot: mean = 15121.7; min=-16451;
max=383762; sum=1337406371

ftotinc>50000 & momloc=00 & nsibs=0 & relateg=01 &
incwage>36000 — inctot: mean=79964.0; min=30001;
max=383762; sum=357119224; coverage=0.050 (4466);
impact=289585673.0

kddcup98: TARGET D: mean = 0.8; min=0; max=200;
sum=41018

0<POP90C1<99 & TARGET_B>0 & 0<HPHONE D<1
& RFA 2R=L — TARGET_D: mean=15.5; min=1;
max=200; sum=40889; coverage=0.050 (2638);
impact=38947.7

ticdata2000: CARAVAN: mean=0.1; min=0; max=1;
sum=348

PWALAND Contribution third party insurance
(agriculture)=0 & PPERSAUT Contribution car
policies=6 & PVRAAUT Contribution lorry policies=0 &
PWERKT Contribution agricultural machines policies=0
& 0 < AWAPART Number of private third party insurance
<1 — CARAVAN: mean=0.1; min=0; max=1; sum=223;
coverage=0.383 (2229); impact=125.8

6.2 The frequent itemset approach

Aumann and Lindell’s [3] algorithm finds frequent item-
sets and then calculates the desired statistics for the tar-
get with respect to each frequent itemset. This approach is
limited by the requirement to store all frequent itemsets in
memory during frequent itemset generation. Where the data
is not sparse, the number of frequent itemsets will be very
large and frequent itemset storage and access will dominate
the computation. To compare the feasibility of this approach
with that of OPUSR, Christian Borgelt’s [8] Apriori im-
plementation was compiled using the same compiler as used

Table 4: Frequent Itemset Generation

data set CPU time item sets not found
abalone 0:0:1 2399 374
covtype 67:0:43 16451508 0
housing 0:0:1 24020 4
ipums.la.99 — 0
kddcup98 — 498
ticdata2000 — 0

in the experiments above and run on the same computer
to generate the frequent itemsets of size no more than five
with cover no less than 0.05. Note that this latter constraint
means that only a subset of the search space explored by
OPUS R is being explored by Apriori. The results are pre-
sented in Table 4. For each dataset this table presents the
time taken (hours:mins:secs), the number of frequent item-
sets discovered, and the number of impact rules discovered
by OPUS_R that are not included within the search space
Apriori is exploring. These rules are not included in the
search space because their antecedents cover less than 0.05
of the training data.

Note that this evaluation could not be completed for half
the data sets either due to the computer running out of vir-
tual memory (kddcup98 and ticdata2000) or the excessive
compute time required (ipums.la.99 was halted after 148
hours). For the abalone data, approximately one third of
the 1000 most interesting impact rules cover less than 0.05
of the data and hence are not found by the frequent item-
set approach. For kddcup98, with minimum cover set to
0.05, even if the frequent itemset approach had not run out
of memory it would not have found 498 of the 1000 most
interesting impact rules.

This illustrates the dilemma that faces any attempt to ap-
ply the frequent itemset approach. A minimum cover must
be specified. Setting it too low can make computation in-
feasible. Setting it too high can lead to missing important
itemsets. As the kddcup98 data illustrates, there may be no
minimum cover value that satisfies both objectives.

7. CONCLUSIONS

Impact rules provide association rule like knowledge dis-
covery for numeric data. This technique directly evaluates
the impact of conditions on a numeric variable in a manner
that cannot be satisfactorily emulated by association rules
with discretization. This paper presents efficient techniques
for impact rule discovery. It shows that these techniques can
discover impact rules in contexts for which application of
frequent itemset techniques is infeasible. It further demon-
strates that these techniques avoid the need to set arbitrary
constraints on the cover of the antecedent of an impact rule,
hence avoiding the risk of failing to detect interesting rules.

8. REFERENCES

[1] R. Agrawal, T. Imielinski, and A. Swami. Mining
associations between sets of items in massive
databases. In SIGMOD-93, pages 207-216, 1993.

[2] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules. In VLDB-9/4, Santiago, Chile, 1994.

[3] Y. Aumann and Y. Lindell. A statistical theory for

[4]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

quantitative association rules. In KDD-99, pages
261-270, 1999.

S. D. Bay. The UCI KDD archive.
[http://kdd.ics.uci.edu] Irvine, CA: University of
California, Department of Information and Computer
Science., 2001.

R. J. Bayardo. Brute-force mining of high-confidence
classification rules. In KDD-97, pages 123-126. AAAI
Press, 1997.

R. J. Bayardo and R. Agrawal. Mining the most
interesting rules. In KDD-99, pages 145-154, 1999.
C. Blake and C. J. Merz. UCI repository of machine
learning databases. [Machine-readable data
repository]. University of California, Department of
Information and Computer Science, Irvine, CA.; 2001.
C. Borgelt. Apriori. [Software]. School of Computer
Science Otto-von-Guericke-University of Magdeburg,
Magdeburg, Germany, 2001.

L. Breiman, J. H. Friedman, R. A. Olshen, and C. J.
Stone. Classification and Regression Trees. Wadsworth
International, Belmont, CA, 1984.

S. H. Clearwater and F. J. Provost. RL4: A tool for
knowledge-based induction. In TAI-90, pages 24-30,
Los Alamitos, CA, 1990. IEEE Computer Society
Press.

M. Kamber and R. Shinghal. Evaluating the
interestingness of characteristic rules. In KDD-95,
pages 263-266, 1995.

M. Klemettinen, H. Mannila, P. Ronkainen,

H. Toivonen, and A. Verkamo. Finding interesting
rules from large sets of discovered associationd rules.
In Proc. 8rd Int. Conf. Information and Knowledge
Management, pages 401-407, 1999.

S. Morishita and A. Nakaya. Parallel
branch-and-bound graph search for correlated
association rules. In Proc. ACM SIGKDD Workshop
on Large-Scale Parallel KDD Systems, volume LNAI
1759, pages 127-144. Springer, Berlin, 2000.

F. Provost, J. Aronis, and B. Buchanan. Rule-space
search for knowledge-based discovery. CIIO Working
Paper IS 99-012, Stern School of Business, New York
University, NY, NY 10012, 1999.

R. Rymon. Search through systematic set
enumeration. In KR-92, pages 268-275, Cambridge,
MA, 1992.

R. Segal and O. Etzioni. Learning decision lists using
homogeneous rules. In AAAI-94, Seattle, WA, 1994.
AAAT press.

R. Srikant and R. Agrawal. Mining quantitative
association rules in large relational tables. In
SIGMOD-96, pages 1-12, 1996.

G. I. Webb. Recent progress in learning decision lists
by prepending inferred rules. In SPICIS’ 94, pages
B280-B285, Singapore, November 1994.

G. I. Webb. OPUS: An efficient admissible algorithm
for unordered search. Journal of Artificial Intelligence
Research, 3:431-465, 1995.

G. I. Webb. Efficient search for association rules. In
KDD-2000, pages 99-107, Boston, MA, 2000. The
Association for Computing Machinery.

