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ABSTRACT: Ensemble learning strategies, especially Boosting and Bagging de-
cision trees, have demonstrated impressive capacities to improve the prediction
accuracy of base learning algorithms. Further gains have been demonstrated by
strategies that combine simple ensemble formation approaches. In this paper, we
investigate the hypothesis that the improvement in accuracy of multi-strategy ap-
proaches to ensemble learning is due to an increase in the diversity of ensemble
members that are formed. In addition, guided by this hypothesis, we develop three
new multi-strategy ensemble learning techniques. Experimental results in a wide
variety of natural domains suggest that these multi-strategy ensemble learning
techniques are, on average, more accurate than their component ensemble learn-
ing techniques.

Index Terms: Boosting, Bagging, Ensemble Learning, Committee Learn-
ing, MultiBoosting, Bias, Variance, Ensemble Diversity



1 Introduction

(Classification ensemble learning techniques have demonstrated powerful ca-
pacities to improve upon the classification accuracy of a base learning al-
gorithm. Common to these approaches is the repeated application of the
base learning algorithm to a sample derived from the available training data.
Each application of the algorithm results in the generation of a new classi-
fier which is added to the ensemble. To classify a new case, each member
of the ensemble classifies the case independently of the others and then the
resulting votes are aggregated to derive a single final classification.

It has been observed that an important pre-requisite for classification en-
semble learning to reduce test error is that it generate a diversity of ensemble
members [7, 8, 14, 15]. If all ensemble members agree in all of their classifi-
cations then the aggregated classification under any reasonable aggregation
scheme will be identical to that of any individual ensemble member. Indeed,
for ensembles of numeric predictors for which aggregation of predictions is by
weighted numeric mean, it has been proven that increasing diversity between
ensemble members without increasing their individual test error necessarily
results in a decrease in ensemble test error [13]. This result does not extend
directly to classification learning, however, as aggregation of classification
predictions is not performed usually by weighted numeric mean. Nonethe-
less, using majority voting between ensemble members in a two class domain,
if diversity in predictions is maximized (as measured by the variance of the
predictions) while maintaining a set test error rate for each individual en-
semble member, so long as e < 0.5 and ¢t > 17—126 rounded up to the next odd
integer (where e is the test error for individual ensemble members and ¢ is
the ensemble size) the test error rate of the ensemble will be zero. This is
because variance will be maximized when e proportion of ensemble members
make an error on each test case to be classified. If e is less than 0.5 then
this will ensure that the majority vote favors the correct class for every case.
The constraint on ¢ is required to ensure that the rounding up of e required
by the granularity of ensemble votes still results in a value less than 0.5 for
each case to be classified. Turning from this theoretical result, in general,
when the test error rate of individual classifiers is less than 0.5, increasing
diversity in classifications between classifiers will tend to decrease test error
as it will tend to dilute concentrations of errors to less than 0.5 of the votes
for any given test case to be classified, hence tending to result in correct
classification.



However, this insight is of less practical value for the generation of clas-
sification ensemble learning techniques than might at first be thought. This
is because methods for increasing diversity within an ensemble usually come
at a cost of also increasing the expected test error of the individual ensemble
members. Without knowing the magnitude of the increase in the test error
of the individual ensemble members it is not possible to realistically assess
the likely outcome of a particular trade-off between diversity and individ-
ual error. Assessing the likely increase in individual error is not practical,
however, as error estimation on the training data is likely to produce highly
optimistic estimates. Nonetheless, the spectacular success of ensemble tech-
niques demonstrates that they manage this trade-off successfully in practice.

With these issues in mind, Webb [20] hypothesized that it would be ad-
vantageous to combine ensemble learning techniques that have the capacity
to manage effectively this trade-off because doing so will lead to further in-
creases in internal diversity without undue increases in individual error and
this can be expected to result in improved classification accuracy. These
hypotheses led to the development of MultiBoosting [20], a technique that
combines AdaBoost [10] and a variant of Bagging [4] called Wagging [2].

MultiBoosting has been demonstrated to attain most of Boosting’s supe-
rior bias reduction together with most of Wagging’s superior variance reduc-
tion. However, which mechanisms are responsible for this outcome remains
an open question. This paper investigates the link in multi-strategy ensem-
ble learning between test error reduction and the generation of diversity in
ensemble membership. Further, Boosting and Bagging/Wagging are not the
only approaches to classification ensemble learning. This paper also explores
the effect of increasing the diversity in ensemble membership by integrating
the formation of ensembles by stochastic perturbation [9, 1, 21] with Boosting
and Wagging.

2 Explanations for the effectiveness of ensem-
bling

The spectacular success of ensemble learning has lead to a number of inves-
tigations into the underlying mechanisms that support their powerful error
reduction capabilities.

Breiman [5] argues that bagging can be viewed as classifying by appli-



cation of an estimate of the central tendency for the base learner. This
may serve to explain why bagging reduces variance. However, it is yet to
be explained why such a reduction in variance should not be accompanied
by a corresponding increase in error due to bias. Nonetheless, several stud-
ies have shown bagging to decrease variance without unduly affecting bias
(7,18, 2, 20].

A contrasting account of the performance of AdaBoost is provided by
Friedman, Hastie and Tibshirani [11]. They provide an account of Ada-
Boost in terms of additive logistic regression. They assert that boosting
by reweighting “appears to be a purely ‘bias’ reduction procedure, intended
to increase the flexibility of stable (highly biased) weak learners.” Despite
this account, a number of empirical studies have demonstrated AdaBoost to
reduce both bias and variance [7, 18, 2, 20].

Two sets of studies with artificial data have shown AdaBoost to outper-
form bagging both in terms of bias and variance reduction [7, 18]. However,
experiments with ‘natural’ data sets seem to indicate that, in general, while
AdaBoost is more effective at reducing bias than is bagging, bagging is the
more effective at reducing variance [2, 20].

Freund and Schapire [10] prove that AdaBoost reduces error on the train-
ing data. However, they also note that this need not reduce error outside
the training data. They suggest that structural risk minimization [19] might
explain off-training set error reduction. However, subsequent empirical evi-
dence has not supported this supposition [18].

Schapire et al. [18] attribute AdaBoost’s ability to reduce off-training set
error to its boosting the margins of the ensemble’s weighted classifications.
However, as evidence against this account, Breiman [6] has presented algo-
rithms that are more effective than AdaBoost at increasing margins but less
effective at reducing test error.

Breiman [7] ascribes AdaBoost’s error reduction to adaptive resampling.
This is the construction of an ensemble by repeated sampling from a training
set where the probability of a training case being included in a subsequent
sample is increased if it has been misclassified by ensemble members learned
from previous samples. Some support for this argument is provided by the
success of an alternative adaptive resampling algorithm, arc-x4. However,
while AdaBoost has been demonstrated to be equally effective at reducing
error using either reweighting or resampling, arc-x4 has been shown to be
much less effective using reweighting than using resampling [2]. This could
be taken to indicate that AdaBoost does more than just adaptive resampling.
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As can be seen, while investigation into the success of ensemble learn-
ing techniques has been extensive, no single account has received undisputed
widespread support. In this context this paper investigates the role of diver-
sity between ensemble members in the effectiveness of ensemble learning.

3 Ensemble learning techniques

This section describes the ensemble learning techniques utilized in this work.
All of the techniques take a base learning algorithm and a set of training data
and then repeatedly apply the algorithm or a variant thereof to a sample from
the data, producing a set of classifiers. These classifiers then vote to reach
an ensemble classification.

Bagging applies the base algorithm to bootstrap samples from the train-
ing data. A bootstrap sample from n cases is formed by randomly selecting n
cases with replacement. Wagging is similar to Bagging except that all train-
ing cases are retained in each training set, but each case is stochastically
assigned a weight. In the current research we follow Webb [20] in assigning
weights from the continuous Poisson distribution (more commonly known
as the exponential distribution). This is motivated by the observation that
Bagging can be considered to be Wagging with allocation of weights from the
discrete Poisson distribution, and hence the use of the continuous Poisson dis-
tribution provides a natural extension of Bagging to utilization of fractional
weights. Individual random instance weights (approximately) conforming to
the continuous Poisson distribution are calculated by the following formula:

(1)

d(l...
Poisson() = —log <Ran ( 999))

1000

where Rand(z ...y) returns a random integer value between x and y inclu-
sive.

The resulting algorithm is presented as Algorithm 1. In general, Wag-
ging is slightly less effective than Bagging at test error reduction, perhaps
because the inclusion of every case in every training set tends to lead to
lower variation between the resulting ensemble members [20]. Nonetheless,
we utilize Wagging rather than Bagging in the current research as it interacts
better with other ensemble learning algorithms, possibly because it includes
all training cases, allowing the other algorithm access to all cases on every
run.



Algorithm 1 The WAG algorithm
Wac(S, BaseLearn, t)

inputs: S, a sequence of m examples ((z1,y1),- .-, (Tm, Ym)) with labels
yi €Y ={1,....k}.
base learning algorithm BaseLearn.

integer ¢ specifying the number of iterations.

1: for i+ 1totdo

2: S « S with random weights drawn from the continuous Poisson distribu-

tion.
3:  C; < BaseLearn(S’).
4: end for

t

5: output the final classifier: C*(z) = argmax Z 1(Ci(z) = v).
yeY =1

Boosting is another approach to ensemble learning. The first ensemble
member is formed by applying the base learning algorithm to the entire
training set. Subsequent ensemble members are formed by applying the
base algorithm to the training set but with cases reweighted to place higher
weight on cases that are misclassified by existing ensemble members. The
votes of ensemble members are weighted by a function that lowers the vote
of a classifier that has lower accuracy on the weighted training set from
which it was learned. We utilize a minor variant on Bauer and Kohavi’s [2]
variant of Freund and Schapire’s [10] AdaBoost algorithm. This is presented
as Algorithm 2. Bauer and Kohavi’s [2] variant

e Uses a one step weight update process that is less subject to numeric
underflow than the original two step process (step 17).

e Prevents numeric underflow (step 18).

e Continues producing more ensemble members beyond the point where
e > 0.5 (step 5). This measure is claimed to improve prediction accu-
racy [5, 2J.

We further modify this approach by utilizing the continuous Poisson distribu-
tion for reweighting cases at steps 6 and 12 and continuing to produce more
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ensemble members beyond a point where training error falls to zero (step 10).
These two measures are included for the sake of consistency between the
various learning algorithms, all use the continuous Poisson distribution for
random reweighting and all always produce an ensemble of size t. Note that
this version of the algorithm may fail to terminate, entering an infinite loop
through steps 3 to 8. This did not occur in our experiments.

Stochastic Attribute Selection Committee Learning differs from the above
techniques in that instead of perturbing the training set, it performs stochas-
tic perturbations to the base learning algorithm on successive applications of
the learner to a training set. A number of variations on this general approach
have been explored [9, 1]. While our specific technique (described in more
detail by Zheng and Webb [21]) differs in minor details from these previous
approaches, we have no reason to believe that, in general, its performance
would differ substantially from the alternatives. Our implementation, that
uses C4.5 [16] Release 8 as the base learning algorithm, operates as follows.
When learning a decision tree, C4.5 applies an information measure to each
potential test selecting the test with the highest value of a criterion based on
gain ratio [17]. C4.5SAS modifies this behaviour by introducing a stochastic
element to the selection process, allowing tests with lower values on the se-
lection criterion to occasionally be selected. This is achieved by selecting a
subset of the available attributes, with each available attribute having prob-
ability of 0.33 of inclusion. If there is an acceptable test on the attributes
included in the subset then the one that rates highest on the selection crite-
rion is selected. If there is no such test among the selected attributes, the
best test among all attributes is selected unless there is no acceptable test in
which case a leaf is formed.

Our implementation of Stochastic Attribute Selection Committees, SASC,
repeatedly applies C4.5SAS to the training data to create an ensemble of
classifiers. This process is presented as Algorithm 3.

4 Multi-Strategy Ensemble Learning Algorithms

We combine multiple approaches to ensemble learning motivated by the hy-
pothesis that doing so will increase diversity between ensemble members,
albeit at a cost of a small increase in individual error. Webb [20] hypothe-
sized that this process would trade-off diversity against individual error so



Algorithm 2 The AdaBoost algorithm

AdaBoost (S, BaseLearn, t)
inputs: S, a sequence of m examples ((z1,y1),- .-, (Tm, Ym)) with labels
yi €Y ={1,...,k}
base learning algorithm BaseLearn.

integer ¢ specifying the number of iterations.

1: S’ « S with all instance weights set to 1.
2: fori=1tot do

3:  C; < BaseLearn(S’).
ijES’:Ci(xj)yéyj weight(mj)

4 € — {the weighted error on the training set}
5 if ¢, > 0.5 then "
6: reset S’ to random weights from the continuous Poisson distribution.
7: standardize S’ to sum to m.
8: goto step 3.
9: end if
10: if ¢, = 0 then
11: set 3; to 10710
12: reset S’ to random weights from the continuous Poisson distribution.
13: standardize S’ to sum to m.
14:  else
€
15: B — ﬁ
16: for all z; € S’ do
17: divide weight(x;) by 2¢; if Ci(x;) # y; and 2(1 — ¢;) otherwise.
18: if weight(z;) < 1078, set weight(z;) to 1075,
19: end for
20: end if
21: end for

1
22: output the final classifier: C*(z) = argmaz Z log—

yey 1:Cy(z)=y ﬁl




Algorithm 3 The SASC learning algorithm
Sasc(Att, D, P, t )
inputs: Att: a set of attributes,

D: a training set represented using Att and classes,
P: the probability with which an attribute should be included in
the set of attributes available at a node,

t: the number of trials.

: fori+—1totdo

C; — C4.5SAS(Att, D, P)

—_

¢
: output the final classifier: C*(z) = argmax Z 1(Ci(z) = v).
yeyY i=1

2
3: end for
4

as to decrease the resulting ensemble’s test error. In the current work we
seek to evaluate this hypothesis and explore the role of ensemble member
diversity in ensemble learning.

MultiBoosting has established that the combination of Boosting and Wag-
ging can reduce test error. However, this does not answer the questions of
whether this reduction can be attributed to an increase in the diversity of
ensemble members or whether combinations of other forms of ensemble learn-
ers may also be productive. We address the latter question by exploring the
space of combinations of Boosting, Wagging, and Stochastic Attribute Selec-
tion Committees. For our experimental work we utilize the well known C4.5
Release 8 [17] as the base learning algorithm.

To combine SASC with another method we replace C4.5 with C4.5SAS
as the base learning algorithm within the other method. To combine Wag-
ging with Boosting we follow Webb’s [20] MultiBoosting approach, Wagging
sub-ensembles formed by Boosting. The MB algorithm is presented in Algo-
rithm 4. Note that for consistency with the other approaches to combining
base learning algorithms, we have modified MB to utilize stochastic weights
for the first sub-ensemble (step 1) rather than initializing all weights to 1 as
done by Webb [20]. Note also that this version of the algorithm, as is the
case with our version of AdaBoost, may fail to terminate, entering an infinite



loop through steps 9 to 15. This did not occur in our experiments.

Together with the two base learning algorithms, C4.5 and C4.5SAS, com-
bining the algorithms in all possible ways results in nine distinct algorithms,
presented in Figure 1.

5 Experiments

We use the following notation:

Y is the set of classes.

T is a training set of example description-classification pairs.
K is a classifier, a function from objects to classes.

C; is the i classifier in ensemble C, a function from objects to classes.
W, is the weight given to the vote of C.

t is the number of classifiers in ensemble C'.

x; is the description of the i*" case to be classified.

y; is the correct classification for the i** case to be classified.
m is the number of cases to be classified.

L is a learner, a function from training sets to classifiers.

We wish to evaluate the hypothesis that combining multiple distinct en-
semble learning algorithms will tend to increase diversity in the predictions of
ensemble members without unduly increasing the test error of the individual
predictions of the ensemble members, resulting in a reduction in ensemble
test error.

To evaluate this hypothesis we need an operational measure of diversity
in the predictions of ensemble members. We utilize the weighted statistical
variance between the weighted predictions of the members of a classifier
ensemble for this purpose:

m (1 y ( W1 <c£$i> = y>>)

j=1

diversity =

(2)
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Algorithm 4 The MB algorithm

MB(S, BaseLearn, t, I)
inputs: S, a sequence of m examples ((z1,y1),- .., (ZTm,ym)) with labels
yi €Y ={1,...,k}.
base learning algorithm BaseLearn.
integer t specifying the number of iterations.
vector of integers I; specifying the iteration at which each

subensemble i > 1 should terminate.

1: 8’ « S with random weights from the continuous Poisson distribution.
2: 1 — 1.
3: for i+ 1 to t do
4: if I; =i then
5: reset S’ to random weights from the continuous Poisson distribution.
6: standardize S’ to sum to m.
7 increment .
8: end if
9:  C; « BaseLearn(S').
10: & « @i €87 Cile))7y; wetohtte;) {the weighted error on the training set}
11:  if ¢, > 0.5 then
12: reset S’ to random weights from the continuous Poisson distribution.
13: standardize S’ to sum to m.
14: increment [.
15: go to Step 9.
16: else if ¢;, = 0 then
17: set B; to 10710
18: reset S’ to random weights from the continuous Poisson distribution.
19: standardize S’ to sum to m.
20: increment [.
21:  else

€5
23: for all z; € S’ do
24: divide weight(x;) by 2¢; if C;j(x;) # y; and 2(1 — €;) otherwise.
25: if weight(z;) < 1078 then
26: weight(z;) <« 1078
27: end if
28: end for
29:  end if
30: end for
31: output the final classifier: C*(z) = argmaz Z logi.

yey Bi




We also require an operational measure of the test error of the individual
predictions of ensemble members. We utilize a weighted mean of the test error
of the predictions of an ensemble’s constituent classifiers for this purpose:

i X5 Wil (Cy() = wi) )
m Z;Zl Wj

individual error =

We wish to examine the relationship between these two measures and
error, which we define as
ity 1(K(z:) # vi)

= 4
error - (4)

We further decompose error into bias and variance using Kohavi and Wolpert’s
[12] definitions thereof:

bias? = S(Px(Y =X =)~ PAET@ =) )
variance, = ; (1 — E;PT(,C(T) (z) = y)2> (6)

szl (1— ZPY,X(Y:le:Z')Q) (7)
2 yey

The third term o relates to irreducible error. We follow Kohavi and Wolpert’s

[12] practice of aggregating this value with bias due to the difficulty of esti-

mating it from observations of classification performance.

We estimate all of the above terms using Webb’s [20] procedure of per-
forming ten cycles of three-fold cross validation. This process ensures that
each case is used in twenty training sets and ten test sets.

Armed with these measures and procedures we systematically explored
the space of combinations of the three base ensemble learning algorithms
by forming the following systems that realize the hierarchy illustrated in
Figure 1:

C4.5: C4.5 Release 8, the base system.

C4.55A8: C4.5 modified to perform stochastic attribute selection as de-
scribed in Section 3.
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Wac: Wagged ensembles of 100 decision trees using C4.5 as the base algo-
rithm.

BoosT: AdaBoost ensembles of 100 decision trees using C4.5 as the base
algorithm.

SASC: Stochastic attribute selection committees of 100 decision trees each

formed by C4.5SAS.

MB: MultiBoosted (Wagged subensembles formed by boosting) ensembles
of 100 (10 x subensembles of size 10) decision trees using C4.5 as the
base algorithm.

BoosTSAsc: Boosted ensembles of 100 decision trees using C4.5SAS as the
base algorithm.

WaagSasc: Wagged ensembles of 100 decision trees using C4.5SAS as the
base algorithm.

MBSasc: MultiBoosted ensembles of 100 (10 x subensembles of size 10)
decision trees using C4.5SAS as the base algorithm.

These various algorithms were applied to the 41 data sets from the UCI
repository [3] described in Appendix A. Ensembles of size 100 were used as
a compromise between greater compute times required by larger ensembles
and the ever decreasing average-case marginal improvement in error that can
be expected from larger ensemble sizes.

Unfortunately, space constraints prevent the presentation of results at the
individual dataset level. Figures 2 to 6 and Tables 1 to 5 provide high level
summaries of these results. The summary tables have the following format,
where row indicates the mean value on a data set for the algorithm with
which a row is labeled, while col indicates the mean value for the algorithm
with which the column is labeled. Rows labeled 1 present the geometric
mean of the value ratio col/row. Rows labeled s present the win/draw /loss
record, where the first value is the number of data sets for which col <
row, the second is the number for which col = row and the last is the
number for which col > row. Rows labeled p present the result of a two-
tailed sign test on the win-loss record. This is the two-tailed probability of
obtaining the observed record of wins to losses, or more extreme, if wins
and losses were equi-probable random events. Note, these values have not
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been corrected to control experiment-wise type-1 error, but are in most cases
so low that standard statistical corrections would not affect significance test
outcomes. The figures depict the hierarchy of Figure 1, with mean value
across all data sets listed against each algorithm. The lines climbing up
the hierarchy are labeled with an indication of the relative win/draw/loss
record. An improvement in the win/draw/loss record is labeled with a ‘+’
and a decline by a ‘—.” Where the difference is statistically significant at the
0.05 level the label is large, otherwise it is small.

5.1 Error, Bias and Variance

Figure 2 shows that the mean error invariably drops as we climb the hier-
archy of ensemble technique combinations. Table 1 shows that all ensemble
techniques have significantly better win/draw /loss records than C4.5. Mov-
ing from a single strategy to a combination of two strategies, in every case
the error ratio and win/draw/loss record favors the multi-strategy approach
over each of its constituent strategies. The win/draw /loss record significantly
favors the multi-strategy approach over the constituent strategy in every case
except for comparing BooST against BOOSTSAsC. Moving from combina-
tions of two strategies to the combination of all three strategies, the error
ratio and win/draw/loss record in each case favors MBSAsc, but the ad-
vantage on the win/draw /loss record is only significant against BOOSTSASC.
While the failure to obtain significant advantages at the top of the hierarchy
leaves room for interpretation about whether MBSASC holds a general ad-
vantage over each of its two-strategy constituents, it at the very least appears
clear that it does not hold a significant general disadvantage.

Turning to bias, all of the ensemble techniques have lower bias, favor-
able bias ratios and favorable win/draw/loss records with respect to C4.5.
However, the win/draw /loss records only indicate significant benefits for the
ensemble techniques that incorporate boosting as a component technique.
Climbing the hierarchy, MB shows a marginally worse aggregate mean bias
and bias ratio relative to BoosT and the win/draw/loss record approaches
significance at the 0.05 level. In contrast, BOOSTSASC shows marginal im-
provements in mean bias and bias ratio, but the very small advantage in
win/draw /loss record is definitely not significant. Relative to SAsc, BOosT-
SASC demonstrates clear wins on all metrics, but WAGSASC demonstrates
only a minor win on mean bias, no win on bias ratio, and an extremely slim,
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Figure 1: Hierarchy of ensemble learning technique combinations
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Figure 2: Hierarchy of error outcomes
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Table 1: Error rate comparison results

C4.55as Boost  WaAG SASC MB  BoostSAasc WAGSAsc MBSAsc

i 107 076 086 084 0.5 0.75 0.79 0.73
C45 s 13/0/28 34/2/5 35/3/3 32/4/5 36/1/4  34/0/7  34/2/5  36/0/5
p 0.0275 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001  <0.0001 <0.0001

T 0.71 0.80 0.78 0.70 0.69 0.74 0.68
C4.55AS s 34/2/5 39/0/2 37/0/4 37/0/4 33/1/7 39/1/1 36/2/3
P <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
T 1.14 1.10 0.99 0.98 1.05 0.96
BoosT s 13/1/27 11/2/28 25/6/10  22/4/15  19/1/21 27/4/10
P 0.0385  0.0095 0.0167 0.3240 0.8746 0.0076
r 0.97 0.87 0.86 0.92 0.84
Waa s 20/6/15 28/4/9 26/1/14 31/2/8  28/1/12
P 0.4996  0.0026 0.0807 0.0003 0.0166
r 0.90 0.89 0.95 0.87
SAsC s 33/1/7 29/0/12 28/3/10  34/0/7
P <0.0001 0.0115 0.0051 <0.0001
r 0.99 1.06 0.97
MB s 17/6/18 17/4/20 22/6/13
P >0.9999 0.7428 0.1755
Boost 1 1.07 0.98
+SASC s 16/0/25  26/7/8
D 0.2110 0.0029
WaGg+ T 0.91
SAsc s 24/2/15
D 0.1996
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Table 2: Bias comparison results

C4.55Sas Boost WAG SASC MB  BoosTtSAasc WAGSasc MBSAsc

r 0.96 0.80 0.98 0.94 0.81 0.80 0.94 0.80
C4.5 s 30/2/9 33/2/6 21/2/18 21/2/18 34/1/6 31/0/10 24/1/16  32/1/8
p 0.0011 <0.0001 0.7493 0.7493 <0.0001 0.0015 0.2682 0.0002
T 0.84 1.02 0.98 0.85 0.83 0.98 0.83
C4.55As s 30/0/11 10/5/26 12/6/23 29/1/11  27/2/12  13/2/26 26/2/13
P 0.0043 0.0113 0.0895 0.0064 0.0237 0.0533 0.0533
T 1.22 1.17 1.01 0.99 1.17 1.00
BoosTt s 6/1/34 8/1/32 11/7/23 19/4/18 8/0/33  16/4/21
p <0.0001 0.0002 0.0576 >0.9999 0.0001 0.5114
r 0.96 0.83 0.81 0.96 0.81
WAG s 21/4/16 35/1/5 35/0/6 24/1/16  36/0/5
P 0.5114 <0.0001 <0.0001 0.2682 <0.0001
r 0.87 0.85 1.00 0.85
SAsC s 30/3/8 35/0/6 22/1/18  34/1/6
P 0.0005 <0.0001 0.6358 <0.0001
r 0.98 1.15 0.98
MB s 18/10/13 9/0/32  21/4/16
P 0.4731 0.0004 0.5114
Boost 1 1.18 1.00
+SAsC s 7/1/33  13/8/20
p <0.0001 0.2962
WaGg+ 1 0.85
Sasc s 31/3/7
p 0.0001
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far from significant win on win/draw/loss record. With respect to WAG,
MB demonstrates clear wins on all metrics while WAGSASC demonstrates
marginal wins and the win on win/draw/loss record is not significant. Pro-
ceeding to the top of the hierarchy, MBSASC demonstrates a clear win over
WAGSASC on all metrics, but has at most marginal, non-significant, wins
against MB and actually has a worse win/drawn /loss record, albeit not sig-
nificantly, than BOOSTSASC. In summary, combining Boosting with Wag-
ging or Stochastic Attribute Selection appears to have a beneficial effect with
respect to bias, but the combination of Wagging with Stochastic Attribute
Selection appears to have little effect in this respect.

Turning our attention next to variance, a very different pattern appears.
Again, all of the ensemble techniques outperform C4.5 on all metrics. Adding
either WAG or SASC to another technique, including each other, always pro-
duces a substantial benefit on all metrics, including a significant improve-
ment in win/draw /loss record relative to the other technique on its own. In
contrast, however, adding BOOST to another technique always results in a
decrease in performance on all metrics (excepting small, non-significant, im-
provements in win/draw/loss record for MB against WAG and BOOSTSASC
against SASC), sometimes a substantial decrease and in one case (MBSAsC
against WAGSASC) a significant worsening of the win/draw/loss record.

In summary, these results suggest that BOOST is primarily a bias reduc-
tion technique. Although it performs significant variance reduction, it is not
as effective at this as WAG or SAsc. Combining BOOST with WAG or SASC
produces significant benefits in bias reduction over each of WAG and SASC in
isolation, without a serious decline vis a vis BOOST. In contrast, WAG and
SASC are primarily variance reduction techniques. Combining either with
another technique results in variance reduction vis a vis the other technique
on its own without a serious increase in variance in comparison to WAG or
SASC in isolation. Putting all of these factors together, combining techniques
is generally beneficial with respect to error reduction because there is always
a benefit either in terms of bias or variance reduction against each constituent
technique, which is usually gained without a substantial or significant loss
with respect to the other constituent of error.
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Table 3: Variance comparison results

C4.55as Boost  WaAG SASC MB  BoostSAasc WAGSAsc MBSAsc

i 125 075 065 060  0.69 0.72 0.51 0.65
C45 s 6/2/33 34/2/5 38/2/1 37/3/1 34/2/5  33/3/5 37/3/1  34/3/4
p <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001  <0.0001 <0.0001

r 0.60 0.53 0.48 0.56 0.58 0.41 0.52
C4.55AS s 36/0/5 40/0/1 39/0/2 37/0/4 36/0/5 40/0/1 38/0/3
P <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
r 0.87 0.80 0.93 0.96 0.68 0.87
BoosT s 20/5/16 18/5/18 31/9/1 21/11/9 31/3/7 32/6/3
P 0.6177 >0.9999 <0.0001 0.0428 0.0001 <0.0001
T 0.92 1.06 1.10 0.78 1.00
Waa s 21/5/15 19/6/16  18/5/18 34/4/3  21/5/15
P 0.4050  0.7359 >0.9999 <0.0001 0.4050
r 1.16 1.20 0.85 1.09
SAscC s 21/8/12  21/7/13 29/9/3  26/4/11
P 0.1628 0.2295 <0.0001 0.0201
r 1.03 0.74 0.94
MB s 11/10/20 30/3/8  24/7/10
D 0.1496 0.0005 0.0243
Boost 1 0.71 0.91
+SASC s 31/4/6 32/7/2
P <0.0001 <0.0001
WaG+ T 1.27
SAsc s 12/4/25
P 0.0470
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5.2 Diversity and individual error

Webb’s [20] original motivation for the development of MultiBoosting and
the subsequent multi-strategy ensemble learning techniques was that com-
bining ensemble learning strategies would increase diversity without unduly
affecting the error of individual members of the ensemble. Tables 4 and 5
show that this is indeed the case when one considers every step from a con-
stituent ensemble learning technique to a multi-strategy technique except for
Boost to MB and BoosTSAsC to MBSAsc. The steps from WAG to MB,
BoosT to BOOSTSASC, SASC to BoosTSAsCc, WAG to WAGSASC, SASC to
WacSasc, MB to MBSAsc, and WAGSAsc to MBSAsc all result in in-
creases in diversity accompanied by small but significant increases in individ-
ual error but decreases in ensemble error. However, adding WAG to BoosT
or MBSASC has the opposite effect on diversity and individual error. In both
cases both diversity and individual error significantly decrease. However, in
both cases this nonetheless results in a decrease in ensemble error. We have
the unexpected outcome that the original motivation for MultiBoosting ap-
pears to apply to other combinations of standard classifier ensemble learning
techniques, but not to the MultiBoost combination of WAG and BOOST!
Having observed this phenomenon, it is straightforward to explain. Com-
pared with WAG and SASc, BOOST has very high diversity. It is credible
that the Boosting process will tend to drive diversity up at ever increasing
rates as ensemble size increases. This is due to the manner in which Boosting
attempts to focus the learner on areas of the instance space that previous en-
semble members fail to handle adequately. By definition, this means that it
is attempting to make latter ensemble members systematically differ in their
classifications from prior members. However, this process will also drive up
the individual error of each successive ensemble member when applied to the
domain as-a-whole, because each successive member concentrates primarily
on ever decreasing areas of the total instance space. Successive ensemble
members have ever increasing individual error in order to gain the ever in-
creasing diversity, a trade-off that in practice results in ever diminishing ben-
efit in terms of reduction of overall ensemble error. Credibility is lent to this
argument when one compares the diversity and individual error of AdaBoost
ensembles of size ten and 100. To this end, the AdaBoost experiments were
rerun, on the same data set cross-validation partitions, but with an ensemble
size of ten. With respect to diversity, in contrast to the mean across all data
sets of 0.340 obtained for boosted ensembles of size 100, boosted ensembles
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Table 4: Diversity comparison results

WaaG SASC MB  BoosTSASC WAGSASC MBSAsC

P0.37 0.29 0.85 1.09 0.47 0.93
BoosT s 41/0/0 41/0/0 41/0/0  2/0/39 41/0/0  28/1/12
p <0.0001 <0.0001 <0.0001 <0.0001  <0.0001 0.0166

iy 0.78 2.30 2.96 1.29 2.51
Wae s 26/1/14 0/0/41 0/0/41 1/1/39 0/0/41
P 0.0807 <0.0001 <0.0001 <0.0001 <0.0001
r 2.95 3.79 1.65 3.22
SAsCc s 0/0/41 0/0/41 0/0/41 0/0/41
D <0.0001 <0.0001 <0.0001 <0.0001
I 1.29 0.56 1.09
MB s 0/0/41 41/0/0 1/0/40
D <0.0001 <0.0001 <0.0001
BoosT 1 0.43 0.85
+SAsC s 41/0/0  41/0/0
p <0.0001 <0.0001
Wac+ 1 1.95
SAasc s 0/0/41
p <0.0001
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Table 5: Individual error rate comparison results

WaaG SASC MB  BoosTSASC WAGSASC MBSAsC

P 057 056 0.86 1.07 0.62 0.92
BoosT s 41/0/0 41/0/0 41/0/0  4/0/37 41/0/0  32/0/9
p <0.0001 <0.0001 <0.0001 <0.0001  <0.0001  0.0004

r 0.98 1.52 1.89 1.10 1.63
WaG s 29/0/12 0/0/41 0/0/41 8/0/33  0/0/41
D 0.0115 <0.0001  <0.0001 0.0001  <0.0001
r 1.55 1.92 1.11 1.66
SAsc s 0/0/41 0/0/41 0/0/41  0/0/41
P <0.0001 <0.0001  <0.0001 <0.0001
r 1.24 0.72 1.07
MB s 0/0/41 40/0/1  3/0/38
D <0.0001  <0.0001 <0.0001
Boost 1 0.58 0.86
+SAsC s 41/0/0  41/0/0
p <0.0001 <0.0001
Wac+ 1 1.49
SAasc s 0/0/41
p <0.0001
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of size ten had a mean of 0.276. With respect to individual error, the mean
dropped from 0.291 to 0.260 for ensembles of size ten. With respect to both
measures, the mean on every data set was lower for ensemble size ten than
for size 100.

MultiBoosting creates boosted sub-ensembles of size ten. Compared with
the mean diversity and individual error obtained for boosted ensembles of
this size, MultiBoosting does lead to increases. However, it is clear that
MultiBoosting compared with Boosting ensembles of size 100 leads to de-
creases in diversity and individual error. By creating boosted sub-ensembles
of size ten, MultiBoosting delivers lower internal error than Boosting. How-
ever, this improvement in internal error comes at a cost of a slight decrease
in diversity. Contrary to our expectations, rather than increasing diversity
vis a vis Boosting, MultiBoosting decreases diversity, but, in practice does so
in a manner that forms a better diversity against individual error trade-off
than that formed by Boosting alone.

Other than these two cases where Wagging is combined with Boosting,
the results are, however, consistent with our expectations that combining
ensemble techniques would result in increased diversity and individual error
resulting in trade-offs that reduce overall ensemble error.

6 Conclusions

This paper has examined techniques for combining simple ensemble learn-
ing approaches with the aim of exploring the relationship between ensem-
ble member diversity and ensemble error. The results strongly support the
proposition that combining effective ensemble learning strategies is conducive
to reducing test error. A specific hypothesis about this effect was examined—
that combining ensemble learning strategies would increase diversity at the
cost of a small increase in individual test error resulting in a trade-off that re-
duced overall ensemble test error. While this hypothesis was consistent with
the results obtained when stochastic attribute selection was combined with
another ensemble learning strategy, it was not consistent with the results
for the MultiBoosting approach to combining Boosting and Wagging, where,
compared with the Boosting-based strategy (AdaBoost alone, or AdaBoost
combined with SASC) the combination appears to have the effect of reducing
individual test error at the cost of a small reduction in diversity, a different
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trade-off which nonetheless results in reduced ensemble test error.

The success of these ensemble learning techniques mandates further inves-
tigation. We have examined only a single base learner and only one ensemble
size. Our expectation is that the results will generalize to other base learners
and ensemble sizes but this belief warrants evaluation. This paper has high-
lighted the trade-off between diversity and individual test error in ensemble
learning strategies. Research into how this trade-off should be managed and
how to identify when a particular trade-off is likely to be productive are likely
prove fruitful areas for future investigation.

The computational overheads of combining ensemble learning strategies
are negligible. The same number of ensemble members are learned, and
hence the same numbers of calls to the base learner are required. Indeed, the
strategy of wagging sub-committees formed by boosting can support greater
computational efficiency by allowing parallelism of a form not readily possible
with boosting alone. However, despite negligible computational cost, our ex-
periments have shown that appreciable and reasonably consistent reductions
in test error can be obtained. There appears to be no reason not to com-
bine ensemble learning strategies in a learning scenario for which ensemble
learning is appropriate.

Acknowledgments

The Breast Cancer (S), and Lymphography data sets were provided by the
Ljubljana Oncology Institute, Slovenia. Thanks to the UCI Repository’s
maintainers and donors, for providing access to the data sets used herein.

A Data sets

Forty one natural domains from the UCI machine learning repository are
used. Table 6 summarizes the characteristics of these domains, including
dataset size, the number of classes, the number of numeric attributes, and
the number of discrete attributes. This test suite covers a wide variety of
different domains with respect to dataset size, the number of classes, the
number of attributes, and types of attributes.

26



Table 6: Description of learning tasks

Domain Size No. of No. of Att. Domain Size No. of No. of Att.

Classes | Numeric | Discr Classes | Numeric | Discr
Adult 48842 4 6 7 Labor 57 2 8 8
Annealing 898 6 6 32 LED 24 200 10 0 24
Audiology 226 24 0 69 Letter 20000 26 16 0
Automobile 205 7 15 10 Liver disorders 345 2 6 0
Balance scale 625 3 4 0 Lymphography 148 4 0 18
Breast (S) 286 2 0 9 || NetTalk letter 5438 163 0 7
Breast (W) 699 2 9 0 || NetTalk stress 5438 5 0 7
Chess (KR-KP) 3169 2 0 36 || NetTalk phoneme 5438 52 0 7
Credit (A) 690 2 6 9 || New thyroid 215 3 5 0
Credit (G) 1000 2 7 13 || Pima diabetes 768 2 8 0
Discordant 3772 2 7 22 Postoperative 90 3 1 7
Echocardiogram 131 2 6 1 Promoters 106 2 0 57
Glass 214 6 9 0 Segment 2310 7 19 0
Heart 270 2 7 6 Sick 3772 2 7 22
Heart (C) 303 2 13 0 Sonar 208 2 60 0
Heart (H) 294 2 13 0 Soybean large 683 19 0 35
Hepatitis 155 2 6 13 Splice junction 3177 3 0 60
Horse colic 368 2 7 15 Vehicle 846 4 18 0
House votes 84 435 2 0 16 Waveform-21 300 3 21 0
Hypo 3772 5 7 22 Wine 178 3 13 0
Iris 150 3 4 0
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