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Abstract

Mesoscale pervasive magma migration leads to granite injection complexes, common in hot crustal terranes.
Pervasive migration is limited by magma freezing when intruding cold country rock. Here, we explore numerically the
feedback mechanism between magma intrusion and heating of the country rock, which allows younger intrusive
batches to reach increasingly shallower/cooler levels. This process relies on the higher solidus temperature of a rock
compared to that of its melt, once melt is segregated. We define the ‘free-ride layer’ as the region above the melt
source, where magma may freely migrate because rock temperature is above melt solidus. The top of the free-ride
layer, which corresponds to the melt solidus (TS) isotherm, is at the ‘limiting depth’, zS. After magma passes through
the free-ride layer, the magma ‘front’ is always at the limiting depth. We modeled the thickening and heating of the
crust above the source as melt at its liquidus (TL) intrudes it pervasively from below. We found that: (a) magma
quickly warms crust below zS to about TL, forming a step in temperature at zS ; (b) the front (zS) moves up through
the crust as more magma is intruded; (c) as magma is emplaced at the front, a mingled layer of about half magma
half crust forms below it, so that the total rise of the front corresponds approximately to half of the thickness of
magma added to the free-ride layer; (d) the rate of rise of the front depends on the temperature difference between
crust and TL, and slows down as the magma front rises; (e) for most reasonable intrusion rates and volumes, the crust
above zS feels little influence of the intrusion, because the diffusion time scale is much smaller than the rise rate of the
front. In summary, pervasive migration is an efficient way of heating the lower to middle crust, and can result in an
injection complex several kilometers thick, consisting of about half magma and half original crust. 7 2002 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Pervasive migration, where magma moves up-
wards through an extensive network of channels,
is an alternative method for crustal magma migra-
tion to dyking and diapirism. Granite magma
injection complexes are thought to result from
magma migrating pervasively through an inter-
connected network of blobs and sheets, of scales
varying between millimeters and tens of meters
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[1^4]. Sawyer et al. [5] argued, based on a combi-
nation of textural and structural observations,
that melt may be present in migmatites for a pro-
tracted period of time, during which tectonic
stresses ‘cause melt to migrate from site to site
in response to transient changes in pressure gra-
dients resulting from the anisotropic nature of the
rocks’. At least four mechanisms control perva-
sive magma migration [4] : (a) tectonic pumping
[4,6] ; (b) pervasive £ow through hot, low-viscosi-
ty country rocks (where dyking is inhibited [7]) ;
(c) volatile-driven intrusion, where magma follows
volatile-rich phases [8] ; and (d) local dyking.

When magma intrudes country rocks which are
colder than the magma solidus, it will tend to
freeze and stall at the contacts. Magma propaga-
tion through cold country rocks therefore requires
a focused mechanism, such as dyking or diapir-
ism, in which a central volume of magma can rise
before it loses its heat. Because pervasive migra-
tion has neither the protective large volume of
diapirs, nor the high £ow speed of magmas in
dykes, it requires country rock temperatures
above the magma solidus. Weinberg and Searle
[7] argued that the early pervasive migration his-
tory may control the mechanism of focused mi-

gration that follows. If pervasive migration gives
rise to a well-connected network of magma chan-
nels, dyking may follow. Conversely, if it leads to
the growth of a large buoyant body, diapirism
may follow. Although the high-temperature re-
quirement may seem very restrictive for pervasive
migration, we envisage a feedback mechanism
whereby heat advected with early magma batches
will warm the crust, allowing later batches to
reach shallower levels.

The key factor for the viability of pervasive
migration is that the solidus temperature of a
rock is commonly higher than the solidus temper-
ature of the partial melt it produces, once melt is
extracted from rock pores. For example, an am-
phibolite may start melting at 850^900‡C but the
granite melt it produces may have a solidus tem-
perature at 650^750‡C. This temperature di¡er-
ence between solidii, vTLS, allows melt to intrude
a layer above the source which, though solid, is at
temperatures above the melt solidus. We called
this layer the ‘free-ride layer’, because melt will
rise through it without freezing (Fig. 1). The ini-
tial width of this layer Nz1 is vTLS divided by the
average geothermal gradient: Nz1 may be a few
hundred meters or several kilometers depending

Fig. 1. Sketch of conceptual model of pervasive intrusion developed here.
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on the geothermal gradient above the source. The
temperature at the top of the free-ride layer
equals the magma solidus temperature, and is
the initial ‘limiting depth’ of pervasive migration.
As the process develops, the limiting depth grad-
ually migrates upwards, pushed by heat released
by magma intrusion (Fig. 1), and a thickening
injection complex or a pluton may develop.

Pervasive migration may occur in any crustal or
mantle setting as long as the melt released from
the source segregates into pockets su⁄ciently
large as to be partially isolated from the solids
(i.e. melt pockets larger than a couple of centi-
meters). In the continents we envisage two partic-
ularly favorable environments: underplated basalt
melting crustal rocks, and crustal melting in colli-
sional orogens. The dynamic environment of con-
tinental collisions may give rise to complex migra-
tion systems. In the Himalayas, melting during
collision gave rise to the leucogranite masses
which now intrude the High Himalayan Slab
(HHS), the rock wedge being extruded between
the South Tibetan Detachment System (STD)
above and the Main Central Thrust (MCT) below
(¢g. 1 of [8]). In the High Himalayas of Khumbu,
Nepal, there are voluminous leucogranitic injec-

tion complexes overlain by large leucogranite plu-
tons (commonly over a kilometer thick and sev-
eral kilometers wide) emplaced below the South
Tibetan Detachment (Fig. 2). Weinberg and
Searle [8] envisaged that the melt source lay to
the north (under the Tibetan Plateau) and that
melt migrated mainly parallel to the north dipping
regional foliation, but also locally across it, reach-
ing increasingly higher stratigraphic levels as it
travelled south. A steady-state situation may
have developed where extrusion of the HHS
brought fertile rocks into the melting zone so
that melt could be continuously produced. Melt
migration created a warm pathway across the
wedge, linking the melting zone to the large leu-
cogranite plutons cropping out to the south, in
the High Himalayas. The magma frozen in the
pathway makes up the injection complex below
the leucogranite plutons (Fig. 2).

In this paper we explore the e¡ects of pervasive
melt migration using a simple, one-dimensional
model of heat and mass transfer. We have identi-
¢ed key parameters which control the e⁄ciency of
pervasive magma migration in heating the free-
ride layer and pushing the limiting depth to shal-
lower crust.

Fig. 2. Proposed crustal cross-section showing the formation of Himalayan leucogranites [8]. In this model the source zone is
continuously renewed by slab extrusion. Young melts will tend to follow previously opened magma pathways until the pathway
becomes too far from the source and a new pathway is opened. Width of ¢gure corresponds to roughly 20 km.
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2. A simple heat balance

We can judge whether pervasive input has the
capability of heating the crust signi¢cantly with a
simple heat balance calculation. All variables are
de¢ned in Table 1. If a layer of crust, volume Vc

and temperature Tc, is intruded by magma of vol-
ume Vi, temperature excess NTi =Ti3Tc and la-
tent heat L, when the two volumes come to a

common temperature the temperature rise of the
crust will be:

vT c ¼
ðLþ cpNT iÞV i

cpðV i þ V cÞ
¼ excess heat of input

total heat capacity
ð1Þ

We assume the densities and speci¢c heats cp
are the same. For L=3U105 J/kg and cp = 1500
J/kg/K,

vT c ¼ ð200þ NT iÞ
V i

V i þ V c
ð2Þ

In Table 2 we see that if new input makes up a
signi¢cant fraction of the crust, the rise in temper-
ature can be considerable.

3. Conceptual model and assumptions

A sketch of our conceptual model is given in
Fig. 1. A crustal layer of initial thickness d0 over-
lies a partially molten source region from which
magma rises through channels of cross-sectional
area Ai, separated by crust of area Ac. The mag-
ma rises at vertical ‘seepage’ velocity 3v0 relative
to the surface, warming the adjacent crust and
causing it to sink at velocity Vc. The upper limit
of magma intrusion, at depth zf , is called the
magma ‘front’. The front propagates at speed
3vf =3v0 through the free-ride layer between
the top of the source region and the limiting
depth, zS0 (Fig. 1a).

At time t= t1, the magma front reaches the lim-
iting depth, and there the magma is emplaced,
mingled with original crustal material (Fig. 1b).
The fraction of magma at a given depth is de-
noted by x. When it is ¢rst emplaced the mingled
material is at the magma solidus temperature TS.
For ts t1, the limiting depth and the front depth
are the same, zS = zf , and the front rises at a re-
duced velocity, vf 6 v0, because magma is diverted
sideways as it is emplaced. With time zS shallows
and a sub-layer of mingled material builds up
beneath it (Fig. 1b). New batches of magma
warm the mingled material so after emplacement
mingled material is always hotter than TS.

Our conceptual model is two-dimensional but

Table 1
Notation

Symbol Meaning Value

A horizontal cross-sectional
area or channel width

cp speci¢c heat 1500 J/kg/‡C
d layer depth d0 = 36 km
g acceleration due to gravity 9.8 m/s2

h height of computational cell 1/300
L latent heat of intruding magma 3U105 J/kg
t time
t1 time to cross free-ride zone
t2 time to form step pro¢le in T
t3 time for front to reach surface
T temperature
TL liquidus of intruding magma 800^950‡C
TS solidus of intruding magma 700^800‡C
v0 velocity of magma in channels 2.5U1038 m/s
V volume of crust or input
x volume fraction of input material
z depth, measured from the surface
zS depth of the isotherm T=TS

zS0 initial depth of isotherm T=TS

z2 front depth at t= t2
U thermal di¡usivity (k/bcp) 9U1037 m2/s
M melt fraction within the magma
Subscripts
c crust
f magma front
¢n end of numerical run
i intruding magma
0 initial condition (t=0)
L liquidus
S solidus
Dimensionless parameters
Pe Peclet number 250^4000
St Stefan number 0^2
P volume fraction of input channels 0.01^0.1
a relative crustal temperature 0^1
TPS normalized solidus temperature 0.833, 0.875
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the mathematical model is only one-dimensional.
Each depth z is characterized by a unique temper-
ature, a fraction x of injected material, a channel
vertical velocity, 3v0 or zero, and a ‘porosity’
P=Ai/A, where A=Ai+Ac. We do not model the
channel geometry or size (except relative to adja-
cent crust), and the heat transfer between chan-
nels and crust is assumed to be immediate. In
summary, our assumptions are:

1. The model is one-dimensional : as material is
injected into the layer from below, the bottom
of the layer moves downward to conserve vol-
ume.

2. Magma enters the layer at its liquidus temper-
ature TL, which is also the crustal temperature
at the bottom of the layer.

3. At any given depth and all times, the crust and
magma are in thermal equilibrium.

4. Channel velocity v0 and ‘porosity’ P are con-
stant.

5. As magma is cooled below TL, it releases latent
heat but all crystals are carried upward until
the entire unfractionated material is emplaced
when it reaches the solidus temperature TS.

6. Latent heat is released evenly through the in-
terval TL to TS.

7. Once emplaced, the material is not remelted or
remobilized, even if the temperature reaches
TL.

8. The original crustal material does not melt.
9. The physical properties of the crust and in-

jected magma (density, thermal conductivity,
speci¢c heat) are the same.

All assumptions are made to simplify the problem
so that it is mathematically tractable, and to en-
able us to gain insight into the ¢rst-order e¡ects.

Assumption 1 implies no lateral spreading of

the crust, and that the source and injection com-
plex have the same lateral dimensions. Beyond a
certain point, as the layer of warm, weak crust
builds up, this becomes unrealistic. The validity
of assumption 3 is discussed in detail in Appendix
A (Background Data Set2).

Assumptions 4 and 5 together say that magma
is able to percolate upward at a constant rate
until it solidi¢es. The velocity at which it rises
results from a complex interaction between mag-
ma buoyancy, the mechanical properties of the
crust, and external applied stress. The system is
so complex that it is not possible at present to
calculate magma velocity, which is therefore
treated here as a variable. Regardless of the rate
at which it rises, the ultimate height to which the
magma can rise is determined by its solidi¢cation
temperature (assumption 5).

Assumption 5 may seem particularly unrealis-
tic, however relaxing it introduces signi¢cant
mathematical complications, and it is not obvious
how it should be relaxed. The rates at which crys-
tals are dropped out of the magma and magma
fractionates are unknown, and are likely to de-
pend on the detailed mechanism of upward £ow.
The critical melt fraction (CMF) at which a given
magma becomes e¡ectively solid is somewhere be-
tween 30 and 50%. The exact value depends on
wetting angles between melt and crystals, crystal
size and shape distributions [9] and preferred
crystal orientation. However, because the ¢nal
20^40% crystallization in a magma occurs very
close to the solidus temperature [10] the magma
will indeed become e¡ectively solid close to the
solidus and assumption 5 is not unreasonable.
On the other hand, if a signi¢cant fraction of
the magma crystallizes very close to the solidus
temperature, then the latent heat is not released
linearly, contrary to our assumption 6. However,
as discussed in Section 5, after pervasive migra-
tion has continued for an initial period, the sol-
idus^liquidus temperature di¡erence occurs over a
small depth interval so exactly where and at what
temperature the crystals are dropped will not mat-
ter very much.

Table 2
Temperature increase of the crust from Eq. 2

Vi/(Vi+Vc) NTi vTc

0.10 0 20
0.25 0 50
0.50 0 100
0.50 100 150
0.60 150 210

2 http://www.elsevier.com/locate/epsl
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A justi¢cation for assumption 7 is that upon
solidi¢cation the magma loses volatiles and will
be harder to remelt. Assumption 8 is equivalent
to assuming that the solidus of the layer is above
the liquidus of the input magma (see Section 1).

4. Equations and computer code

The governing equations for the one-dimen-
sional heat and mass transfer problem outlined
above are given here, in Sections 4.1 and 4.2.
There are some similarities with pervasive £ow
of volatiles [11], but in that situation latent heat
and crustal growth are unimportant. In Section
4.3 the meaning of the equations and the control-
ling parameters is discussed, and Section 4.4 is a
brief description of the computer code.

4.1. Derivation of equations

4.1.1. Initial and boundary conditions
These are:

TðzÞ ¼ TLz ð09 z9 d0; t ¼ 0Þ ð3Þ

vi ¼ 3v0 ðzszf ; tv 0Þ ð4Þ

vcAc þ viAi ¼ 0 ð5Þ

T ¼
0 at z ¼ 0

TL at z ¼ d

(

vi ¼
0 at z ¼ 0

3v0 at z ¼ d

(

d ¼ d0 þ
Ai

Ac
v0t ð6Þ

That is, we start with a crustal layer thickness
d0 with a linear pro¢le of temperature T with
depth (Eq. 3). Depth z and velocity v are mea-
sured downward from the surface. The velocity
of magma in the channels vi is constant every-
where below the magma front zf (Eq. 4). In order
to conserve mass, the upward £ux of magma is

balanced by downward movement of the original
crust (Eq. 5). Conditions at the surface and the
base of the layer are given in Eq. 6. We note that
as magma is injected, layer thickness d increases
according to d= d0+vct.

4.1.2. Equations for temperature
The general heat equation for a material which

can change phase (such as a crystallizing magma)
is, in one dimension [12] :

DT
D t

¼ U

D
2T
D z2

3v
DT
D z

3
LðM ; zÞ

cp

D M

D t
þ D M

D z

� �
ð7Þ

where U is the thermal di¡usivity and M is the melt
fraction. The left-hand side of Eq. 7 is the change
in temperature at a given depth z in the crust, and
the terms on the right are di¡usion, advection,
and latent heat release respectively, at the same
position.

In general, L is a function of M and z, and M can
vary in a complex way with temperature, but for
simplicity (see Section 3), we set L= constant and
specify that M varies linearly between TL and
TS :

M ¼ TðzÞ3TS

vTLS
ð8Þ

where vTLS =TL3TS.
At a given depth below the magma ‘front’ (Fig.

1), we can write down separate heat equations for
the ‘original crust’ (subscript c) and the injected
magma (subscript i). The original crustal material
does not melt (assumption 8 above) and so there
is no latent heat term:

Ac
DT
D t

¼ cU
D
2T
D z2

3Acvc
DT
D z

ð9Þ

For the injected magma (using Eq. 8):

Ai
DT
D t

¼ AiU
D
2T
D z2

3Aivi
DT
D z

3
LAi

cpvTLS

DT
D t

þ vi
DT
D z

� �
ð10Þ

Since we assume that the crust and input ther-
mally equilibrate instantly (assumption 4), T is
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the same in Eqs. 9 and 10. We add Eqs. 9 and 10,
eliminate the second term on the right with the
use of Eq. 5, and rearrange to ¢nd that for
zs zf :

1þ L
cpvTLS

Ai

A

� �
DT
D t

¼ U

D
2T
D z2

3
viL

cpvTLS

Ai

A
DT
D z

ð11Þ

Above the front L=0, and Eq. 9 takes on the
simple familiar form of thermal di¡usion in one
dimension:

DT
D t

¼ U

D
2T
D z2

ðz6zfÞ ð12Þ

4.1.3. vf and x
In addition to the boundary conditions and the

heat equations Eqs. 11 and 12, to complete the
problem, we need to know the front velocity
vf = dzf /dt and how x, the volume fraction of
the crust which is taken up by injected magma,
varies with depth and time.

While the front is advancing through the free-

ride layer (Fig. 1a) we have:

vf ¼ vi; x ¼ Ai

A
ðzfszS0Þ ð13Þ

The front reaches the limiting isotherm at time t1 :

t1 ¼
d03zS0

v0
ð14Þ

after which its advancement slows. In general for
t6 t1 we must ¢nd vf numerically by balancing
di¡usion, advection and latent heat release at
the front: however we can derive an approximate
solution, valid after a certain time, if di¡usion is
relatively unimportant.

Without di¡usion (UD2T/Dz2 = 0) a discontinuity
in temperature would develop, since above the
front the temperature would not evolve whereas
below the front it would change due to advection.
For most of our numerical runs advection domi-
nates di¡usion in the heat equation, and we ¢nd
that a ‘step’ in the temperature pro¢le develops
(see Figs. 5^7) after a short time t2 (given for a
linear initial geotherm by Eq. B3, Appendix B
(Background Data Set)). After time t2, we can

Fig. 3. Sketch of advancing front at times (a) t and (b) t+Nt, and corresponding temperature pro¢les (c). Illustrates calculation of
approximate front velocity vf (Section 4.1.3).
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¢nd an approximate analytical expression for vf
as follows.

We neglect di¡usion and consider an interval of
depth around the front (Fig. 3). The average tem-
perature just above the front is Tc. Below the
front, T varies from TS to TL over a certain depth
interval. We assume the shape of the pro¢le is
steady with time so that the whole pro¢le below
the front rises at the same velocity vf as the front
itself.

In time interval Nt, input magma of volume Vi

mixes with crust of volume Vc and temperature
Tc. Magma is emplaced at temperature TS, re-
leases its latent heat and is reheated. The front
moves distance Nzf and the new mixed volume
has thickness vz. Magma in the channel (volume
Aivz) does not solidify. The net result is that some
crust (volume Vc, temperature Tc) has been
heated to temperature TL, and some magma (vol-
ume Vi3Aivz) has released its latent heat. Con-
servation of heat gives:

cpV cðTL3T cÞ ¼ LðV i3AivzÞ ð15Þ

Writing Vc, Vi and vz in terms of the Nzf , Nt and
vi, and rearranging we ¢nd:

vfW
Nzf
Nt

¼ vi
ðL=cpÞðAi=AÞ

TL3aTS þ ðL=cpÞðAi=AÞ
ð16Þ

In Eq. 16 we introduce:

a ¼ T c=TS ð17Þ

which is a measure of how close the crustal tem-
perature is to the solidus.

The volume fraction of injected magma x is
given by x=Vi/(Vi+Vc). Further algebra shows
that x and vf are related by:

x ¼ 1þ vf
vi

Ac

Ai

� �
31

; vf ¼ vi
Ai

Ac
13

1
x

� �
ð18Þ

4.2. Dimensionless equations

The equations can be non-dimensionalized us-
ing:

T 0 ¼ T
TL

; z0 ¼ z
d0
; t0 ¼ t

U

d2
0

; v0 ¼ v
d0

U

ð19Þ

where the primed variables are dimensionless. De-
¢ning the dimensionless variables :

St ¼ L
cpvTLS

; P ¼ Ai

A
; Pe ¼ v0d0

U

ð20Þ

the initial and boundary conditions are:

T 0 ¼ z0 ð09 z09 1; t0 ¼ 0Þ ð21Þ

v0 ¼ 3Pe ðfor z0sz0fÞ ð22Þ

T 0 ¼
0 at z0 ¼ 0

1 at z0 ¼ d 0

(

v0 ¼
0 at z0 ¼ 0

3Pe at z0 ¼ d 0

(

d 0 ¼ 1þ P

13P

� �
Pet0 ð23Þ

and the heat equations (Eqs. 11 and 12) be-
come:

ð1þ StP ÞDT
0

D t0
¼ D

2T 0

D z02
þ ðStPPeÞDT

0

D z0

ðz0sz0fÞ ð24Þ

DT 0

D t0
¼ D

2T 0

D z02
ðz06z0fÞ ð25Þ

Expressions for the front velocity of the front
are:

v0f ¼ 3Pe; t06t01 ¼ ð13z0S0Þ=Pe ð26aÞ

v0fW3Pe 1þ ð13aT 0
SÞ=ð13T 0

SÞ
Sta

� �
31

; t0st02

ð26bÞ

In the initial free-ride zone we have:

x ¼ P ; z0sd 03ð13z0S0Þ=ð13P Þ ð27Þ
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and at the front vPf and x are related by:

xðz0fÞ ¼ 1þ v0f
Pe

13P

P

� �
31

; v0f ¼
PeP
13P

13
1
x

� �
ð28Þ

Substituting Eq. 26b into Eq. 28:

xðz0fÞW 1þ Stð13P Þ
ð13aT 0

SÞ=ð13T 0
SÞ þ StP

� �
31

ð29Þ

4.3. Physical meaning of equations and parameters

Eq. 24 (cf. Eq. 11) says that temperature
change at a given depth is due to di¡usion of
sensible heat (¢rst term on right) and advection
of latent heat (second term). Above the front
(Eqs. 25 and 12) only di¡usion can modify the
temperature. (Here di¡usion refers to conduction
of heat up the geothermal gradient towards the
surface.)

It is at ¢rst counter-intuitive that advection of
latent heat alone modi¢es the temperature. Why
does advection of sensible heat (i.e. the injection
of hotter material from below) not change the
temperature at a given depth? This result stems
from the assumption of thermal equilibration be-
tween magma and crust, and from conservation
of mass (Eq. 5). At any given depth, the upward
advection of sensible heat AiviDT/Dz is exactly bal-
anced by downward advection AcvcDT/Dz as colder
crust descends.

There are three dimensionless parameters con-
trolling the system: St, P and Pe (Eq. 20). The
Stefan number St compares latent heat with heat
capacity over the liquidus^solidus interval and so
indicates how much of a temperature rise is asso-
ciated with crystallization. St, together with the
crustal temperature pro¢le, determines x (Eq. 29).
The ‘migration porosity’ P is most signi¢cant in
combination with the Peclet number Pe. PeP/
(13P) is the volume £ux of magma from the
source, and so determines the growth rate of the
layer.

Pe is the ratio of the di¡usion timescale
dU = d20/U and the advection timescale dv = d0/v0.
For many £uid £ow situations, PeE1 implies

that advection dominates di¡usion in determining
thermal evolution, however in this system we re-
quire StPPeE1 instead (see Eq. 24). In our sys-
tem Pe is a measure of how fast the magma
moves, StP is a measure of how much heat it
contains, and so StPPe is a measure of how fast
the heat moves.

4.4. Computer code

The fortran program PERVASE was written to
solve Eqs. 24 and 25 with boundary conditions
Eqs. 22 and 23. The crustal layer was divided
up into cells of height h0 and ¢nite di¡erence
equations were solved for each cell. Rather than
using Eq. 26b for vf , the full heat balance includ-
ing the e¡ects of di¡usion was carried out in the
cell containing the front. When the cell temper-
ature exceeded TPS, the front advanced to the next
cell. Similarly, x was determined by how much
input material was injected into each cell as the
front advanced.

Problems where the volume of the domain
changes with time always present a challenge in
numerical work. Here, we allowed the individual
cells to expand as new magma £owed into them,
until they reached a critical height (1.6h0) when
they were split into two. Thus, the number of cells
increased with time and ^ because the cells be-
neath the magma front moved downward with
time ^ the equations had a slightly di¡erent
form to those above, which apply at ¢xed depths
measured from the surface. Note that a cell only
split while magma was being injected into it : be-
cause magma then continued to inject into only
one of the parent cells, a high-frequency numer-
ical ‘jitter’ was introduced into the pro¢le for x.
This jitter is smoothed by simple averaging in the
curves below.

5. Results

The program PERVASE was run under the
conditions listed in Table 3. In all cases, the initial
thermal pro¢le through the layer was linear, and
the input conditions were constant. Figs. 4^7
show depth pro¢les of temperature T (thick
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curves) and corresponding emplacement fraction
x (thin curves) at various times t. Dimensionless
scales are given on the left and bottom axes, and
example dimensional scales are shown on the
right and top axes. For converting to dimensional
scales, we chose an initial layer depth d0 of 36 km
and TL of 800 or 950‡C.

It is important to realize that the choice of d0
determines not only the dimensional depth scale
on Figs. 4^7, but also the time scale for the curves
of T and x (see Eq. 19). If we halved d0 to 18 km,
then the times would be one quarter of those giv-

en. For example, in Fig. 5, the dashed curves
would apply for t=250/4 = 62.5 kyr.

5.1. Choice of controlling parameters St, P, Pe

In our numerical runs we used the values of U,
L, cp, TL and TS given in Table 1, as representa-
tive of the crust. These values imply that StW1.3^
2. Appropriate values for P and Pe are harder to
choose. We picked P=0.05 as a reasonable ‘small’
number. Pe depends on both the initial layer
depth d0 and the injection velocity v0. As men-
tioned in Section 3, we have little handle on v0.
A lower limit might be a tectonic time scale of a

Fig. 4. Pro¢les of temperature T and emplaced fraction x at
three times t after the start of pervasive intrusion. Run ST0,
no latent heat (Table 3). Dimensional scales calculated as-
suming d0 = 36 km and TL = 800‡C. Pro¢les for x have been
smoothed (averaged over three to six points) to remove nu-
merical ‘jitter’.

Fig. 5. Pro¢les of T and x for run ST2 with dimensionless
latent heat St = 2 (Table 3). Further details in caption for
Fig. 4.

Table 3
Conditions of numerical runs

Run St P Pe StPPe TPS tPfin tfin t1 t2
(kyr) (kyr) (kyr)

ST0 0 0.05 1000 0 0.875 0.011 500 5.7 r
ST2 2 0.05 1000 100 0.875 0.011 500 5.7 125
PHI1 0.67 0.10 1000 67 0.833 0.0033 150 7.6 243
PHI05 1.33 0.05 1000 67 0.833 0.0033 150 7.6 244
PHI01 1.33 0.01 5000 67 0.833 0.0033 150 1.5 232
PE250 2.0 0.05 250 25 0.875 0.0263 1,200 22.8 502
PE1000 2.0 0.05 1000 100 0.875 0.0066 300 5.7 125
PE4000 2.0 0.05 4000 400 0.875 0.0016 75 1.4 31
ZF 2.0 0.05 1000 100 0.875 0.042 2,500 5.7 125

Dimensional times tfin, t1, t2 calculated assuming d0 = 36 km and U=9U1037 m2/s.

EPSL 6211 14-5-02

A.M. Leitch, R.F. Weinberg / Earth and Planetary Science Letters 200 (2002) 131^146140



few cm/yr (v0W1039 m/s, PeW40), and an upper
limit might be determined by buoyancy-driven
£ow rate in dykelets of cm to dm width (see Ap-
pendix A (Background Data Set)) (v0W5U1036

m/s, PeW2U105). For most numerical runs, we
chose an intermediate value of PeW1000 which
implies v0W2.5U1038 m/s (80 cm/yr). The most
important parameter for the thermal evolution of
the crust, the product StPPe (Section 4.3), was
varied from 0 to 400.

5.2. Run ST0: no latent heat

For run ST0 the input magma had no latent
heat. This case has no physical reality, however
it is useful in emphasizing the role of latent heat
in pervasive intrusion. Fig. 4 shows pro¢les of T
and x at three times after the start. Principal fea-
tures are:

1. Layer depth d increases steadily with time.
2. The depth zS of the limiting isotherm TS does

not change, i.e. once it is through the free-ride
zone, the front does not advance.

3. The temperature pro¢le above zS does not
change.

4. There is a rounded ‘corner’ in the temperature
pro¢le at depth d0 (zP=1) where the initial lin-
ear gradient bends to become vertical.

5. In the lowermost part of the layer x= P. It then
jumps to x=1, and drops to zero above zS.

These features can be understood from the gov-
erning equations. For St = 0 (L=0) the heat equa-
tion below the front Eq. 24 reduces to the di¡u-
sion equation Eq. 25, according to which the
temperature pro¢le should not evolve at all due
to advection. If di¡usion was negligible, we would
expect the original geotherm up to zP=1 to re-
main unchanged, and for it to be underlain by a
growing layer at temperature TP=1. There would
be a sharp ‘corner’ at zP=1 where the temperature
gradient changed. This is almost what is observed
in Fig. 4, except that, under the run conditions of
case ST0, di¡usion is not negligible, and over time
the ‘corner’ at zP=1 becomes rounder (point 4
above).

The lowermost portion of the layer where x= P

is the original free-ride zone (Eq. 27). Here x is
simply the fraction of crust taken up by the chan-
nels. Once through this zone, magma is emplaced
where z= zS. Continued emplacement at this un-
changing depth results in a growing layer of un-
mixed (x=1) input material. The paradox that
advection of hotter material from below does
not modify the temperature pro¢le is explained
in Section 4.3.

5.3. Run ST2: including latent heat

Fig. 5 shows pro¢les of T and x for run ST2,
which has St = 2 (e.g. L=3U105 J/kg released be-
tween TL = 800‡C and TS = 700‡C). These pro¢les
are very di¡erent from those in Fig. 4. We see:

1. The temperature pro¢le has a stepped appear-
ance around the TS isotherm, with the original
gradient at shallow depths and TWTL at great-
er depths.

2. The limiting isotherm TS shallows with time.
3. The corners of the step at TS are rounded.
4. In the original free-ride zone x= P. Above this,

x jumps to about 0.5, then increases slowly
towards shallower depths until it drops to
zero above zS.

Fig. 6. Pro¢les of T and x for runs PHI1, PHI05 and
PHI01, for which StP is the same, but relative area of chan-
nels P is 0.1, 0.05 and 0.01 respectively (Table 3). Dimension-
al scales calculated assuming d0 = 36 km and TL = 900‡C.
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As Eq. 24 shows, for non-zero St the temperature
pro¢le below the front is modi¢ed by advection.
To start with (curve for t=50 kyr), latent heat is
deposited in the crust in the free-ride zone as the
magma passes through, and the temperature of
the crust rises. Once it reaches the top of the
free-ride zone the magma is emplaced, and the
remaining latent heat is used to heat the colder
surrounding crust to TPS. Thus the limiting iso-
therm rises.

As time goes on (curves for t=250, 500 kyr) the
front advances and the crust underneath the front
continues to warm. In a time t2 (125 kyr, Eq. B3,
Appendix B (Background Data Set)) heat transfer
from magma in the channels has raised the tem-
perature below the front to about TL, and for
ts t2 the pro¢le contains a step. From then on,
all latent heat is deposited close to the front. The
rounded corners of the step are due to di¡usion.

The magma volume fraction x depends on how
much latent heat is required to raise the crust just
above the front to TL (see Section 4.1.3), so it
depends mainly on the temperature of the crust
and the latent heat. The pro¢les of x in Fig. 5
re£ect active emplacement at the front and the
history of previous front injection below it: the
bottom of the three pro¢les is identical, just
shifted to greater depth as the injection complex
thickens. The increase in x at shallower depths is
due to the magma intruding into progressively
colder country rock (see Section 5.6).

5.4. Runs PHI1, PHI05, PHI01: in£uence of P

The relative area of the injection channels in the
crust, P, is most important when it is combined
with other parameters. The volume £ux of magma
through the crust is PeP, and the latent heat £ux is
StPPe. For small StP, Eq. 24 shows that only the
product StPPe is important in thermal evolution.
Fig. 6 displays T and x at the same time tfin for
runs PHI1, PHI05 and PHI01, which all have
StPPe= 67.

PHI1 and PHI05 have di¡erent P but the same
value of StP (see Table 3). The temperature pro-
¢les for these two cases are identical. However,
the pro¢les of x and the layer thicknesses d are
quite di¡erent. The total volume of magma in-

truded past a given level in the crust is
VPitot = PePtPfin. In case PHI1 (P=0.1) the amount
of intruded magma is twice as great as in case
PHI05 (although the intruded latent heat is the
same) and therefore the increase in d and the in-
tegrated x are twice as great.

For runs PHI01 and PHI05 the product PeP is
the same, so the amount of intruded magma and
the pro¢les of x are very similar. Because StP is
small, the temperature pro¢les of the two runs are
also very similar though not identical.

5.5. Runs PE250^PE4000: in£uence of StPPe

The relative importance of advection and di¡u-
sion on the crustal temperature pro¢le is given by
StPPe (Section 4.3). As StPPe increases (E1), ad-
vection dominates and the temperature pro¢le de-
velops a steepening ‘step’. This is illustrated in
Fig. 7, which displays pro¢les for three values of
StPPe. In the ¢gure, St and P are kept constant so
that the pro¢les of x are comparable, and Pe is
increased by increasing v0. A faster v0 causes the
system to evolve more quickly, so there is less
time for di¡usion to occur. The times tPfin have
been chosen such that the same amount of mag-
ma (and latent heat) has been added to the layer
(StPPetPfin constant). We see that the pro¢les are

Fig. 7. Pro¢les of T and x for three values of Pe (and
StPPe). Runs PE250, PE1000 and PE4000 (Table 3). Times tf
chosen such that each run has the same volume of injected
magma.
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broadly similar, but for smaller StPPe ^ particu-
larly for case PE250 ^ the step in the geotherm is
rounder, x is higher and zPS deeper.

5.6. x and the front velocity, vf

Once the step pro¢le has formed (ts t2), an
approximate expression for x as a function of
the temperature just above the front is given by
Eq. 29, where a (Eq. 17) is a measure of crustal
temperature and varies from 1 (when the front
¢rst arrives at the limiting isotherm) to 0 (at the
surface). Unbroken lines in Fig. 8 show plots of x
versus a for a range of St at a given TPS and P.
The curves illustrate that x increases smoothly
with crustal temperature, and that the emplaced
magma is always a signi¢cant fraction of the
mingled layer (s 30%). The dotted and dashed
lines show that reasonable variations in TPS and
P do not change these basic features.

Eq. 29 applies in the limit of large Pe and for
ts t2. Analytical expressions for t2, zf (t) and
x(z,t) are derived for the special case of a linear
geotherm in Appendix B (Background Data Set).

In dimensionless form they are:

t02 ¼ 2
ð1þ StP Þ
PeStP

ð13z00Þ ¼ 2
ð1þ StP Þ

StP
t01 ð30Þ

z0fðt0Þ ¼ 13StP ð13z00Þ 1þ 2Pet0

StP ð13z00Þ

� �1
2
31

2
4

3
5
ð31Þ

xðz0; t0Þ ¼ 13ð13P Þ 1þ 2
ð13P Þð13z0Þ þ PPet0

Stð13z00Þ

� �31
2

ð32Þ

Eq. 30 equals Eq. B3 (Background Data Set) ; Eq.
31 equals Eq. B11 (Background Data Set) ; Eq. 32
equals Eq. B16 (Background Data Set).

The analytical and numerical results for T and
x are compared in Fig. 9. The good agreement
indicates that the values of Pe which we have
been using are large enough that Eq. 29 is a rea-
sonable approximation. Thus, as long as an injec-
tion complex is su⁄ciently deep, ¢eld observa-
tions of x together with good estimates of St
and TPS may give an indication of the temperature
pro¢le in the crust at the time of injection.

Fig. 9. Comparison of numerical and analytical results for
pro¢les of T and x at times t= t2 and t=3t2 where t2, the
time taken for a step to form, is given by Eq. 31 (run
PE1000, Table 3). Dimensional scales assume TL = 800‡C,
d0 = 36 km.

Fig. 8. Plots of x as a function of relative crustal tempera-
ture a=Tc/TS, for various values of St (numbers next to
curves), with P=0.1 and TPS = 0.875 (e.g. TL = 800‡C, TS =
700‡C). Dashed lines for St = 0.5 and 4 illustrate the e¡ect of
changing TPS to 0.833 (e.g. TL = 900‡C, TS = 750‡C). Dotted
lines for St = 1 and 2 show the e¡ect of changing P from 0.1
to 0.01.
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5.7. Run ZF: long time behavior

Fig. 10A and B shows how the depth of the
magma front zPf and the layer thickness dP vary
with time for case ZF, which is the same as case
PE1000 extended to longer times (2.5 Myr). The
magma front rises quickly (at velocity v0) through
the initial free-ride zone, reaching zPS0 at time tP1.
The front then rises at velocity vPf (Eq. 26b), slow-
ing as it encounters colder crust. If di¡usion is
neglected (analytical solution from Appendix B
(Background Data Set)), the front reaches the sur-
face in time t3 where

t03 ¼
1
Pe

1þ 1
2StP ð13z00Þ

� �
ð33Þ

Eq. 33 equals Eq. B17 (Background Data Set).
When di¡usion is included (numerical solution)

the front stalls at shallow depth where all ad-
vected heat is conducted to the surface. In prac-
tice, it is unlikely that this stage is reached, be-
cause by then the layer has obtained unreasonable
thickness. Thus, it is likely that pervasive migra-
tion is limited by the availability of magma and
not by the e¡ects of thermal conduction near the
surface.

5.8. Summary

From Figs. 5^8, we see that pervasive migration
modi¢es the original geothermal gradient by in-
troducing a steep change in temperature at the
position of the magma front (where x ¢rst be-
comes non-zero), and that this front advances to
shallower depths with time. Below the magma
front the temperature is approximately TL. The
sharpness of the step depends on StPPe, and the
rate of advancement of the front vf depends also
on the initial geotherm. The fraction x of injected
magma in the injection complex depends mainly
on St and relative crustal temperature a.

6 Discussion and conclusions

We have developed a simple mathematical and
numerical model which captures some of the es-

sential physical processes involved in pervasive
magma migration. We have identi¢ed the key
controlling parameters (St, Pe and P ^ Section
4.3), and investigated how pervasive migration
in£uences the temperature pro¢le in the crust
and the fraction x of crust taken up by the mi-
grating magma.

The models show that during pervasive migra-
tion the layer of rock intruded by magma is grad-
ually heated to temperatures approaching the
magma liquidus, and magma is emplaced at the

Fig. 10. The depth of the magma front zf and the layer
thickness d vs. time (A) for moderate time, (B) for long
time. Run ZF (Table 3) and analytical results from Appendix
B (Background Data Set). Analytical and numerical results
give the same linear increase of d with time.
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depth of the melt solidus isotherm, zS. This depth,
corresponding to the magma ‘front’, shallows
with time because of latent heat advected with
the rising magma, resulting in a widening injec-
tion complex with approximately half crustal rock
and half granite. The total vertical thickness of
the complex is thus about twice the thickness of
magma added to the crust. The rate at which the
magma front moves upwards decreases as the
front migrates to shallower levels, because the
magma is being added to progressively colder
crust. This implies that the process becomes inef-
¢cient in shallow crustal levels. How far the front
rises depends, of course, on the geothermal gra-
dient. Our models have all employed a simple
linear gradient: if the gradient shallows with
depth, as it generally does in the Earth’s crust,
the front will rise closer to the surface than shown
in our examples.

Interestingly, while the temperature below the
migrating front approaches the magma liquidus,
the temperature of the crust above the front re-
mains largely una¡ected (Figs. 5^7). This is be-
cause the time scale of pervasive migration in
the models (V104^105 a) is typically much short-
er than that for di¡usion (V106^107 a). If perva-
sive migration occurs in pulses over a period of
several million years, then there will be time for
thermal relaxation and the overlying crust will be
warmed, however, specially during an active pulse
the temperature pro¢le in the crust may be far
from a steady-state geothermal gradient. Hot tem-
peratures and partial melt at depth may be ac-
companied by average or even low heat £ux at
the surface.

Like the Khumbu area in Nepal described in
Section 1, there are several examples worldwide
of injection complexes. The Shuswap metamor-
phic core complex in the Canadian Cordillera,
has 15 km of structural section exposed. It has
anatectic migmatites at the base, representing
magma source, structurally connected through a
5^10 km wide injection complex, to leucogranite
laccoliths at the top [13,14]. The pervasive injec-
tion complex is composed of leucogranite and
pegmatite pods and veins, intruding rocks with
evidence for incipient partial melting. The lacco-
lith is emplaced below a shallow-dipping fault

zone. Structural connection and similar leuco-
granite ages suggest that the exposures represent
a frozen magma migration pathway from source
to laccolith [14]. Similarly, the Pangong injection
complex, NW Himalayas is thought to represent
frozen pervasive £ow of magma towards overly-
ing plutons, possibly the large Karakoram Bath-
olith cropping out in the vicinity [8]. In this area
garnet-bearing leucogranites pervasively intruded
amphibolites and migmatites. The high tempera-
ture of the country rocks at the time of intrusion
is evidenced by similar zircon U^Pb ages of garnet
leucogranites and in situ migmatite melt pods. As
argued by Weinberg and Searle [8], high temper-
ature of the country rock inhibited transport of
leucogranite magma in dykes, but permitted per-
vasive intrusion of leucogranite and viscous £ow
of country rock.

These ¢eld relations show that partially molten
zones may be overlain by injection migmatite
zones several kilometers thick, capped by a thick
region of melt accumulation. The scale, the inter-
connected nature and the similar volumes of host
crust and injected leucogranites within the injec-
tion zones ¢t our simple model of pervasive mi-
gration. However, in the ¢eld we do not see evi-
dence of an ‘original’ free-ride zone of smaller
magma fraction between the source and the injec-
tion complex (Figs. 5^7), and our models do not
predict the accumulation of magma in large
bodies at the top of the complex.

Nature is not limited by our simplifying as-
sumptions (Section 3), so we expect some devia-
tions from the model predictions. In particular, as
the front shallows and x increases, the melt may
accumulate in pools rather than being distributed
through the crust. The pools may then focus the
emplacement of later melt, so that a sequence of
large sills or a pluton is formed. The top of the
surviving injection complexes may represent the
maximum practical fraction of magma the crust
can hold before the network breaks up into sills.
Also, the proximity of the laccoliths at the top of
the Shuswap complex with a fault zone suggests
that a major rheological change within the crust
along the magma path may cause the pervasive
migration to stall and magma to accumulate. In
nature, unlike our model, there is probably no
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sharp distinction between the channels which
carry the magma to the front and the injection
complex of emplaced magma, thus we might not
see the sharp change in x between the original
free-ride zone and the injection complex seen in
the models. This may be particularly true if the
injection is pulsed and new pulses open up di¡er-
ent channels.
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