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S U M M A R Y
The segregation of melt from a linear viscous matrix is traditionally described by McKenzie’s
compaction theory. This classical solution overlooks instabilities that arise when non-linear
solid matrix behaviour is considered. Here we report a closed form 1-D solution obtained
by extending McKenzie’s theory to non-linear matrix behaviours. The new solution provides
periodic stress singularities, acting as high porosity melt channels, to be the fundamental
response of the compacted matrix. The characteristic length controlling the periodicity is still
McKenzie’s compaction length δ̄c, adjusted for non-linear rheologies.
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1 I N T RO D U C T I O N

Melt segregation is found to be an extremely efficient mechanism
capable of squeezing even small fractions of melt out of the solid
rock matrix through localized channels (McKenzie 1985; Connolly
et al. 2009). Following the pioneering work of McKenzie (1984),
the classical interpretation is that they are features of gravity driven
volumetric compaction of a linear viscous matrix with the melt
migrating through the matrix in small portions via grain boundary
wetting. It was therefore identified to be a process predominantly
controlled by the properties of the melt, with the solid contributing
by its dihedral angle to determine whether melt migrates through
the linear viscous matrix. The problem remained that the classical
solution does not localize and consequently the melt velocities on
the grain boundaries were significantly smaller than inferred from
field observations (Brown et al. 1995; Team 1998). The volumetric
compaction of the solid matrix therefore appeared not to be the
source of the instabilities and shear induced failure modes were
promoted (Holtzman et al. 2003a; Katz et al. 2006; Kohlstedt &
Holtzman 2009). In this work we present a fundamental ı̈yet so far
overlooked—instability process that is driven predominantly by the
solid matrix instead of the gravity driven percolation flow of linear
melt through the solid matrix. This process therefore belongs to the
class of solid material instabilities that are caused by an applied
stress field.

Based on laboratory experiments shear-induced dilatant instabil-
ities at low angles to σ 1 as shown in Fig 1(a) were argued to be
the most efficient mechanism to explain the necessary localization
and speed of melt transport (Holtzman et al. 2003a,b; Kohlstedt &
Holtzman 2009). Theoretical and numerical approaches were devel-
oped in parallel with these experimental observations of localized

melt segregation instabilities (Scott & Stevenson 1984; Stevenson
1989; Connolly & Podladchikov 1998, 2007; Spiegelman et al.
2001; Rabinowicz & Vigneresse 2004; Katz et al. 2006). All these
works emphasized the existence of localized segregation instabili-
ties that can initiate from porosity perturbations in Darcy’s law or
through an indirect feedback mechanism creating a non-linear (in
porosity) viscous response through the porosity variations.

In the field, another alignment of the instabilities can also be
encountered. They can be found at high angles to the maximum
principal stress direction, a regime that can be met in both shear-
induced (Fig. 1b; Weinberg et al. 2013) and purely volumetric cases
(Fig. 1c; Vernon & Paterson 2001; Weinberg & Mark 2008). These
observations highlight the existence of a volumetric failure mode
at the high confining pressures encountered in the middle to lower
crust, in addition to the above described failure modes and McKen-
zie’s pervasive solution of melt transfer. In this work, we emphasize
on this regime and seek for the predominant mechanisms controlling
the problem of volumetric compression of partially molten rocks.
We seek for fundamental types of volumetric material failure that
emerge from a homogenous porosity and deformation states. We
therefore provide a simple extension of McKenzie’s compaction
theory and show that volumetrically induced melt segregation in-
stabilities are a fundamental poro-mechanical response of a solid
matrix with non-linear rheology.

2 M O D E L F O R M U L AT I O N

We consider a 1-D model formulation based on the method of
characteristics developed in the general theory of plasticity (Hill
1950). This method reduces a generalized geometrical problem in
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Figure 1. Melt-rich channels at different settings. (a) Figure from laboratory experiments, after Holtzman et al. (2003a,b), showing melt-rich channels forming
during shear at low angles with respect to the maximum compressive stress (yellow arrows). (b) Outcrop from Kangaroo Island, Australia (Weinberg et al.
2013) showing melt-channels forming under shear, with the orientation of the melt-rich bands (leucosomes) at high angles to (a) under a similar maximum
compressive stress orientation. (c) Banded and folded ductile Archean gneiss with layer-parallel pegmatite intrusions (horizontal white bands). Folds have axial
planar leucosomes (crystallized melt) oriented N–S across the photograph. These melt channels form at high angle to the maximum compressive stress (yellow
arrows), oriented E–W. The orientation of the maximum compressive stress is inferred by the folding patterns and lacking evidence for high pore pressures such
as generalized brittle fracturing filled with leucosomes. Note the 20–50 cm spacing between leucosome (melt channels) bands of 10 mm thickness. Outcrop
from the Yalgoo Dome, Yilgarn Craton and West Australia.

two dimensions into an equivalent 1-D failure line along a marching
coordinate system ξ . These failure lines are constructed in a stress
space that allows a decomposition of purely volumetric and purely
deviatoric components acting across and along them, respectively. In
oedometric conditions for example (where in an x − y − z Cartesian
coordinate system εxx = εyy = 0 and εzz �= 0), the direction of ξ

coincides with the purely compactive/dilatational z-direction.
In this contribution, we investigate the influence of the volumet-

ric mechanism acting along the axis normal to the instability (ξ )
and solve for the distribution of the mean effective stress p′ inside
the compressed specimen of height 2H, defined as the area that
reaches the yield stress. For mathematical simplicity, we assume
that all material properties, including solid viscosity and perme-
ability, are constant. This restricts the validity of the approach to the
onset of instability and the emergence of volumetric localization
from homogeneous deformation. Rather than developing solutions
for transient elasto-viscoplastic wave propagation we seek for the
stationary wave manifestation of the system because this solution
corresponds to the fundamental eigenmodes of the system to which
all transients relax (Hill 1962).

2.1 Momentum and mass balance

Based on this approach we position ourselves in the plastified area
2H where the initial elasto-plastic loading has occurred and there-
fore all the stress quantities are exceeding the yield regime, in a
classical setting of overstress viscoplasticity (Perzyna 1966). Stress
equilibrium in the ξ -direction combined with the stress decompo-
sition p = p′ + pf (pf is the pressure of the fluid/melt and p′ is the
mean effective stress) provides

∂p′

∂ξ
= ∂pf

∂ξ
. (1)

In the bi-phasic setting considered, we define the partial densities
ρ(1) = (1 − φ)ρs and ρ(2) = φρf of the solid and melt/fluid phase,
respectively, φ being the porosity (melt/fluid content), ρs and ρf

the solid skeleton and melt/fluid density, respectively. The mass

balance for each of the phases is ∂ρ(a)

∂t + ∂ρ(a)v
(a)
ξ

∂ξ
= 0, where a = 1,

2 are superscripts for the solid and melt/fluid phase, respectively.
Following McKenzie’s approach for incompressible solid and fluid
(i.e. ρs, ρf = const.), the mass balance equation for each of the
phases reduces to:

− ∂φ

∂t
− ∂φv

(1)
ξ

∂ξ
+ ∂v

(1)
ξ

∂ξ
= 0, (2)

∂φ

∂t
+ ∂φv

(2)
ξ

∂ξ
= 0. (3)

By adding them we obtain the mixture’s mass balance equation

∂φ(v(2)
ξ − v

(1)
ξ )

∂ξ
+ ∂v

(1)
ξ

∂ξ
= 0. (4)

As in McKenzie’s approach we accept Darcy’s law for the separation
velocity φ(v(2)

ξ − v
(1)
ξ ),

φ
(
v

(2)
ξ − v

(1)
ξ

)
= − kπ

μf

∂pf

∂ξ
, (5)

where kπ is the constant permeability, and μf the fluid viscosity.

The volumetric strain rate is defined as ε̇V = ∂v
(1)
ξ

∂ξ
. Under these

considerations, and by considering constant permeability, we obtain
(Vardoulakis & Sulem 1995),

kπ

μf

∂2 pf

∂ξ 2
= ε̇V . (6)

2.2 Non-linear viscous case

In this study, we restrict our discussion to the case where the solid
matrix can receive the stresses and the overall bulk behaviour is that
of a solid. The considered scale for this solid mechanical problem is
the timescale of melt segregation which is of the orders of years and
not the timescale of geodynamic deformation. Therefore the ma-
trix support is defined by the interacting solid skeleton and not the
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percolating melt network. A complete solution to the problem con-
siders the strain rate to be decomposed into elastic and viscoplastic
components and makes it necessary to calculate the elastic tran-
sients of the stress and porosity wave propagation. Following the
classical approach of material bifurcation (Hill 1962) we solve for
the stationary attractor of this elasto-viscoplastic problem (i.e. the
limit of rigid viscoplastic material) and investigate the response of
the matrix to volumetric deformation. To this end a standard power
law rheology relating the strain rates with the effective stress can be
assigned (see, e.g. Hickman & Gutierez 2007; Oka et al. 2011, and
references therein):

ε̇V = ε̇n

[
p′

p′
n

]m

, (7)

where ε̇n is the creep parameter (in s−1) and p′
n a reference stress-

like quantity. In their constitutive work, Hickman & Gutierez (2007)
evaluated the material parameters ε̇n and m as functions of the poros-
ity and the slopes of the compression curves in isotropic compres-
sion tests. This means that ε̇n (here kept constant for simplicity) is
in principle a function of all the state variables of the problem, thus
varying with porosity and temperature changes (see also the work
of Rabinowicz & Vigneresse (2004)). In this work ε̇n is set to be the
loading strain rate at the boundary where equivalent loading p′

n is
applied.

Eq. (7) is the volumetric component of the flow law that is fre-
quently used in describing shear deformation and was introduced
here following the current practice in the mechanics of soft geo-
materials (Hickman & Gutierez 2007; Oka et al. 2011) to illustrate
the rate dependent deformation of purely volumetric nature. Note
that the kinematic quantities ε̇n and ε̇V , as well as the static fields p′

and p′
n must always have the same sign, in order to ensure positive

mechanical work and satisfy the second law of thermodynamics.
This means that the present formulation is invariant of the sign
convention of the static and kinematic fields and applies to purely
volumetric compaction and dilatational problems.

3 M AT H E M AT I C A L C O N S I D E R AT I O N S

By combining eqs (1), (6) and (7), we obtain

kπ

μf

∂2 p′

∂ξ 2
= ε̇n

[
p′

p′
n

]m

. (8)

The final eq. (8) is brought into a dimensionless form:

d2σ ′

dz2
− λσ ′m = 0, (9)

by considering z = ξ

H , σ ′ = p′
p′

n
and

λ = ε̇nμf

kπ p′
n

H 2 =
(

H

δ̄c

)2

. (10)

Note that McKenzie’s expression (A33) is retrieved for m = 1 and
that the dimensionless group λ scales with a modified compaction

length that includes the adjusted matrix viscosity μ̄s = p′
n

ε̇n
,

δ̄c =
√

kπ μ̄s

μf
. (11)

The solution of eq. (9) depends on the value of the rate sensitivity
coefficient m. For m = 1 the system degenerates into the classical
McKenzie equation without instabilities. For all m > 1 (non-linear
cases), the solution for σ ′ is non-trivial, as it is elliptic. For odd val-
ues it is the Jacobi and for even values it is the Weierstrass equation

(the two are related, as discussed in Appendix A). This behaviour is
frequently met in Korteweg-de Vries equation of the shallow water
theory, with the solutions presenting periodic singularities that are
spectrally stable (Bottman & Deconinck 2009). This means that the
transient orbits of the system are attracted to the solutions of the
steady state eq. (9).

For integer values of m < 4 this equation admits closed-form
solutions (see Appendix A). Without loss of generality we focus in
this study on the relevant solutions for a representative power law of
m = 3 (see also eq. 1a of Rabinowicz & Vigneresse 2004) because
this is the most common power law exponent for mantle and crustal
rocks. For m = 3 and for constant boundary conditions [σ ′(1) = 1
and dσ ′

dz |z=0 = 0], the analytic solution of eq. (9) is

σ ′ = ±C2sn

[(√
−λ

2
z + I cn(0, ı)

C2

)
C2, ı

]
, (12)

where sn and Icn are the Jacobi SN and the inverse Jacobi CN func-
tion, and C2 the solution of the transcendental equation σ ′(1) = 1.

4 D U C T I L E I N S TA B I L I T Y C R I T E R I O N

The profiles of the normalized effective stress depend on the
poromechanical feedback parameter λ. The parameter λ represents
the ratio of the mechanical matrix deformation diffusivity over the
internal mass diffusive transfer of the melt. This parameter has a
profound physical meaning as it states that volumetric instabilities
are a result of competition of two time dependent processes, which
are the mechanical deformation of the matrix and the internal re-
sponse of the embedded melt phase. We may anticipate that stable
deformation occurs when λ � 1, that is the matrix deformation is
much slower than the fluid diffusion rate and the specimen has the
time to diffuse away any fluid pressure variations induced by the
loading conditions. At the other extreme when λ� 1 the loading rate
is much faster than the melt diffusion rate, internal mass variations
cannot be equilibrated and coupled poromechanical instabilities are
expected.

For m = 3 (see Appendix A for other cases), Fig. 2 depicts a
complex response, providing a multiplicity of singularities for the
normalized effective stress as λ increases. As expected from the
above discussed rate competition of diffusion process for small
values of λ (approximately λ < 13) the effective stress profiles
present a smooth solution with a minimum at the origin (z = 0), as
shown in Figs 2(a) and (b).

For values λ> 13 (see Appendix B for the reasoning) the effective
stress presents multiple singularities, the number of which increases
with λ. Since these singularities are localized in space, they indi-
cate zones of melt/fluid flow-focus. The following derivation shows
that these singularities are high porosity melt channels. This result
comes from integrating the mass balance of the solid phase (eq. 2,
combined with eq. 7 and neglecting the solid convection) over a
reference time interval �t:

φ = 1 − (1 − φ0)e
−ε̇n �t σ ′m

(13)

where φ0 is the initial porosity, considered constant across the sam-
ple due to the assumption of homogenous initial state. We empha-
size that the porosity is an outcome of this integration, providing
a solution of the porosity dependence on the applied stress. In this
integration the melt segregation channels emerge as high porosity
features out of homogeneous initial porosity. In the limiting case of
fully established stress singularities (σ ′ → ∞) the porosity tends to
its maximum value (one) confirming melt segregation instabilities
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Figure 2. Distribution of the normalized effective stress σ ′ (eq. 12) inside the specimen for six different values of λ. Although for small values of λ the solution
follows the linear case of McKenzie’s theory (m = 1), stress singularities are obtained for λ > 12. In (d) the dimensionless distance h/H between the stress
singularities in the melt channels is highlighted.

Figure 3. Plot of the porosity profile (eq. 13) for λ = 13 (see also Fig. 2c)
for ε̇n�t = 10−5 and φ0 = 1 per cent.

(see Fig. 3). Because these instabilities originate from singularities
in the stress distribution of the solid matrix (effective stress), we
conclude that they are predominantly solid-controlled features.

A diagnostic element for geological applications in the field is
the spacing h between the melt channels as annotated in Fig. 2(d).
Although not periodically placed across the specimen, the channels
divide the space into equal layers of distance h, since as annotated
in Fig. 2(d), h1 + h2 ≈ h. As a consequence, h is then defined as the
inverse density of the bands, h = H

NC
. Through the results of Fig. 2

we obtain NC = 0.27
√

λ, or

h = H

NC
= δ̄c

0.27
≈ 4

√
kπ

μ̄s

μf
. (14)

Field observations of the spacing between the instabilities can
be used to verify or estimate material parameters like permeability,

and melt segregation velocities leading to the pattern of Fig. 1(c).
For a typical solid tonalite framework with a viscosity of 1018 Pa s,
a melt viscosity of 105–1010 Pa s and a channel spacing of 50 cm as
in Fig. 1(c), we obtain from eq. (14) a realistic range of effective
permeability, between 10−15 and 10−10 m2.

5 C O N C LU S I O N

We have presented a non-linear extension of McKenzie’s com-
paction theory, based on the assumption that a solid skeleton is sup-
porting the applied stresses and thus its rheology can be non-linear.
We have shown that solid-controlled volumetric instabilities emerge
in this process, that are characterized by localized high porosity
melt channels that are periodically interspersed inside the compact-
ing matrix. This result suggests that the problem of compaction of
partially molten rock can be seen as a fundamental poromechanical
response of a non-linear, viscous, partially molten solid matrix. This
view of the problem is different than the classical perception of the
linear viscous melt driving the process via its percolation through
the solid matrix problem. This is because the presented localized
mode of volumetric failure stems from a different (short) timescale
perspective of melt segregation. On long geodynamic timescales the
segregation problem may indeed be seen as a linear viscous melt
percolation problem assuming existing pathways for the melt. On
the short timescales of the order of years the percolation of solid
interacting forces of the solid skeleton define the matrix support.
This leads to an overall non-linear viscous behaviour of the sys-
tem that controls the process of melt segregation. We have shown
that in this case a classical solid mechanical approach provides
a closed form analytical solution for the steady state attractor of
the short timescale porosity waves. In line with the classical bi-
furcation methods in solid mechanics (Hill 1962) the outcomes of
this study are a quasi-static representation of a wave propagation
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problem. This does not imply that the reported instabilities take
place simultaneously but that the depicted pattern is the end product
of an evolution of instabilities as a function of the elasto-viscoplastic
(volumetric) p-wave propagation.
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A P P E N D I X A : A NA LY T I C A L
S O LU T I O N S O F E Q. ( 1 0 )

For integer values of m < 4 eq. (9) can be solved analytically, to ob-
tain the solutions listed in the Table A1. For m = 2, 3 its closed-form

Table A1. Analytic solutions of eq. (9), for varying rate sen-
sitivity m. Functions ℘(u, ω1, ω2) and sn(u, k) are the Weier-
strass P and Jacobi SN function, respectively (Abramowitz
& Stegun 1964) and ı is the imaginary number.

Rate sensitivity, m Solution

m = 1 σ ′ = C1e
√

λz + C2e−√
λz

m = 2 σ ′ = 6
λ
℘(z + C1, 0, C2)

m = 3 σ ′ = ±C2sn

[(√
−λ
2 z + C1

)
C2, ı

]
Any other m Num. solution

solution is given in terms of the elliptic Weierstrass P and Jacobi SN
functions ℘(u, ω1, ω2) and sn(u, k), which indeed present singular-
ities (poles) in their solutions [and are correlated with each other,
as shown by Abramowitz & Stegun (1964), 18.9.11]. This is not the
case when m = 1 however, and the effective stress solution is given
in terms of stable, hyperbolic trigonometric functions (McKenzie
1984). For all other values of m, eq. (9) has no analytical solution
and should be treated numerically.

A P P E N D I X B : B I F U RC AT I O N
C R I T E R I O N

We retrieve from Abramowitz & Stegun (1964, eq. 16.5.7) that in
eq. (12) stress tends to infinity when the argument of sn becomes
equal to ıK′(ı), K′(ı) being the complementary complete elliptic
integral of the first kind. In our case this would mean that melt
channels appear when λ = λcr, where

λcr = −2

[
K (ı) − K ′(ı)

z

]2

cd

[
K (ı) − K ′(ı)

z
, ı

]2

, (B1)

and K(ı) − K′(ı) = 1.31ı whereas cd is Jacobi’s CD function. The ex-
pression λcr of eq. (B1) presents a minimum λmin

cr = 12.7 at z = 0.52,
in accordance with the stress profile depicted in Fig. 2(c). For all
λ ≥ λmin

cr stress singularities will appear at different z points, as
shown in Fig. 2.
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