
TectonophWics, 22x (1993) 141-150 

Elsevier Science Publishers B.V.. Amsterdam 

141 

The upward transport of inclusions in Newtonian and power-law 
salt diapirs 

Roberto Ferrez Weinberg * 
Huns Rat&erg Tectonic Laboratory, Instilute of Earth Sciences, Uppsala Unir~ersity, Norbyc@en 18B. S-7.52 36 Uppsula, Sweden 

(Received December 11, 1992; revised version accepted April 28. 1993) 

ABSTRACT 

This paper studies the ability of salt diapirs to lift large inclusions of dense rocks (rafts). Dense inclusions will be lifted if 

salt in the diapir rises faster than the inclusions sink. The power-law rheologies of six different salts, and viscosities 

estimated for Newtonian salt are used to calculate the settling velocity of these inclusions as a function of their radii and 

density as well as the temperature of the salt. This is done using the known equation describing the velocity of solid spheres 

settling in unbounded power-law fluid. Two-dimensional numerical models are used to study the effect of the ellipticity of 

inclusions on their sinking velocity, as a function of the power-law exponent n. The calculations of the settling velocities of 

inclusions neglect several other factors discussed in the paper: (a) the ambient fluid (salt) is finite (bounded); (b) more than 

one inclusion translates in the salt; and (c) further strain-rate softening of salt is caused by its diapiric ascent. The results 

suggest that, whereas Newtonian salt of 10’7-10’8 Pa s and the power-law salt of the Vacherie Dome would have to rise at 

unreasonably high speeds in order to lift large inclusions, most power-law salt diapirs would be capable of lifting inclusions 

of the sizes observed in the Iranian domes (up to 3-h km2) if these rise at geologically reasonable velocities and 

temperatures. 

Introduction 

In a &cent paper, Gansser (1992) suggests that 

inclusions (rafts) in the Iranian salt domes are an 

enigma. The most important enigmatic aspect of 

such inclusions is their huge size. Inclusions of 

undisturbed Hormuz sediments and large bodies 

of basic volcanic rocks have been lifted by the salt 

and now accumulate on the dissolving surface of 

outcropping salt domes (Fig. 1). Inclusions of 

sedimentay rocks are commonly interpreted as 

competent beds, interlayered with the initial salt 

sequence, that have been disrupted by diapiric 

flow. Inclusions of basic igneous rocks common in 

salt diapirs in northern Spain, Arctic Canada and 

Iran, have been interpreted as either intruded 

into the salt or as interlayered lava flows (e.g., 

Talbot and Jackson, 1987; Gansser, 1992). Talbot 

and Jackson (1987) considered that salt might 
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incorporate inclusions by flowing into fractures in 

the overlying rocks and magmatic-like stoping of 

the blocks. However, most inclusions in diapirs of 

different salt sequences in the Zagros Mountains 

and the Great Kavir in Iran are the same age as 

the salt and thus come from the same strati- 

graphic level. This led Jackson et al. (1990) to 

conclude that stoping is unlikely to be significant 

in the emplacement of these diapirs. 

The negative buoyancy force acting on inclu- 

sions is defined as F, = Apgl$, where Ap is the 

density difference between inclusion and salt, g 

is gravity acceleration, and 1‘ is the volume of the 

inclusion. F, causes the inclusion to sink through 

the salt at a velocity controlled by the effective 

viscosity of the salt, qeff, which is a function of 

the rheological properties, strain rate and tem- 

perature of the salt. If the inclusion sinks more 

slowly than the salt rises within the diapir, the net 

movement of the inclusion will follow the rise of 

the salt upwards. Thus, the principal parameters 

controlling the maximum negative buoyancy of 

the inclusions that rise in a diapir are both the 

ascent rate and the effective viscosity of the salt. 
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In the Iranian salt diapirs, large inclusions were 
carried vertically several kilometres to outcrop on 
the surface. Dense inclusions of StromatoIitic 
limestone and dolomite, sandstone, granite gneiss, 
rhyolites and basic igneous rocks are common in 
the Zagros Mountains (e.g., Gansser, 1992). The 
largest known inclusions are 3-6 km” in area 
(Fig. 1; e.g., Gansser, 1960, 1992; Kent, 1979) and 
must have been lifted at least 5 km by the salt 
(Talbot and Jackson, 19871. Primary structures 
preserved in inclusions in the Great Kavir suggest 
that any displacement was by rigid body displace- 
ment (Jackson et al., 1990, p. 691. 

The rise of thin interbedded layers of denser 
material was studied by Ramberg (1981, e.g., pp. 
270-273,303,311-313 and 321-324) by means of 
centrifuge models of Iight silicone putty lifting 
and folding modelling clay layers. The present 
paper develops the discussion initiated by Talbot 
and Weinberg (1992) and uses experimentally de- 
termined rheological parameters of salt to calcu- 

late the maximum buoyancy of inclusions that 
could be lifted by diapiric salt rising at constant 
velocity and temperature. Any yield strength that 
salt may have is disregarded here. Salt creep may 
be approximated by that of a power-law tluid 
when coarse-grained salt deforms at high strain 
rates, or by that of a Newtonian fluid when 
fine-grained salt deforms at low strain rates (see 
Van Keken et al., 1993). In order to estimate the 
sinking velocity of inclusions through power-law 
or Newtonian salt, the inclusion geometries are 
simplified here to spheres sinking in infinite (un- 
bounded) salt. The known velocity equation for 
solid spheres sinking through unbounded power- 
law fluid (e.g., Crochet et al., 1984) is rewritten to 
allow direct use of measured creep parameters of 
salt (Weinberg and Podladchikov, submitted~. 

The paper first presents a short review of the 
inferred velacity of diapirs and salt within the 
diapirs, and of experimental measurements of the 
rheology of salt. The equations used to calculate 

Fig. 1. The Chah Berm salt diapir in Iran containing inclusions (rafts) of apparently undisturbed Hormuz sedimentary rocks, shales 
and diabase (redrawn from Gansser, 1992). 
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the settling velocity of spherical inclusions through 
power-law fluids are then described. The veloci- 
ties of inclusions settling through six salts of 
different power-law rheologies are calculated. 
These are compared to rates at which inclusions 
settle through Newtonian salt. The settling veloc- 
ity of inclusions defines a minimum velocity for 
the salt to lift the same inclusions. A qualitative 
analysis of the influence on velocity of non- 
spherical inclusions is based on two-dimensional 
finite-difference numerical calculations. Other 
factors which affect the velocity are also dis- 
cussed: the presence of lateral boundaries to the 
salt, several inclusions sinking simultaneously, and 
the effect of strain-rate softening of the salt due 
to diapiric ascent. The largest inclusion present in 
a diapir helps to constrain either the rheology of 
the diapiric material or its ascent rate, if one of 
them is known. The results indicate that the 
transport of large dense inclusions by power-law 
salt diapirs rising at velocities compatible with 
geological evidence is not enigmatic but rather to 
be expected. 

Ascent velocity of salt within diapirs 

The ascent rate of salt diapirs may vary consid- 
erably from diapir to diapir, and from stage to 
stage in the development of a particular diapir 
(Jackson and Talbot, 1986). Typical diapirs on the 
US Gulf Coast reach their maximum vertical 
growth rate of approximately 0.2 mm/a after a 
few million years and maintain that rate for lo-15 
Ma (Jackson and Talbot, 1986). Although they 
later slowed, the salt diapirs of northwest Ger- 
many rose at approximately 0.1 to 0.5 mm/a 
(Jaritz, 1987). Estimates of the ascent rates of 
Mount Sedom in Israel, indicate velocities of 3 to 
4 mm/a possibly since late Pliocene (Zak and 
Freund, 1980). The shape and steady-state height 
of the fountain of salt in Kuh-e-Namak diapir, 
perhaps driven by present active folding of the 
rock sequence in the Zagros Mountains (Iran), 
suggest that the Hormuz salt may be rising at 170 
mm/a (Talbot and Jarvis, 1984). A similar ap- 
proach applied to diapirs of the Great Kavir 
indicated salt ascent rates of approximately 10 
mm/a (Jackson et al., 1990). Diapirs that vent 

through the surface (e.g., in Iran) rise faster than 
those still buried (e.g., on the US Gulf Coast and 
northern Germany), mainly because of decreased 
resistance by air or water compared to that of an 
overburden. 

The rate of rise of salt within the diapir (gross 
rate) may differ from the rate of rise of the 
diapir’s crest (net rate). Several reasons may ac- 
count for this: dissolution of the salt at the diapir’s 
crest, lateral spreading of salt in sheets, internal 
circulation in a spherical diapir (may cause salt 
velocities up to twice that of the net diapir ascent 
velocity; Schmeling et al., 1988) and no slip along 
the walls of salt rising in a pipe. 

Salt rheology 

The rheology of rock salt depends on the pres- 
ence of water, magnitude of differential stress, 
strain rate, confining pressure, crystal size and 
proportion of impurities (e.g., Urai et al., 1986). 
Several laboratory studies have indicated that dry 
salt deforms by dislocation creep and behaves as 
a power-law fluid at high strain rates (e.g., Pfeifle 
et al., 1983; Handin et al., 1986; Urai et al., 1986): 

i =A exp( -E/RT)a” 

where i is the strain rate, A the pre-exponential 
parameter given in Pa-” s-‘, E the activation 
energy given in kJ/mol, R the gas constant, T 
the temperature in K, n the dimensionless power- 
law exponent, and (T the stress in Pa. Values of 
the creep parameters A, E and II vary consider- 
ably for rock salt from different localities (see 
Table 1; e.g., Pfeifle et al., 1983; Handin et al., 
1986). Traces of brine in confined salt deforming 

TABLE 1 

Steady-state creep parameters for natural rock salt (listed in 

Handin et al., 1986, after Pfeiffer et al., 1983) 

A II E 

(MPa-“s ‘) (kJ/mol) 

Richton Dome (M) 2.6 IO- ’ 5.01 82.3 

Permian Basin (TX) 4.66 lo- ’ 4.50 72.0 

Paradox Formation (UT) 1.53 10 ’ 1.39 28.X 

Avery Island (LA) 5.76 lo- ’ 4.10 33.6 

Salado Formation (NM) 3.91 10 (’ 4.90 so.2 

Vacherie Dome (LA) 8.71 lo- ( 2.22 62.9 



at slow strain rates cause a change in the defor- 
mation mechanism from dislocation creep to so- 
lution-transfer creep in relatively fine grained salt 
(Urai et al., 1986). The salt then becomes weaker 
and behaves like a Newtonian fluid with a viscos- 
ity that is directly proportional to the cube of 
grain size (7 N d3). This high mobility of grain 
boundaries accounts for the fast flow observed in 
salt namakiers after rain (up to 0.5 m/day, Tal- 
bot and Rogers, 1980). Urai et al. (1986) pro- 
posed that natural deformation of rock salt in 
most diapirs is likely to occur in the transition 
region between dislocation creep and solution- 
precipitation creep. This causes difficulties in as- 
certaining the actual behaviour of salt in a given 
natural setting. 

In order to avoid this problem, and to obtain a 
first approximation of the size of inclusions that 
salt diapirs are able to lift, both power-law and 
Newtonian rheologies of salt are used here. The 
large variation in rheologic parameters of power- 
law rock salt (Table 1) implies a wide variation in 
the effective viscosity of each salt and therefore 
the size of inclusions they are able to carry. 
Values of Newtonian viscosity of salt commonly 
used in the literature will also be used here for 
comparison. 

The sinking of inclusions through powe-tsw salt 

The velocity V of solid spheres slowly sinking 
in unbounded Newtonian fluid may be easily cal- 
culated by Stokes’ equation: 

where r is the sphere’s radius, and n the viscosity 
of the ambient fluid. 

The sinking velocity of solid spheres through 
power-law fluids has been thoroughly studied in 
the literature of fluid mechanics and chemical 
engineering (e.g., Crochet et al., 1984; Dazhi and 
Tanner, 1985; Kawase and Moo-Young, 1986). 
The equations in Crochet et al. (1984) may be 
rearranged to: 

v= _2_ Wd”rnfl 
9” K”X” (4 

where K is given in Pa s’; n. and X is a known 
correction factor that depends only on m = I /n 

and may be calculated by: 

X= 1.3(1-m’) +m (3) 

derived from the best fit of the values in Crochet 
et al. (1984). Equation 2 reduces to Stokes’ equa- 
tion (1) when n = 1. 

To allow direct application of the rheological 
parameters of salt to calculate the velocities, we 
follow here Weinberg and Podladchikov (sub- 
mitted) and rewrite eqn. (2) to: 

where: 

K”(j”-1 

%f = (hpsr)n-l 

and: 

1 
K”= 

Ae-E/RT3(“+1)/2 

(5) 

(6) 

The significance of the effective viscosity ncff in 
eqn. (5) is that the sinking velocity remains essen- 
tially similar if the power-law ambient fluid is 
substituted by a Newtonian fluid with the same 
viscosity. The advantage of eqn. (5) is that nen of 
the power-law fluid is calculated from the buoy- 
ancy stress of the sinking sphere, without the 
necessity of assuming a strain rate in advance. 

Results 

The results of calculations using the rheologies 
of Table 1 in the equations above are shown in 
Figure 2. For a given salt rheology and ambient 
temperature (assumed to be constant), the rate at 
which inclusions sink depends on their negative 
buoyancy. Thus, the curves in Figure 2 represent 
the minimum diapiric velocity necessary to lift 
inclusions of the corresponding buoyancy, at the 
given temperature. Calculations were also carried 
out for Newtonian salt of 1017-10’8 Pa s (e.g., 
Van Keken et al., 1993). The lifting capacity of 
Newtonian salt is generally lower than that of 
power-law salts (see Fig. 2), with the exception 
for the soft Vacherie Dome salt. 
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Fig, 2. Sinking velocities of inclusjons (teft-hand column) and effective viscosity qett of salt wright-hard ctrium~i) as a function of 

inclusion radius for seven different salt rheologies. The values are given for different salt temperatures and two density differences. 

LIP, between inclusion and satt. Each line corresponds to an equation in the inset which describes the dependancy of incfusion 

velocity or effective viscosity of salt as a function of radius for the given Asp and T. The left-hand column shows that in order to lift 

an inclusion of a certain size, the diapir has to rise at velocities above the sinking velocities of that inclusion. Conversely. salt rising 

at a known velocity may lift all inclusions that sink slower than the salt rises. Tht: right-hand column shows how the T,,( of salt 

decreases with increasing inclusion radius. (a) Avery island, Louisiana; (b) Salado Formation, New Mexico; {c) Vacherie Dome, 

Lmisiana; tdl Paradox Formation, Utah; (ef Permian Basin. Texas: (fj Richton Dome, hlississipi: lg) Newtoniarl salt at IhO’C with 

a constant viscosity of IO” Pa s for halite grain size d = 5 mm; or 10 lx Pa s for d = IO mm (from Van Kekm ct A.. 1993f. The 

creep parameters for the six power-law salts (a-f> are listed in Table 1. 



~V=7.2r10-5rn+1 
3V=5.3~10-~ r”+l / .’ 
IV=1.8x10e5 r”+t 
@v=1.7x10-4 rn+t 

/“/ 

/ 
. / 

s;p 4’ 
f 

p q+ 

/ 

$@ ,@ 

@ 

%/ 
ffv 

j* 

P ‘/r 

Cl ’ 
.ParadoxFm 

10 100 500 101 
fladus (m) 

aV=28x10-t6rn+r 
oV=3:6~10-~4r~+t 
•V=3.8xlO-t~r”+~ 

to. l %3.6x to-l6 r”+t 

4 D! PumirmBurin 
500 low 

Radius (mm] 

I I Richtea Dome 
O-O’ 100 500 

RZ:: (m) 
104 

lot6 
100 

1020 
oq=7.9xlO”rt-” 
0tp29x1027r1-n 
wr)=4:5a103t r’-” 

tot rq=1.6xt~r1-” 

PezmistlBIlPln 

td 

10 toD 500 laO0 tot 
Radius (rnb 

cl-- 
_. .- 

a v49 x t@ r n rt 
Ov~4.e~lo-~r~f~ 
l V=1.4.10-5rn+1 

,” .V=1.4x10-4;“” .///I 

Fig. 2 (continued), 



fHE LJI’WAKD TRANSPORT OF INCLUSIONS IN NEWTONIAN ANU POWEK-L.AW SAL. I DIAI’IRS 137 

Sinking velocity of elliptical inclusions 

Most natural inclusions are closer to tabular 

shape than spherical (e.g., Gansser, 1960, 1992; 

Kent, 1979) and may be more closely approxi- 

mated by an ellipsoid. The settling velocity of 

ellipsoids in Newtonian fluids is known (Happel 

and Brenner, 1986, pp. 145-157). Here, the veloc- 

ity of 2-D ellipses (infinitely long elliptical cylin- 

ders) settling in power-law fluids is studied by 

means of finite-difference numerical calculations 

using a computer code developed by Prof. Harro 

Schmeling and described by Weinberg and 

Schmeling (1992). Contrary to the earlier assump- 

tions of the present paper, the inclusions in the 

numerical models translate through ambient fluid 

bounded by free-slip lateral walls five times wider 

than the horizontal radius of the elliptical inclu- 

sion (see insert in Fig. 3). Although the results 

presented here correspond to infinitely long ellip- 

tical cylinders translating perpendicular to the 

longest axis, the results allow a qualitative insight 

into the influence of ellipticity and n-value on the 

rate at which inclusions sink. 

In Newtonian fluids, spherical cylinders sink 

most rapidly, whereas ellipses sinking parallel to 

the shorter axis (flat lying in Fig. 3) move faster 

than ellipses moving parallel to the longer axis 

(upright in Fig. 3). These results are in accor- 

dance with the results described by Happel and 

Brenner (1986) for ellipsoids sinking in Newto- 

nian fluids. For power-law fluids, the situation is 

the reverse of the Newtonian case. An upright 

ellipse concentrates the buoyancy stress to nar- 

row regions above and below it; this causes a 

decrease in the controlling effective viscosity of 

the ambient fluid and consequently increases the 

sinking velocities (Fig. 3). Conversely, a flat-lying 

ellipse will spread its buoyancy stress to larger 

volumes and sink more slowly. Although little is 

known about the 3-D shape of the inclusions (M. 

Jackson, pers. commun., 1993) they are thought 

to be horizontal and tabular because of their 

horizontal sedimentary and/ or igneous layering 

(see Fig. 4; e.g., Gansser, 1960; Jackson et al., 

1990). However, if this is so, the question arises 

as to how they remained horizontal when flowing 

with the salt streaming from horizontal beds into 

Fig. 3. Dimensionless velocity C” (defined as the ratio be- 

tween the velocity of the elliptical cylinder VCL. and the 

velocity of a circular cylinder C<,) as a function of 12 and 

ellipticity (u/h). The two-dimensional geometry of the finite 

difference calcu!ations is shown in the insert. xs well as II 

typical distribution of isoviscous lines caused by the sinking of 

the cylinder in a power-law fluid. All cylinders were of the 

same buoyancy and dimensionless width, )I.’ = 5 (ratio he- 

tween box width and horizontal radius. see insert ). The error 

bars correspond to estimated errors in the determination ol 

velocity hy the computer code. 

a vertical diapir. Why did they not rotate into 

steep dips? Moreover, any inclined slabs sinking 

through salt would tend to rotate towards vertical 

due to the decrease in drag. Perhaps the inclu- 

sions were vertical as they rose with the diapir 

and extruded at the surface. but fell towards 

horizontal because of salt dissolution. A more 

detailed study of the 3-D shape and orientation 

of the inclusions would further discussion of the 

flow inside salt diapirs. If however inclusions arc 

actually horizontal and tabular, they behave qual- 

itatively in the same way as a flat-lying ellipse, 

and may be expected to sink through power-law 

fluids more slowly than would spheres of the 

same buoyancy, and thus can be more easily lifted 

by diapiric salt. 

Other influences on the sinking velocity of inclu- 

sions 

Several factors other than the shape may also 

affect the sinking velocity of inclusions: (a) prox- 

imity of the inclusion to the lateral boundaries of 

the salt: (b) several inclusions sinking simultanc- 
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Fig. 4. Mafic volcanic rocks capping a hillock in dome 22 in 
the Great Kavir, Iran (redrawn from Jackson et al., 1990). 
I = coarse-grained augite-dolerite; 2 = thin gypsum layer; 3 = 

irregular banded salt. 

ously; (c) further softening of the salt due to 
strain rates unrelated to the sinking of inclusions, 
such as the diapiric rise of salt; and (d) yield 
strength of salt, if any. 

The interaction of lateral boundaries of the 
diapir with the buoyancy stress of the inclusion is 
non-trivial and causes complex variation in the 
sinking velocity of inclusions (Weinberg and Pod- 
ladchikov, submitted). Even though the large in- 
clusions present in the Iranian domes form a 
significant proportion of the diapir map section, 
it was assumed above that the diapir enveloping 
the inclusion was infinite (unbounded). In a New- 
tonian salt diapir (n = 11, no-slip contact with the 
wall rocks slows the settling velocity of inclusions. 
As the n-value of. salt increases, the influence of 
these boundaries becomes less pronounced and 
the assumption of infinite ambient fluid becomes 
more realistic. The sinking of inclusions very close 
to the diapir’s walls will be slowed, in all cases, 
but so too will be the rise velocity of salt close to 
these walls. The velocity of inclusions is similarly 
affected if several inclusions sink simultaneously 
through salt. The velocity of a swarm of inclu- 
sions decreases if n is close to unity, and tends to 
remain unaffected for n-values between 1 and 3. 
For n > 3, the increased stresses imposed by the 
swarm of inclusions may cause both faster or 
slower velocity depending on the distance be- 
tween inclusions. When the inclusions are dis- 
persed, softening of salt will lead to faster veloci- 
ties; when the swarm is very concentrated, soften- 
ing of salt will be less important than the increase 
in drag on the inclusions, and the net effect is a 
decrease in the sinking rate (for further details 
see Chhabra, 1988; Weinberg and Podladchikov, 
submitted). 

In the calculations above, it was also assumed 
that softening of power-law salt is only related Lo 
the strain rates around the sinking inclusion. 
However, stresses related to the ascent of the 
diapir will also soften the salt and interact in a 
non-linear way with the stress imposed by the 
inclusion. The resulting interaction is difficult to 
assess at present, but probably causes the inclu- 
sion to sink faster than sinking rates calculated 
without any other stresses. 

In summary, most of the simplifications made 
to calculate the sinking velocity of inclusions (salt 
with no yield strength, unbounded salt diapir and 
sinking of single inclusions) minimise the capabil- 
ity of salt to lift inclusions. If, however, the n-value 
of salt is high (n > 3) the walls of the diapir and 
the presence of several inclusions may in some 
cases accelerate the sinking of inclusions. A sim- 
plification that is likely to increase the lifting 
capacity of salt as compared to nature, is the 
assumption that there are no additional stresses 
apart .from the inclusion’s buoyancy acting on the 
salt. This latter assumption may cause very large 
differences in the lifting capacity of salt. 

Discussion 

The maximum negative buoyancy of inclusions 
that a diapir may lift varies considerably due to 
large variations in the rheology, and thus the 
effective viscosity of salt (Fig. 2; Table 1). The 
largest inclusion reported from any salt diapir has 
a volume corresponding to a sphere of approxi- 
mately 500 m radius (an inclusion of approxi- 
mately 5 km2 and 125 m thick). Figure 2 indicates 
that, if spherical, this inclusion would be lifted by 
diapirs of most measured rheologies rising at 
reasonable rates and temperatures. Only diapirs 
of Newtonian salt or of the Vacherie Dome salt 
would have to rise extremely fast to lift this 
spherical inclusion. However, a tabular inclusion 
would be lifted more easily by a power-law fluid 
than a spherical inclusion. At 160°C (used in the 
calculations for Newtonian salt), it would be nec- 
essary for salt of 101’ Pa s to rise faster than 100 
mm/a, and salt of 1018 Pa s to rise faster than 10 
mm/a (Fig. 2g). These results suggest that the 
long-standing enigma posed by the Iranian inclu- 
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sions arose only because the surrounding salt was 

taken to have unrealistically low Newtonian vis- 

cosity (e.g., 10lh in Jackson et al., 1990). 

Given the maximum negative buoyancy of in- 

clusions in a diapir, and an estimate of the salt 

velocity, the effective viscosity of the salt may be 

estimated from Figure 2. Conversely, if the rheol- 

ogy and temperature of the diapir can be as- 

sessed, the velocity of salt may be estimated with 

the help of the largest inclusion. However, if the 

salt in a diapir slows sufficiently at later stages of 

diapirism, the inclusions could start to sink in 

relation to an external marker. Given enough 

time the diapir could become inclusion free. On 

the other hand, in outcropping diapirs, dissolu- 

tion of salt may be faster than the sinking of 

inclusions, leading to a gradual accumulation of 

inclusions at the surface. Whether or not the 

inclusions are raised with the diapir, the relative 

sinking of inclusions in relation to the rising salt 

could cause downward-drag of internal markers/’ 

layering, perhaps forming structures like the 

domes-in-domes described by Richter-Bernburg 

(1987, his fig. 10). 

Potentially, the centre of a diapir rises fastest 

and so is able to carry the largest inclusions. 

However, the original stratigraphy of the source 

of diapirs is a more important control in the final 

distribution of inclusions than velocity variations 

inside the diapir. For example, in the Great Kavir, 

the clean Old Salt occupies the centre of most 

diapirs, whereas the Younger Salt, with its many 

inclusions occupies the external parts. That inclu- 

sions in the diapirs in the Zagros Mountains are 

larger than those in the Great Kavir may indicate 

either faster velocity or greater viscosity of the 

salt in the Zagros, or simply differences in the 

original stratigraphy, and the size and distribu- 

tion of inclusions at the source. 

Urai et al. (1986) suggested that natural defor- 

mation of salt probably occurs close to the transi- 

tion region between dislocation creep and solu- 

tion-precipitation creep. Van Keken et al. (1993) 

arrived at a similar conclusion when modelling 

numerically the diapiric ascent of salt and the 

dependence of the deformation mechanism on 

strain rate. Gansser (1992) reported highly de- 

formed rims of mobile salt often associated with 

peripheral brines, around the more competent 

interiors of the diapirs in the Iranian domes and 

in Texas. On the one hand salt extruding at the 

surface in Iran has been shown to flow up to 0.5 

m/day after rain (Talbot and Jar&, 1984), and 

on the other hand, salt is capable of supporting 

inclusions of mafic volcanic rocks on top of hills 

(Fig, 4; e.g., Gansser: 1960; Jackson et al., 19901, 

indicating that salt may either have a yield 

strength at surface conditions or that salt dis- 

solves faster than the inclusion sinks. If however 

salt is still ductile at surface conditions, the large 

inclusions have to be supported by upward movc- 

ment of the salt, and it is shown here that even 

the largest inclusions could be dynamically sus- 

tained by most known extruding salt diapirs rising 

at normal rates. 

Conclusion 

Consider thick layers of denser sediments or 

igneous rocks interlayered within a salt sequence. 

The salt starts to move slowly sideways and up- 

wards to form a pillow. Competent layers break 

-into blocks of different sizes that start to sink. 

Simultaneously, the pillow grows and the rise rate 

of salt accelerates exponentially, dragging in- 

creasingly larger blocks of dense material up- 

wards. The size of inclusions lifted by each diapir 

depends on such initial processes as breaking, 

sinking and exponential acceleration, and on the 

steady-state vertical velocity achieved by the di- 

apir at a later stage. If the diapir decelerates at 

its level of neutral buoyancy or beneath a compe- 

tent layer, larger inclusions may sink through the 

salt back to the source and after sufficient time 

the salt may be cleared of large inclusions. The 

only evidence of the passage of sinking inclusions 

may be the presence of folded salt layers. The 

main conclusion of this study is that even the 

largest inclusion known would be lifted by most 

salt rising at typical velocities. 
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