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Introduction
• Stochastic frontier models introduced by Aigner et al. (1977)

and Meeusen and Van Den Broeck (1977) have been often

used to evaluate a firm’s efficiency in productivity studies.

• A production frontier represents maximum outputs

obtained from a given set of inputs.

• A cost frontier model minimises the cost for given levels of

output and input.

Figure 1: Illustration of two types of frontiers
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Stochastic frontier models

Consider a panel-form cost frontier model:

yit = x⊤
it β + ui + vit , (1)

for i = 1, 2, · · · ,N , and t = 1, 2, · · · ,T .
• yit represents the logarithm of cost

• xit is a k + 1 dimensional vector of explanatory variables

• β is a vector of coefficients

• ui is non-negative and time-invariant inefficiency of firm i

• vit is the random error and is assumed to be iid N (0, σ2)

• Let εit = ui + vit which is regarded the composite error
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Assumptions on the distribution of ui

To estimate firm-level inefficiencies, it is often necessary to

impose assumptions on the one-sided distribution of ui.

half normal distribution (Aigner et al., 1977),

exponential distribution (Meeusen and Van Den Broeck,

1977),

truncated normal distribution (Stevenson, 1980),

Gamma distribution (Greene, 1990).

As any parametric assumption about the distribution of ui can

be subjective, some studies have proposed using

unknown density function (Park and Simar, 1994),

Dirichlet process prior (Griffin and Steel, 2004),

kernel density estimator (Feng et al., 2019).
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Motivation
Limitation: These studies have relaxed the distribution

assumption on ui, but they all aim to estimate ui or estimate

the density of ui using information of (u1,u2, . . . ,uN ), rather

than using the composite errors εit = ui + vit .

Jondrow et al. (1982) proposed using the condition mean of ui

given εi, which is E [ui|εi], as a point prediction of ui. This

method is a popular approach to the estimation of firm-level

inefficiencies.

Let ε⃗i = (εi1, εi2, . . . , εiT )
′. We aim to

derive a kernel density estimator for the conditional

distribution of ui given ε⃗i; and

generate ui directly from this conditional density within a

Markov chain Monte Carlo procedure.
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Conditional density of ui

Conditional density of ui is given by

p(ui|ε⃗i) =
p(ui, ε⃗i)

p(ε⃗i)
, (2)

The joint density of (ui, ε⃗i) is approximated by

p̂(ui, ε⃗i|hu,h1,h2, . . . ,hT ) (3)

=
1

N − 1
1

huh1 · · ·hT

N∑
j=1
j ̸=i

k
(

ui − uj

hu

)
K
(
ε⃗i − ε⃗j

h

)

=
1

N − 1
1

huh1 · · ·hT

N∑
j=1
j ̸=i

{
k
(

ui − uj

hu

) T∏
t=1

k
(
εit − εjt

ht

)}
, (4)

for i = 1, 2, · · · ,N .
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Conditional density of ui

Marginal density of p(ε⃗i) is approximated by

p̂ (ε⃗i|h1,h2, . . . ,hT )

=
1

N − 1

N∑
j=1
j ̸=i

1
h1h2 · · ·hT

K
(
εi,1 − εj,1

h1
,
εi,2 − εj,2

h2
, . . . ,

εi,T − εj,T

hT

)

=
1

N − 1

N∑
j=1
j ̸=i

{
1

h1h2 · · ·hT

T∏
t=1

k
(
εit − εjt

ht

)}
, (5)

for i = 1, 2, · · · ,N .
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Bayesian estimation

Let xi = (xi1, xi2, · · · , xiT )
′, yi = (yi1, yi2, · · · , yiT )

′,

X = (x ′
1, x ′

2, · · · , x ′
N )′, y = (y ′

1, y ′
2, · · · , y ′

N )′,

u = (u1,u2, . . . ,uN )′.

Assuming that vit , for t = 1, , 2 · · · ,T , are iid N (0, σ2), we

obtain the likelihood as

L(y|β,u, σ2) =

N∏
i=1

T∏
t=1

f
(

yit
∣∣β,ui, σ

2) , (6)

where

f
(

yit
∣∣β,ui, σ

2) = 1√
2πσ2

exp

[
− 1

2σ2 (yit − x ′
itβ − ui)

2
]
. (7)

Note that the likelihood is conditional of ui, for i = 1, 2, · · · ,N .
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Bayesian estimation
• In the situation where the density of u is assumed to be a

parametric density denoted as p(u), the posterior would be

π
(
β, σ2,u|y

)
∝ L(y|β, σ2,u)π(β, σ2)p(u), (8)

• We assume that p(u) = p(u, ε)/p(ε), and is approximated by

p̂(u|h) = p̂(u, ε|h)/p̂(ε|h),

where h = (hu,h1,h2, . . . ,hT )
′ is the vector of bandwidths

used by the above kernel density estimates.

• The posterior of (β, σ2,u,h)′ is approximately

π
(
β, σ2,u,h|y

)
∝ L(y|β, σ2,u)π(β, σ2)p̂(u|h)π(h), (9)

• Prior choices

The prior of (β, σ2) is assumed to be

π(β, σ2) ∝ 1/σ2. (10)
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Bayesian estimation
Choose an inverse Gamma prior for each squared bandwidth:

π
(

h2
u

)
=

θθ1
2

Γ (θ1)

(
1

h2
u

)θ1+1

exp

(
− θ2

h2
u

)
,

π
(

h2
t

)
=

θθ1
2

Γ (θ1)

(
1

h2
t

)θ1+1

exp

(
− θ2

h2
t

)
, for t = 1, . . . ,T ,

We can sequentially simulate parameters, u and h2 from the

following conditional posteriors:

π
(
β|y, σ−2,u,h2) ∝ fNormal (β | β̄,V) (11)

π
(
σ−2|y,β,u,h2) ∝ fGamma (σ

−2 | γ̄, s̄2), (12)

π
(

u|y,β, σ−2,h2) ∝ N∏
i=1

f̂ (ui|ε⃗i), (13)

π
(

h2|y,β, σ−2,u
)
∝

N∏
i=1

f̂ (ui|ε⃗i)p(h2). (14)

10 / 28



Benchmark models

• Exponential distribution of ui:

p
(

ui|λ−1) = λ exp (−λui), for i = 1, · · · ,N , (15)

p
(
λ−1) = fGamma

(
λ−1|1,− lnκ∗

)
. (16)

• Kernel-based density of ui proposed by Feng et al. (2019):

p
(

ui | τ2) = 1
(N − 1)ui

N∑
j=1;j ̸=i

1
τ
ϕ

(
lnui − lnuj

τ

)
I (ui > 0) ,

(17)

for i = 1, 2, · · · ,N , where τ represents the bandwidth, and I (·)
is an indicator function, which equals 1 for a true argument

and 0 otherwise.
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Simulation studies

Data generating process is given by

yit = 1 + 0.75x1,it + 0.25x2,it + ui + vit , (18)

x1,it and x2,it are randomly generated from the uniform

distribution U (0, 1)

vit is generated from N (0, 0.22)

ui is generated from an exponential distribution with the

rate of − log(0.85)

Euclidean distance: d = 1
N

(∑N
i=1

(
uest,i − utrue,i

)2
)1/2

Spearman rank correlation: ρ = 1 − 6
∑N

i=1(Ranki1 −Ranki2)
2

N (N 2−1)
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Simulation Studies

Table 1: Monte Carlo Simulation Results

Our model Exponential Kernel-based
Sample size: N = 100 and T = 5

Average Euclidean distance 0.0111 0.0071 0.0098
Spearman rank correlation 0.8201 0.7743 0.8225

Sample size: N = 200 and T = 5
Average Euclidean distance 0.0037 0.0050 0.0033
Spearman rank correlation 0.9653 0.7761 0.9644

Sample size: N = 100 and T = 20
Average Euclidean distance 0.0090 0.0040 0.0032
Spearman rank correlation 0.9029 0.9127 0.9080

Sample size: N = 200 and T = 20
Average Euclidean distance 0.0029 0.0028 0.0019
Spearman rank correlation 0.9799 0.9092 0.9854
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Simulation Studies
True specification

Exponential assumption

Average Euclidean distance

Our model and the kernel-based model cannot beat the

true model for small panels (N =100)

The kernel-based model outperforms the true model for

large panels (N =200)

Our model outperforms the true model when T =5 and is

as good as the true model T =20 for large panels (N =200)

Rank Correlation

Our model and the kernel-based model outperform the

true model for short panels (T =5)

Kernel-based model outperforms true model when

N =200 and T =20; our model is best for N =200 and T =5
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Simulation Studies: Distributions of inefficiency

Figure 2: Posterior predictive inefficiency density for an unobserved
individual. Solid blue line represents our estimate, and dashed red
line represents the kernel-based estimate.
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Simulation studies: Distributions of inefficiency

Our approach and the kernel-based approach can

approximate the shape of the exponential density well.

Our model produces a certain amount of probability

mass in (0.4, 0.7), while the kernel-based approach does

not show this feature.
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Cost efficiency of commercial banks in the US
We apply our model to analyse the cost efficiency of large
banks in the US. A translog cost frontier model with inputs X ,
outputs Y , and cost C is defined as

log(C/XL) = a0 +

L−1∑
j=1

aj log
Xj

XL
+

1
2

L−1∑
j=1

L−1∑
k=1

ajk log
Xj

XL
log

Xk

XL

+

M∑
m=1

bm log Ym +
1
2

M∑
m=1

M∑
n=1

bmn log Ym log Yn

+
1
2

L−1∑
j=1

M∑
m=1

gjm log
Xj

XL
log Ym +

L−1∑
j=1

hjt log
Xj

XL

+

M∑
m=1

κmt log Ym + τ1t +
1
2
τ2t 2 + ui + vit , (19)

where t is the time period, ajk = akj and bmn = bnm due to

symmetry.
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Data
Description of data is as follows.

Table 2: Description of data

N = 466 Number of large banks (assets of at least $1
billion in 1986)

T = 80 Quarterly data during 1986 – 2005
C Total cost (sum of the cost of 3 inputs)
Inputs (L = 3)

X1 Quantity of labor
X2 Quantity of purchased funds and deposits
X3 Quantity of physical capital

Outputs (M = 3)
Y1 Consumer loans
Y2 Securities (all non-loan financial assets)
Y3 Non-consumer loans (industrial, commer-

cial, and real estate loans)
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Key measures
Posterior distributions of the inefficiency for five selected

banks (minimum, maximum, and 3 quartiles of the

estimated inefficiencies through our model).

Posterior predictive distribution of technical efficiency for

an unobserved bank.

Technical efficiency is defined as exp(−ui) in a cost

frontier model.

Returns to scale:

RTS =

(
M∑

m=1

εm

)−1

, where εm =
∂ log(C/XL)

∂ log Ym
.

Technical change:

TC = −∂ log(C/XL)

∂t
.
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Main findings: Posterior distribution of ui
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Figure 3: Posterior distributions of the inefficiency for five selected banks.
Solid blue line represents our estimates, dotted red line represents the
estimates via the exponential model, and dashed black line represents the
estimates via the kernel-based model.
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Main findings: Posterior distribution of ui

The exponential model tends to overestimate

inefficiencies, except for the maximum inefficiency.

As a result, it will underestimate the technical efficiency

due to the restriction of exponential assumption on ui.

This phenomenon is consistent with the findings of

Griffin and Steel (2004) and Feng et al. (2019).

Inefficiencies estimated from our model and the

kernel-based model are close to each other, except for the

estimated maximum inefficiency.

Densities estimated through the kernel-based model and

exponential model have high peaks, suggesting these two

tend to have narrow high density regions for the

estimated inefficiencies.
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Distribution of technical efficiency e−ui
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Figure 4: Posterior predictive distributions of efficiency for an unobserved
bank. Solid blue line represents our estimates, dotted red line represents
the exponential model, and dashed black line represents the kernel-based
model.
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Distribution of technical efficiency e−ui

Our model has a very high peak around 0.95

Our model has large probability mass on the interval

(0.8, 1), while the kernel-based model has a similar

probability mass over a wider interval (0.7, 1).

The exponential model cannot produce similar

probability mass.
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Main findings: Return to scale
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Figure 5: Point estimates of average returns to scale. Solid blue line
represents our estimates, dotted red line represents the exponential
stochastic frontier model, and dashed black line represents the
kernel-based model.
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Main Findings: Return to scale

All the values are greater than one, indicating increasing

returns to scale among large banks in the US during the

sample period.

Another evidence is that the average cost of production

decreases over the sample period. This finding is

consistent among the three models, but the exponential

model generally produces higher values of estimates than

the other two models. We tend to attribute it to the very

restrictive exponential assumption.
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Main Findings: Technical change
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Figure 6: Point estimates of average technical change. Solid blue line
represents our estimates, dotted red line represents the exponential model,
and dashed black line represents the kernel-based model. 26 / 28



Main Findings: Technical Change

All three models indicate an increasing trend of the

technical change from 1986 Q1 to 2005 Q4.

There are opposite moves over some short periods of

time. For example, the exponential model shows an

increased technical change in 1993, while our model

indicates a decreased technical change.
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Conclusion

We present a nonparametric estimation of the

distribution of inefficiency terms in panel stochastic

frontier models

Such estimation uses information conveyed by the

composite errors rather than the inefficiencies

It has produced obviously different distribution of the

inefficinecies from the cost frontier of the US large

commercial banks, in comparison to the kernel-based

density estimation

We have also obtained different measures of technical

efficiency, return to scale and technical change
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